
Rotational Motion Problems Solutions 

12.1. Model: A spinning skater, whose arms are outstretched, is a rigid rotating body. 
Visualize:  

 
Solve: The speed ,v rω=  where 140 cm/2 0.70 m.r = =  Also, 180 rpm (180)2 /60 rad/s 6  rad/s.π π= =  Thus, v =  
(0.70 m)(6  rad/s) 13.2 m/s.π =  
Assess: A speed of 13.2 m/s 26 mph≈  for the hands is a little high, but reasonable. 

12.7. Visualize: Please refer to Figure EX12.7. The coordinates of the three masses A B,  ,m m  and Cm  are (0 cm, 10 cm), 
(10 cm, 10 cm), and (10 cm, 0 cm), respectively. 
Solve: The coordinates of the center of mass are 

A A B B C C
cm

A B C

A A B B C C
cm

A B C

(200 g)(0 cm) (300 g)(10 cm) (100 g)(10 cm) 6.7 cm
(200 g 300 g 100 g)

(200 g)(10 cm) (300 g)(10 cm) (100 g)(0 cm) 8.3 cm
(200 g 300 g 100 g)

m x m x m xx
m m m

m y m y m yy
m m m

+ + + +
= = =

+ + + +
+ + + +

= = =
+ + + +

 

12.17. Model: The door is a slab of uniform density. 
Solve: (a) The hinges are at the edge of the door, so from Table 12.2,  

( )( )2 21 25 kg 0.91 m 6.9 kg m
3

I = =  
(b) The distance from the axis through the center of mass along the height of the door is 

0.91 m 0.15 m 0.305 m.
2

d  = − = 
 

 Using the parallel–axis theorem,  

( )( ) ( )( )2 22 2
cm

1 25 kg 0.91 m 25 kg 0.305 cm 4.1 kg m
12

I I Md= + = + =  
Assess: The moment of inertia is less for a parallel axis through a point closer to the center of mass. 

 

 

 

 



12.19. Visualize:  

 

Solve: Torque by a force is defined as sinFrτ φ=  where φ  is measured counterclockwise from the r  vector to the F


 
vector. The net torque on the pulley about the axle is the torque due to the 30 N force plus the torque due to the 20 N force: 

1 1 2 2(30 N)  sin (20 N) sin (30 N)(0.02 m) sin ( 90 ) (20 N)(0.02 m) sin (90 )
 ( 0.60 N m) (0.40 N m) 0.20 N m

r rφ φ+ = − ° + °
= − + = −

 

Assess: A negative torque causes a clockwise acceleration of the pulley. 
 
12.23. Model: The beam is a solid rigid body. 
Visualize:  

 

The steel beam experiences a torque due to the gravitational force on the construction worker ( )G C
F


 and the gravitational 

force on the beam ( )G B
.F


 The normal force exerts no torque since the net torque is calculated about the point where the beam is 

bolted into place. 
Solve: The net torque on the steel beam about point O is the sum of the torque due to ( )G C

F


 and the torque due to ( )G B
.F


 The 

gravitational force on the beam acts at the center of mass. 

G C G B
2 2

(( ) )(4.0 m)sin( 90 ) (( ) )(2.0 m)sin( 90 )
(70 kg)(9.80 m/s )(4.0 m) (500 kg)(9.80 m/s )(2.0 m) 12.5 kN m
F Fτ = − ° + − °

= − − = −
 

The negative torque means these forces would cause the beam to rotate clockwise. The magnitude of the torque is 12.5 kN m. 

12.27. Model: Two balls connected by a rigid, massless rod are a rigid body rotating about an axis through the center 
of mass. Assume that the size of the balls is small compared to 1 m. 
Visualize:  

 
We placed the origin of the coordinate system on the 1.0 kg ball. 
Solve: The center of mass and the moment of inertia are 



cm cm

2 2 2 2
about cm

(1.0 kg)(0 m) (2.0 kg)(1.0 m) 0.667 m   and   0 m
(1.0 kg 2.0 kg)

(1.0 kg)(0.667 m) (2.0 kg)(0.333 m) 0.667 kg mi i

x y

I m r

+
= = =

+

= = + =∑

 

We have f 0 rad/s,ω =  f i 5.0t t− = s, and 2
i 320 rpm 20(2  rad/60 s) rad/s,ω π π= − = − = −  so f i f i( )t tω ω α= + −  becomes 

22 20 rad/s rad/s (5.0 s) rad/s
3 15
π πα α = − + ⇒ = 

 
 

Having found I and ,α  we can now find the torque τ that will bring the balls to a halt in 5.0 s: 

2 2
about cm

2 2 4kg m  rad/s  N m 0.28 N m
3 15 45

I π πτ α   = = = =  
  

 

The magnitude of the torque is 0.28 N m, applied in the counterclockwise direction. 

