Role of Hg...Hg Interactions in Structure Stability of [HgX$]^{-}$(X = Cl, Br, I) Based Inorganic-Organic Hybrid Compounds

SUMANESH ${ }^{1}$, ANJU AWASTHI ${ }^{2}$ and PANKAJ GUPTA ${ }^{1}$
${ }^{1}$ Department of Chemistry, Govt. Degree College, Kathua, J\&K-184104, India
${ }^{2}$ Department of Chemistry, BCET, Gurdaspur, Punjab, India
sumneshjasrotia@rediffmail.com

Received 20 December 2015 / Accepted 11 January 2016

Abstract

To analyze the metallophilic interactions in $[\mathrm{HgX}]^{-},(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$, series of inorganicorganic hybrid materials were analyzed through single crystal x-ray crystallographic techniques. It has been observed that few compounds $\mathrm{HgCl} 1, \mathrm{HgCl} 2, \mathrm{HgCl} 3$ and HgCl 9 of mercuric chloride series validate the phenomenon of mercurophilic interactions with minimum $\mathrm{Hg} . . \mathrm{Hg}$ distance of 3.831 (1), $3.920(2), 3.810(3)$ and $3.984(1) \AA$ respectively, whereas in mercuric bromide series, this phenomenon is predominant in the compounds of $\mathrm{HgBr} 1, \mathrm{HgBr} 4, \mathrm{HgBr} 5, \mathrm{HgBr} 9$ and HgBr 11 with minimum $\mathrm{Hg} . . \mathrm{Hg}$ distance of $3.970(1), 3.860(1), 3.799(1), 3.884(1)$ and $3.873(1) \AA$ respectively. Only three compounds in mercuric iodide series confirms the phenomenon of mercurophilic interactions with $\mathrm{Hg} . . \mathrm{Hg}=3.938$ (1) in $\mathrm{HgI8}, \mathrm{Hg} \ldots \mathrm{Hg}=4.011(1)$ in $\mathrm{HgI11}$ and $\mathrm{Hg} . . . \mathrm{Hg}=3.649(2) \AA$ in $\mathrm{HgI1} 3$ where as the metallophilicity is missing in other remaining compounds of all the three series. The $\mathrm{Hg}-\mathrm{Cl}$ bond distances experiential in the range of $2.346(7)$ to $2.852(5) \AA$ and $\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}$ bond angles in the range of 79.2 to 180°.

Keywords: Secondary interactions, Hg motifs, Mercurophilic interactions, Inorganic-Organic hybrid materials, Metal-organic framework

Introduction

A hybrid of organic and inorganic is a combination of organic materials and inorganic materials ${ }^{1}$ at the molecular level. In such hybrid materials, it is possible to expect very interesting characteristics that are not found in the organic polymer or the inorganic material independently. In this paper, we consider the organic-inorganic hybrid materials which are attracting much attention recently and describe the principles of their preparation, new methods of synthesis, and the possibilities that can be expected as materials ${ }^{2}$. Metallophilic interactions are increasingly appreciated as a type of closed-shell interaction that can be used deliberately to form metal-metal contacts ${ }^{3}$. These interactions are observed between metals with d^{10} and d^{8} electron configurations ${ }^{4}$. Contacts between metals have particular potential in the field of molecular electronics ${ }^{5}$. Interactions between one or more metals with an open-shell
have distinct and different bonding consequences that can include covalent metal-metal bond formation ${ }^{6}$ as well as ferro or antiferro-magnetic coupling ${ }^{6-8} . \mathrm{Hg} \ldots \mathrm{Hg}$ interactions are designated as mercurophilic interactions and depicts an interesting phenomenon of $d^{10} \ldots d^{10}$ metal contacts ${ }^{9-12}$. As part of our research on secondary interactions in organic-inorganic hybrid materials ${ }^{11}$, three series of compounds whose crystal structures have already been reported ${ }^{13-56}$ have been selected based on $[\mathrm{HgX}]^{-},(X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ anion for study of mercurophilic interactions through crystallography data.

Experimental

All the structures were pictorially simulated by using computer software through ${ }^{57}$ cif-data files and geometry of metallophilic interactions as shown in Table 1. The HgCl 1 crystal structure has been refined up to 0.051 with 1191 reflections and HgCl 2 has R-factor of 0.046 for 3334 reflections. The reliability index of 0.028 has been achieved with 4421 reflections in HgCl 3 whereas its value is 0.026 for 11417 reflections of HgCl 4 . The value of R -index is 0.040 for 2904 reflections of HgCl 5 and in HgCl 6 it is 0.034 for 1804 reflections. The well refined crystal structure of HgCl 7 with refined parameter of 0.039 and 0.040 for HgCl 8 shows the structure solution results with 2726 and $3928 \mathrm{~F}>2 \sigma(\mathrm{Fo})$ reflections, respectively. HgCl 9 and $\mathrm{HgCl10}$ derivatives of the selected series have been refined up to 0.0529 and 0.0322 values, respectively.
Table 1. $\mathrm{Hg} . . \mathrm{Hg}$ contacts and torsion angle $\left(^{\circ}\right)$ with symmetry codes in $[\mathrm{HgX}]^{-},(\mathrm{X}=\mathrm{Cl}$, $\mathrm{Br}, \mathrm{I})$ derivatives

