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Abstract—This paper presents a new robustification procedure
for nonlinear least-squares optimisation problems. In particu-
lar, we focus on the robustness of view-graph SLAM against
outlier correspondences in the images and outlier geometries
in the graph. Our method utilises revised measurements model
linearisation and decision making to detect and remove outliers
during data fusion. We utilise innovations and residuals gating to
decide which observations were affected, given the most recent
model linearisation point. By exploiting the inherited locality of
measurements and states and the sparsity structure of nonlinear
least-squares formulation we can check which measurement
is affected before and after data fusion. This locality is the
whole basis of robustification. To be efficient, we carry out the
estimation using the information form. By doing so, we can
include and remove information by individual measurements
at each step using simple information addition and subtraction
operations. Our results demonstrate the robustness of our method
against outliers with respect to the use of kinematics alone and
RANSAC with Levenberg-Marquardt algorithm.

I. INTRODUCTION

Using an extrinsically calibrated stereo pair is a common
solution to obtain reliable localisation and mapping results (see
for instance [1]). In order to obtain accurate depth estimates,
the cameras are usually separated by a significant baseline
thus creating widely spaced observations of the same object.
In certain practical cases, however, the distance between
the cameras is small. In these cases the problem become
difficult because small correspondence error can affect the
depth estimation significantly.

In this paper, we address the problem of visual localisation
and mapping using iCub (shown in figure 1). A humanoid
robot which mounts two cameras separated by a small base-
line1. The two cameras are mounted on a platform where their
rotations around the x and z axes are coupled, while they
may rotate independently around the y axis. Even though an
estimate of the relative motion between the two cameras can be
computed using a kinematic model, this estimate is unreliable
due to model errors, outliers, and triangulation uncertainty.
Hence, we use nonlinear least-squares to estimate the motion
parameters of each camera from the images, while kinematics
are used to initialise the map and hence to solve for the
scale ambiguity. This generalises our method to various visual
systems, where an initial scale can be obtained for instance
using inertial sensors or platform kinematics.

1The displacement between the two cameras along the x-axis is, approxi-
mately, 68 mm. Which is small when compared to the observed distances.

(a) iCub. (b) Reference frame.

Fig. 1. iCub mounts two Dragonfly-2 color video cameras (resolution 640×
480) and a PC104 computer capturing image frames at 30Hz.

Many estimation problems in robotics rely on solving
nonlinear least-squares. For Simultaneous Localisation and
Mapping (SLAM), or many other mathematically related for-
mulations including Bundle-Adjustment (BA) and Structure
from Motion (SfM), nonlinear least-squares solvers are getting
more and more efficient [2], [3], [4]. Nevertheless, dealing
with outliers due to wrong data associations and degenerate
camera configurations is still an issue, and may result into
delayed convergence and loss in accuracy. Hence, this pa-
per presents an efficient and robust nonlinear least-squares
estimation framework for view-graph SLAM. Our goal is to
demonstrate how each of its components can be made robust
to outliers in the data.

II. PROBLEM FORMULATION

For view-graph SLAM the estimated state contains a set of
camera poses with no map. Instead, the image frames are used
to break up the map into a number of visual scans, where
every scan relates to a reference camera frame. Therefore,
the estimated state is the pose of the reference frame at
each moment a scan is obtained. The set of visual scans can
later generate a map, by projecting each one of them into
the common global coordinate frame according to its pose
estimate.

For monocular and uncalibrated stereo systems, the graph
constraints and the visual scans have to be estimated before
graph optimisation takes place. This is a two-step procedure,
as shown in figure 2.

A. Pair-wise States and Measurements

The aim of the first estimation task is to use information
from images to estimate the relative pose parameters between
pairs of images. Given a set of M image frames {I1, . . . , IM},
with N 2D correspondences {m1

1:N , . . . ,m
M
1:N}, our state



(a) Step 1: Relative pose estimation.

(b) Step 2: Global pose estimation.