12.31. Model: The rod is in rotational equilibrium, which means that net 0.τ =  

Visualize:  

 
As the gravitational force on the rod and the hanging mass pull down (the rotation of the rod is exaggerated in the figure), 
the rod touches the pin at two points. The piece of the pin at the very end pushes down on the rod; the right end of the pin 
pushes up on the rod. To understand this, hold a pen or pencil between your thumb and forefinger, with your thumb on top 
(pushing down) and your forefinger underneath (pushing up).  
Solve: Calculate the torque about the left end of the rod. The downward force exerted by the pin acts through this point, so 
it exerts no torque. To prevent rotation, the pin’s normal force pinn  exerts a positive torque (ccw about the left end) to 
balance the negative torques (cw) of the gravitational force on the mass and rod. The gravitational force on the rod acts at 
the center of mass, so 

2 2
net pin

pin

0 N m (0.40 m)(2.0 kg)(9.8 m/s ) (0.80 m)(0.50 kg)(9.8 m/s )
11.8 N m

τ τ

τ

= = − −

⇒ =
 

12.35. Solve: (a) According to Equation 12.35, the speed of the center of mass of the tire is 

( ) 2cm
cm

20 m/s 6020 m/s 66.67 rad/s 66.7  rpm 6.4 10  rpm
0.30 m 2

vv R
R

ω ω
π

 = = ⇒ = = = = = × 
 

 

(b) The speed at the top edge of the tire relative to the ground is top cm2 2(20 m/s) 40 m/s.v v= = =  

(c) The speed at the bottom edge of the tire relative to ground is bottom 0 m/s.v =  
 
12.43. Solve: (a) 0C D× =

 
 implies that D


 must also be in the same or opposite direction as the C


 vector or zero, because 

ˆ ˆ 0.i i× =  Thus ˆ,D ni=


 where n could be any real number. 
(b) ˆ6C E k× =

 
 implies that E


 must be along the ĵ  vector, because ˆˆ ˆ .i j k× =  Thus ˆ2 .E j=


 

(c) ˆ3C F j× = −
 

 implies that F


 must be along the k̂  vector, because ˆˆ ˆ.i k j× = −  Thus ˆ1 .F k=


 
 
12.49. Model: The disk is a rotating rigid body. 
Visualize: Please refer to Figure EX12.49. 
Solve: From Table 12.2, the moment of inertial of the disk about its center is 



2 2 4 21 1 (2.0 kg)(0.020 m) 4.0 10  kg m
2 2

I MR −= = = ×  

The angular velocity ω  is 600 rpm 600 2 /60 rad/s 20  rad/s.π π= × =  Thus, 4 2(4.0 10  kg m )(20  rad/s)L Iω π−= = × =  
20.025 kg m /s. If we wrap our right fingers in the direction of the disk’s rotation, our thumb will point in the  direction.x−  

Consequently, 
2 2ˆ0.025  kg m /s (0.025 kg m /s,  into page)L i= − =


 

12.55. Model: The disk is a rigid rotating body. The axis is perpendicular to the plane of the disk. 
Visualize:  

 
Solve: (a) From Table 12.2, the moment of inertia of a disk about its center is 

2 2 21 1 (2.0 kg)(0.10 m) 0.010 kg m
2 2

I MR= = =  

(b) To find the moment of inertia of the disk through the edge, we can make use of the parallel axis theorem: 
2 2 2 2

center (0.010 kg m ) (2.0 kg)(0.10 m) 0.030 kg mI I Mh= + = + =  

Assess: The larger moment of inertia about the edge means there is more inertia to rotational motion about the edge than 
about the center. 

12.63. Model: The structure is a rigid body. 
Visualize:  

 

Solve: We pick the left end of the beam as our pivot point. We don’t need to know the forces hF  and vF  because the 
pivot point passes through the line of application of hF  and vF  and therefore these forces do not exert a torque. For the 
beam to stay in equilibrium, the net torque about this point is zero. We can write 

about left end G B G W( ) (3.0 m) ( ) (4.0 m) ( sin150 )(6.0 m) 0 N mF F Tτ = − − + ° =  

Using 2
G B( ) (1450 kg)(9.8 m/s )F =  and 2

G W( ) (80 kg)(9.8 m/s ),F =  the torque equation can be solved to yield 
15,300 N.T =  The tension in the cable is slightly more than the cable rating. The worker should be worried. 