Code	$\mathrm{Hg} \ldots \mathrm{Hg}$ bond distance (A)	Torsion Angle $[1,2,3,4]^{0}$	Code	$\mathrm{Hg} . . \mathrm{Hg}$ bond distance (\AA)	Torsion Angle $[1,2,3,4]^{0}$
HgCl 1	$\begin{gathered} \mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{i}}= \\ 3.831(1) \end{gathered}$		HgBr 14	$\begin{gathered} \mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{xxxiii}}= \\ 5.019(1) \end{gathered}$	$\begin{gathered} \mathrm{Br} 1- \\ \mathrm{Hg} 1 \ldots \mathrm{Hg} \mathrm{Hixxiii}_{-} \\ \operatorname{Br}^{\text {xxxiii }}= \\ 180.00(2) \end{gathered}$
HgCl 2	$\begin{gathered} \mathrm{Hg} \ldots \mathrm{Hg}= \\ 3.920(2) \end{gathered}$		HgBr 15	$\underset{4.505(1)}{\mathrm{Hg}_{\ldots} . . \mathrm{Hg}^{\mathrm{xxxiv}}}=$	$\begin{gathered} \mathrm{Br} 2- \\ \mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{\text {xxxiv }} \\ \mathrm{Br}_{-}^{\text {xxiv }}= \\ 34.38(3) \\ \mathrm{Br} 2- \end{gathered}$
HgCl 3	$\begin{gathered} \mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{ii}}= \\ 3.810(3) \end{gathered}$	$\begin{gathered} \mathrm{Cl}(1)-\mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{ii}}- \\ \mathrm{Cl}(2)^{\mathrm{ii}}=-99.67(3) \end{gathered}$	HgBr 16	$\begin{gathered} \mathrm{Hg}_{\ldots . . . \mathrm{Hg}^{\mathrm{xxxv}}}^{6.52(1)}= \end{gathered}$	$\mathrm{Hg} 1 \ldots \mathrm{Hg} 2^{\text {xxxvi }}-$ $\mathrm{Br} 3^{\mathrm{xxxvi}}=$ 93.99(2)
HgCl 4	$\begin{gathered} \mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{iii}}= \\ 6.245(1) \end{gathered}$	$\begin{gathered} \mathrm{Cl} 2-\mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{iii}}- \\ \mathrm{Cl} 1^{\mathrm{iii}}=76.24(1) \end{gathered}$	HgBr 17	$\underset{5.309(1)}{\mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{xxxvii}}}=$	$\begin{gathered} \mathrm{Br} 1- \\ \mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{\text {xxxvii }} \\ \mathrm{Br}^{\mathrm{xxxvii}}= \\ 20.11(2) \\ \operatorname{Br} 1- \end{gathered}$
HgCl 5	$\begin{gathered} \mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{iv}}= \\ 7.020(1) \end{gathered}$	$\begin{aligned} & \mathrm{Cl} 2-\mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{iv}}- \\ & \mathrm{Cl} 1^{\mathrm{iv}}=92.36(1) \end{aligned}$	HgBr 18	$\begin{gathered} \mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{xxxviii}} \\ =5.296(2) \end{gathered}$	$\begin{gathered} \mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{\text {xxxviii }} \\ \mathrm{Br}^{\text {xxxviii }}=- \\ 180.00(5) \end{gathered}$
HgCl 6	$\begin{gathered} \mathrm{Hg} 1 \ldots \mathrm{Hg}_{2}^{\mathrm{v}}= \\ 5.407(1) \end{gathered}$	$\begin{aligned} & \mathrm{Cl} 3-\mathrm{Hg} 2 \ldots \mathrm{Hg} 1^{\mathrm{vi}}- \\ & \mathrm{Cl}^{\mathrm{vi}}=-94.43(1) \end{aligned}$	HgI 1	$\underset{8.892(2)}{\mathrm{Hg}_{2} . \mathrm{Hg}^{\mathrm{xxxix}}}=$	$\begin{aligned} & \mathrm{I} 1-\mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{\mathrm{xl}} \\ & \mathrm{I}^{\mathrm{xl}}=102.82(1) \end{aligned}$
HgCl 7	$\begin{gathered} \mathrm{Hg} 1 \ldots \mathrm{Hg} 1 \text { vii } \\ =6.079(1) \end{gathered}$	$\begin{gathered} {\mathrm{Cl} 3-\mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{\text {vii }}}^{\mathrm{Cl} 2^{\text {vii }}=76.02(4)} \end{gathered}$	HgI 2		$\begin{gathered} \mathrm{I} 2-\mathrm{Hg} 1 \ldots \mathrm{Hg}_{2} \mathrm{xli} \\ \mathrm{I}^{\mathrm{xli}}=-57.13(3) \end{gathered}$