Fig. 2. Two step procedure for view-graph SLAM, using a graph with three-
view constraints. Top: estimation of relative poses between frames. Bottom:
global pose estimation, in which each frame is projected into a common
global frame. Notice that for global pose estimation redundant information
exists (e.g. given a reference x1, the state x3 can be obtained directly from
x13 = {t13,a13} or by concatenating x12 and x23).
vector contains the relative translation and rotation vec-
tors {t1j ,a1j} and N inverse depth parameters ρ11:N =
{ρ11, . . . , ρ1N}, computed with the frame I1 as a reference.

x =
[
01×3,01×3, t12,a12, . . . , t1M ,a1M , ρ

1
1:N

]>
. (1)

Where a1j is parametrised following Rodrigues notation2.
Thus, the dimensions of our state vector are (6M +N )×1.

Our observations, then, consist of a set of 2D pixel locations
in normalised image coordinates3, which were extracted in the
reference image I1, and then located in the remaining M − 1
images,

z =
[
m1

1:N , . . . ,m
M
1:N

]>
. (2)

The dimensions of the observations vector depends on the
visibility of the map features in the images. If all the features
were tracked successfully in all the M image, they should be
(MN×1). These observations will form the constraints in our
batch nonlinear least-squares estimation problem.

We assume a nonlinear image formation model,

h(x) ≈ Cj
1

> (
x1

f − t1j
)
. (3)

where Cj
1 is a rotation matrix computed from a1j ,

Cj
1 = I+[n]× sin ‖a1j‖+[n]

2
× (1−cos ‖a1j‖), n =

a1j

‖a1j‖
,

4and x1
f represents 3D corners computed from inverse depth

states ρ11:N ,

x1
f =

1

ρ1n
√
x2n + y2n + 1

[xn, yn, 1]
>
,m1

n = [xn, yn]
>
.

2A downside to a quaternion parameterisation within a weighted-least
squares state vector is that the unit norm cannot be guaranteed when
calculating the mean. Thus, generalised Rodrigues parameters that represent
the local rotation is preferred when constructing the data fusion equations
(The details are omitted for brevity). Also, this is faster and more accurate
than using Euler angular parameterisation because trigonometric functions are
avoided.

3obtained after applying each camera intrinsic parameters.
4[·]× computes a skewed-symmetric matrix.

Due to errors in initial pose and inverse depth states and the
noise in the images, the observed pixel locations z will not
match the predicted locations by the nonlinear image repro-
jection model. Notice that, by estimating all the relatives in
batch, we are technically performing local bundle-adjustment.
Finally, the estimated relatives are then inserted into their
corresponding edges in the view-graph, as shown in figure
2.

B. View-Graph States and Measurements

The aim of the second estimation task is to solve for the
global poses of the image frames in the view-graph, given
all the estimated relative poses in the previous section. Notice
that, inverse depth parameters are not considered during graph
estimation. However, they will be used later to build the map
by projecting each inverse depth estimate into the common
global frame given the estimated pose of its reference frame.

The state vector of the view-graph is composed of K camera
frames,

x = [x1, . . . ,xK ]
>
, xk = [tk,ak] , k = 1, . . . ,K. (4)

where {tk,ak} are the position and orientation (parametrised
using Rodrigues rotations) of the kth camera frame relative to
the global reference. Thus, the dimensions of our state vector
are (6K × 1).

For any two camera frames in the graph, xi and xj , the
relative pose measurements and constraint model are given,
respectively, by

zij = [tij ,aij ]
>, h(x) ≈ [t̃ij , ãij ]

>, (5)

where t̃ij is the predicted relative translation between ti and
tj , given by,

t̃ij = Ci
w

>
(tj − ti).

While ãij is the predicted relative rotation between ai and
aj , which can be robustly computed using the corresponding
rotation matrices Ci

w and Cj
w,

ãij = Ψ(C̃j
i ), C̃j

i = Ci
w

−1
Cj
w.

