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Abstract. Rook polynomials count the number of ways of placing non-attacking rooks on a
chess board. One way to generalize the classical 2-dimensional rook polynomial theory to higher
dimensions is by letting rooks attack along hyperplanes. In this paper, we use this generalization
to provide rook number interpretations of generalized central factorial and Genocchi numbers.
Finally, we describe a list of permutations that are counted by generalized Genocchi numbers.

Introduction

The classical 2-dimensional rook theory was generalized to three dimensions in [5]. The boards
in three dimensions can be pictured as consisting of cubes that can be stacked one on top of another
and next to each other, with a rook placed in a cube attacking along the planes containing the
cube. This theory is then further developed and generalized to include dimensions of four and
higher in [1], along with generalizations of the properties of classical rook polynomials to higher
dimensions. [1] also investigates three-dimensional generalizations of families of boards in two
dimensions whose rook numbers correspond to famous known number sequences such as Stirling
numbers and numbers of Latin squares.

In this paper, we generalize the family of three-dimensional triangular and Genocchi boards,
which were defined in [1], to higher dimensions. These higher dimensional generalizations of the
triangular and Genocchi boards are shown to correspond with the generalized central factorial
and generalized Genocchi numbers as defined by [3] and investigated in [2]. The first two sections
of this paper are devoted to a review of the relevant properties of the classical rook theory and
higher dimensional rook theory [1]. In section 2, we also include a review of the results on three-
dimensional triangular and Genocchi boards. In sections 3 and 4, we generalize these results to
four and higher dimensions. In the last section, we provide an interpretation of the rook numbers
of these higher dimensional boards in terms of certain lists of permutations.

1. Classical Rook Theory

Given a natural number m, let [m] denote the set {1, 2, ...,m}. In two dimensions, we define a
board B with m rows and n columns to be a subset of [m]× [n]. We call such a board an m× n
board if m and n are the smallest such natural numbers. Each of the elements in the board is
referred to as a cell of the board. The set [m] × [n] is called the full m × n board. An example
of how we visualize a board is as follows:

Numbering the rows from top to bottom and columns from left to right, the above picture
corresponds to the 2 × 3 board B = {(1, 1), (1, 3), (2, 1), (2, 2), (2, 3)}. We sometimes highlight
the cells missing from the board by shading them in gray.
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The rook polynomial RB(x) = r0(B) + r1(B)x + ... + rk(B)xk + ... of a board B represents
the number of ways that one can place various numbers of non-attacking rooks on B, i.e. no
two rooks can lie in the same column or row. More specifically, rk(B) is equal to the number of
ways of placing k non-attacking rooks on B. For any board, r0(B) = 1 and r1(B) is equal to the
number of cells in B. The rook polynomial of the above example is RB(x) = 1 + 5x+ 4x2. Note
that the rook polynomial of a board is invariant under translating the board, and permuting the
rows and columns of the board.

One result from classical rook theory that we will use a generalization of is the relationship
between the rook numbers of a board and those of its complement. Given an m× n board B, we
define the complement of B, denoted B̄ to consist of all cells missing from B so that the disjoint
union of B and B̄ is the full m × n board. In other words B̄ = [m] × [n]\B. If needed, we
explicitly indicate with respect to which full board the complement is taken.

Theorem (Complementary Board Theorem). Let B̄ be the complement of B inside [m]× [n] and
RB(x) =

∑
ri(B)xi the rook polynomial of B. Then the number of ways to place k non-attacking

rooks on B̄ is

rk(B̄) =
k∑

i=0

(−1)i
(
m− i
k − i

)(
n− i
k − i

)
(k − i)!ri(B)

taking ri to be 0 for i greater than the degree of RB(x).

As we will show later, the generalized central factorial numbers and generalized Genocchi
numbers are the rook numbers of two complementary boards whose shapes generalize the triangle
boards in two dimensions. In two dimensions, a triangle board of size m consists of all cells (i, j)
such that 1 ≤ j ≤ i ≤ m. The triangle board of size 4 is shown below.