HgCl 8	$\begin{gathered} \mathrm{Hg} \ldots \mathrm{Hg}^{\text {viii }}= \\ 6.302(2) \end{gathered}$	$\begin{gathered} {\mathrm{Cl} 1-\mathrm{Hg} \ldots . . \mathrm{Hg}^{\text {viii }}-}_{-}^{\mathrm{Cl} 4}{ }^{\text {viii }}=92.40(3) \end{gathered}$	HgI3	$\begin{gathered} \hline \mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{xlii}}= \\ 10.592(2) \end{gathered}$	
HgCl 9	$\begin{gathered} \begin{array}{c} \mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{\text {ix }} \\ =3.984(1) \end{array} \\ \mathrm{Hg} 1 \ldots \mathrm{Hg} 2= \\ 4.008(1) \end{gathered}$	$\begin{aligned} & \mathrm{Cl} 11-\mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{\mathrm{ix}} \\ & \mathrm{Cl} 12^{\mathrm{ix}}=13.05(3) \end{aligned}$	HgI4	$\underset{5.307(1)}{\mathrm{Hg}_{\mathrm{H}} . \mathrm{Hg}^{\text {liii }}}=$	$\begin{gathered} \text { I4-Hg...Hg }{ }^{\text {xiiii }} \\ \text { I4 } 4^{\times 1 i i i}=- \\ 90.751(4) \end{gathered}$
$\mathrm{HgCl10}$	$\begin{gathered} {\mathrm{Hg} . . . \mathrm{Hg}^{\mathrm{x}}}_{8.320(1)}= \end{gathered}$	$\begin{gathered} \mathrm{Cl1}-\mathrm{Hg} 1 \ldots \mathrm{Hg}^{1 \mathrm{xi}}- \\ \mathrm{Cl}^{\mathrm{xi}}=72.14(1) \end{gathered}$	HgI5	$\underset{6.774(1)}{\mathrm{Hg}_{\mathrm{Hg}} \mathrm{Hg}^{\mathrm{xliv}}}=$	$\begin{gathered} \mathrm{I} 1-\mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{xliv}}- \\ \mathrm{I} 1^{\text {xiv }}=-37.34(3) \end{gathered}$
HgBr 1	$\begin{gathered} \mathrm{Hg} \ldots \mathrm{Hg} \mathrm{~g}_{\text {xi }} \\ 3.970(1) \end{gathered}$	$\begin{aligned} & \mathrm{Br} 1-\mathrm{Hg} . . . \mathrm{Hg}_{\mathrm{xiii}}^{-1} \\ & \mathrm{Br}^{2 \times \mathrm{xiii}}=92.91(7) \end{aligned}$	HgI6	$\begin{gathered} {\mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{xlv}}}_{4.381(3)}= \end{gathered}$	$\begin{gathered} \mathrm{I} 1-\mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{xlv}}- \\ \mathrm{I} 2^{\mathrm{xlvi}}=-68.14(1) \end{gathered}$
HgBr 2	$\underset{4.391(1)}{\mathrm{Hg}_{\ldots} . \mathrm{Hg}^{\mathrm{xiv}}}=$	$\begin{gathered} \mathrm{Br}-\mathrm{Hg} \ldots \mathrm{Hg}^{\text {xiv }}-\text { Br }^{\text {xiv }} \\ =-50.56(2) \end{gathered}$	HgI7	$\underset{4.374(1)}{\mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{xlvii}}}=$	
HgBr 3	$\begin{gathered} \mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{xv}}= \\ 5.409(2) \end{gathered}$	$\begin{gathered} {\mathrm{Br} 1-\mathrm{Hg} . . . \mathrm{Hg}^{\mathrm{xvi}}-}_{\operatorname{Br}^{\mathrm{xvi}}=161.16(3)}={ }^{2} \end{gathered}$	HgI8	$\underset{4.357(2)}{\mathrm{Hg}_{1} . \mathrm{Hg}^{\mathrm{xlix}}}=$	$\begin{aligned} & \text { I2-Hg...Hg } \mathrm{Hg}^{\text {xlix }}-\mathrm{I} 2^{1} \\ & =112.66(4) \end{aligned}$
HgBr 4	$\underset{3.860(1)}{\mathrm{Hg}_{\ldots} \mathrm{Hg}^{\text {xvii }}}=$	$\begin{gathered} \mathrm{Br} 2-\mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{\text {xvii }} \\ {\operatorname{Br} 33^{\text {xvi }}}^{=}-91.24(5) \end{gathered}$	HgI 9	$\begin{gathered} {\mathrm{Hg} . . . \mathrm{Hg}^{\mathrm{li}}}_{4.384(2)}= \end{gathered}$	$\begin{aligned} & \mathrm{I} 2-\mathrm{Hg} \ldots \mathrm{Hg}^{\text {lii }} \mathrm{I} 2^{\text {liii }} \\ & =112.66(1) \end{aligned}$
HgBr 5	$\underset{3.799(1)}{\mathrm{Hg} \ldots \mathrm{Hg}^{\text {xviii }}}=$	$\mathrm{Br} 1-\mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{\text {xix }}{ }_{-}$ $\mathrm{Br}^{\mathrm{xix}^{\mathrm{xx}}}=90.00(4)$	HgI10	$\begin{gathered} {\mathrm{Hg} . . . \mathrm{Hg}^{\mathrm{giv}}}_{3.937(1)}= \end{gathered}$	$\begin{gathered} \text { I6-Hg1 } \ldots \mathrm{Hg} 4-\mathrm{I} 1 \\ =-93.453(4) \end{gathered}$
HgBr 6	$\begin{gathered} {\mathrm{Hg} . . . \mathrm{Hg}^{\mathrm{xx}}}_{4.277(1)}= \end{gathered}$	$\begin{gathered} \mathrm{Br}-\mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{xxi}}-\mathrm{Br}^{\mathrm{xxii}} \\ =-96.52(4) \end{gathered}$	HgI1	$\begin{gathered} \mathrm{Hg} \ldots . \mathrm{Hg}_{8.850(2)}= \\ = \end{gathered}$	$\begin{aligned} & \mathrm{I} 1-\mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{\text {lvi }} \\ & \mathrm{I} 1^{\mathrm{vi}}=180.00(2) \end{aligned}$
HgBr 7	$\underset{4.282(1)}{\mathrm{Hg}_{\mathrm{H}} . \mathrm{Hg}^{x \times i v}}=$		HgI 12	$\begin{gathered} \mathrm{Hg}_{9.402(1)} \mathrm{Hg} \text { lvii } \end{gathered}$	$\begin{gathered} \mathrm{I} 2-\mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{\text {lvii }}- \\ \mathrm{I} 2^{\text {vii }}=-97.79(3) \end{gathered}$
HgBr 8	$\underset{4.081(1)}{\mathrm{Hg}_{\mathrm{L}}^{\mathrm{H}} \mathrm{Hg}^{\mathrm{xv}}}=$	$\begin{gathered} \mathrm{Br} 1-\mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{\mathrm{xxv}}- \\ \mathrm{Br} 2^{\mathrm{xxv}}=67.94(1) \end{gathered}$	HgI 13	$\underset{4.011(1)}{\mathrm{Hg}_{\mathrm{H}} . . \mathrm{Hg}^{\mathrm{g} v i i i}}=$	$\begin{aligned} & \mathrm{I} 1-\mathrm{Hg} 1 \ldots \mathrm{Hg} 2^{\text {lix }} \\ & \mathrm{I} 5^{\mathrm{lix}}=-89.67(3) \end{aligned}$
HgBr 9	$\underset{3.884(1)}{\mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{xxvi}}}=$	$\begin{aligned} & \mathrm{Br} 1-\mathrm{Hg} 1 \ldots \mathrm{Hg} 1 \times \times \mathrm{xi} \\ & \mathrm{Br}^{\mathrm{xxvi}}=180.00(5) \end{aligned}$	HgI 1	$\begin{gathered} {\mathrm{Hg} . . . \mathrm{Hg}^{1 \mathrm{x}}}_{7.332(1)}= \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{I} 1-\mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{1 \mathrm{x}} \\ & \mathrm{I} 1^{\mathrm{xx}}=180.00(1) \end{aligned}$
HgBr 10	$\underset{4.052(1)}{\mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{xxvii}}}=$	Br1-Hg1...Hg1 $1^{\text {xxvii }}$ $\mathrm{Br}^{\mathrm{xxvii}}=-88.420(3)$	$\mathrm{HgI15}$	$\begin{gathered} \mathrm{Hg} \ldots . . \mathrm{Hg}^{\text {kxi }} \\ 3.649(2) \end{gathered}$	$\begin{aligned} & \mathrm{I} 3-\mathrm{Hg} 2 \mathrm{~A} \ldots \mathrm{Hg} 2^{\text {lxi }} \\ & \mathrm{I} 5^{\mathrm{xi}}=113.20(5) \end{aligned}$
HgBr 11	$\begin{gathered} \mathrm{Hg} . . . \mathrm{Hg}^{\mathrm{xxviii}} \\ =3.873(1) \end{gathered}$	$\begin{gathered} \mathrm{Br} 3- \\ \mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{\text {xxviii }}- \\ \mathrm{Br} 4^{\text {xxviii }}=-99.20(2) \end{gathered}$	HgI16	$\underset{4.693(1)}{\mathrm{Hg} \ldots \mathrm{Hg}^{\text {Ixii }}}=$	$\begin{gathered} \mathrm{I} 1-\mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{1 \times \mathrm{xii}} \\ \mathrm{I} 2^{1 \times \mathrm{xiI}}=36.77(2) \end{gathered}$
HgBr 12	$\underset{6.765(3)}{\mathrm{Hg}_{\ldots} . \mathrm{Hg}^{\mathrm{xxix}}}=$	$\begin{aligned} & \mathrm{Br} 1-\mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{\mathrm{xxx}}{ }_{\mathrm{B}} \\ & \mathrm{Br}^{\mathrm{xxxi}}=-84.47(5) \end{aligned}$	HgI17	$\underset{7.303(1)}{\mathrm{Hg}_{\mathrm{H}} . . \mathrm{Hg}^{\text {lxiii }}}=$	$\begin{gathered} \mathrm{I} 1-\mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{\text {xiiii }} \\ \mathrm{I} 2^{\text {xiii }}=- \\ 110.76(2) \end{gathered}$
HgBr 13	$\begin{gathered} \mathrm{Hg} \ldots \mathrm{Hg}^{\mathrm{xxxii}}= \\ 7.807(1) \end{gathered}$	Br1-Hg1...Hg1 ${ }^{\text {xxxii }}$ $\mathrm{Br} 2^{\mathrm{xxxii}}=94.45$ (3)	HgI18	$\begin{gathered} \mathrm{Hg}_{\mathrm{Hg}}^{\mathrm{I}} \mathrm{Hg}^{\text {Ixiv }}= \\ 7.174(3) \end{gathered}$	$\begin{aligned} & \mathrm{I} 1-\mathrm{Hg} 1 \ldots \mathrm{Hg} 1^{\mathrm{lxv}} \\ & \mathrm{I} 2^{2 \mathrm{xv}}=169.01(1) \end{aligned}$