Here, w denotes a global reference frame, and Ψ(·) performs
a parameteric transformation from rotation matrix space to
Rodrigues rotation space. The complete graph measurements
vector is then composed of all the observed relative poses,

z = [zi,j , . . . , zK−1,K ]>. (6)

III. RELATED WORK ON THE ROBUSTIFICATION OF
VISUAL MAPPING

A. Dealing with outlier image correspondences

When solving for the relative poses, tracked image points
will act as measurements. Errors in relative pose and inverse
depth computations are due to outlier point tracks and poor
pose initialisation. This is because accurate inverse depth
and relative pose computations require quality inlier matches,
while finding an acceptable set of inlier matches require
good relative poses. This problem is usually solved using



RANSAC iterations and epipolar geometry by the essential
matrix. During every iteration, relative poses are initialised
from the epipolar geometry of a randomly selected set of five
matches [5]. The geometry that generates the largest number
of positive inverse depth values is selected [6]. Finally, the
relative pose and inverse depth parameters are refined using
bundle-adjustment [7].

It is mostly due to small translations, however, that deci-
sions made from some geometries become unreliable. This
is because the accuracy of depth computation is inversely
proportional to the relative frame translation and is inversely
quadratic with the observed distance. In similar situations,
there is no way to determine how many iterations are required
in order to select an acceptable initial set of inliers with a
spatial distribution that is good enough for accurate, repeatable
and robust essential matrix computations. Hence, several thou-
sands of RANSAC iterations are usually used. Also, bundle-
adjustment (using Levenberg-Marquardt for instance) requires
a close initialisation and, in case of poor initialisation, it is
likely to remain trapped in the closest minima. Finally, inverse
depth and relative translation parameters can be computed
from the essential matrix only up to a scale factor. This scale
ambiguity increases the complexity of outliers detection and
removal.

B. Dealing with outlier graph constraints

When solving for the global poses, the previously estimated
relative motions and their corresponding uncertainty in the
view-graph will act as constraints. This is often referred to
as trajectory smoothing [4] or motion averaging [8]. They
are often used as pre-conditioners or initialisers to global
optimisation methods, including bundle-adjustment [9].

Some of pair-wise geometries may not be solvable, for in-
stance, small translations or degenerate configurations. During
averaging, outliers in the graph will have a negative influence
by gravitating the state estimate towards them. Hence, a few
methods have been developed to incorporate robustness into
averaging of graph constraints. The common approach is
to decouple rotations from translations, and hence solve for
global rotations robustly first [11].

To incorporate robustness in the averaging of rotations,
available methods can be classified into two approaches. The
first approach is to detect outliers in the set of relative rotations
and remove them before carrying out averaging. The common
approach is to use RANSAC to detect and remove outlier
rotations in the graph [10], [11]. This is based on the fact
that, if there is no noise or outliers, a loop of rotations
in the graph should result in the identity transformation.
However, RANSAC-based methods suffer from an increased
computational complexity with the increased size of the view-
graph. One other problem with using RANSAC is that old
decisions, once made, are not revised. Also, RANSAC fails to
account for measurements and state uncertainty.

The second approach is to robustly solve for global rotations
without the need to explicitly detect or remove outliers. For
instance, DISCO [13] treats the problem as a discrete labeling

instance using Markov Random Fields, which is expected to
be extremely expensive and will require a significant amount
of memory. Alternatively, [14] performs robust global aver-
aging of rotations using their corresponding Lie-algebra. This
approach uses two optimisation steps, where an l1 optimiser
is used to initialise an estimate. This estimate is then refined,
using all the constraints, by an iteratively re-weighted least
squares (IRLS) optimiser using an l2 cost function with a
Huber-like loss function. This allows for fine tuning of the
estimate while under-weighting inconsistent measurements.
IRLS is a greedy algorithm and needs a good initial guess.
Without a good initial guess, the intermediate weighting of the
loss function will not be informative and the algorithm may
not converge to a good final estimate. Also, the method was
only applied for rotations, and does not consider uncertainty.

For translations, 1DSfM [15] solves first for global rotations
using the method in [14], then for global translations, by opti-
mising an objective function that depends only on comparing
measurement directions to model directions. Information about
which measurements are likely inconsistent is recovered by
solving for multiple 1D ordering problems. This can be done
as an instance of Minimum Feedback Arc Set (MFAS), a well
know problem in graph theory [16].

