
Rotation: Moment of Inertia and Torque

Every time we push a door open or tighten a bolt using a wrench, we apply a force that results 

in a rotational motion about a fixed axis. Through experience we learn that where the force is 

applied and how the force is applied is just as important as how much force is applied when we

want to make something rotate. This tutorial discusses the dynamics of an object rotating about

a fixed axis and introduces the concepts of torque and moment of inertia. These concepts 

allows us to get a better understanding of why pushing a door towards its hinges is not very a 

very effective way to make it open, why using a longer wrench makes it easier to loosen a tight 

bolt, etc.

This module begins by looking at the kinetic energy of rotation and by defining a quantity 

known as the moment of inertia which is the rotational analog of mass. Then it proceeds to 

discuss the quantity called torque which is the rotational analog of force and is the physical 

quantity that is required to changed an object's state of rotational motion. 

Moment of Inertia

Kinetic Energy of Rotation

Consider a rigid object rotating about a fixed axis at a certain angular velocity. Since 

every particle in the object is moving, every particle has kinetic energy. To find the total 

kinetic energy related to the rotation of the body, the sum of the kinetic energy of every 

particle due to the rotational motion is taken. The total kinetic energy  can be expressed

as

... Eq. (1)

where,  is the total number of particles the rigid body has been subdivided into. This 

equation can be written as



... Eq. (2)

where,  is the mass of the  particle and  is the speed of the  particle. Since 

, this equation can be further written as

... Eq. (3)

or

... Eq. (4)

Here,  is the distance of the  particle from the axis of rotation. This equation resembles

the kinetic energy equation of a rigid body in linear motion,  and the term in 

parenthesis is the rotational analog of total mass and is called the moment of inertia. 

... Eq. (5)

Eq. (4) can now be further simplified to

... Eq. (6)

As can be see from Eq. (5), the moment of inertia depends on the axis of rotation. It is 

only constant for a particular rigid body and a particular axis of rotation. 

Calculating Moment of Inertia

Integration can be used to calculate the moment of inertia for many different shapes. Eq. 

(5) can be rewritten in the following form, 



... Eq. (7)

where  is the distance of a differential mass element  from the axis of rotation. 

Example 1: Moment of Inertia of a Disk About its Central Axis

Problem Statement: Find the moment of inertia of a disk of radius , thickness , total

mass  , and total volume  about its central axis as shown in the image below. 

Solution:

The disk can be divided into a very large 

number of thin rings of thickness  and a 

differential width . The volume of one of 

these rings, of radius , can be written as

 
and the mass can be written as

where,  is the density of the solid. 

Since every particle in the ring is located at 

the same distance  from the axis of rotation, 

the moment of inertia of this ring can be 

written as

Fig. 1: Disk rotating about central 

axis.

Integrating this for the entire disk, gives



Since  and , the moment of inertia of the disk is

... Eq. (8)

Parallel Axis Theorem

If the moment of inertia of an object about an axis of rotation that passes through its 

center of mass (COM) is known, then the moment of inertia of this object about any 

axis parallel to this axis can be found using the following equation:

... Eq. (9)

where,  is the distance between the two axes and  is the total mass of the object. 

This equation is known as the Parallel Axis Theorem. 

Proof

Fig. 2 shows an arbitrary object with 

two coordinate systems. One 

coordinate system is located on the 

axis of interest passing through the 

point P and the other is located on the 

axis that passes through the center of 

mass (COM). The coordinates of a 

differential element with respect to the 

axis through P is (x,y) and with respect 

to the axis through the COM is (x',y'). 

The distance between the two axes is 

h.

The moment of inertia of the object 
Fig. 2: Parallel axes. 



about an axis passing through P can be

written as

This can be further written as

Rearranging the terms inside the 
integral we get

The last two terms are equal to 0 because, by definition, the COM is the location 
where  and  are zero. This equation then simplifies to

which is the Parallel Axis Theorem. 

Example 2: Moment of Inertia of a disk about an axis passing through its 
circumference

Problem Statement: Find the moment of inertia of a disk rotating about an axis 

passing through the disk's circumference and parallel to its central axis, as shown 

below. The radius of the disk is R, and the mass of the disk is M. 