Symmetry codes: (i) $x, 1+y,-1+z$ (ii) $1-x, 1-y, 1-z$ (iii) $-x, 1-y,-z$ (iv) $-x,-0.5+y,-z$ (v) $x, y,-1+z$ (vi) x, $y, 1+z$ (vii) $x, y, 1+z$ (viii) $x,-1+y, z(i x)-x,-y,-z(x) 1+x, y, z(x i)-1+x, y, z(x i i) 1-x, 0.5+y, 0.5-z$ (xiii) $-x,-y, 1-z$ (xiv) $0.5+x, 1-y, z(x v) x, 2+y, z(x v i) 0.5-x,-0.5+y, 0.5-z$ (xvii) $-x, 1-y,-z$ (xviii) $1-x,-$ $y,-z(x i x) 1-x,-y, z(x x) x, 1-y, 0.5+z$ (xxi) $0.5-x,-0.5+y, 0.5-z$ (xxii) $x, 1+y, z$ (xxiv) $x, 0.25-y, 0.25-z$ (xxv) $1.5-\mathrm{x}, 0.5-\mathrm{y}, 1-\mathrm{z}$ (xxvi) $1-\mathrm{x}, 2-\mathrm{y}, 1-\mathrm{z}$ (xxvii) $1-\mathrm{x}, \mathrm{y}, 0.5-\mathrm{z}$ (xxviii) $1-\mathrm{x},-\mathrm{y}, 2-\mathrm{z}$ (xxix) $1.5-\mathrm{x}, 1.5-\mathrm{y}, 1-$ z (xxx) $0.5-\mathrm{x}, 1.5-\mathrm{y},-\mathrm{z}$ (xxxi) $-0.5+\mathrm{x}, 1.5-\mathrm{y},-0.5+\mathrm{z}$ (xxxii) $1.5-\mathrm{x}, \mathrm{y},-0.5+\mathrm{z}$ (xxxiii) $-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$ (xxxiv) $1-$ $\mathrm{x}, 1-\mathrm{y}, 3-\mathrm{z}$ (xxxv) $1+\mathrm{x}, \mathrm{y},-1+\mathrm{z}$ (xxxvi) $1+\mathrm{x}, 1+\mathrm{y},-1+\mathrm{z}$ (xxxvii) $1-\mathrm{x}, 2-\mathrm{y},-\mathrm{z}$ (xxxviii) $\mathrm{x}, 1+\mathrm{y}, \mathrm{z}$ (xxxix) $1+x, y, z(x l)-1+x, y, z(x l i) ~ 0.75-y, 0.25+x, 0.25+z(x l i i) 1-x, 1-y, 1-z$ (xliii) $1-x, y, 0.5-z$ (xliv) $-0.5-x$, $y, 0.5+z$ (xlv) $-x,-y$, -z (xlvi) $-x,-0.5+y,-z$ (xlvii) $0.5-x, y,-z$ (xlviii) $0.25-y, 0.75-x,-0.25+z$ (xlix) $1-x$, $0.5-\mathrm{y}, \mathrm{z}$ (l) $1-\mathrm{x}, \mathrm{y}, \mathrm{z}$ (li) $0.5+\mathrm{x},-0.5+\mathrm{y}, 0.5-\mathrm{z}$ (lii) $1.5-\mathrm{x}, 1.5-\mathrm{y}$, z (liii) $1.5-\mathrm{x}, 0.5-\mathrm{y}, \mathrm{z}$ (liv) $1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$ (lv) $\mathrm{x}, 1+\mathrm{y}, \mathrm{z}$ (lvi) $\mathrm{x},-1+\mathrm{y}$, z (lvii) $-0.5+\mathrm{x}, 0.5-\mathrm{y},-0.5+\mathrm{z}$ (lviii) $1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$ (lix) $\mathrm{x}, 0.5-\mathrm{y}, 0.5+\mathrm{z}$ (lx) $\mathrm{x},-1+\mathrm{y}$, z (lxi) $1-\mathrm{x}, \mathrm{y}, 0.5-\mathrm{z}$ (lxii) $1-\mathrm{x}, 1-\mathrm{y}, 3-\mathrm{z}$ (lxiii) $\mathrm{x},-1+\mathrm{y}, \mathrm{z}$ (lxiv) $\mathrm{x},-1+\mathrm{y}, \mathrm{z}$ (lxv) $0.5+\mathrm{x}, 0.5+\mathrm{y}, \mathrm{z}$

The HgBr 1 crystal structure has been refined up to 0.049 . The value of R - factor for HgBr 2 and HgBr 3 has been observed to be 0.033 and 0.060 with 4332 and 2658 reflections respectively. The reliability index of 0.032 has been achieved with 2650 reflections in HgBr 4 whereas its value is 0.054 for 2115 reflections in HgBr 5 . The value of R - index is 0.034 for 1804 reflections in HgBr 6 and in HgBr 7 it is 0.043 for 2759 independent reflections. The well refined crystal structure of Hg 8 with refined parameter of 0.042 and 0.032 for HgBr 9 shows the structure solution results with 2737 and 6386 reflections, respectively. HgBr 10 and HgBr 11 derivatives of the selected series have been refined up to 0.029 and 0.032 values for 1361 and 1921 reflections. The cell measurements reflection value of 4420 and 6912 has been used to obtain the refine parameter of 0.053 and 0.026 for the compounds of HgBr 12 and HgBr 13 , respectively. The cell measurement reflections of 1208 are used to refine the crystal structure of HgBr 18 up to 0.042 with 2358 reflections.

