Role of the Microbiologist in Infection Control and Diffection Control and Diffecti

Objectives

- Understand the importance of the microbiology laboratory to infection control, the hospital epidemiologist, and the infectious disease physician.
- Understand the various techniques available to assist in an epidemiological investigation.

Infectious Disease Diagnostics

- Diagnostic tests for infectious diseases have changed to:
 - Detection of infectious agents/molecules/genes replacing growth and identification procedures.
 - Turn around time
 - minutes to hours replacing days to weeks
 - Evolved through transitional research.
 - Direct impact patient care
 - Need hospital based studies to validate their clinical effectiveness.

Microbiology is now part of the healthcare team

Role in infections

Monitor

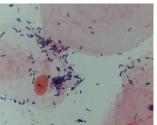
- Understanding the epidemiology of HAIs
- Determine rates of infections
- Surveillance
- Prevent
 - Intervene to prevent infections
 - Education

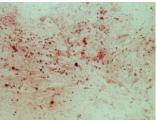
Control

Outbreak investigation

The clinical microbiology laboratory is essential to a comprehensive infection prevention program

Role of the Microbiology Laboratory in Infection Control


- Specimen Collection
- Accurate Identification and Susceptibility Testing
- Laboratory Information Systems
- Rapid Diagnostic Testing
- Reporting of Laboratory Data
- Outbreak Recognition and Investigations-Molecular Typing
- Organism Storage
- Cultures of Specimens from Hospital Personnel and the Environment



Specimen Collection

- Educate on proper specimen collection and transport
 - Sputum versus spit (oropharyngeal flora)
- Monitor specimen quality
 Sputum gram stains
- Reject improper specimens
 Sputums with > 25 squamous
 Sputums colls, low PMNs
 - epithelial cells, low PMNs, oropharyngeal flora

Unacceptable sputum

Acceptable sputum

Accurate Identification of Healthcare-Associated Pathogens

Identify causative organisms rapidly and accurately to species level.

- Diagnostic
- Surveillance
- Environment

Expanding spectrum of organisms that colonize and infect seriously ill patients challenges the ability to identify and characterize pathogens accurately.

Healthcare-Associated Infections: Changing Microbiology

- Mid-1990's
 - Decline in Enterobacteriaceae
 - Increase in gram-positive cocci
 - Emergence of fungi
 - Recognition of viruses

- 2000 and beyond
 - □ ESKAPE organisms
 - □ Increase in resistant GNRs
 - ESBLs
 - Carbapenem-resistant Enterobacteriaceae (CRE)
 - Carbapenem-resistant Acinetobacter
 - Carbapenem R *Pseudomonas* aeruginosa
 - VISA, VRSA
 - Emerging pathogens
 - SARS
 - Monkeypox
 - Norovirus
 - MERS
 - 🗆 Fungi
 - Amphotericin R moulds
 - Fluconazole resistant yeasts

Major Pathogens of HAIs

TABLE 5. Distribution of Rank Order of Select National Healthcare Safety Network, by Type of 1

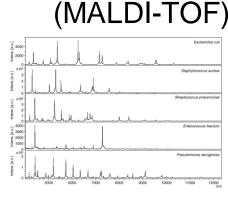
	Overall	
Pathogen	No. (%) of pathogens	Rank
Staphylococcus aureus	12,635 (15.6)	1
Escherichia coli	9,351 (11.5)	2
Coagulase-negative staphylococci	9,261 (11.4)	3
Klebsiella (pneumoniae/oxytoca)	6,470 (8.0)	4
Pseudomonas aeruginosa	6,111 (7.5)	5
Enterococcus faecalis	5,484 (6.8)	6
Candida albicans	4,275 (5.3)	7
Enterobacter spp.	3,821 (4.7)	8
Other Candida spp. or NOS	3,408 (4.2)	9
Enterococcus faecium	3,314 (4.1)	10
Enterococcus spp.	2,409 (3.0)	11
Proteus spp.	2,031 (2.5)	12
Serratia spp.	1,737 (2.1)	13
Acinetobacter baumannii	1,490 (1.8)	14
Other ^a	9,304 (11.5)	
Total	81,139 (100)	