C. Our Contributions
This paper presents a robust framework for view-graph

SLAM. By doing so, we pay close attention to wrong corre-
spondence information between the images, and then to outlier
motion estimates in the whole graph. Our method utilises
sparse representation, revised linearisation, and statistical test-
ing using innovations and residuals analysis to detect outliers
in the data and hence remove them. Thus, robustness against
poor initial decisions about outlier measurements is acheived
during data fusion by using iterative measurements model
linearisation and measurements switching.

In comparison to related approaches, our approach has the
following advantages:
• Unlike RANSAC-based methods in [5] and [11], our

method utilises measurements and states uncertainty and
allows for revised decisions once more information be-
come available.

• Unlike the methods in [14] and [15], we couple decisions
on outlier rotations and translations. This is motivated by
the fact that an error in relative pose computations makes
the whole geometry unreliable.

• Our robustification approach can be generalised to various
nonlinear least-squares problems in robotics and com-
puter vision.

IV. ROBUST NONLINEAR LEAST-SQUARES ESTIMATION

A. Optimally Weighted Non-linear Least-Squares
We are concerned with applying Gaussian estimators to

systems with nonlinear models of the form,

ẑ = h(x) + n.

This models the predicted measurements ẑ made given the
state x, where n is an additive zero-mean Gaussian noise



with covariance R. The nonlinear model can be approximated
by a tangent about a linearisation point xs, and thus is
approximated by a set of linear models,

ẑ , h(xs) +∇hxs(x̂− xs),

where ∇hxs is the Jacobian of h(x) evaluated at an arbitrarily
chosen linearisation point xs.

The aim of smoothing and mapping algorithms is, using the
observation vector z, to estimate the state x̂ which minimises
the weighted Sum of Squared Error (SSE) cost function:

f(x) =
1

2
(z− h(x)>R−1(z− h(x)),

where R−1 is the optimal weight matrix. This type of problem
formulation (generally referred to as non-linear least squares)
is typically solved using numeric optimisation methods such
as Newtons method, the Gauss-Newton approximation and
the Levenberg-Marquardt algorithm (which is commonly used
in vision-based bundle-adjustment) [7]. The Gauss-Newton
approximation of this nonlinear least-squares problem has the
following solution,

x̂ = x + ∆x, (7)

where,
∆x = Y−1z yz,

Yz = ∇h>xsR
−1∇hxs , yz = ∇h>xsR

−1ν, (8)

and ν are the innovations, ν , z − ẑ. Here, yz and Yz are
the information vector and matrix by the measurements z.

By assuming that x is Gaussian with covariance matrix
P, we can also compute the uncertainty in the least-squares
estimate x̂,

P̂ = P−P∇h>xsS
−1
ν ∇hxsP, (9)

where Sν is the innovations covariance matrix, given as,

Sν = ∇hxsP∇h>xs + R.

This propagates the uncertainty in the prior estimate x, through
the nonlinear model h(x) using a set of linearised Gaussian
projections by the Jacobian ∇hxs , which is computed at a
linearisation point xs. From equations (7), (8), and (9), we may
also write the update equations in the following information
form (or inverse-covariance form)5,

ŷ = y + yz,

Ŷ = Y + Yz,

where y and Y are the prior information vector and matrix
computed using,

y = P−1x, Y = P−1.

The least-square state estimate {x̂, P̂} can be then recovered
from {ŷ, Ŷ} by solving the following sparse system,

Ŷx̂ = ŷ, P̂ = Ŷ−1.

5The details of this derivation are omitted for brevity.

Algorithm 1 summarises steps for solving nonlinear least-
squares problems using the information form equations. It is
easy to say that data fusion equations in the information form
are simpler than those in the covariance form, since simple
additions are employed instead of multiplications. They are
also more efficient since the information matrix is typically
sparse and positive definite.

1- Initialise information vector and matrix {y,Y}.
2- Set linearisation point xs = x, and find ∇hxs .
3- Compute measurements information {yz,Yz}.
4- Add information and computed updated state {ŷ, Ŷ}.
5- Recover the moments {x̂, P̂}.