The rook numbers of this family are known to correspond with the Stirling numbers of the
second kind. Recall that the Stirling numbers of the second kind S(n, k) count the number of
ways to partition a set of size n into k non-empty sets, and can be defined recursively by

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k)

with S(n, 1) = 1 and S(n, n) = 1.

Theorem. The number of ways to place k non-attacking rooks on a triangle board of size m is
equal to S(m+ 1,m+ 1− k), where 0 ≤ k ≤ m.

2. Rook Theory in Three and Higher Dimensions

A board in d dimensions is a subset of [m1] × [m2] × ... × [md] with cells corresponding to
d-tuples (i1, i2, ..., id) with 1 ≤ ij ≤ mj. A full board is the whole set [m1]× [m2]× . . .× [md]. In
three and higher dimensions, rooks attack along hyperplanes which consist of cells with one fixed
coordinate. In particular, in three dimensions, when we place a rook in cell (i1, i2, i3), we can no
longer place a rook in another cell with i1 in the first coordinate, i2 in the second coordinate, or
i3 in the third coordinate. In d dimensions, once we place a rook in cell (i1, i2, ..., id), we can no
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longer place a rook in any cell with first coordinate i1 or second coordinate i2 or so on to dth
coordinate id.

Theorem (Complementary Board Theorem). [1] Let B̄ be the complement of B inside [m1] ×
[m2] × · · · × [md] and RB(x) =

∑
i ri(B)xi the rook polynomial of B. Then the number of ways

to place 0 ≤ k ≤ minimi non-attacking rooks on B is

rk(B̄) =
k∑

i=0

(−1)i
(
m1 − i
k − i

)(
m2 − i
k − i

)
· · ·
(
md − i
k − i

)
(k − i)!d−1ri(B).

[1] generalizes the two-dimensional triangle boards to three dimensions as follows. A size 1
triangle board is simply one cell. The size 2 triangle board is obtained by placing a 2 × 2 layer
below the size 1 triangle board. Continuing recursively in a similar way, the size m board is
obtained by adding an m × m layer at the bottom of a size m − 1 triangle board. In terms of
coordinates, the cells included in the size m triangle are (i, j, k) with 1 ≤ i, j ≤ k and 1 ≤ k ≤ m.
The size 5 three-dimensional triangle board is depicted below.

The rook numbers of these boards can be expressed in terms of central factorial numbers.
Recall that the central factorial numbers are defined recursively by

T (n, k) = T (n− 1, k − 1) + k2T (n− 1, k)

with T (n, 1) = 1 and T (n, n) = 1.

Theorem. [1] The number of ways to place k rooks on a size m triangle board in three dimensions
is equal to T (m+ 1,m+ 1− k), where 0 ≤ k ≤ m.

An interesting result is obtained when the complement of a triangle board is considered. The
picture below shows the complement of a size 4 triangle board inside [5]× [5]× [5]:

The number of ways to place the maximum number of rooks in this board is the unsigned 6th
Genocchi number of even index (sequence A110501 in [4]). More generally, by taking the comple-
ment of the size m− 1 triangle board inside [m]× [m]× [m] to be the size m Genocchi board, [1]
shows that the number of ways of placing m rooks on this board is given by the (m+1)th unsigned
Genocchi number of even index, which we denote by Gm+1. By convention, the Genocchi board
of size 1 consists of a single cell. The rook numbers of the Genocchi boards are found using the
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complementary board theorem and the relationship

Gm = (−1)m
m−1∑
j=1

(−1)j+1j!2T (m− 1, j)

between the Genocchi numbers and the central factorial numbers [1].