The HgI1 crystal structure has been refined up to 0.070 with 3378 reflections. The value of R-factor for HgI 2 and HgI 3 has been observed to be 0.037 and 0.101 with 1351 and 3912 reflections respectively. The reliability index of 0.064 has been achieved with 4575 reflections in HgI4 whereas its value is 0.029 for 1428 reflections in HgI5. The value of R - index is 0.064 for 685 reflections in HgI6 and in $\mathrm{Hgl7}$ it is 0.065 for 585 independent reflections. The cell measurements reflection value of 8558 and 250 have been used to obtain the refine parameter of 0.021 and 0.094 for the compounds of $\mathrm{HgI1} 2$ and $\mathrm{HgI1} 3$ with refine number of reflections of 2149 and 4237 respectively. The value of R-index is 0.087 for 4420 reflections in $\mathrm{HgI14}$ and in HgI15 it is 0.049 for 4351 independent reflections. Similarly, HgI16 crystal structure has been refined up to 0.022 with 3209 independent reflections.

Results and Discussion

[HgCl]Hybrid materials

The $\mathrm{Hg} . . \mathrm{Hg}$ distance in compound HgCl 1 is calculated as $3.831(1) \AA$ which shows that the structure is stabilized by metallophilic interactions apart from $\mathrm{X}-\mathrm{H} \ldots \mathrm{A}$ and $\mathrm{Cl} \ldots \mathrm{Cl}$ secondary interactions ${ }^{10,12}$. Similar pattern of mercurophilic interactions is observed in HgCl 2 derivative with $\mathrm{Hg} . . . \mathrm{Hg}$ distance of $3.920(2) \AA$. In HgCl 3 derivative, Hg atom at symmetry position $\mathrm{x}, 1+\mathrm{y},-1+\mathrm{z}$ establish a close contact of $3.810(3) \AA$ with another Hg atom at symmetry position $1-\mathrm{x}, 1+\mathrm{y}, 0.5-\mathrm{z}$. The pictorial projection is plotted along $a c$-plane and 1D chain pattern of $\mathrm{Hg} \ldots \mathrm{Hg}$ contacts supported through $\mathrm{Cl} \ldots \mathrm{Cl}$ interactions $[\mathrm{Cl} 2 \ldots \mathrm{Cl} 2=$ $3.919 \AA$]. When viewed HgCl 3 along b-axis, the organic layers are held in between this zigzag pattern of inorganic halides through $\mathrm{N}-\mathrm{H} . . . \mathrm{Cl}$ interactions, in which Cl 1 and Cl 2 are responsible for stabilizing the organic-inorganic moieties at symmetry positions $x,-y,-0.5+z$ and $1-\mathrm{x},-\mathrm{y}, 1-\mathrm{z}$ respectively. C 22 at symmetry position $1-\mathrm{x},-\mathrm{y}, 1-\mathrm{z}$ acts as bifurcated hydrogen acceptors having bifurcated angle as $92.24(2)^{\circ}$. The organic moiety (Phenylpiperazinium) stacked within the inorganic layers is further stabilized by C-H... π interactions at $1.5-\mathrm{x},-0.5+\mathrm{y}, 0.5-\mathrm{z}$ where $\mathrm{H}-\pi=2.983(1)$ and $\mathrm{C}-\mathrm{H} . . . \pi=133.8^{\circ}$. The inorganic part (i.e. trichloromercurate) of the hybrid materials stabilized through zig-zag pattern of secondary interactions and the organic part (i.e. phenylpiperazinium) is sandwiched between inorganic layers as shown in Figure 1 along ac-plane.

Similarly when HgCl 4 is viewed along b-axis, Inorganic-organic moieties are observed to be held through $\mathrm{N}-\mathrm{H} . . \mathrm{Cl}$ interactions where Cl acts as bifurcated hydrogen acceptors with bifurcated angle of $88.58(9)^{\circ}$. The 2D chain pattern of $\mathrm{Hg} \ldots \mathrm{Hg}$ interactions has been observed in HgCl 9 [tetramercuricdichloro (trimethylammonio- p-toluenesulfonamidate) mercury (II)]. The Hg 1 atom is in contact with Hg 2 at 1-x, $0.5+\mathrm{y}, 0.5-\mathrm{z}$ with $\mathrm{Hg} . . \mathrm{Hg}$ distance of $4.008(1) \AA$
forms the dimer of tetramercuric dichloride in 1D chain pattern along $b c$-plane. The immers are further connected through $\mathrm{Hg} . . \mathrm{Hg}$ interaction at $1+\mathrm{x}, 0.5-\mathrm{y}, 0.5+\mathrm{z}$ with bond distance of $3.984(1) \AA$. Dimer-Hg...Hg-Dimer type of interaction forms 2D chain pattern down a-axis as shown in Figure 2.