Using the parallel axis theorem and the

equation for the moment of inertia of a 

disk about its central axis developed in 

the previous example, Eq. (8), the 

moment of inertia of the disk about the 

specified axis is

Fig. 3: Disk rotating about an axis passing 
through the circumference.



Torque and Newton's Second Law for Rotation

Torque, also known as the moment of force, is the rotational analog of force. This word 

originates from the Latin word torquere meaning "to twist". In the same way that a force is 

necessary to change a particle or object's state of motion, a torque is necessary to change 

a particle or object's state of rotation. In vector form it is defined as

... Eq. (10)
where is the torque vector,  is the force vector and is the position vector of the point 

where the force is applied relative to the axis of rotation. The direction of the torque is 

always perpendicular to the plane in which it is applied, hence, for two dimensional rotation 

this can be simplified to

... Eq. (11)

where  is the distance between the axis of rotation and the point at which the force is 

applied,  is the magnitude of the force and  is the angle between the position vector of the

point at which the force is applied (relative to the axis of rotation) and the direction in which 

the force is applied. The direction of this torque is perpendicular to the plane of rotation. Eq. 

(11) shows that the torque is maximum when the force is applied perpendicular to the line 

joining the point at which the force is applied and the axis of rotation. 

Newton's Second Law for Rotation

Analogous to Newton's Second Law for a particle,  (more commonly written 

as  for constant mass), where is the linear momentum, the following 



equation is Newton's Second Law for rotation in vector form.

... Eq. (12)

where 

... Eq. (13)

is the quantity analogous to linear momentum known as the angular momentum. If the 

net torque is zero, then the rate of change of angular momentum is zero and the angular 

momentum is conserved. 

In two dimensions, for a rigid body, this reduces to

... Eq. (14)

Not only is Eq. (14) analogous to , it is also just a special form of this equation 

applied to rotation. The following subsection shows a simple derivation of Eq. (10) and 

Eq. (14).    

Brief development of the torque equations.  

Consider a particle with a momentum and a position vector of measured from 
the axis of rotation. 

If we define a variable , such that

differentiating both sides gives



This can be re-written as

and, since  and the cross product of a vector with itself is 0, this equation 

reduces to

Now, if we define as something called torque, represented by , we get

This is Eq. (10). Continuing with this equation,

we can write

Since ,

Using an identity for cross products,

this simplifies to

and, finally, we get 

Although this is only a proof for a single particle, a similar method will give the same 

result for larger rigid bodies composed of a large number of particles. 



The beauty of all these equations is that, even for large complex geometries (not 

considering relativistic effects), they are all based on Newton's three fundamental laws of

motion.

Returning to the topic of doors and wrenches, why is pushing a door towards its hinges is 

not very a very effective way to make it open? This questions can be answered using Eq. 

(11). If a door is pushed, as shown in Fig. 4, then the torque is maximum when  is 90  and 

decreases as  changes. If the door is pushed towards its hinges, then  is 180  which 

makes the torque equal to 0.  

  

Fig. 4: Torque on a door

Similarly, using Eq. (11), a longer wrench makes it easier to loosen a tight bolt because 

increasing  allows for a greater torque. 

Examples with MapleSim

Example 3: Stationary Bicycle



Problem statement: The flywheel of a stationary exercise bicycle is made of a solid iron 

disk of radius 0.2m and thickness 0.02m. A person applies a torque that has an initial 

value of 25 Nm and decreases at the rate of 5 Nm/s for a total time of 5 seconds.

a) What is the moment of inertia of the wheel?

b) What is the initial angular acceleration of the wheel?

c) What is the rate (in rpm) at which the person needs to pedal after 3 seconds to be able

to continue applying the torque?

d) How much energy has the person converted to the rotational kinetic energy of the 

wheel after 5 seconds? 

Analytical Solution

Data:

[m]

[m]

[kg/m3]

[Nm]

[sec]

[sec]

Solution:

Part a) Calculating the moment of inertia of the wheel.

Using Eq. (8), derived in the moment of inertia example, the moment of inertia of 

the disk is

 = 
at 5 digits

 
Therefore, the moment of inertia of the disk is 12.38 kgm2.



(3.1.1.3.4)(3.1.1.3.4)

(3.1.1.3.2)(3.1.1.3.2)

(3.1.1.3.1)(3.1.1.3.1)

(3.1.1.3.3)(3.1.1.3.3)

Part b) Determining the initial angular acceleration of the wheel. 