3. Triangle boards in Four and Higher Dimensions

In d dimensions, a size 1 triangle board is a single cell, (1, 1, . . . , 1). A size 2 board consists
of a single cell on top of a layer of cells with coordinates of the form (i1, i2, . . . , id−1, 2), where
1 ≤ ij ≤ 2. As m increases, additional layers are added to the bottom. Hence, a size m
triangle board has an mth layer with cells described by d-tuples of the form (i1, i2, . . . , id−1,m)

for 1 ≤ ij ≤ m. We let ∆
(d)
m to denote a size m triangle in d dimensions. We will omit the

superscript if no confusion will arise. As in two and three dimensions, the only way to place m
rooks on a size m triangle is along the diagonal, in the cells of the form (i, i, . . . , i).

To describe the rook numbers of the d-dimensional triangle boards, we will use the generalized
central factorial numbers Tk defined in [3] as

Tk(s, t) = Tk(s− 1, t− 1) + tk · Tk(s− 1, t)

with Tk(s, s) = 1 and Tk(s, 1) = 1.

Theorem. The number of ways to arrange k rooks on a size m triangle board in d dimensions is
Td−1(m+ 1,m+ 1− k) where Td−1(s, t) are the generalized central factorial numbers.

Proof. The proof is similar to the proof in [1] of the corresponding result in three dimensions, and
proceeds by induction on n.

Consider m = 1. The rook polynomial of the size 1 board is 1 + x. By definition, Td−1(2, 2) =
Td−1(2, 1) = 1. Thus, the result is true for m = 1.

In the general case, consider first k = m and k = 1. As we noted above, for a size m triangle
board in d dimensions, there is only one way to place m non-attacking rooks. This corresponds
to Td−1(m+ 1, 1) = 1. Also, by convention there is only one way to put zero rooks on any board,
which corresponds with Td−1(m+ 1,m+ 1) = 1.

Suppose now 1 < k < m. We wish to show that the number of ways of placing k rooks on the
size m board is Td−1(m + 1,m + 1 − k). We will consider two cases, the case where no rook is
placed in the bottom layer (cells with coordinates of the form (∗, · · · , ∗,m)) and the case where
one rook is placed in the bottom layer.

The number of ways in the first case is the number of placing k rooks in a size m− 1 triangle
board, which by induction is Td−1(m,m − k). In the second case, we first find the number of
ways of placing k − 1 rooks in the a size m− 1 triangle boards, which is Td−1(m,m− (k − 1)) =
Td−1(m,m+1−k). We then find the number of ways of placing the last rook. In the bottom layer,
there are md−1 cells. Once the first k − 1 rooks have been introduced on the size m− 1 triangle
board above the bottom layer, for each coordinate, k− 1 entries become restricted. Hence, there
are m− (k− 1) allowed entries for each coordinate, resulting in (m− (k− 1))d−1 possible cells for
the last rook. So there are (m+ 1− k)d−1Td−1(m,m+ 1− k) ways in the second case. Therefore,
the total number of placing k rooks on the size n board is

Td−1(m,m− k) + (m+ 1− k)d−1 · Td−1(m,m+ 1− k) ,
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which by the recurrence relation for generalized central factorial numbers equals Td−1(m+ 1,m+
1− k). �

4. Genocchi Boards in Four and Higher Dimensions

Generalizing the definition of the three-dimensional Genocchi boards, we define the size m
Genocchi board in d dimensions to be the complement of size m − 1 triangle board inside the

d-dimensional cube of size m. Let Γ
(d)
m denote the size m Genocchi board in d dimensions. Using

a similar rotation to the three-dimensional Genocchi board, we can express the cells in Γ
(d)
m as

(i1, i2, . . . , id) where 1 ≤ ij ≤ m and min{i1, i2, . . . , id−1} ≤ id. In particular, Γ
(4)
m contains cells of

the form (i, j, k, `) with 1 ≤ i, j, k, ` ≤ m and min{i, j, k} ≤ `. The rook numbers associated with
these Genocchi boards correspond to a generalization of the Genocchi numbers defined in [2].