Figure 1. 1D chain pattern of $\mathrm{Hg} \ldots \mathrm{Hg}$ and $\mathrm{Cl} \ldots \mathrm{Cl}$ interactions in phenylpiperazinium trichloromercurate

Figure 2. 2D Chain pattern of metallophilic $\mathrm{Hg} . . \mathrm{Hg}$ interactions in tetrameric dichloro (trimethylammonio-p-toluenesulfonamidate)mercury(II)

The crystal structure is further stabilized by $\mathrm{X}-\mathrm{H} . . . \mathrm{A}$ and $\mathrm{Cl} . . \mathrm{Cl}$ secondary interactions. The $\mathrm{Hg} . . . \mathrm{Hg}$ bond distances for all other derivatives have been calculated for their minimum values and it has been observed that these distances are more than sum of van der Waals radii and hence cannot be considered as metallophilic interactions but these distances can play role in packing of mercuric chloride as in case of HgCl 8 an anti-parallel arrangement of mercuric chloride through metal...metal contacts. The parallel chains of weak interactions along acplane are observed in HgCl 10 and parallel layers of $\mathrm{Hg} . . \mathrm{Hg}$ contact [5.407(1) \AA] in HgCl 6 compound. Tetramer pattern of tetrachloromercurate through Hg...Hg contact can be drawn in HgCl 4 along $a b$-plane. For HgCl 5 , the inorganic-organic moieties are held through $\mathrm{N}-\mathrm{H} . . . \mathrm{Cl}$ interactions along b -axis, in which Cl 1 acts as bifurcated hydrogen acceptors with bifurcated angle of $113.94(1)^{\circ}$. But, in addition along c-axis, tide or wave form is observed with high tide for inorganic layers and low tide for organic layers. Similarly, for HgCl 6 derivative, the inorganic-organic layers are better presented along c-axis and alternate parallel layers of organic moieties are held in between inorganic layers. $\mathrm{N}-\mathrm{H} . . . \mathrm{Cl}$ interactions play an important role in stabilizing the hybrid compound.

1D chain pattern of Hg ... Hg contacts are seen in HgCl 7 but not falls in the category of $\mathrm{Hg} . . \mathrm{Hg}$ interactions because of long distance of $6.079(1) \AA$ and true picture of inorganicorganic hybrid material is presented in HgCl 5 where 4-benzylpiperidinium is held in antiparallel arrangement between the inorganic layers of tetrachloromercurate but the long distance of $\mathrm{Hg} \ldots \mathrm{Hg}$ contact [7.020(1) \AA] demonstrate the lack of $\mathrm{Hg} . . \mathrm{Hg}$ interaction.

[HgBr$]^{-H y b r i d}$ materials

The $\mathrm{Hg} . . . \mathrm{Hg}$ distance in compound HgBr 1 is calculated as $3.970(1) \AA$ which shows that the structure is stabilized by metallophilic interactions apart from X-H...A and Br...Br [minimum distance $=3.610(2) \AA$] secondary interactions ${ }^{10,19}$. Mercury atom at symmetry position $1+\mathrm{x}$, $0.5-\mathrm{y}$ and $0.5+\mathrm{z}$ establish a close contact with Hg located at $1-\mathrm{x}, 0.5+\mathrm{y}$ and $0.5-\mathrm{z}$ as shown in Figure 3. In HgBr 2 compound, $\mathrm{Hg} . . . \mathrm{Hg}$ contact is establish at $-0.5+\mathrm{x}, 1-\mathrm{y}$, z with minimum distance of 4.391 (1) \AA and the structure is further stabilized by weak $\mathrm{Br} . . . \mathrm{Br}$ interactions. Hg atom at $\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$ is in close proximity with another Hg atom to establish $\mathrm{Hg} . . \mathrm{Hg}$ contact with distance of $3.860(1) \AA$ and the structure is further stabilized by $\mathrm{Br} . . . \mathrm{Br}$ interactions with minimum distance of $3.915(2) \AA$ in compound HgBr 4 . The pictorial projection is plotted along $b c$-plane and organic moiety is presented in polyhedral. The head to head dimer pattern of Bis(tetraethylammonium)di- μ-bromo-bis(dibromomercury) is pictorially projected along $b c$ plane in which organic moiety is in polyhedral form as shown in Figure 4.

The 1D parallel layers of $\mathrm{Hg} . . . \mathrm{Hg}$ interactions in bis(tetraethylammonium)octabromotri mercurate(II) (HgBr 5) is paradigm of squash in of organic part within the chains of inorganic moiety of hybrid materials. Hg atom at symmetry position 1-x, 1-y, 1-z forms contact with another Hg atom at $\mathrm{x}, 1+\mathrm{y}, 1+\mathrm{z}$ with minimum distance of $3.799(1) \AA$. The structure is also stabilized by $\mathrm{Br} . . . \mathrm{Br}$ interactions $(\mathrm{d}=3.662(2) \AA)$. In mercuric bromide derivatives $\mathrm{HgBr} 6, \mathrm{HgBr} 7$ and HgBr , the close contacts of $\mathrm{Hg} \ldots \mathrm{Hg}$ are observed with symmetry positions of $-\mathrm{x}, 1+\mathrm{y}, 1.5-\mathrm{z}(\mathrm{Hg} . . \mathrm{Hg}$ distance $=4.277(1) \AA$) in HgBr6; x, $0.25-\mathrm{y}$, $0.25-\mathrm{z}\left(\mathrm{Hg} \ldots \mathrm{Hg}\right.$ distance $=4.282(1) \AA \AA^{\circ}$ in HgBr 7 and $1.5-\mathrm{x}, 0.5-\mathrm{y}, 1-\mathrm{z}(\mathrm{Hg} . . \mathrm{Hg}$ distance $=$ $4.081(1) \AA$) in HgBr 8 and these contacts are not comparable with their van der Waals radii. $\mathrm{Hg} . . \mathrm{Hg}$ interactions in poly[bromomercury(II)]-di- m-bromo-k ${ }^{4} \mathrm{Br}: \mathrm{Br}$-[bromomercury(II)]-$m-1,4$-bis(benzyl sulfanyl)butane- $\left.{ }^{2} \mathrm{~S}^{2} \mathrm{~S}^{\prime}\right]$ (HgBr9) is established at $1-\mathrm{x}, 2-\mathrm{y}, 1-\mathrm{x}$ symmetry position with minimum $\mathrm{Hg} \ldots \mathrm{Hg}$ distance of 3.884 (1) \AA. The metallophilic interaction in [m-1,2-bis(phenylsulfanyl)ethane- $\mathrm{k}^{2} \mathrm{~S}: \mathrm{S}^{\prime}$]bis[dibromomercury(II)] (HgBr 10) is confirmed because its $\mathrm{Hg} . . . \mathrm{Hg}$ distance is $4.052(1) \AA$.

