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Abstract. Conceptual-relational mappings between conceptual models
and relational schemas have been used increasingly to achieve interoper-
ability or overcome impedance mismatch in modern data-centric applica-
tions. However, both schemas and conceptual models evolve over time to
accommodate new information needs. When the conceptual model (CM)
or the schema associated with a mapping evolved, the mapping needs to
be updated to reflect the new semantics in the CM/schema. In this paper,
we propose a round-trip engineering solution which essentially synchro-
nizes models by keeping them consistent for maintaining conceptual-
relational mappings. First, we define the consistency of a conceptual-
relational mapping through “semantically compatible” instances. Next,
we carefully analyze the knowledge encoded in the standard database
design process and develop round-trip algorithms for maintaining the
consistency of conceptual-relational mappings under evolution. Finally,
we conduct a comprehensive set of experiments. The results show that
our solution is efficient and provides significant benefits in comparison
to the mapping reconstructing approach.
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1 Introduction

Modern data-centric applications increasingly rely on mappings between concep-
tual models and relational schemas, i.e., conceptual-relational mappings (a.k.a.,
object-relational mappings), to achieve interoperability [5] or to overcome the
well-known impedance mismatch problem [15]: the differences between the data
model exposed by databases and the modeling capabilities and programmability
needed by the application. Essentially, a conceptual-relational mapping specifies
a semantically consistent relationship between a conceptual model (hereafter,
CM) and a relational schema. For example, a many-to-one relationship from an
entity E; to an entity E5 in an Entity-Relationship (ER) diagram can be mapped
using some mapping formalism to a relational table that uses the identifier of
E; as the key and referring to the identifier of E5 as a foreign key [15]. The key
and foreign key constraints reflect the semantics encoded in the relationship.
However, conceptual models and schemas evolve over time to accommodate
the changes in the information they represent. Such evolution causes the existing
conceptual-relational mappings inconsistent. For example, if the database admin-
istrator (DBA) in charge of the aforementioned relational table has changed the



key of the table from the identifier of E; to the combination of the identifiers
of E; and E5 due to new requirements of the application, then the many-to-one
relationship from E; to E5 in the ER diagram is semantically inconsistent with
the new table because some instances of the table may violate the many-to-one
relationship. When conceptual models and schemas changed, the conceptual-
relational mappings between the conceptual models and schemas must be up-
dated to reflect the evolution. This process is called conceptual-relational map-
ping maintenance under evolution, or mapping maintenance for short.

A typical solution to the mapping maintenance problem is to regenerate the
conceptual-relational mapping. However, there are two major problems: first,
regenerating the mapping alone sometimes cannot solve the inconsistency prob-
lem because the semantics of the conceptual model and the schema are out of
synchronization, as shown by the previous example; second, the mapping gen-
eration process, even with the help of mapping generation tools [7,6], can be
costly in terms of human effort and expertise, especially for complex CMs and
schemas that were developed independently. Moreover, there is no guarantee
that the regenerated mappings preserve the semantics of the original mappings.
A better solution is to design algorithms that synchronize the CMs and schemas
and reuse the original mappings to (semi-)automatically update them into a set
of new mappings that are consistent with respect to the new CMs and schemas.

The process for synchronizing models by keeping them consistent is called
Round-Trip Engineering (RTE) [26, 20]. RTE offers a bi-directional exchange be-
tween two models. Changes to one model must at some point be reconciled with
the other model. In this paper, we propose a round-trip engineering approach
for maintaining the consistency of conceptual-relational mappings. Notice that
round-trip engineering is not forward engineering, e.g., generating a relational
schema from a CM, plus reverse engineering [19], e.g., generating a new CM
from an existing schema. RTE focuses on synchronization.

1.1 Motivation

To motivate our work, we first consider a number of applications and envi-
ronments in which conceptual-relational mappings are used extensively and a
solution to the mapping maintenance problem will greatly benefit to the appli-
cations.

Database Design. A typical database design process begins with the develop-
ment of a conceptual model such as an ER diagram and ends up with a logical
database schema manipulated by a commercial database management system.
Although the process of generating a logical schema from a CM is mostly au-
tomated, the translation mappings between CMs and logical schemas are not
kept in automated tools, and the CMs and logical schemas may evolve indepen-
dently causing the “legacy data” problem. Saving the mappings between CMs
and logical schemas implied by the database design process and maintaining the
mappings when CMs and schemas evolve will help reduce the “legacy data”.
Data-Centric Applications. To increase the productivity of the developers

of these applications, there are a number of middleware mapping technologies
such as Hibernate [10], DB Visual Architect [1], Oracle TopLink [2], and Mi-



crosoft ADO.NET [4]. They provide an ease-to-use environment for generating
conceptual-relational mappings. In these middleware mapping tools, when the
object/conceptual models and the database schemas change, a solution is needed
for maintaining the conceptual-relational mappings.