The initial angular acceleration can be found using Eq. (14).

 = 
at 5 digits

Therefore, the initial angular acceleration of the wheel is 4.04 rad/s2.

Part c) Determining the angular velocity after 3 seconds.

To be able to continue applying the torque, the person must be able to match the 

angular velocity of the wheel. The equation for angular velocity can be obtained by 

integrating the equation for angular acceleration,

Converting this value from rad/s to rpm,

at 5 digits

196.61

Therefore, the person needs to pedal at 196.61 rpm at 3 seconds.  

Part d) Determining the rotational kinetic energy after 5 seconds



(3.1.1.4.2)(3.1.1.4.2)

(3.1.1.4.1)(3.1.1.4.1)

(3.1.1.4.3)(3.1.1.4.3)

Eq. (6) can be used to find the rotational kinetic energy of the wheel. To find the 

angular velocity of the wheel after 5 seconds, the same approach in Part c) can be 

used. 

Using Eq. (6),

at 10 digits

Therefore, after 5 seconds, the person has input 1.4 kJ of energy into the wheel. 

MapleSim Simulation

Constructing the Model

Step1: Insert Components

Drag the following components into the workspace: 

Table 1: Components and locations.

Compon
ent

Location

Signal 
Blocks > 
Common

Signal 
Blocks > 
Common

1-D 
Mechanica

l > 
Rotational



1. 1. 

2. 2. 

> Torque 
Drivers

1-D 
Mechanica

l > 
Rotational
> Sensors

Signal 
Blocks > 
Mathemati

cal > 
Functions

Signal 
Blocks > 
Common

Step 2: Connect the components

Connect the components as shown in the following diagram (the dashed boxes are

not part of the model, they have been drawn on top to help make it clear what the 

different components are for). 

Fig. 5: Component diagram for the Stationary Bicycle example

Step 3: Set the Parameters

Click the Constant component and (in the Inspector tab) set the parameter k 

to -5. This is the rate at which the torque is decreasing. 

Click the Integrator component and enter 50 for the initial value ( ). This is 

the initial value of the torque. This component integrates -5 to give -5t and 

adds 50 to it, giving f(t)=50 - 5t which the applied torque.



3. 3. 

4. 4. 

1. 1. 

5. 5. 

3. 3. 

2. 2. 

4. 4. 

Click the Inertia component and enter 12.38 kg$m2 for the moment of inertia (
).

Click the Gain component and set the parameter k to 1/2*12.38.

The parameter ( ) of the Power Function component should be left to the

default value of 2. 

Note: If desired, these parameters can be set as variables and a parameter block 

can be created by clicking the Add a Parameter Block icon ( ) and then clicking

on the workspace. The values for the parameters can then be entered using this 

block, which is useful if you want to repeatedly change the parameters and see the

effect on the simulation results.   

Step 4: Run the Simulation

Click the Probe attached to the Inertia component and select Speed and

Acceleration in the Inspector tab.

In the Settings tab reduce the Simulation duration ( ) to 5 s.

Click Run Simulation ( ).

The plots generated can be used to find the solutions to the problem.  

Example 4: Jib Crane

Problem Statement: A jib crane, as

shown in Fig. 6, consists of a beam 

supported at A by a pin joint and at 

B by a cable. There is an object 

hanging from a hook as shown in 

the image.The total weight of the 

object and the hook assembly is 

1500 kg and the total weight of the 



3. 3. 

beam is 500 kg. Find the tension in 

the cable. 

Fig. 6: Jib crane

Analytical Solution

Data:

[kg]

[kg]

[m/s2]

[m]

[m]

[m]

[m]

(Converting the angle from degrees to radians so that it can be 
used with the inbuilt trigonometric functions. 1 deg = Pi/180 rad.)

Solution: 



3. 3. 

The torque due to the tension in the cable can be expressed using Eq. (11). The 

angle between the line that joins AB and the force vector, as shown in Fig.7, is

 = 
at 5 digits

Therefore,

 = 

Fig. 7: Angle for the Tension vector

Assuming a uniform beam, the force due to the beam's weight will act on the center of

mass. Hence the torque due to the weight of the beam is

 = 

Also, the torque due to the object and hook assembly is

 = 

Since the beam is stationary and not accelerating, it is in a state of static equilibrium. 