Figure 3. Hg ... Hg and Br ... Br interactions in HgBr 1 derivatives

Figure 4. Dimer pattern of Bis(tetraethylammonium)di- μ-bromo-bis(dibromomercury) with metallophilic interaction at $-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$

In HgBr 11 derivative of mercuric bromide, dimer pattern with head-to-tail configuration is observed with minimum $\mathrm{Hg} . . \mathrm{Hg}$ distance of $3.873(1) \AA$ at symmetry position of $1-\mathrm{x},-\mathrm{y}$, $2-z$. Dimer to dimer plane distance is calculated as $10.592(1) \AA$ and $180.00(2)^{\circ}$ value of $\mathrm{Br}-$ $\mathrm{Hg} \ldots \mathrm{Hg}-\mathrm{Br}$ torsion angle shows that dimer pattern is planar at $\mathrm{Hg} . . \mathrm{Hg}$ contact. The minimum value of torsion angle ($\mathrm{Br} 3-\mathrm{Hg} . . . \mathrm{Hg}-\mathrm{Br} 2$) is $2.44(1)^{\circ}$ for the compounds HgBr 1 while the value of torsion angle is 180° for $\mathrm{HgBr} 4, \mathrm{HgBr} 5, \mathrm{HgBr} 9, \mathrm{HgBr} 11, \mathrm{HgBr} 14$ and HgBr 18 derivatives of the selected series as given in Table 4.

[HgI]Hybrid materials

The $\mathrm{Hg} . . \mathrm{Hg}$ distance in compound $\mathrm{HgI8}$ (bis(tetrabutylammonium)decaiodotetra mercurate(II)) is calculated as $3.937(1) \AA$ which shows that the structure is stabilized by mercurophilic interactions apart from X-H...A and I...I secondary interactions. Similar pattern of mercurophilic interactions is observed in $\mathrm{HgI11} 1$ [Tris(1,10-phenanthroline) copper(II) di- m-iodo-bis(diiodomercurate) dimethylsulfoxide monohydrate] derivative with $\mathrm{Hg} . . \mathrm{Hg}$ distance of $4.011(1) \AA$. In $\mathrm{HgI1} 3$ derivative, Hg atom at symmetry position $\mathrm{x}, 1+\mathrm{y}$, and z establishes a close contact of 3.649 (2) A with another Hg atom having $1-\mathrm{x}, \mathrm{y}$ and $0.5-\mathrm{z}$ symmetry position and supported through I...I interactions ($\mathrm{I} . . \mathrm{I}=3.835(2) \AA$).

Conclusion

The $\mathrm{Hg} . . \mathrm{Hg}$ bond distances for all other derivatives of the selected series $(\mathrm{HgCl}, \mathrm{HgBr}$ and HgI) have been calculated for their minimum values and it has been observed that these distances are more than sum of their van der Waals radii and hence cannot be considered as metallophilic interactions. Hence to understand the mechanism the structural studies have been made on $\mathrm{HgCl}_{2}, \mathrm{HgBr}_{2}, \mathrm{HgI}_{2}$ systems. There is substantial congruence between the mercurophilic pattern observed in the selected series of mercuric iodide based compounds and other metallophilic interactions. The packing views portray that $\mathrm{Hg} . . \mathrm{Hg}$ contacts have an advantage of versatility and flexibility of geometrical characteristics. Similar to other secondary interactions such as X-H...A and halogen...halogen, the mercurophilic interactions could be a collective tool to design the new crystal structures.

References

1. Chujo Y, Organic-Inorganic Nano-Hybrid Materials, kona No, 2007, 25, 255.
2. (a) Chujo Y and Saegusa T, Adv Polym Sci., 1992, 100, 11; (b) Chujo Y, Polym Mater Encyclop., 1996, 6, 4793; (c) Chujo Y, Current Opinion Solid State Mater Sci., 1996, 1(6), 806-811; DOI:10.1016/S1359-0286(96)80105-7 (d) Chujo Y and Tamaki R, MRS Bulletin, 2001, 26(), 389-392; (e) Ogoshi T and Chujo Y, Composite Interfaces, 2005, 11(8-9), 539-566; DOI:10.1163/1568554053148735
3. Pyykko P, Chem Rev., 1997, 97(3), 597-636; DOI:10.1021/cr940396v
4. Mendizabal F and Pyykko P, Phys Chem Chem Phys., 2004, 6, 900-905; DOI:10.1039/B313666C
5. Cuniberti G, Fagas G and Richter K, Introducing Molecular Electronic, (Springer, New York, 518, 2005).
6. Cotton F A, Murillo C A and Walton R A, Multiple Bonds between Metal Atoms, (Springer Science, New York 818, 2005).
7. Cotton F A, Wilkinson G, Murillo H A and Bochmann M, Advanced Inorganic Chem., (Wiley and Sons, New York 598, 1999).
8. West A R, Basic Solid State Chemistry (Wiley and Sons, New York 480, 1999).
9. King J B, Haneline M R, Tsunoda M and Gabbai F P, J Am Chem Soc., 2002, 124(32), 9350-9351; DOI:10.1021/ja0268534
10. Bharara M S, Bui T H, Parkin S and Atwood D A, Dalton Trans., 2005, 3874.
11. Dinesh J, Rademeyer M, Billing D G and Lemmerer A, Acta Crystallogr., Sect E, 2008, 64, m1598; DOI:10.1107/S1600536808038415
12. Vreshch V, Shen W, Nohra B, Yip S K, Yam V W, Lescop C, Rean R, Chem J Eur, 2012, 18(2).
13. Ponnuswamy M N and Trotter, Acta Crystallogr., Sect C, 1984, 40, 1671-1673; DOI:10.1107/S0108270184009112
14. Aharoni A, Kapon M and Reisner G M, Acta Crystallogr., Sect C, 1989, 45, 40-45; DOI:10.1107/S0108768188011024
15. Zouari F, BenSalah A and Hovestreydt E R, Acta Crystallogr., Sect C, 1995, 51, 1563-1565; DOI:10.1107/S0108270194013454
16. Spengler R, Zouari F, BenSalah A and Burzlaff H, Acta Crystallogr., Sect C, 1997, 53, 1407-1409; DOI:10.1107/S0108270197008512
17. Spengler R, Zouari F, BenSalah A and Burzlaff H, Acta Crystallogr., Sect C, 1997, 53, 1566; DOI:10.1107/S0108270197008500
18. Spengler R, Zouari R, Zimmermann H, BenSalah A and Burzlaff H, Acta Crystallogr., Sect C, 1998, 54, 1628-1631; DOI:10.1107/S0108270198008282
19. Spengler R, Zouari R, Zimmermann H, B Salah A B and Burzlaff, Acta Crystallogr., Sect C, 1998, 54, 1628-1631; DOI: 10.1107/S0108270198008282
20. Amami M, Smaolen S and Bensalah A, Acta Crystallogr., Sect E, 2002, 58, m416m416; DOI:10.1107/S160053680201214X
21. Muir K W, Morris D G and Chii C O, Acta Crystallogr., Sect E, 2004, 60, m60-m62; DOI:10.1107/S0108270103028464
22. Florke U, Herres-Pawlis S, Heuwing A, Neuba A, Seewald O and Henkel G, Acta Crystallogr., Sect C, 2006, 62, m234-m237; DOI:10.1107/S0108270106014429
23. Thiel J, Bu X and Coppens P, Acta Crystallogr., Sect C, 1994, 50, 23-25; DOI:10.1107/S0108270193006912
24. M. Lutz, A. L. Spek, P. R. Markies, O. S. Akkerman, F. Bickelhaupt, Acta Crystallogr., Sect. C: 54, 1091 (1998).
25. Matcoviv-Calogovic D, Popovic J, Popovic Z, Picek I and Soldin Z, Acta Crystallogr., Sect C, 2002, 58, m39-m40; DOI:10.1107/S0108270101018613).
26. Nockemann P and Meyer G, Acta Crystallogr., Sect E, 2002, 58, m529-m530; DOI:10.1107/S1600536802015337
27. Nockemann P and Meyer G, Acta Crystallogr., Sect E, 2002, 58, m531-m533; DOI:10.1107/S1600536802015301
28. Popovic Z, Pavlovic G, Matkovic-Calogovic D and Soldin Z, Acta Crystallogr., Sect. C, 2003, 59, m165-m167; DOI:10.1107/S0108270103005705
29. Matkovic-Calogovic D, Mrvos-Sermek D, Popovic Z and Soldin Z, Acta Crystallogr., Sect C, 2004, 60, m44-m46; DOI:10.1107/S0108270103028014
30. Liu C B, Che G B, Cui Y C and Li C B, Acta Crystallogr., Sect E, 2005, 61, m2469m2470; DOI:10.1107/S1600536805035348
31. Che G B, Liu C B, Cui Y C and Li C B, Acta Crystallogr., Sect E, 2005, 61, m2704m2705; DOI:10.1107/S1600536805038754
32. Gong J B, Zhou L N and Chen W, Acta Crystallogr., Sect E, 2006, 62, m440-m441; DOI:10.1107/S1600536806002728
33. Sabounchei S J, Dadras A, Jodaian V, Nemattalab H and Khavasi H R, Acta Crystallogr., Sect E, 2008, 64, m833; DOI:10.1107/S1600536808001220
34. Terao H, Gesing T M, Ishihara H, Furukawa Y and Gowda B T, Acta Crystallogr., Sect E, 2009, 65, m323; DOI:10.1107/S1600536809005972
35. Al-Far R H, Haddad S F and Ali B F, Acta Crystallogr., Sect C, 2009, 65, m451m454; DOI:10.1107/S010827010903772X
36. Rofouei M K, Beiza A and Attar Gharamaleki J, Acta Crystallogr., Sect E, 2009, 65, m1259; DOI:10.1107/S1600536809038732
37. Yang R, Ma J P, Huang R Q and Dong Y B, Acta Crystallogr., Sect C, 2011, 67, m176m180; DOI:10.1107/S0108270111016246
38. Abedi A, Acta Crystallogr., Sect E, 2011, 67, m76-m77;