Data Integration. In data integration, a set of heterogeneous data sources are
queried and accessed through a unified global and virtual view [22]. There are
many ontology-based data integration applications [12,23] which use ontologies
as their global views. For these applications, the mappings between ontologies
and local data sources are the main vehicle for data integration. Early studies
have been focused on integration architectures [22], query answering capabili-
ties [3], and global view integration [27]. What has been missing is a solution
to maintaining the mappings between ontologies and local data sources when
ontologies and database schemas evolve.

The Semantic Web. On the Semantic Web [28], data is annotated with on-
tologies having precise semantics. For the “deep web” where data is stored in
backend databases, the semantic annotation of the data is achieved through the
mappings between web ontologies and schemas of backend databases. However,
maintaining mappings on the semantic web has not yet been considered.

Although mapping maintenance is important and necessary for many applica-
tions, solutions to the problem are rare. This is due to many challenges involved,
including: how to define consistency of mapping and detect inconsistency of a
mapping; what is a right mapping language; how to capture changes to CMs and
database schemas; how to devise a plan for reconciling the CMs and schemas
according to the intent and expectation of the user; and what are the principles
for systematic reconciliation. In this paper, we address these challenges and offer
a systematic study and comprehensive evaluation of how round-trip engineering
can be applied to solve the mapping maintenance problem.

The rest of the paper presents our principled approach. In summary, We
propose a declarative mapping formalism and define the consistency through
“compatible” instances. Subsequently, we explore a novel approach of using cor-
respondences for capturing changes and develop a novel round-trip engineering
approach for mapping maintenance. We demonstrate the effectiveness and effi-
ciency of our algorithm by conducting a comprehensive set of experiments.

The remaining content is organized as follows. Section 2 summarized studies
on schema mapping adaptation, schema evolution for object-oriented databases,
and other related work. Section 3 presents the formal notation used in later
sections. Section 4 introduces our formalism for conceptual-relational mappings.
Section 5 characterizes schema and CM evolution. Section 6 describes a solu-
tion to the problem of mapping maintenance. Section 7 presents our evaluation
results. Finally, Section 8 concludes this paper.

2 Related Work

The directly related work is the study on schema mapping adaptation [29, 30].
The goal of schema mapping adaptation is to automatically update a schema
mapping by reusing the semantics of the original mapping when the associ-
ated schemas change. Yu & Popa [30] explore the schema mapping composition



approach. Schema evolutions are captured by formal and accurate schema map-
pings, and schema adaptation is achieved by composing the evolution mapping
with the original mapping. On the other hand, the schema change approach in
[29] proposed by Velegrakis et al. incrementally changes mappings each time a
primitive change occurs in the source or target schemas. Both solutions focus
on reusing the semantics encoded in existing mappings for merely adapting the
mappings without considering the synchronization between schemas. This is due
to the nature of their problems where schema mappings are primarily used for
data exchange [16], i.e., translating a data instance under a source schema to
a data instance under a target schema. If a schema mapping connecting two
schemas which are semantically inconsistent, then the data exchange process
simply does not always produce a target instance. Our approach is different
from these solutions in that we aim to maintain the semantic consistency of
conceptual-relational mappings through model synchronzation.

Other related work is schema evolution [25]. In object-oriented databases
(OODB), the problem of schema evolution is to maintain the consistency of an
OODB when its schema is modified. The challenges are to update the database
efficiently and minimize information loss. A variety of solutions, e.g., [9,13,18]
have been proposed in the literature. Our problem is different from the schema
evolution problem in OODB in that we are concerned with the semantic consis-
tency between a schema and a CM. In AutoMed [11,17], schema evolution and
integration are combined in one unified framework. Source schemas are inte-
grated into a global schema by applying a sequence of primitive transformations
to them. The same set of primitive transformations can be used to specify the
evolution of a source schema into a new schema. In our approach, we do not
ask users to specify a sequence of transformations. The EVE [21] investigates
the view synchronization problem, which supports a limited set of changes. The
work in [14] describes techniques for maintaining mapping in XML p2p databases
which is different from our problem.