 



12.69. Model: The flywheel is a rigid body rotating about its central axis. 
Visualize:  

 
Solve: (a) The radius of the flywheel is 0.75 mR =  and its mass is 250 kg.M =  The moment of inertia about the axis 
of rotation is that of a disk: 

2 2 21 1 (250 kg)(0.75 m) 70.31 kg m
2 2

I MR= = =  

The angular acceleration is calculated as follows: 
2 2

net net / (50 N m)/(70.31 kg m ) 0.711 rad/sI Iτ α α τ= ⇒ = = =  

Using the kinematic equation for angular velocity gives 
2

1 0 1 0 1

1

( ) 1200 rpm 40  rad/s 0 rad/s 0.711 rad/s ( 0 s)
177 s

t t t
t

ω ω α π= + − = = = + −
⇒ =

 

(b) The energy stored in the flywheel is rotational kinetic energy:  

2 2 2 5
rot 1

1 1 (70.31 kg m )(40  rad/s) 5.55 10  J
2 2

K Iω π= = = ×  

The energy stored is 55.6 10  J.×  

(c) 
5

5energy delivered (5.55 10  J)/2Average power delivered 1.39 10  W 139 kW
time interval 2.0 s

×
= = = × =  

(d) Because full energy half energy,  .I I I
t t

ω ωωτ α τ
− ∆

= ⇒ = =  ∆ ∆ 
 full energy 1=  (from part (a)) 40  rad/s.ω ω π=  half energyω  can be 

obtained as: 
5

2 rot
half energy rot half energy 2

1 1 5.55 10  J 88.85 rad/s
2 2 70.31 kg m

KI K
I

ω ω ×
= ⇒ = = =  

Thus  
2 40  rad/s 88.85 rad/s(70.31 kg m ) 1.30 kN m

2.0 s
πτ − = = 

 
 

12.71. Model: Assume the string does not slip on the pulley. 
Visualize:  

 



The free-body diagrams for the two blocks and the pulley are shown. The tension in the string exerts an upward force on 
the block 2,m  but a downward force on the outer edge of the pulley. Similarly the string exerts a force on block 1m  to the 
right, but a leftward force on the outer edge of the pulley. 
Solve: (a) Newton’s second law for 1m  and 2m  is 1 1T m a=  and 2 2 2.T m g m a− =  Using the constraint 2 1 ,a a a− = + =  
we have 1T m a=  and 2 2 .T m g m a− + =  Adding these equations, we get 2 1 2( ) ,m g m m a= +  or 

2 1 2
1

1 2 1 2

m g m m ga T m a
m m m m

= ⇒ = =
+ +

 

(b) When the pulley has mass m, the tensions 1 2(  and )T T  in the upper and lower portions of the string are different. 
Newton’s second law for 1m  and the pulley are: 

1 1 1 2andT m a T R T R Iα= − = −  

We are using the minus sign with α  because the pulley accelerates clockwise. Also, .a Rα=  Thus, 1 1T m a=  and 

2 1 2

I a aIT T
R R R

− = =  

Adding these two equations gives 

2 1 2

IT a m
R

 = + 
 

 

Newton’s second law for 2m  is 2 2 2 2 2 .T m g m a m a− = = −  Using the above expression for 2,T  

2
1 2 22 2

1 2 /
I m ga m m a m g a

R m m I R
 + + = ⇒ =  + + 

 

Since 21
p2I m R=  for a disk about its center, 

2
1

1 2 p2

m ga
m m m

=
+ +

 

With this value for a we can now find 1T  and 2 :T  

( )
( )1

2 1 p221 2 2
1 1 2 1 1 p1 11

1 2 p 1 2 p2 21 2 p2

1         ( / )
2

m m m gm m g m gT m a T a m I R m m
m m m m m mm m m

+ = = = + = + = + + + ++ +  
 

Assess: For 0 kg,m =  the equations for a, 1,T  and 2T  of part (b) simplify to 

2 1 2 1 2
1 2

1 2 1 2 1 2

    and       and    m g m m g m m ga T T
m m m m m m

= = =
+ + +

 

These agree with the results of part (a). 

