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Chapter 10

 Moment of Inertia
 Parallel Axis Theorem
 Rotational kinetic energy
 Rolling

Outline
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Torque causes angular acceleration:

Force causes linear acceleration: (N.2nd law):

Newton’s 2nd law of rotation


 I

I is the Moment of Inertia (rotational equivalent of mass)

amF 

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A point mass is located at a distance R from an axis of rotation. 
A force is applied perpendicular to R.

F  ma
a  R

 RFSin

Moment of inertia of a single particle

  I
I  mR2Moment of inertia of a single particle:

R m

F


N. 2nd law:

Recall, last class:

Let’s find a relation between torque and angular acceleration:

90

RFBy definition:

mR

As a result, torque is:
)(  mRR )( 2mR

Rotational N. 2nd law:
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If we have many point masses mi, located at distances Ri from an 
axis of rotation. A force is applied perpendicular to R.

Moment of inertia of many particle

  I

Moment of inertia of N masses:

R1 m1

 )( 2

1
i

N

i
iRm





Rotational N. 2nd law:

2

1
i

N

i
iRmI 




m2

m3
m4

R2

R3

R4

...2
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2
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2
11  RmRmRmI
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Example: Moments of Inertia of two points
Two point masses connected to a massless rod

2
22

2
11 RmRmI 

222 48)2(7)2(5 mkgmkgmkgI 

222 143)5.4(7)5.0(5 mkgmkgmkgI 

The distribution of mass matters 

2
22

2
11 RmRmI 
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Moment of inertia for extended objects

 dmRI 2

The rotational inertia of an object depends not 
only on its mass distribution but also the location 
of the axis of rotation—
compare (f) and (g), for example.

iR
 im
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Example: pulley and mass/Physics

maFmg T 


  I




atan  R  a

R

M

- translational motion of m, described by N.2nd law

- rotational motion of M, described by the rotational N.2nd law

- and there is a useful eq-n, which links these 2 eq-ns:

TF


TF


gm

)1(

)2(

)3(

y


F  ma

)1(

)2( IRSinFT 90
1

)2010(  tableseeIRa

An object of mass m is hung from a cylindrical pulley of radius R and 
mass M and released from rest.  What is the acceleration of the object?


F  ma

  I




atan  R  a)3(

Physics is over.
Now, it is pure Algebra.
3 eq-ns and 3 unknowns

We have two objects in the system:
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Example: pulley and mass/Algebra

R

M

TF


TF


gmy

2

2
1 MRI 

maFmg T )1(
)2( IRFT 

Ra)3(

maFmg T 

R
aIRFT 

R Multiply both sides of (1) by R
and add (1) and (2) up: 
(FT disappears)



R
aImaRRFRFmgR TT 

R
ImR

mRga


 Or better
2R

Im

mga




since
)2010(  tableseeI

2
Mm

mga






Department of Physics and Applied Physics
95.141, Fall 2013, Lecture 18

Torque due to gravity
• We often encounter systems in which there is a torque exerted 

by gravity.  The torque on a body about any axis of rotation is 

 MgSinRWSinR CMCM 

gMW 


CMR


The proof

CM


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Example Problem: Falling rod
What is the angular acceleration of the rod shown below, if it is released from 
rest, at the moment it is released?  What is the linear acceleration of the tip? 


  I 

Ra tan

Rotational motion of the rod is 
described by the rotational N.2nd law

Torque due to gravity (previous slide):

CMR


90SinMgRCM

IlMg 
2 I

Mgl
2



2
3
1 MlI 

)(2 2
3
1 Ml
Mgl


Each point on a rotating rigid 
body has the same angular 
acceleration (previous class)!
So we can apply it to the tip!!

)23( lgl

2lMg

l
g

2
3



2
3g



 MgSinRWSinR CMCM 
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Parallel Axis Theorem (w/out proof)

The moment of inertia about any axis parallel to that axis through 
the center of mass is given by

I  ICM Mh2
h

CMI I

CM

I : moment of inertia about any parallel axis
ICM : moment of inertia about an axis through its center of mass
M : total mass
h : distance from a parallel axis to the center of mass.

BTW:  The moment of inertia of any object about an axis through its center of 
mass is the minimum moment of inertia for an axis in that direction in space.
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Moment of inertia for the sphere, rotating about 
an axis through its center of mass

R>>r0

Parallel Axis Theorem:  Example/Sphere

Through an axis a distance R>>r0 from the center?

Moment of inertia for the sphere about an 
axis going through the edge of the sphere?

2
05

2 MrICM 

2MhII CM 

22
05

2 MRMr 

For a uniform sphere of radius r0

Apply Parallel Axis Theorem:

2
0

2
05

2 MrMr  2
05

7 Mr

2MhII CM  2MR
So, in this case we got a 
Moment of inertia of a single particle

Very small
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Rotational Kinetic Energy

2

2
1 mvKtrans 

2

2
1 IKrot 

 2
2
1

iirot vmK

 22
2
1

iirot rmK 

2
2
1 IKrot 

Similar to linear motion

Simple derivation: for pure rotation 

 2
2
1 )( iirot rmK   1

2 mi
2ri

2

Since I  miri
2

therefore

ii rv 

ir


iv 
im
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Total kinetic energy

= +
Rolling Translational Rotational

rotCM KKEnergyKineticTotal 
2

2
12

2
1 CMCMtot IMvK 

Rolling motion can be resolved into two motions

vCM  R
2

2
122

2
1  CMtot IMRK  22

2
1 )( CMtot IMRK 

If there is no slipping



ConcepTest 1 Dumbbell I

A) case (a)
B) case (b)
C) no difference
D) it depends on the rotational 

inertia of the dumbbell

A force is applied to a dumbbell 
for a certain period of time, first 
as in (a) and then as in (b). In 
which case does the dumbbell 
acquire the greater
center-of-mass speed ?

Because the same force acts for the 
same time interval in both cases, the 
change in momentum must be the 
same, thus the CM velocity must be 
the same.

CM CM



A) case (a)
B) case (b)
C) no difference
D) it depends on the rotational 

inertia of the dumbbell

A force is applied to a dumbbell 
for a certain period of time, first 
as in (a) and then as in (b). In 
which case does the dumbbell 
acquire the greater energy ?

If the CM velocities are the same, the 
translational kinetic energies must 
be the same. Because dumbbell (b) 
is also rotating, it has rotational 
kinetic energy in addition.

ConcepTest 2 Dumbbell II

CM CM
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Sphere rolling down 
an incline
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Thank you
See you on Wednesday
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The distribution of mass matters here—these two objects have the same 
mass, but the one on the left has a greater rotational inertia, as so much 

of its mass is far from the axis of rotation.

Moment of inertia

M
M

21 II 

1object 2object