Another mapping maintenance problem studied in [24] mainly focuses on de-
tecting inconsistency of simple correspondences between schema elements when
schemas evolve. This problem is complementary to the problem we consider here.

3 Formal Preliminaries

A table or relation in a relational database consists of a set of tuples. The schema
for a table specifies the name of the table, the name of each column (or attribute
or field), and the type of each column. Furthermore, we can specify integrity
constraints, which are conditions that the tuples in tables must satisfy. Here, we
consider the key and foreign key (abbreviated as f.k. henceforth) constraints. A
key in a table is a subset of the columns of the table that uniquely identifies a
tuple. A fk. in a table T' is a set of columns F' that references the key of another
table T and imposes a constraint that the projection of T' on F is a subset of
the projection of T on the key of T”. A relational schema thus consists of a
set of relational schemes (or tables for short). Formally, we use R=(R, X'r) to
denote a relational schema R with a set of tables R and a set Xi of key and f.k.
constraints.



A conceptual model (CM) describes a subject matter in terms of concepts,
relationships, and attributes. In this paper, we do not restrict ourselves to any
particular language for describing CMs. Instead, we use a generic conceptual
modeling language (CML), which has the following specifications. The language
allows the representation of classes/concepts/entities (unary predicates over in-
dividuals), object properties/ relationships (binary predicates relating individu-
als), and datatype properties/ attributes (binary predicates relating individuals
with values such as integers and strings); attributes are single valued in this
paper. Concepts are organized in the familiar ISA hierarchy. Relationships and
their inverses (which are always present) are subject to cardinality constraints,
which allow 1 as lower bounds (called total relationships) and 1 as upper bounds
(called functional relationships). In addition, a subset of attributes of a concept
is specified as the identifier of the concept. As in the Entity-Relationship model,
a strong entity has a global identifier, while a weak entity is identified by an
identifying relationship plus a local identifier. We use C=(C, X¢) to denote a
CM C with a set C' of concepts, attributes, and relationships and a set Y of
identification and cardinality constraints.

We represent a given CM as a graph called an CM graph. We construct
the CM graph from a CM by considering concepts and attributes as nodes and
relationships as edges. There are also edges between a concept node and the
attribute nodes belonging to the concept. A many-to-many relationship p be-
tween concepts C7 and Cy will be written in text as -——p——- . For a
functional relationship q — ones with upper bound cardinality of 1, from C; to
Cy, we write -——q->-- . We will treat an ISA relationship as functional
in both directions.

4 Conceptual-Relational Mappings

A conceptual-relational mapping specifies a relationship between a CM and a
relational schema. More specifically, a mapping consists of a set of statements
each of which relates a query expression ¢(X,Y) in a language £, over the CM
with a query expression ¥ (X, Z) in a language Lo over the relational schema,
where the shared variables X give rise to the query results. In this paper, we
consider conjunctive formulas over concepts, attributes, and relationships in a
CM and conjunctive formulas over relational tables which can be translated into
equivalent select, join, and project (SJP) query expressions over a relational
schema. Queries are evaluated as the usual way.

In the sequel, we will use the terms “mapping” and “mapping statement”
interchangeably when the context is clear. Generally, we represent a conceptual-
relational mapping (or mapping statement) between a CM and a relational
schema as an expression ¢(X,Y) = ¥(X, Z), where ¢(X,Y) and ¥(X, Z) are
conjunctive formulas. The following example illustrates the mapping formalism
using a gene expression database and a conceptual model.

Example 1 A gene expression database contains a biosample table to record in-
formation about a biological sample which can be a tissue, cell, or RNA material
that originates from a donor of a given species:

biosample(sample_ID, species, organ, pathology,..., donor_ID),



where the underlined column sample_ID is the key of the table and donor_ID is a
foreign key to a table called donor.
Figure 1 shows a mapping

between the biosample table Biosample Person
and a CM containing two con- SID:key PIR key