12.77. Model: The hoop is a rigid body rotating about an axle at the edge of the hoop. The gravitational torque on 
the hoop causes it to rotate, transforming the gravitational potential energy of the hoop’s center of mass into rotational 
kinetic energy. 
Visualize:  



 
We placed the origin of the coordinate system at the hoop’s edge on the axle. In the initial position, the center of mass is a 
distance R above the origin, but it is a distance R below the origin in the final position. 
Solve: (a) Applying the parallel-axis theorem, 2 2 2 2

edge cm 2 .I I mR mR mR mR= + = + =  Using this expression in the 

energy conservation equation f gf i giK U K U+ = +  yields: 

2 2 2 2
edge 1 1 edge 0 0 1 1

1 1 1 2      (2 ) 0 J
2 2 2

gI mgy I mgy mR mgR mgR
R

ω ω ω ω+ = + − = + ⇒ =  

(b) The speed of the lowest point on the hoop is 

1
2( )(2 ) (2 ) 8gv R R gR
R

ω= = =  

Assess: Note that the speed of the lowest point on the loop involves a distance of 2R instead of R. 

12.85. Model: The mechanical energy of both the hoop (h) and the sphere (s) is conserved. The initial gravitational 
potential energy is transformed into kinetic energy as the objects roll down the slope. The kinetic energy is a combination of 
translational and rotational kinetic energy. We also assume no slipping of the hoop or of the sphere. 
Visualize:  

 
The zero of gravitational potential energy is chosen at the bottom of the slope. 
Solve: (a) The energy conservation equation for the sphere or hoop f gf i giK U K U+ = +  is 

2 2 2 2
1 1 1 0 0 0

1 1 1 1( ) ( ) ( ) ( )
2 2 2 2

I m v mgy I m v mgyω ω+ + = + +  

For the sphere, this becomes 
2

2 21 s
1 s s2

2 2
1 s 1 s

1 2 ( ) 1 ( ) 0 J 0 J 0 J
2 5 2

7 ( ) ( ) 10 /7 10(9.8 m/s )(0.30 m)/7 2.05 m/s
10

vmR m v mgh
R

v gh v gh

  + + = + + 
 

⇒ = ⇒ = = =

 

For the hoop, this becomes 



2
2 21 h

1 h hoop2

2
1 h

hoop

1 ( ) 1( ) ( ) 0 J 0 J 0 J
2 2

( )

vmR m v mgh
R

vh
g

+ + = + +

⇒ =
 

For the hoop to have the same velocity as that of the sphere, 
2 2

1 s
hoop 2

( ) (2.05 m/s) 42.9 cm
9.8 m/s

vh
g

= = =  

The hoop should be released from a height of 43 cm. 
(b) As we see in part (a), the speed of a hoop at the bottom depends only on the starting height and not on the mass or 
radius. So the answer is No. 

12.89. Model: The toy car is a particle located at the rim of the track. The track is a cylindrical hoop rotating about its 
center, which is an axis of symmetry. No net torques are present on the track, so the angular momentum of the car and 
track is conserved. 
Visualize:  

 
Solve: The toy car’s steady speed of 0.75 m/s relative to the track means that 

c t c t0.75 m/s v 0.75 m/s,v v v− = ⇒ = +  
where tv  is the velocity of a point on the track at the same radius as the car. Conservation of angular momentum implies that  

( ) ( )
i f

2 2
c c t t c t c t0

L L

I I mr Mr m Mω ω ω ω ω ω

=

= + = + = +
 

The initial and final states refer to before and after the toy car was turned on. Table 12.2 was used for the track. Since 
c

c ,v
r

ω =  t
t ,v

r
ω =  we have 

( )

( ) ( )
( ) ( )

c t

t t

t

0
0.75 m/s 0

0.200 kg
0.75 m/s 0.75 m/s 0.125 m/s

0.200 kg 1.0 kg

mv Mv
m v Mv

Mv
m M

= +

⇒ + + =

⇒ = − = − = −
+ +

 

The minus sign indicates that the track is moving in the opposite direction of the car. The angular velocity of the track is 
( )t

t

0.125 m/s
0.417 rad/s clockwise.

0.30 m
v
r

ω = = =  
In rpm,  

( )t
rev 60 s0.417 rad/s

2 rad min
4.0 rpm

ω
π

  =   
  

=
 

Assess: The speed of the track is less than that of the car because it is more massive. 
 