Algorithm 1: Nonlinear least-squares using information.

B. Robust Non-Linear Least-Squares

The main problem with least squares is its high sensitivity
to outliers. This happens because the Gaussian has extremely
small tails compared to most real measurement error dis-
tributions. A single outlier such as a correspondence error
may affect one or a few of the observations, but it will
usually leave all of the others unchanged. This locality is
the whole basis of robustification. If we can decide which
observations were affected, we can remove them and use the
remaining observations for the parameter estimates as usual.
Unfortunately, the definition of an outlier depends on the
linearisation of h(x), and hence the choice of the linearisation
point xs. Standard recursive estimators, such as the Extended
Kalman Filter (EKF) and the Extended Information Filter
(EIF), choose to linearise around the predicted state. Thus,
in standard recursive estimators xs = x̂. This is a significant
limitation, and we will instead allow the linearisation point
to move during the estimation process as more information
becomes available. This is beneficial because an accurate
linearisation point will produce accurate linearised models, and
hence accurate projection of uncertainty. Thus, it will improve
our decisions on outliers and hence improve the robustification
of the data fusion equations.

Several data association techniques can be applied to detect
outliers in the data [4]. They include Nearest-Neighbor (NN),
Maximum Likelihood (ML) formulation (or Individual Com-
patibility (IC) criterion) and the Joint Compatibility Branch
and Bound algorithm (JCBB). In this section, we make data fu-
sion decisions based on the IC criterion. Where measurements
are tested individually and the decision of whether to include
or exclude a measurement solely depends on the compatibility
of individual measurements. First, at the front-end before data
fusion takes place, and then at the back-end after data fusion
has taken place. Notice that during estimation we should keep
the state estimate x fixed, but we allow the linearisation point
xs to move. This is because a previously rejected observation
can become an inlier given a new linearisation point, while a
previously accepted observation can become an outlier.

Front-end gating utilises innovations vector ν which is
defined as the difference between predicted measurements ẑ
at a linearisation point xs and actual measurements which are



currently have not been included yet zoff, evaluated before data
fusion takes place,

ν = zoff − h(xs)−∇hxs(x− xs).

Under the Gaussian assumption, an innovations gate gν can
be defined as the Normalised Innovations Squared (NIS),

gν = ν>S−1ν ν. (10)

where, Sν is the innovations covariance which is given by,

Sν = ∇hxsP∇h>xs + R.

Under the hypothesis H0 that the least-squares estimator is
consistent, then the normalised innovations squared are Chi-
squared X 2

m(α) distributed in m = dim(gν) degrees of free-
dom within a specified probability 1− α. Thus, a confidence
interval [a1, a2] between which the innovations should lie can
be constructed to test if the hypothesis H0 that gν is indeed
distributed as X 2

m(α) should be accepted;

P (gν ∈ [a1, a2]|H0) = 1− α.

However, to detect outliers, checking that the gating function
gν is lower than the upper bound a2 is enough. Information
by measurements passing the innovations gate is then added
into the estimated model using simple addition operation,

y+ = y + yoff(gν<a2)
z ,

Y+ = Y + Yoff(gν<a2)
z ,

on = off(gν < a2) ∪ on,

off = off(gν > a2).

Back-end gating utilises residuals vector r which is defined
as the difference between predicted measurements ẑ at a
linearisation point xs and actual measurements that have been
previously included zon, evaluated after data fusion takes place,

r = zon − h(xs)−∇hxs(x
+ − xs).

Under the Gaussian assumption, a residual gate gr can be
defined as the Normalised Residuals Squared (NRS),

gr = r>S−1r r. (11)

Where Sr is the residuals covariance which is given by,

Sr = ∇hxsP
+∇h>xs + R.

A previously added measurement is considered an outlier
given the most recent estimate x̂+ if its residuals gr is higher
than a2. Information by measurements failing the residuals
is then subtracted from the estimated model using simple
subtraction operation,

ŷ+ = y+ − yon(gr>a2)
z ,

Ŷ+ = Y+ −Yon(gr>a2)
z ,

off = on(gr > a2) ∪ off ,

on = on(gr < a2).