. i donati
cepts Biosample and Person, zf:;:]eit‘s\ o onaen 4 g ;yg:): S
and a relationship donation. pathology 4—\-?—‘-\'\~\~-~\ gender \\
The CM is described in the diagnosis ‘1 ‘,\\ T~ [autopsy N\
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UML notation. The dashed ar- biosample(sample_|ID, speciés, organ, pathology,..., donor_l\b)
rows indicate the correspon- Fig. 1: A Conceptual-Relational Mapping

dences between columns of the relational table and attributes of concepts in the
CM. We represent the conceptual-relational mapping between the relational ta-
ble and the CM as the following expression:
Biosample(z1)ASID(z1, sample_ID)A species(z1, species)A ...A Person(z2)A
donation(x1, x2)A PID(z2, donor_ID)
= biosample(sample_ID, species, ..., donor_ID),

where the predicates Biosample and Person represent the concepts in the CM,
the predicates SID, species,..., represent the attributes of the concepts and the
relationship, and the shared variables sample_I D, species,..., give rise to query
results on both sides. B
Consistent Conceptual-Relational Mappings. We define a consistent con-
ceptual -relational mapping between a CM and a relational schema in terms of
legal instances of the CM and the relational schema. For a CM C= (C, X¢), a
legal instance I is an instance of C' which satisfies the constraints XY'c. We use 7
to denote the set of all legal instances of C, i.e., Z={I | I is an instance of C' and
I = Y¢}. Likewise, for a relational schema R=(R, X'r), we use J to denote the
set of all legal instances of R, i.e., J={J | J is an instance of R and J |= Xp}.

For a query expression &(X,Y) over C, we use I? to denote the query results
over the instance 1. We use J¥ to denote the query results of the query expression
U(X,Z) over the instance J of R. We say that a pair of legal instances (I, J)
satisfies a mapping statement M:®(X,Y) = ¥(X, Z) between C and R, if and
only if I?=J%, denoted as (I,.J) = M.

Definition 1 (Consistent Conceptual-Relational Mapping). For a CM
C=(C, X¢) and a relational schema R=(R, X'r), a mapping M :2(X,Y) =¥ (X, Z)
between C and R is consistent if and only if for every legal instance I € I, there
is a legal instance J € J such that (I,J) &= M, and for every legal instance
J' e J, there is a legel instance I' € T such that (I',J') = M.

Essentially, the consistency of a mapping dictates the “compatibility” of the
constraints in the CM and the schema.

5 Changes to Schemas and CMs

Changes to conceptual models and relational schemas can be classified along
two orthogonal axes. First, on the action axis, changes can be classified into (1)
adding/deleting elements; (2) merging/splitting elements; (3) moving/copying
elements; (4) renaming elements; and (5) modifying constraints. Second, on



the effect axis, for a conceptual-relational mapping, changes can be classified
into (i) changes that cause modifications on the conceptual-relational mapping;
(ii) changes that cause modifications on the related schema (or CM); and (iii)
changes that cause modifications on both the mapping and the related schema

(or CM).

A user can change a schema
(OI‘ CM) in different ways: ei- R1: biosample(bsid, spgcies, organ, ..., donor_disease)
ther through modifying the orig- /,’ /,’ Vit \\
. 7
inal schema (or CM) or by S 2 /7 A

. R2: biosample(bww, donor_disease)

generating a new schema (or
CM) directly. It is difficult to Fig. 2: Capturing Changes to a Schema

ask the user to provide a sequence of primitive actions for capturing the changes.
It is probably easier to ask the user to draw a set of simple correspondences be-
tween the elements in the new schema (or CM) and the elements in the original
schema (or CM). In this paper, we use a set of correspondences between columns
in schemas (or attributes in CMs) to capture the commonality/differences be-
tween the new schema (or CM) and the original schema (or CM).

Example 2 Figure 2 shows on the top an original schema R; consisting of a
single table biosample. On the bottom is a new schema R, containing two tables
biosample and tissue. Ry evolved from R;. The dashed lines between columns
in Ry and the columns in Ro capture the commonality/differences between the
original schema and the new schema. The open arrow indicates that the column
tissue.bsid is a foreign key referring the key biosample.bsid. |

6 Round-Trip Engineering for Conceptual-Relational Mappings

We now develop a round-trip engineering solution for maintaining conceptual-
relational mappings under evolution. The primary goal of the maintenance is
to keep the mapping consistent by synchronizing the schema and the CM. To
fulfill the goal, the algorithm must understand the existing semantics in the
original mapping and carry out necessary updates based on sound principles. We
begin with the exploration on the knowledge encoded in the forward engineering
process.

Knowledge about the Conceptual-Relational Mappings in Standard
Database Design Process. In relational database design, a standard technique
(we refer to this as er2rel schema design) which is widely covered in undergradu-
ate database courses [15] derives a relational schema from an Entity-Relationship
diagram. The er2rel design implies a set of conceptual-relational mappings in the
form ¢(X,Y)=T(X), where &(X,Y) is a conjunctive formula encoding a tree
structure called semantic tree (or s-tree) [8] in a CM, and T'(X) is a relational
table with columns X. Such a conceptual-relational mapping is also used in the
middleware mapping technologies.

