Lecture 18

Chapter 10

Rotational Dynamics Moment of Inertia

Course website:
http://faculty.uml.edu/Andriy Danylov/Teaching/PhysicsI

Lecture Capture:
http://echo360.uml.edu/danylov2013/physics1fall.html

Outline

Chapter 10
$>$ Moment of Inertia
$>$ Parallel Axis Theorem
> Rotational kinetic energy
> Rolling

Newton's $2^{\text {nd }}$ law of rotation

Force causes linear acceleration: (N. $2^{\text {nd }}$ law):

$$
\vec{F}=m \vec{a}
$$

Torque causes angular acceleration:

$$
\vec{\tau}=I \vec{\alpha}
$$

I is the Moment of Inertia (rotational equivalent of mass)

Moment of inertia of a single particle

A point mass is located at a distance R from an axis of rotation. A force is applied perpendicular to R.
Let's find a relation between torque and angular acceleration:

Department of Physics and Applied Physics

Moment of inertia of many particle

If we have many point masses m_{i}, located at distances R_{i} from an axis of rotation. A force is applied perpendicular to R.

Moment of inertia of N masses:

$$
\begin{gathered}
I=m_{1} R_{1}^{2}+m_{2} R_{2}^{2}+m_{3} R_{3}^{2}+\ldots \\
I=\sum_{i=1}^{N} m_{i} R_{i}^{2}
\end{gathered}
$$

Rotational N. $2^{\text {nd }}$ law: $\tau=I \alpha$

$$
\tau=\left(\sum_{i=1}^{N} m_{i} R_{i}^{2}\right) \alpha
$$

Example: Moments of Inertia of two points

Two point masses connected to a massless rod

Department of Physics and Applied Physics

Moment of inertia for extended objects

$$
I=\int R^{2} d m
$$

The rotational inertia of an object depends not only on its mass distribution but also the location of the axis of rotationcompare (f) and (g), for example.

Department of Physics and Applied Physics

Example: pulley and mass/Physics

An object of mass m is hung from a cylindrical pulley of radius R and mass M and released from rest. What is the acceleration of the object?
We have two objects in the system:

- translational motion of m, described by N. $2^{\text {nd }}$ law

$$
\begin{equation*}
\sum \vec{F}=m \vec{a} \tag{1}
\end{equation*}
$$

- rotational motion of M, described by the rotational N. $2^{\text {nd }}$ law

$$
\begin{equation*}
\sum \vec{\tau}=I \vec{\alpha} \tag{2}
\end{equation*}
$$

- and there is a useful eq-n, which links these 2 eq-ns:
(3) $a_{\text {tan }}=R \alpha=a$

$$
\begin{aligned}
& \text { (1) } \sum \vec{F}=m \vec{a} \quad \longleftrightarrow m g-F_{T}=m a \\
& \text { (2) } \sum \vec{\tau}=I \vec{\alpha} \quad \longleftrightarrow F_{T} R \operatorname{Sin} 90^{\circ}=I \alpha \\
& \text { (3) } a_{\mathrm{tan}}=R \alpha=a \quad \square \alpha=a / R
\end{aligned}
$$

Physics is over.
Now, it is pure Algebra. 3 eq-ns and 3 unknowns
$I=($ see table $10-20)$

Department of Physics and Applied Physics

Example: pulley and mass/Algebra

> (1) $m g-F_{T}=m a-$
> (2) $F_{T} R=I \alpha$
> (3) $\alpha=a / R$
> $\left\{\begin{array}{lll}m g-F_{T}=m a & \triangleleft \mid \times R & \begin{array}{l}\text { Multiply both sides of (1) by } R \\ F_{T} R=I \frac{a}{R}\end{array}+\quad \begin{array}{l}\text { and add (1) and (2) up: } \\ \text { (} F_{T} \text { disappears) }\end{array}\end{array}\right.$
> $m g R-F_{f} R+F_{\gamma} R=m a R+I \frac{a}{R}$
> $a=\frac{m R g}{m R+\frac{I}{R}}$

Department of Physics and Applied Physics

Torque due to gravity

- We often encounter systems in which there is a torque exerted by gravity. The torque on a body about any axis of rotation is

Department of Physics and Applied Physics

Example Problem: Falling rod

What is the angular acceleration of the rod shown below, if it is released from rest, at the moment it is released? What is the linear acceleration of the tip?
$\begin{aligned} & \begin{array}{l}\text { Rotational motion of the rod is } \\ \text { described by the rotational } N .2^{n d} \text { law }\end{array} ~\end{aligned} \vec{\tau}=I \vec{\alpha}$ Torque due to gravity (previous slide):

$$
\tau=R_{C M} W \operatorname{Sin} \theta=R_{C M} M g \operatorname{Sin} \theta
$$

$$
\tau=M g R_{C M} \operatorname{Sin} 90^{\circ}=M g l / 2
$$

$$
M g \frac{l}{2}=I \alpha \square \alpha=\frac{M g l}{2 I^{\prime}}=\frac{M g l}{2\left(\frac{1}{3} M l^{2}\right)}=\frac{3 g}{2 l}
$$

$$
I=\frac{1}{3} M F^{-}
$$

$$
a_{\mathrm{tan}}=R^{\prime \prime} \alpha=l(3 g / 2 l)=\frac{3 g}{2}
$$

Department of Physics and Applied Physics

Parallel Axis Theorem (w/out proof)

The moment of inertia about any axis parallel to that axis through the center of mass is given by

$$
I=I_{C M}+M h^{2}
$$

I : moment of inertia about any parallel axis
$I_{C M}$: moment of inertia about an axis through its center of mass
M : total mass
h : distance from a parallel axis to the center of mass.