Finally, the posterior mean and covariance can be recovered
by solving the following sparse system of equations,

Ŷ+x̂+ = ŷ+, P̂+ = Ŷ+−1

,

which are known as the normal equations for the nonlinear
least squares problem. Since the information matrix is typically
sparse and positive definite6, the nonlinear least-squares sys-
tem can be solve efficiently using the Cholesky factorisation
of the information matrix. Algorithm 2 summarises steps for
robust data fusion using iterative least-squares.

When performing robust data fusion in the information
form, the information matrix is inverted twice during each
iteration. Since the information matrix is typically sparse,
performing data fusion in the information form is cheaper than
using the covariance form. Which also requires inverting the
covariance matrix twice during data fusion, but its typically
dense. Also, notice that the modifications to the information
vector and matrix only concern those portions of the state
appearing explicitly in the predicted measurements model. For
problems where the state vector becomes very large but the
individual measurements are functions of just a few states, the
resultant information matrix is sparse and requires minimum
operations to update given the measurements.

1- Initialise information vector and matrix {y,Y}.
2- Set linearisation point xs = x, and find ∇hxs .
3- Reset switch vectors {on,off}.
4- Compute measurements information {yz,Yz}.
5- For measurements zoff , compute gate gν .
6- Add information with gν < a2, update {on,off}.
7- For measurements zon, compute gate gr.
8- Subtract information with gr > a2, update {on,off}.
9- Recover the moments {x̂+, P̂+}.
10- Repeat from step 2 for T trials.

Algorithm 2: Robust nonlinear least-squares with innova-
tions and residuals gating.

V. SMOOTHING AND MAPPING USING ROBUST
NONLINEAR LEAST-SQUARES

The following sections describe how algorithm 2 can be
applied to solve the two estimation problems in sections II-A
and II-B in relation to view-graph SLAM.

A. Robust Estimation of View-Graph Constraints

Given measurements z in (2) and measurements model h(x)
in (3), an initial linearisation point xs is required to solve
for the relative states x in (1) and to evaluate the validation
gates in (10) and (11). However, a good starting set of inlier

6Even though, the information matrix is positive definite by definition,

x>Yx = E

( n∑
i=1

xi
∂

∂xi
log p(x)

)2
 � 0,

additional tests are required to guarantee its numerical stability during
information addition and subtraction steps. This guarantees that a Cholesky
decomposition can be computed, and hence the information matrix can be
inverted efficiently using Takahashi’s inverse [17].



correspondences {m1
1:N , . . . ,m

M
1:N} are required for accept-

able initialisation. One way to initialise relative poses is by
using RANSAC with the essential matrix. Additionally, points
selection and alignment using techniques, including features
bucketing and non-maximal suppression, can be utilised to
guarantee the accuracy of features localisation and epipolar
geometry computations. Given that rotations can be computed
from the essential matrix more accurately than translations,
which can be only computed as unit vectors. We initialise
relative rotations a1j from the essential matrix. For translations
t1j , we essentially need at least one scaled translation in
order to maintain the map scale. This translation (and hence
the scale) is then refined using the remaining frames in the
bundle. Thus, we initialise the first relative translation t12,
using roughly known initial relative geometry between the
first two camera frames in the bundle7. Without this initial
scale condition, translations can be only estimated up to a
scale factor. Finally, inverse depth states are initialise using
standard two-view triangulation.

The next step is to initialise the information matrix Y
and then compute the information vector y. One strategy to
initialise the inverse depth terms of the information matrix is
using the linearised projection of uncertainty from pixel-space
to state-space. Yet another simplified rather fragile strategy,
that does not require explicit projection of uncertainties, is
to initialise a sparse information matrix and an information
vector using,

Y = diag([106
1×3,106

1×3,106
1×3,0, . . . ,0]), y = Yx.