Over a 3rd of HAIs are Gram-negative pathogens

Data from CDC 2009-2010 Sievert et al. ICHE 2013

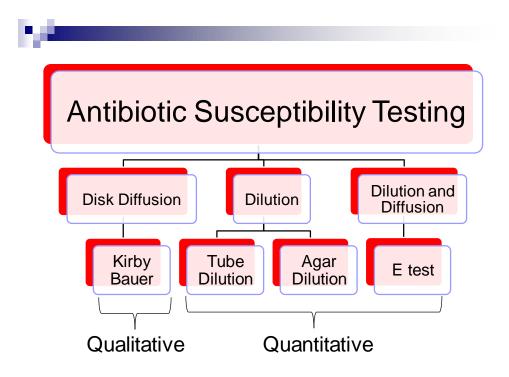
Accurate Identification of Pathogens

Identify causative organisms rapidly and accurately to species level.


- Educated and well trained personnel
- Automated systems

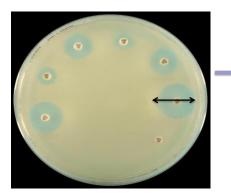
- □ Know the limitations of each system
- Good for Identification of aerobic gram positive and gram-negative bacteria, not good for many nonfermentative gram-negatives
- Molecular testing
 - □ Live versus Dead
 - Cross-reactivity

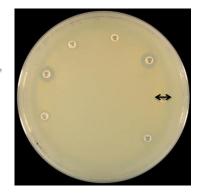
Matrix Assisted Laser Desorption Ionization–Time of Flight

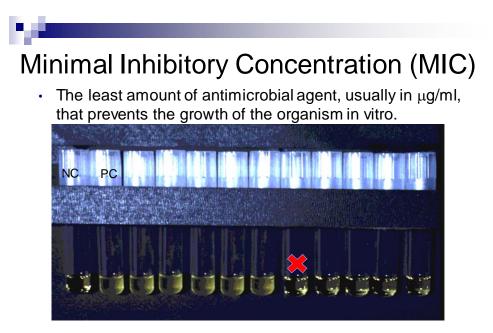

 Measures particles based on their mass to charge ratio

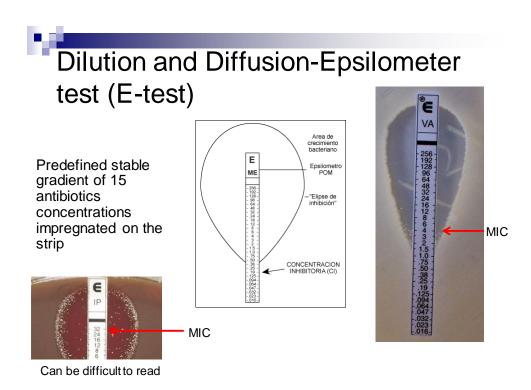
Susceptibility Testing of Healthcare-Associated Pathogens

Perform accurate susceptibility testing


- Implementation of multiple techniques
 - □ Rapid automated systems
 - Disk Diffusion
 - E-test
- Survey for MDR organisms
- Detect unexpected antimicrobial resistance




Klebsiella pneumoniae


Susceptible

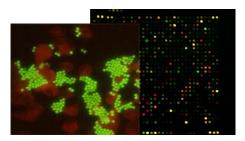
Resistant to all

Low to High Antibiotic Concentrations

MIC Breakpoints

- Based on the microbiological, pharmacological (Pk/PD)and clinical data of an antimicrobial agent administered according to the standard recommended dosage
- · Sensitive
 -will most likely inhibit the organism in vivo.
 - High likelihood of therapeutic success
- Intermediate (indeterminate)
 -might inhibit the organism in vivo.
 - Uncertain therapeutic effect
- Susceptible Dose Dependent (dependent on dosing regimen)
 -might inhibit the organism in vivo.
 - Likelihood of therapeutic effect dependent of dosing regimen
- Resistant
 -will most likely not inhibit the organism in vivo.
 - High likelihood of therapeutic failure.
- Non-susceptible
 - New agents where resistant has not yet been described or when clinical correlation is still lacking for organisms displaying higher MICs

Major Pathogens of HAIs Emerging Multidrug-resistant Organisms (MDROs) Methicillin-resistant *Staphylococcus aureus* (MRSA) Vancomycin-resistant Enterococci (VRE)