We choose to design our solution for mapping maintenance in a systematic
manner by considering the behavior of our algorithm on the conceptual-relational
mappings implied by the er2rel design. In our previous work [8], we have care-
fully analyzed the knowledge encoded in the er2rel design. We summarize the
knowledge related to our study in this paper as follows.



1. The er2rel design associates a relational table with a tree structure called
semantic tree (s-tree) in a CM.

2. An s-tree can be decomposed into several subtrees called skeleton trees: a
skeleton tree corresponding to the key of the table, skeleton trees correspond-
ing to f.k.s of the table, and skeleton trees corresponding to the rest of the
columns of the table.

3. Each skeleton tree has an anchor which is the root of the skeleton tree. An
anchor also corresponds to the central object for deriving a table.

4. To satisfy the semantics of the key in a table, the s-tree is connected by
functional paths from the anchor of the key skeleton tree to the anchors of
f.k. skeleton trees and other skeleton trees.

Example 3 In Figure 1, the mapping associates the biosample table with the

s-tree ---donation-->- . The s-tree is decomposed into
two skeleton trees: with anchor Biosample for the key sample_ID of

the table and with anchor Person for the foreign key donor_ID. (Skeleton
trees for weak entities are more complex; see Example 5). The two anchors are
connected by a functional edge ——-donation->--. |
Sketch of the Maintenance Algorithm. We first outline the algorithm for
maintaining mappings which are in the form of &(X,Y)=T(X). We develop the
complete algorithm later. Given a relational schema R, a CM C, a set of existing
consistent conceptual-relational mappings M={®(X,Y)=T(X)} between R and
C, a new schema R’ (or CM ('), and a set of correspondences M’ between R
and R’ (or between C and C’), the algorithm works in several steps for fulfilling
the goals of mapping maintenance:

1. Analyze the existing semantics in the original mapping in terms of skeleton
trees and connections between anchors of skeleton trees.

2. Discover changes through the correspondences between the new schema/CM
and the original schema/CM.

3. Synchronize the associated CM /schema and adapt the mapping accordingly.

Illustrative Examples. Before fleshing out the above steps, we illustrate the
algorithms using several examples on schema evolution. Through these examples,
we lay out our principles for mapping maintenance.

Example 4 [Adding a Column] Figure 3 (a) shows a mapping which is spec-
ified as following statement:

Sample(x1) A sid(z1, sid) A Person(xs) A originates(z1, x2) A pid(xe, donor)

= sample(sid, donor).

Figure 3 (b) shows that a column species was added to the table sample(sid, donor).
For adding an element in the schema, our goal of mapping maintenance is to
add a corresponding element in the CM to mazximize the coverage of the schema
elements. Since the key column sid corresponds to the identifier attribute of the
Sample class and the column donor is a foreign key referring to the key of a
table donor(did) for the Person class, we synchronize the CM through adding
an attribute species to the Sample class which is the anchor of the skeleton tree
corresponding to the key sid. |



The first principle for the mapping maintenance for schema evolution is to use
the key and foreign key information in the original and new schemas through
the correspondences to locate the appropriate elements in the CM for adding
new attributes.

Example 5 Let us consider

@ Samgle N 1 Eerson the case for addmg a foreign
S kY Iorigiates LRI KeY key column. Figure 4 shows
sa,;pﬁfgidg:m) an original mapping enclosed
<ol Serson whithin the rectangle:
®) S;Elfz;y io,iginatei pjd: key M:Test(z1) A tid(wy,test) A
SampE@d%:,r) Sample(zz) A sid(z2, sid) A
N

screenedIn(xy, z2) A Person(z3)
A originates(za, x3) A pid(zs,
donor) = sample(sid, test, donor).

sample(siﬁ,species,dﬁnor)

Fig.3: Adding a Column to Schema

In the CM, Sample is modeled

as a weak entity with an iden- Disease_Stage
tifying functional relationship dsid: key
screenedIn connecting to the ey

