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Newton’s 2" law of rotation

Force causes linear acceleration: (N.2" law):

F=ma

Torque causes angular acceleration:

T =la

| is the Moment of Inertia (rotational equivalent of mass)
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Moment of inertia of a single particle

A point mass Is located at a distance R from an axis of rotation.
A force is applied perpendicular to R.
Let’s find a relation between torque and angular acceleration:

— By definition: 7 = RFSING = RF

e N. 2" Jaw: F:ma,: mRO[
0-90 N Recall tastolass: d= Ry

I R 'm Asaresult, torque is:

/ t=R(MRa)=(MR*)a

~ -
Semmm=—"

Moment of inertia of a single particle: || = mR?

Rotational N. 29 law: | 7T = |0!
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Moment of inertia of many particle

If we have many point masses m;, located at distances R; from an
axis of rotation. A force is applied perpendicular to R.

Moment of inertia of N masses:
. 2 2 2
| =mR +mM,R; +m,R; +...

N
=) mR’
i=1
Rotational N. 29 law: 7 = |0[

T = (i m. Riz)a
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Example: Moments of Inertia of two points

Two point masses connected to a massless rod

P, , ,
: | =mR"+m,R;
!
! . 1=5kg(2m)?+7kg(2m)? = 48kg - m?
5.0 kg : 7.0 kg
AXis
D | =m,R?+m,R?
050 m
-~ 40m——— | =5kg(0.5m)2 + 7kg(4.5m)? =143kg - m
— =
5.0 kg 7.0 kg
|
Axis The distribution of mass matters
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Moment of inertia for extended objects

Location Moment of
Object of axis inertia
2 Axis
(a) Thin hoop, Through
I —_— R dl I I radius R, center , MR}
Axis
(b)  Thin hoop, Through oo
radius R central 0 sMR; + I_?sz
width w diameter g B
W [ [ [ ][ T
|
Axis
(c) Solid cylinder, Through N
radius R, center Ry %MRE)
Axis
(d) Hollow cylinder, Through f-' . 1 2 p2
inner radius R center Qw QM(Rl + Rz)
outer radius R; s o
HEEEEEEEEEEEEEE Axis
(e)  Uniform sphere, Through
T adivs e e
ENEEEEEEEEEEEA. L 4 ‘
ENEEEEEEEEEEEEL
ENNEEEEEEE D -
............." (f) Long uniform rod, Through Q:!:\)) L ype
ENEEEEEEEEEnYV” lengihf center D T .
.y pr-
- ~l: - H Axis
The rotationzl inertia of an object depends N0t o) tomg uniform roa.— Thvouen — 1,
- - - - - engt en e— F — 3
only on its mass distribution but also the location o,
i I S (h)  Rectangular Through L AR B
of the axis of rotation i, Tt AT e
length £, width w Ny, - o S
compare (f) and (g), for example. Wi
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Example: pulley and mass/Physics

An object of mass m is hung from a cylindrical pulley of radius R and
mass M and released from rest. What is the acceleration of the object?

We have two objects in the system:
- translational motion of m, described by N.2" law

1) D F=ma

- rotational motion of M, described by the rotational N.2" law
2 Yi=la

- and there is a useful eg-n, which links these 2 eg-ns:

® a,=Ra=a

—

@) Zlfzmé =) Mg —-F =ma
Physics is over.

. A
(2) ZT =la — FRSMIO =la L Now, it is pure Algebra.

3 eg-ns and 3 unknowns

®) 8, =Ra=a =) a= a/R | 1 =(see table10-20)
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Example: pulley and mass/Algebra
@M mg-F =ma-
2 KR=la -

-
-

® a=a/R -

mg - F =ma <& ‘X R Multiply both sides of (1) by R
N .
FR= and add (1) and (2) up:
(F+ disappears)

— R
ng—E(FHF/R:maRH%

gu—

=

~ mRg q—_M9
a= | Or better |:> B |
MR+ — Mm+—|
R R .
,,,,,,,, mg

Axis | = (see table 10—20) T a= M
® ) since | == MR? m+—
R e me
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Torque due to gravity

« \We often encounter systems in which there is a torque exerted
by gravity. The torgue on a body about any axis of rotation is

7 =R,y WSInd =R, MgSiné

The proof
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Example Problem: Falling rod

What is the angular acceleration of the rod shown below, if it is released from
rest, at the moment it is released? What is the linear acceleration of the tip?