Thus, the information matrix dimensions are (6M +
N )×(6M +N ). Notice that the information terms concerning
the reference camera pose {σ−2t11

, σ−2a11
} are set to a large value

106. This implies very small initial uncertainty, and hence the
reference frame is not allowed to move during estimation. Sim-
ilarly, the information terms concerning the first scaled relative
translation σ−2t12

are set to a large value. While the remaining
relative motion and inverse depth terms are initialised as all
zeros. This implies that no prior information is available at the
time of initialisation, and the only source of pose and depth
information is due to the measurements.

Finally, algorithm 2 is used to fuse inlier measurements
and recover the state {x,P} of the system. In this case,
optimising for the normalised innovations squared and the
normalised residuals squared is equivalent to optimising for
the normalised image projection error squared. Notice that,
during estimation, we use all the correspondences between
the frames, and we do not utilise RANSAC iterations to pre-
filter outliers. This is based on the assumption that the initial
poses by RANSAC and the essential matrix are inaccurate,
and hence pose fixation could be encapsulated in the corre-
sponding outliers information. Figure 3 illustrates the effect of
information addition and subtraction on the map scale.

B. Robust View-Graph Estimation
Given measurements z in (6) and measurements model h(x)

in (5), an initial linearisation point is needed to solve for the

7For the case of our robot, iCub, t12 equals roughly [68, 0, 0]> millimeter.
This provides an additional constraint on the scale of the map.

(a) {0, 114982} (b) {114755, 227} (c) {86001, 28981}

Fig. 3. A visual scan with inverse depth uncertainty for a number of iterations
as follows: (a) At initialisation. (b) After first addition step with α = 95%.
(c) After last subtraction step with α = 95%. Also shown the number of
constraints as {on,off}. The figure shows the effect of constraints addition
and subtraction on depth uncertainty.

graph states x in (4) and to evaluate the validation gates in
(10) and (11). In unweighted graphs, one way to initialise a
pose estimate x robustly while accounting for outliers is from
a spanning tree using RANSAC. However, given a weighted
graph, a maximum spanning tree (MST) provides a viable
initial solution. In this case, edge weights wij may represent
the accuracy of the relative pose constraints in the graph.
Various accuracy measures can be used, including the number
of inlier matches between pair-wise geometries [11] and the
trace of the estimated relative covariance matrix [12]. In the
second case, the trace of updated relative pose covariance
matrix is used, which can be computed from the information
matrix estimated in the previous section by the relative pose
optimiser. Hence, given the MST in a view-graph, the global
poses can be initialised by accumulating measurements by its
edges.

t1 = 03×1, C1 = I3×3,

Cj = CiC
j
i

>
, {i, j} ∈ MST,

tj = ti + Cj
i tij , {i, j} ∈ MST.

Again, we chose to keep all the constraints in the graph,
and to initialise the global pose estimate from the MST
in a weighted view-graph. This allows for a more efficient
initialisation, since RANSAC iterations are not used. While
outliers are detected and removed during estimation.

Given a graph initial state x, the information vector and
matrix are initialised as all zeros. This implies that no prior
information is available at the time of initialisation, and the
only source of pose information is due to the measurements.
While the first frame is defined as the origin, and thus is
initialised with large information.

Y = diag([106,0, . . . ,0]), y = Yx.

The information matrix has dimensions of (6K × 6K). The
very large information at the origin implies that the first
camera frame is not allowed to move away from the origin
during estimation. Finally, algorithm 2 is used to fuse inlier
measurements and recover the state {x,P} of the system.

VI. EXPERIMENTS

The following experimental results used a sequence of
images obtained from iCub and then processed using an Intel
Core i5 CPU@1.90GHz×4.



(a) Sample image. (b) Pair-wise kinematics. (c) RANSAC, Essential matrix and LM. (d) Algorithm 2.

Fig. 4. Two-view visual scans (top view) obtained using three different methods. Since a global pose estimate is not yet available, scans were projected into
a common global frame using kinematics.