1 i M: [Test ] . [Sample |, \ [ Person |
owner entity Test. Accordingly, oy ;reenedm i ey 1 originate];\ pid: key
the key of the table *~~\7/’! -7
sam ple(5|d ,test,donor) sample(iid’tEEt,doQSrT‘diseasg(d"sid
. A . P A=
is the combination of columns sample(sid.1e& diseggw

sid and test with test being a
foreign key referring to a ta-
ble test(tid) for the Test class (not showing in the figure.) On the bottom of Figure
4, the table sample(sid, test, donor) was changed to sample(sid,test,disease,donor)
with the column disease being a foreign key referring to the key of the table
disease(dsid) (shown as the open arrow.) To update the mapping between the
new sample table and the CM, we analyze the key and foreign key structure
of the table and recognize that Sample class is the anchor of the skeleton tree
-<--screenln--- for the key. The newly added foreign key
disease should indicate that there is a functional relationship from the Sample
class to the Disease_Stage class rather than a functional relationship from the
Test class to the Disease_Stage class. Therefore, we add/discover a functional
relationship disease in the original CM and update the mapping between the
sample(sid, test, disease, donor) and the new CM. [ |

Our second principle is to use key and foreign key structure in the schemas
through the correspondences to locate the anchors of the appropriate skeleton
trees for discovering/adding relationships.

Fig. 4: Adding a Foreign Key Column to Schema

Example 6 [Changing Constraints] The following existing mapping asso-
ciates a relational table treat(tid, sgid) with a CM ---appliesTo---

Sample_Group |:

Treatment(x1) A tid(zq, tid) A Sample_Group(z2) A appliesTo(z1, x2) A sgid(xs,
sgid) = treat(tid, sgid), where the relationship appliesTo is many-to-many.



Later, the database administrator obtained a better understanding of the
application by realizing that each treatment only applies to one sample group.
Consequently, the DBA changed the key of the treat table from the combina-
tion of columns tid and sgid to the single column tid. Having the change on the
schema, we update the appliesTo from a many-to-many relationship to a func-

tional relationship -——appliesTo->-- | Sample_Group | to keep the

mapping consistent. |

The third principle is to align the key and foreign key constraints in the (new)

schema with the cardinality constraints in the (new) CM.
Maintenance Algorithm. In this paper, the maintenance algorithm requires
that each original conceptual-relational mapping statement &(X,Y)=T(X) is
consistent and associates a relational table T'(X) with a semantic tree $(X,Y)
in a CM. For a general consistent conceptual-relational mapping associating a
graph with a conjunctive formulas over a schema, we can first convert the graph
into a tree by replicating nodes (see [5]). Then we either decompose the map-
ping into mappings between semantic trees and single tables or treat the entire
conjunctive formula over the schema as a big table. The details for converting
general mappings into mappings between semantic trees and tables are beyond
the scope of this paper and will be realized in the future work.

The maintenance algorithm has two components. The first component deals
with changes to schemas, and the second component deal with changes to CMs.
We first focus on schema changes. The following Procedure 1 maintains the con-
sistency of conceptual-relational mappings when schemas evolve.

Procedure 1 Maintain Mappings When Schemas Evolve

Input: A set of consistent conceptual-relational mappings M={P(X,Y)=T(X)} be-
tween a CM C and a relational schema R; a set of correspondences M’ between columns
in R and columns in a new schema R’

Ouput: Synchronized CM C” and a updated set of mappings M" between C” and R’.
Steps:

1. Mark skeleton trees: for each mapping statement in M, decompose the semantic
tree in the CM into several skeleton trees based on the key and foreign key struc-
tures of the table; mark the associations between keys/f.k.s and skeleton trees.

2. Apply the principles we have laid out above to each of the following cases for
synchronizing the CM and update the mapping (we ignore the renaming change
in our algorithm):

— Case 1: A new table evolved from a single table by adding columns, deleting
columns, or changing constraints.

— Case 2: A new table evolved from several tables by adding columns, deleting
columns, or changing constraints.

— Case 3: Several tables evolved from a single table by adding columns, deleting
columns, or changing constraints.

We now elaborate on each case.

Case 1: If a new table evolved from a single table, then columns which are
not foreign key have been changed or a foreign key has been deleted. If a new
column is added, then add a new attribute to the anchor of the key skeleton tree
(see Example 4). If the column becomes part of the key, then the new attribute



becomes part of the identifier of the anchor. If a column is deleted, we only
update the mapping by removing the reference to the deleted column in the
mapping. If the key constraint has been changed, then synchronize the identifier
of the anchor of the key skeleton tree accordingly.