- □ MDR-GN
 - Carbapenem-resistant Enterobacteriaceae (CRE)
 - Extended Spectrum Beta-lactamases (ESBL)
 - Acinetobacter baumannii
 - Pseudomonas aeruginosa
- 🗆 C. difficile

Rapid Diagnostic Testing

- Molecular diagnostics-from days to hours
 - □ Specific pathogens
 - C. difficile
 - Group A Strep
 - □ Panels based on symptoms/sample types
 - Respiratory
 - Stool
 - Surveillance
 - MRSA
 - VRE
 - KPC

□ Resistance genes

Laboratory Information Systems

- The microbiology laboratory should choose a LIS system that can also be used by IC to data mine
- The microbiology laboratory is an "Early warning system"
 - □LIS alerts
 - □ Statistical programs

Laboratory Information Systems

- Infection control critical values
 - □ Positive AFB smears and Mtb cultures
 - □VRE, MRSA, GISA
 - □ Multi-drug resistant GNR
 - □ Isolation of *N. meningitidis* from sterile sites
 - Legionella
- Data summaries, monitoring trends
 - Antibiograms
 - □Work Rounds between ICP and Micro

Microbiology Laboratory: Infection Control Related Functions

- Participates as a member of the infection control committee
 - provides expertise in the interpretation of culture results
 - Advice about the appropriateness and feasibility of microbiological approaches
 - Input regarding the laboratory resources necessary to accomplish the goals of the committee
 - Inform the committee of the strengths and limitations of methods employed to detect and characterize HAI pathogens

Microbiology Laboratory: Outbreak Recognition and Investigations

- Most HAIs are endemic and not associated with outbreaks
- Laboratory can alert infection control of potential outbreaks
- Laboratory must assist infection control in identifying and controlling potential outbreaks

Application of Molecular Typing Techniques

- Recognize and confirm an outbreak
 Clusters of patients within hospitals
 Track spread between hospitals over time
- Document hospital transmission
- Measure impact of intervention strategies
- Distinguishing relapse from re-infection in individual patients

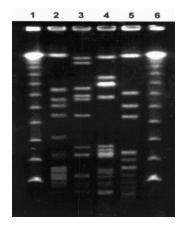
Pfaller MA. 2001. Emerg Infect Dis 7:312-318.

Typing Methods

- Phenotypic (Non-Molecular)
 - Colony Morphology
 - Biotyping
 - □ Antimicrobial Susceptibility
 - □ Serotyping/Phage Typing
- Molecular or Genotypic
 - Pulsed-Field Gel Electrophoresis (PFGE)
 - □ Polymerase Chain Reaction
 - □ Arbitrarily Primed PCR
 - □ Antibiotic Resistance Genotyping
 - □ Multilocus sequence typing (MLST)
 - Single Locus sequence typing (SLST)
 - □ Whole Genome sequencing (WGS)

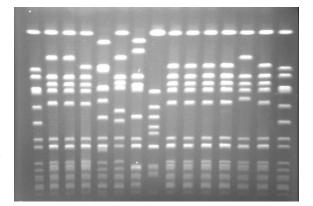
PFGE-Gold Standard Cutting the Code

- Isolates are grown in pure culture and DNA is extracted
- Enzymes cut at specific nucleotide sequences of the DNA strand, leaving fragments of various sizes and weights behind for analysis


PFGE-Rolling the Print

	Th	- ALCONTRA	1
1.00			
1.00			
Contraction of the local sectors of the local secto			

- Electric current is alternated ("pulsed") on a periodic basis
- Separates large DNA fragments called "bands" across the gel based on size
- Gels are stained and visualized under UV
- Bands are compared across isolates to determine clonality


PFGE-Matching the suspect to the scene

- Lanes 1 and 6 are "ladders" containing materials of specific weight for quality control and gel:gel comparisons
- Lanes 2-5 are bacterial isolates; not related

Tenover Criteria

- Indistinguishable
- Closely related (2-3 band)
- Possibly related (4-6 band)
- Unrelated
 (7 or more bands)

Tenover et al. J Clin Micro 1995.