A. Vision System

Although accurate localisation does not require extraction
of dense map landmarks, good data association and quality
image features are required for better performance. In this
implementation, FAST corners [18] were extracted in one
of the K image frames in the graph and then tracked in
the consecutive frames using a pyramidal implementation of
Lucas-Kanade optical flow tracker [19]. Tracking was carried
out based on a pre-defined graph connectivity (redundancy is
defined by the number of view constraints M , in section II-A).
This reduces the cost of tracking, since corners extracted in
one frame were only tracked in the following M − 1 frames.
A link with less than a pre-defined number of point tracks (50
in this paper) was removed from the graph.

B. Relative Two-View Results

Figure 4 shows visual scans computed using two-view
constraints (M=2). The figure shows multiple visual scans
projected into the global common coordinates using kinemat-
ics odometry. The figure demonstrates the robustness of our
method in comparison to using relative stereo kinematics alone
or using RANSAC (500+ iterations) and Levenberg-Marquardt
(LM) nonlinear least-squares method. Where, the variation
in the map scale was more significant when RANSAC and
LM were used. This was because of the ambiguity of relative
motion computations when only two view constraints were
given. This ambiguity, however, was better resolved when
the relative kinematics were used. Even though every scan
was computed from two-view constraints, which is often
considered as a fragile implementation in computer vision,
the robustness of our least-squares method is demonstrated by
the consistency of scan scales in the map.

C. Global Pose and Map Results

In this section, a graph with 250 views (K = 250) and 19
paths (M = 20) is assumed. In this case, the most possible
number of constraints equals K(K−1)

2 . Figure 5 shows graph
optimisation results using Algorithm 2. Using total of 4311
constraints, graph optimisation took on average 19 seconds.
The figure shows the classification of graph constraints into
inliers and outliers, and the estimated camera poses (where a
measurements-noise matrix R with standard deviations of 0.2
degrees and 1 mm was assumed when evaluating the gates
in (10) and (11)). Also, the figure compares the estimated
cameras orientation against MST and the method in [14]

and shows relative stereo anglular variations while moving
the robot head. These relative angular variations from those
computed from kinematics during head movements illustrate
the existence of mechanical errors and hardware delays (which
may case frame drops) between the robot eyes.

Figure 6 shows the reconstruction of the map after project-
ing the estimated scans by using their corresponding global
poses. The figure compares the map reconstructed using
graph pose estimates with that reconstructed using poses from
kinematics. The figure illustrates the benefit of using vision
information along with robust estimation in the alignment of
visual scans, where the largest alignment error component is
along the optical rays emanating from the reference cameras
in the depth direction. This error can be reduced by includ-
ing more M-view constraints (larger M ) and applying more
measurements switching iterations.

VII. CONCLUSIONS

This paper has presented a new robust nonlinear least-
squares method to view-graph SLAM. The method was ap-
plied to SLAM using iCub, which includes a non-rigid stereo
system with a short baseline. Robustness in this case is
essential to reduce bias introduced by outliers in the data
and the observability of the system due to rotations being
the dominant motion component. The least squares method
presented was proved robust given rough initialisation of the
cameras and the map states.

Future work will examine the scalability and efficiency of
the method with the increased dimensions of the problem. We
will also investigate real-time capabilities of the algorithms
presented and look at methods for depth maps fusion and
update to integrate the generated scans into a globally concise
map. Yet another potential direction of improvement is to
look at replacing the re-projection error cost function in (10)
and (11) with a photometric one. This allows for denser and
possibly more accurate mapping results.
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(a) View-graph. (b) Monocular and stereo angles.

Fig. 5. Results of view-graph optimisation with totals {on,off} = {3042, 1269}, where (a) shows view-graph constraints with accepted in blue and rejected
in red. Also, left and right camera coordinate frames are shown in black. (b) shows angular differences between estimated orientation of the left camera using
rotation averaging in [14], MST, and algorithm 2 and computed orientation from kinematics. Also shown the relative tilt and roll angles between stereo pairs
in the sequence. Notice that the constraints used for both our method and rotation averaging were processed according to section V-A.

(a) Global registration using view-graph estimate. (b) Global registration using kinematics.

Fig. 6. Results of global registration of estimated visual scans, using M=20 and K=250. (a) Shows scans registered using view-graph estimates, and (b)
Shows scans registered using iCub kinematis odometry.
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