Case 2: If a new table T evolved from several tables {T}, Tb, ..., T, }, then we
connect the semantic trees corresponding to the original tables {11, T, ..., T}
into a larger semantic tree as follows. Suppose the key of the table T' come from
the key of table T;. Let the skeleton trees {Si, Sa, ..., Su} correspond to the
keys of {T1, Ts, ..., T,,}. Connect the anchor of S; to the anchors of {Ss, ...,
Sy} by functional edges. The new table is mapped to the larger tree. Example
5 illustrates the case where a new table sample(sid, test, disease, donor) evolved
from two original tables sample(sid, test,donor) and disease(dsid,diagnosis). The
new table is mapped to a larger semantic tree by connecting the two anchors

Sample and Disease_Stage using a functional edge ---disease-->-.
Case 3: Several tables {17,
Ts, ..., T, } evolved from a sin- Biosample Tiaste
gle tab.Ie T. Wlthout.losm.g Sioes‘jn;ple_llle: key biosample. 1D: key
generality, suppose T inherit AN QIS—A donor_disease
the key of T. We create new R R
. N n rd
concepts {Cy, ..., Cp,} in the \:\\ \[_ Biosample -
. . /
CM for the new tables {T% S\ [biosample_ID: key 4
X ’ N species V
oy T}, respectively. Let C; forgan ¢
donor_disease
be the anchor of the skeleton -

tree corresponding to the key
Of j‘z FOI' two tables Tz and R biosample(baid, speci;s, orge;n ..... donor_cﬂsease)

. . . s / / S
T}, if there is a foreign key / 7 N

constraint from the column T;.f R, biosample(bETW, donor,\di\sease)
to the key of T}, then we con-
nect C; to C; by a functional
edge in the CM. If the column T;.f is also the key of the table T;, then we connect

C; to C; by an ISA relationship.

Example 7 [Adding New Tables| In Figure 5, a new schema R4 containing
two tables biosample and tissue evolved from the original schema R, with a single
table biosample. The original mapping associates R1 with the concept Biosample.
On the top of the figure is a new CM, where a new concept Tissue is added and
connected to Biosample by an ISA relationship according to the fk. constraint
between the keys of tissue and biosample tables in the new schema Rs. |

We now turn to the procedure dealing with changes to CMs. Intuitively, syn-
chronizing schemas when associated CMs change is more costly than synchro-
nizing CMs when schemas change because synchronizing schema often results
in data translation. Two strategies can be considered for maintaining mappings
when CMs change. The first strategy is to design a procedure in the similar
fashion as for the Procedure 1. The second is to adapt mappings to maintain
consistency without automatic synchronization. We take the second approach
in this paper and leave the first approach in the future work. The following
Procedure 2 updates conceptual-relational mappings when the CMs evolve.

Fig. 5: New Tissue Concept for New tissue Table



Procedure 2 Maintain Mappings When CM Evolve

Input: A set of consistent conceptual-relational mappings M={®(X,Y)=T(X)} be-
tween a CM C and a relational schema R; a set of correspondences M’ between at-
tributes in C and attributes in a new CM C’

Ouput: Update M to a new set of mappings M"” between R and C’.

Steps:

1. Mark skeleton trees: the same as in the first step of Procedure 1.
2. For a mapping statement in M associating a semantic tree S with a table T’

(a) If the skeleton tree corresponding to the key of 7" has changed such that iden-
tifier attributes of the anchor were added/deleted or a cardinality constraint
in the skeleton tree has changed from one to many, then drop the mapping.
/*changes to the identifier information of either a strong or a weak entity will
result in inconsistent mapping to the original table.*/

(b) Else if a cardinality constraint imposed on a relationship p in S has changed
from many to one or from one to many, then remove from S the relationship
edge p and the rest part connecting to the anchor through p. Update the
mapping so that 7" is mapped to the new smaller tree.

(c) Else compose the correspondences M’ with the original mapping M to generate
a new mapping M" between R and C’. /*see [30] for composition algorithm.*/

The following states the desired property of the maintenance algorithm con-
sisting of the steps in Procedure 1 and Procedure 2.

Proposition 1. Let M={®(X,Y)=T(X)} be a set of consistent conceptual-
relational mappings between a CM C and a relational schema R. Let R’ (or
C') be a new schema (or a new CM) that evolved from R (orC). Let M’ be a set
of identity mappings between columns in R and columns in R’ (or attributes in C
and attributes in C'.) Each mapping in the set of conceptual-relational mappings
returned by the Procedure 1 (or Procedure 2) is consistent.

7 Experience

To evaluate the performance of our round-trip solution for maintaining conceptual-
relational mappings, we applied the algorithm to a set of conceptual-relational
mappings drawn from a variety of domains. The purpose of our evaluation is
two-folds: (1) to test the efficiency of the algorithm and (2) to measure the
benefits of mapping maintenance over reconstructing consistent mappings using
mapping discovery tools.