From Eq. (14), this means that the net torque on the beam is equal to zero. Hence, 

the sum of the torque on the beam, about point A, from the tension in the cable, from 



3. 3. 

(3.2.1.1)(3.2.1.1)

(3.2.1.2)(3.2.1.2)

the weight on the hook and from the weight of the beam is zero. 

solve for T

Therefore, the tension in the cable is 24.59 kN.

MapleSim Simulation

Constructing the Model

Step1: Insert Components

Drag the following components into the workspace: 

Table 2: Components and locations

Component Location

(3 required)

Multibody 
> Joints 

and 
Motions

(6 required)

Multibody 
> Bodies 

and 
Frames

(2 required)

Multibody 
> Bodies 

and 
Frames



1. 1. 

2. 2. 

3. 3. 

2. 2. 

3. 3. 

1. 1. 

Step 2: Connect the components

Connect the components as shown in the following diagram. 

Fig. 8: Component diagram for the jib crane example

Step 3: Set up the beam

Change the x,y,z offsets (click the component and enter the values for   in

the Inspector tab) of RBF1, RBF2, RBF3, RBF4, and RBF5 to [0.25,0,0], [2.75,

0.0], [1,0,0], [2,0,0] and [0,0.4,0] respectively. 

Enter 500 kg for the mass ( ) of RB1 and 1500 kg for the mass ( ) of RB2. 

Here, RB1 corresponds to the weight of the beam and RB2 corresponds to the

weight of the object and the hook assembly. 

The x,y,z offset (r ) of FF1 and the axis of rotation ( ) of R1 should be left 

to the default values which are [0,0,0] and [0,0,1] respectively. 

Step 4: Set up the cable

Enter [0,0.4+6*tan(25/180*Pi),0] for the x,y,z offset (r ) of FF2. 

Enter [6/cos(25/180*Pi),0,0] for the x,y,z offset (r ) of RBF6. 



3. 3. 

4. 4. 

3. 3. The axes of rotation ( ) of R2 and R3 can be left to the default values. 

Click the Probe placed between RBF6 and R3, and select 1 under Force. This 

will show the force along the direction of the rigid body frame that represents 

the cable. 

Step 5: Run the simulation

The following image shows the 3-D view of the model. 

Fig. 9: 3D view of the Jib crane model

Gyroscopic Precession Simulation

This simulation shows an interesting phenomena that illustrates how torque and angular 

momentum behave as vectors. A gyroscope is basically a spinning wheel or disk that, due 

to its angular momentum, behaves very differently than a non-spinning wheel. Gyroscopes 

are commonly used in aircrafts and electronics like cell phones to measure rotation and 

orientation. They are also used to achieve stability in specialized vehicles, camera supports,

etc.  

For example, if a wheel, that is not spinning, is suspended from one end of its axle by a joint



3. 3. 

3. 3. 

that is free to rotate in all planes, as shown in Fig. 10, then the wheel will fall and oscillate 

like a pendulum. However, if the wheel is spinning sufficiently fast, it will rotate in a 

horizontal plane and will not swing like a pendulum. This motion is called precession. In Fig.

10, the red line (which lies on the horizontal plane) shows the path of the free end of the 

axle of the spinning wheel, and the blue line (which lies on the vertical plane) shows the 

path of the free end of the axle of the non-spinning wheel. From a mathematical point of 

view, this phenomena occurs because of the vector addition of the existing angular 

momentum of the spinning wheel and the angular momentum that is added due to the 

torque (due to gravity). The torque on the wheel, in the orientation shown below, points in a 

direction perpendicular to the existing angular momentum of the spinning wheel (right-hand-

rule).  Hence it increases the angular momentum in a direction perpendicular to it. This 

changes the angular momentum and causes the wheel to rotate in the horizontal plane 

instead of falling and oscillating in the vertical plane.   

Fig. 10: 3D view of the gyroscope simulation.

The following figure shows the component diagram of the model of the spinning wheel. 



3. 3. 

3. 3. 

Fig. 11: Component diagram for the gyroscope simulation

The following video shows a comparison of the motions of a spinning and non-spinning 

wheel. 



3. 3. 

3. 3. 

Video Player

Video 1: 3-D visualization of a spinning wheel (showing gyroscopic precession) and a non-spinning wheel.
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