Let A
(k)
n+1(x) be the Ghandi polynomials defined by

A
(k)
n+1(x)− xkA(k)

n (x+ 1)− (x− 1)kA(k)
n (x)

where n ≥ 0 and A
(k)
0 (x) = 1. The k-th generalized Genocchi numbers are defined as G

(k)
2n =

A
(k)
n−1(1) [2]. For k = 2, these numbers correspond to the unsigned Genocchi numbers of even

index as described in Section 2.
Because the complement of a d-dimensional Genocchi board is the triangle board, we are again

able to find the rook numbers of the Genocchi board using the complementary board formula.

Theorem. The number of ways to place m rooks on a size m Genocchi board in d dimensions is
given by the (m+ 1)th number among the (d− 1)-th generalized Genocchi numbers.

Proof. By the complementary board formula, the number of ways to place m rooks on the Genoc-
chi board of size m is

rm(Γ(d)
m ) =

m∑
i=0

(−1)i · (m− i)!d−1 · ri(∆m−1)

where ri(∆m−1) denotes the number of ways to place i non-attacking rooks on a size m−1 triangle
board in d dimensions. However, because it is impossible to place m rooks on a size m−1 triangle
board, the mth term in the sum is zero. Also, for 1 ≤ i ≤ m − 1, ri(∆m−1) = Td−1(m,m − i).
Thus,

rm(Γ(d)
m ) =

m−1∑
i=0

(−1)i · (m− i)!d−1 · Td−1(m,m− i).

Using the change of variable j = m− i, we obtain

rm(Γ(d)
m ) =

m∑
j=1

(−1)m−j · (j!)d−1 · Td−1(m, j).

It has been shown in [3] that the generalized Genocchi numbers are related to the generalized
central factorial numbers by the formula

G
(k)
m+1 =

m∑
j=1

(−1)m−j · (j!)k · Tk(m, j).

Therefore, rm(Γ
(d)
m ) = G

(d−1)
m+1 , as desired. �
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5. A Combinatorial Interpretation

The classical rook theory was developed to study permutations with restrictions. A rook
placement of n rooks on an n× n rook board in two dimensions corresponds to a permutation σ
of n elements as follows. If a rook is placed in position (i, j), we then have σ(i) = j. This can also
be thought of as ordering the rook positions based on their first coordinate (in increasing order)
and then reading the numbers in the second coordinate to create a permutation. Restrictions
in the permutations are realized by removing certain tiles on the board. In a similar way, rook
placements in three and higher dimensions correspond to lists of permutations.

In three dimensions, rooks are placed in positions (i, j, k). Consider now placing n rooks on
an n × n × n board. Based on how rooks attack in three dimensions, there has to be one rook
per layer, per wall and per slab. If we order the rook positions from first (top) layer to the
last (bottom) layer, we obtain two permutations by reading the first two coordinates of these
positions. Similarly, in dimension d with d ≥ 4, we obtain lists of d− 1 permutations by reading
coordinates of the rook positions from layer 1 to layer n.

For triangle boards in any dimension, there is only one way to place the maximum number of
rooks. For example, the only way to place 3 rooks on a size 3 triangle board in four dimensions
is achieved by placing the rooks in positions (1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3). This placement
corresponds to the list where the identity permutation is repeated three times, which is not an
interesting list.

For Genocchi boards, however, the results are more interesting. For example, in four dimen-
sions, there are 145 ways to place 3 rooks on a size 3 Genocchi board. Recall that the cells in a
Genocchi board of size m in four dimensions are of the form (i, j, k, `) with 1 ≤ i, j, k, ` ≤ m and
min{i, j, k} ≤ `. One of the 145 placements of 3 rooks on size 3 Genocchi board is as follows:
(3, 2, 1, 1), (1, 3, 2, 2), (2, 1, 3, 3). This placement corresponds to the following list of 3 permuta-
tions: 312, 231, 123. In general, a rook placement of m rooks on size m Genocchi board in d
dimensions corresponds to a list of d − 1 permutations satisfying the property that the smallest
number in the ith position of all permutations is not larger than i. Thus the (d−1)-th generalized
Genocchi numbers count such lists of permutations.
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