Data Sets. We selected our test data from a variety of domains. Our previ-
ous work [8] on the development of the MAONTO mapping tools generated
conceptual-relational mappings for many of the test data. Subsequently, our
other previous work [5] used the conceptual-relational mappings for improving
traditional tools on constructing direct mappings between database schemas. It
follows naturally to continue on this set of data for measuring the benefits of
mapping maintenance. Table 1 summarizes the characteristics of the test data.
The size of a mapping is measured by the size of the semantic tree - the number
of nodes including attribute nodes.

Methodology. Our experiments focused on maintaing the consistency of tested
mappings under schema evolution. For each mapping, we applied different types



Schema |#Tables|Avg. # Cols CM #Nodes Avg.
Per Table in CM |Mapping Size

DBLP 22 9 Bibliographic 75 9
Mondial 28 6 Factbook 52 7
Amalgam 15 12 Amalgam ER 26 10

3Sdb 9 14 3Sdb ER 9 6
CS Dept. 8 6 KA onto. 105 7

Hotel 6 5 Hotel Onto. 7 7
Network 18 4 Network onto. 28 6

Table 1: Characteristics of Test Data

of changes to the relational table. For each type of change, we ran the mainte-
nance algorithm for measuring (1) execution time and (2) benefits in comparison
to the mapping reconstructing approach. The types of changes to a table include:
(a) adding/deleting ordinary columns; (b)adding/deleting key columns; (¢) split-
ing a table; (d) merging two tables; (e) add/deleting f.k. columns; (f) moving
columns from one table to another table; and (g) changing existing key and f.k.
constraints.

To measure the benefits of mapping maintenance, we adopt the approach
for measuring how much user effort can be saved when schemas evolved and
a new consistent mapping has to be established. Both Velegrakis et al. in [29]
and Yu & Popa in [30] applied the similar approach for measuring the benefits
of mapping adaptation. Essentially, the user effort for obtaining a consistent
mapping through mapping maintenance after the schema evolved is compared
to the same type of user effort spent for reconstructing the mapping. In our
study, we compared the mapping maintenance approach with the MAPONTO
[8] tool for discovering mappings.

For a mapping ®(X,Y)=T(X) associating a semmantic tree with a relational
table, let 7" be the new table that evolved from T. For mapping maintenance,
the user specifies a set of simple correspondence bewteen 77 and 7. Then the
maintenance algorithm generates a new mapping between T” and, probably, an
updated semantic tree. On the other hand, to reconstruct a mapping using the
MAPONTO tool, the user also needs to specify a set of correspondences be-
tween T and the CM. However, MAPONTO tool may be unable to generated
the expected mappings because the CM is out of synchronization. If the expected
mapping is generated by the maintenance algorithm while it is missing from the
results of MAPONTO, then we assign 100% to the benefit of maintenance. Oth-

erwise, we use the following quantity to measure the benefit:
1— #Mappingmaintenace
. #mapppingmaponToO+F#correspondences )
Because specifying correspondences between a schema and CM is much more

costly than specifying correspondences between an evolved schema and the orig-
inal schama, we omit the effort for specifying evolution correspondences from
the above quantity.
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Fig. 6: Benefits of Mapping Maintenance

Results. First of all, the times used by the maintenance algorithm for synchro-
nizing CMs and updating mappings are insignificant. For all the tested mappings,
the maintenance algorithm took less than one second to generate expected re-
sults. This is comparable with the MAPONTO tool for discovering mappings
between schemas and CMs. Next, in terms of benefits, Figure 6 presents the av-
erage benefits for the tested cases. The results show that the round-trip engineer-
ing solution provides significant benefits in terms of maintaining the consistency
of conceptual-relational mappings under evolution.

8 Conclusions

In this paper, we studied the problem of maintaining the consistency of conceptual-
relational mappings with evolving schemas and CMs. We motivated the need
for synchronizing the CM and relational schema associated by a conceptual-
relational mapping. We presented a novel round-trip engineering framework and
developed algorithms that automatically maintain conceptual-relational map-
pings as schemas/CMs evolve. Our solution is unique in that we carefully compile
the knowledge encoded in the widely covered methodology for database design
into our approach. Experimental analysis showed that the solution is efficient
and provides significant benefits for maintaining conceptual-relational mappings
in dynamic environments.
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