BTW: The moment of inertia of any object about an axis through its center of mass is the minimum moment of inertia for an axis in that direction in space.

Parallel Axis Theorem: Example/Sphere

For a uniform sphere of radius r_{0}
Moment of inertia for the sphere, rotating about
Through
center an axis through its center of mass

$$
I_{C M}=\frac{2}{5} M r_{0}^{2}
$$

Moment of inertia for the sphere about an axis going through the edge of the sphere?

Apply Parallel Axis Theorem:

$$
I=I_{C M}+M h^{2}=\frac{2}{5} M r_{0}^{2}+M r_{0}^{2}=\frac{7}{5} M r_{0}^{2}
$$

Through an axis a distance $R \gg r_{0}$ from the center?

$$
I=I_{C M}+M h^{2}=\frac{2}{5} M r_{0}^{2}+M R^{2} \approx M R^{2}
$$

So, in this case we got a

Moment of inertia of a single particle
Department of Physics and Applied Physics

Rotational Kinetic Energy

Simple derivation: for pure rotation

$$
\begin{aligned}
& \vec{v}_{i}=\begin{array}{l}
\vec{v}_{\text {rot }}=\sum \frac{1}{2} m_{i} v_{i}^{2} \quad v_{i}=r_{i} \omega \\
K_{\text {rot }}=\sum \frac{1}{2} m_{i}\left(\omega r_{i}\right)^{2}=\sum \frac{1}{2} m_{i} \omega^{2} r_{i}^{2} \\
K_{\text {rot }}=\frac{1}{2} \omega^{2} \sum m_{i} r_{i}^{2} \\
\text { Since } I=\sum m_{i} r_{i}^{2}
\end{array} \\
& \text { therefore } K_{\text {rot }}=\frac{1}{2} I \omega^{2} \\
& K_{\text {trans }}=\frac{1}{2} m v^{2} \quad \text { Similar to linear motion } \quad K_{\text {rot }}=\frac{1}{2} I \omega^{2}
\end{aligned}
$$

Department of Physics and Applied Physics

Total kinetic energy

Rolling motion can be resolved into two motions

Total Kinetic Energy $=K_{C M}+K_{\text {rot }}$

$$
K_{\text {tot }}=\frac{1}{2} M v_{C M}^{2}+\frac{1}{2} I_{C M} \omega^{2}
$$

If there is no slipping

$$
\square v_{C M}=R \omega
$$

$$
K_{t o t}=\frac{1}{2} M R^{2} \omega^{2}+\frac{1}{2} I_{C M} \omega^{2} \quad \square K_{t o t}=\frac{1}{2}\left(M R^{2}+I_{C M}\right) \omega^{2}
$$

ConcepTest 1 Dumbbell I

A force is applied to a dumbbell for a certain period of time, first as in (a) and then as in (b). In which case does the dumbbell acquire the greater center-of-mass speed?
A) case (a)
B) case (b)
C) no difference
D) it depends on the rotational inertia of the dumbbell

Because the same force acts for the same time interval in both cases, the change in momentum must be the same, thus the CM velocity must be the same.

ConcepTest 2

Dumbbell II

A force is applied to a dumbbell for a certain period of time, first as in (a) and then as in (b). In which case does the dumbbell acquire the greater energy ?
A) case (a)
B) case (b)
C) no difference
D) it depends on the rotational inertia of the dumbbell

If the CM velocities are the same, the translational kinetic energies must be the same. Because dumbbell (b) is also rotating, it has rotational kinetic energy in addition.

Sphere rolling down an incline

Use conserve. of mech energy: $E_{i n}=E_{\text {fin }}$

$$
\begin{aligned}
& E_{\text {in }}=K E_{r}^{0}+K \text { rot }+U_{i}=m g H \\
& E_{\text {fin }}=K_{\text {tr }}+K_{\text {rot }}+Y_{f}^{0(\text { ret. level })}=\frac{1}{2} m V_{c M}^{2}+\frac{1}{2} I_{C_{M}} \cdot \omega^{2}
\end{aligned}
$$

So, $\frac{1}{2} m v_{c M}^{2}+\frac{1}{2} I \omega^{2}=m g H$
Since blue is us slipping $V_{C M}=\omega \cdot R \Rightarrow \omega=\frac{V_{C M}}{R}$

$$
\begin{aligned}
& \frac{1}{2} m V_{c M}^{2}+\frac{1}{2} I \cdot \frac{V_{c M}^{2}}{R^{2}}=m g H ; I=\frac{2}{5} m \cdot R^{2}(\text { te } 6 l e 10-20) \\
& \frac{V_{e_{M}}^{2}}{2} \cdot\left(m+\frac{2}{5} m R^{2} \cdot \frac{1}{R^{2}}\right)=\frac{7}{10} \cdot m \cdot V_{c M}^{2}=m g H, \text { so } \\
& V_{C M}=\sqrt{\frac{10}{7} g H} \\
& \text { Compere: } \\
& \text { with } H
\end{aligned}
$$

Thank you See you on Wednesday

Moment of inertia

The distribution of mass matters here-these two objects have the same mass, but the one on the left has a greater rotational inertia, as so much of its mass is far from the axis of rotation.
object1 object2