PFGE

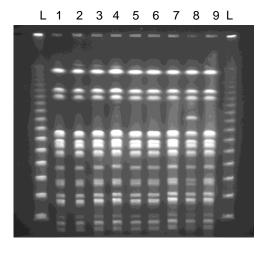
Advantages

- Patterns easier to interpret compared to other techniques
- □ Highly reproducible
- Excellent discriminatory power
- Theoretically all bacteria are typeable, some fungi as well

Disadvantages

- Cost of equipment
- Tedious
- □ Slow
- Certain organisms may not be typeable e.g. C. difficile, Aspergillus sp.
- May be over sensitive in detecting differences

MDR *K. pneumoniae* outbreak in a Cardiac Surgery Intensive Care Unit at UMMC

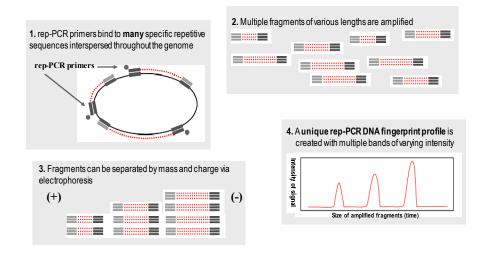

- 5 patients positive cultures with MDR-KP over a 15 day period in January 2010
- 8 out of 9 isolates were genetically identical

Antibiotic	<u>Result</u>
amikacin	R
ampicillin/sulbactam	R
cefazolin	R
cefepime	R
ceftriaxone	R
gentamicin	R
imipenem	S
pipercillin/tazobactam	R
SXT	R
gatifloxacin	R
polymyxin B	S

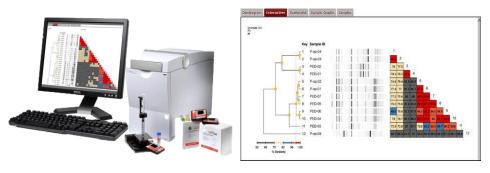
Preas et al. APIC abstract

Klebsiella pneumoniae

- Lanes 2-7, 9 identical
- Lanes 8 similar 2-7, 9
- Cross transmission likely



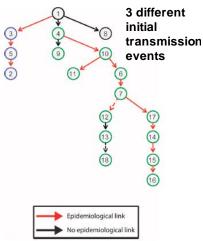
Preas et al. APIC abstract


Control of the outbreak occurred after the following measures were implemented:

- Heightened attention to hand hygiene
- Enhanced environmental cleaning
- Focused disinfection of reusable patient care equipment
- □ Contact Precautions initiated

rep-PCR Technology

The DiversiLab® Microbial Typing System



DiversiLab Software

DiversiLab Kit with reagents and chips

Whole Genome Sequencing in Infection Control

- 18 patients with MDR-KP at NIH-11 died
- WGS used to gain insight into why the outbreak progressed despite early IC procedures
- First paper to demonstrate that the integration of genomic and epidemiological data can yield actionable insights and control of transmission

Snitkin et al. 2012 Sci Transl Med

Epidemiologic Typing Methods Basic Principles

- Perform only with clear objectives
- Variability exists in all methods
 - evaluate all implicated isolates simultaneously
 - compare to epidemiologically unrelated control isolates
- Demonstrate not only relatedness of clustered isolates, but differences from isolates not involved epidemiologically

Organism Storage

- Without storage supplemental tests can not be performed.
- The laboratory and infection control need to decide which isolates should be frozen and for what period of time.
- Important isolates include any isolate from a sterile site (blood, CSF, etc.), antibiotic resistant organisms (MRSA, ESBL producing isolates), and any other epidemiologically important pathogen.

Cultures of Specimens from Hospital Personnel and the Environment

- These cultures should be performed rarely and only when epidemiologically necessary.
- Detection of isolates does not determine cause.

Expanded Roles of Infection Control and Microbiology Labs

Infection Control

- Shift toward focused surveillance
 - ICUs
 - Devices
 - Antimicrobial resistance
- Control strategies are more proactive
 - Active intervention
 - Control of resistance

Microbiology Labs

- Increasingly complex and demanding work
 - Increasing resistance
 - Emerging pathogens
 - New technology
- □ Monitoring resistance
- Implementation of molecular epidemiology

Questions?