Rotational motion of the rod is Z g e
described by the rotational N.2"d law r=1la S
S :
Torgue due to gravity (previous slide): gu' cM
S|
. - . - g @, ¢
7 =R WSIn@ =R, MgSInd szz—%l
Mg
r=MgR,,,Sin90° = Mg1/2
| Each point on a rotating rigid
Mg—=la o = Mgl Mgl 39 body has the same angular
2(1 M| ? ) 2| acceleration (previous class)!
A D S > So we can apply it to the tip!!
’ I =IMF \
- { > 3 3g
A, = - R = 1(3g/2l) ==
2
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Parallel Axis Theorem wiout proof

[
The moment of inertia about any axis parallel to that axis through
the center of mass is given by
| CM |

| =1y, + Mh’

| - moment of inertia about Ay parallel axis
: moment of inertia about an axis through its center of mass

M : total mass
h : distance from a parallel axis to the center of mass.

BTW: The moment of inertia of any object about an axis through its center of
mass Is the minimum moment of inertia for an axis in that direction in space.
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Parallel Axis Theorem: Example/Sphere

For a uniform sphere of radius r, Axis

Moment of inertia for the sphere, rotating about Thmugh
an axis through its center of mass EENIEE

_ 2 2
ICM _EMro

Moment of inertia for the sphere about an ARIS
axis going through the edge of the sphere?
Apply Parallel Axis Theorem:

. 2 2 2 2 7 2 v
| =gy, + Mh=2Mr? + Mr? = L Mr;
Through an axis a distance R>>r, from the center?
Very small AI:{ i
| =1, + Mh= 2Mr? + MR’~ MR?
CM 5 0 R>>r0
So, in this case we got a s
Moment of inertia of a single particle g
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Rotational Kinetic Energy

Simple derivation: for pure rotation

Since 1= m?

therefore | K

1 2
rot_zla)

1 . . _ 1
K =§mv2 Similar to linear motion Krot=§|0)2

trans
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Total Kinetic energy

Rolling motion can be resolved into two motions
Rolling Translational Rotational

+

Total Kinetic Energy=K,, +K,,
K

1 1 2
ot = I\/Iv + = ICMa)

If there is no slipping |:> VCN| =Rw

Koot = 'WLI\/IRZQ)Z'I'”CMC‘)2 :> tot 1(MR2+ICM)CO
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/ ConcepTest 1 Dumbbell | \

A force is applied to a dumbbell A) case (a)

for a certain period of time, first B) case (b)

which case does the dumbbell . .

acquire the areater D) it depends on the rotational
. J Inertia of the dumbbell

\center-of-mass speed ? /

, m | S N m

Because the same force acts for the
same time interval in both cases, the
change in momentum must be the
same, thus the CM velocity must be
the same.




-

ConcepTest 2 Dumbbell Il \

A force is applied to a dumbbell A) case (a)
for a certain period of time, first
’ B) case (b
as in (a) and then as in (b). In Q _( D
which case does the dumbbell C) no difference

acquire the greater energy ? D) it depends on the rotational
inertia of the dumbbell /

, m | S N m

If the CM velocities are the same, the
translational kinetic energies must
be the same. Because dumbbell (b)
Is also rotating, it has rotational

Kinetic energy in addition.



Mg rele csed fow res+

Sphere rolling down  ©

an incline y

o €

Use couserv. o medl.. em% : Eiu-:E;j«“
0 o
Ei = Ko < Stor +U = gl

0((2,1(.?'808/
Ep. = Ky +Keot < UIf ')“{‘“Vc:"’oiﬁzm'w

T

/
SO, 3 MUy +jzw““:- wgH
S‘)IULQ. é(-l.&f{ }S [T ) 9{')7?;[? VCH:wP$w=%

Loyt oL T Vew T2 Z gt (tein-zo)
A sz oL o = Wg/‘f / --'“'“S'W‘R

Ve 2 Y- # Z _

o (W Fud ) = & ubess =ugh | so

[T

wh K U

&UJ:PG re ! I
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Thank you
See you on Wednesday
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Moment of Inertia

The distribution of mass matters here—these two objects have the same
mass, but the one on the left has a greater rotational inertia, as so much
of its mass is far from the axis of rotation.

objectl object2
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