DOI:10.1107/S1600536810051494
39. Ghiasi G, Acta Crystallogr., Sect E, 2011, 67, m595; DOI:10.1107/S1600536811013274
40. Zhang W S, Liu Z J, Xu F and Xun Q N, Acta Crystallogr., Sect E, 2011, 67, m1849; DOI:10.1107/S1600536811049993
41. Bu X and Coppens P, Acta Crystallogr., Sect C, 1992, 48, 1565-1566; DOI:10.1107/S0108270192005298
42. Bengtsson-kloo L, Berglund J, Stegemann H, Svensson C and Svensson P H, Acta Crystallogr., Sect C, 1998, 54, 1851-1853; DOI:10.1107/S0108270198008889
43. Hu N H, Liu Y S and Aoki K, Acta Crystallogr., Sect C, 1999, 55, 304-308; DOI:10.1107/S0108270198013407
44. Pavlovic G, Popovic Z, Soldin Z and Matkovic-Calogovic D, Acta Crystallogr., Sect C, 2003, 56, 801-803; DOI:10.1107/S0108270100005825
45. Matkovic-Calogovic D, Popovic Z, Pavlovic G, Soldin Z and Giester G, Acta Crystallogr., Sect C, 2001, 57, 409-411; DOI:10.1107/S0108270101001822
46. Hostettler M and Schwarzenbach D, Acta Crystallogr., Sect B, 2002, 58, 914-920; DOI:10.1107/S0108768102016191
47. Hostettler M, Birkedal H and Schwarzenbach D, Acta Crystallogr., Sect. B: 2002, 58, 903-913; DOI:10.1107/S010876810201618X
48. Nockemann P and Meyer G, Acta Crystallogr., Sect. E, 2003, 59, m236-m238; DOI:10.1107/S1600536803007335
49. Yusof M S M, Yamin B M and Kassim M B, Acta Crystallogr., Sect E, 2004, 60, m98-m99; DOI:10.1107/S1600536803028654
50. Chen J X, Zhang W H, Ren Z G, Zhang Y and Lang J P, Acta Crystallogr., Sect E, 2005, 61, m60-m62; DOI:10.1107/S1600536804031630
51. Oh M J, Lee Y M, Lee S J , Kang S K and Choi S N, Acta Crystallogr., Sect C, 2006, 62, m51-m53; DOI:10.1107/S0108270105043088
52. Popovic Z, Pavlovic G and Soldin Z, Acta Crystallogr., Sect C, 2006, 62, m272m274; DOI:10.1107/S0108270106014788
53. Tan X J, Jin L Q and Xing D X, Acta Crystallogr., Sect E, 2006, 62, m2502-m2504; DOI:10.1107/S1600536806035380
54. Yang R, Ma J P, Huang R Q and Dong Y B, Acta Crystallogr., Sect C, 2011, 67, m176-m180; DOI:10.1107/S0108270111016246
55. Li T L, Acta Crystallogr., Sect E, 2011, 67, m1396; DOI:10.1107/S1600536811037160
56. Ghaemi A, Shojaiean R, Ng S W and Tiekink E R T, Acta Crystallogr., Sect E, 2011, 67, m1449-m1450; DOI:10.1107/S1600536811038748
57. Brandenburg K and Putz H, DIAMOND Crystal Impact GbR, Bonn, Germany, 1999.

