EXERCISE 6A

Add:

1. 8ab, -5ab, 3ab, -ab
2. $7 x,-3 x, 5 x,-x,-3 x$
3. $3 a-3 b+4 c, 2 a+3 b-8 c, a-6 b+c$
4. $5 x-8 y+2 z, 3 z-4 y-2 x, 6 y-z-x$ and $3 x-2 z-3 y$
5. 6ax-2by+3cz, 6by-11ax-cz and 10cz-2ax-3by
6. $2 x^{3}-9 x^{2}+8,3 x^{2}-6 x-5,7 x^{3}-10 x+1$ and $3+2 x-5 x^{2}-4 x^{3}$
7. $6 p+4 q-r+3,2 r-5 p-6,11 q-7 p+2 r-1$ and $2 q-3 r+4$
8. $4 x^{2}-7 x y+4 y^{2}-3,5+6 y^{2}-8 x y+x^{2}$ and $6-2 x y+2 x^{2}-5 y^{2}$ Solution:
9. Given 8ab, -5ab, 3ab, -ab

To add the given expression we have arrange them column wise is given below:
8 ab
$-5 \mathrm{ab}$
3 ab

-ab	
$5 \quad \mathrm{ab}$	

2. Given $7 x,-3 x, 5 x,-x,-2 x$

To add the given expression we have arrange them column wise is given below:

$7 x$
$-3 x$
$5 x$
$-x$
$-2 x$
$6 x$

3. Given $3 a-3 b+4 c, 2 a+3 b-8 c, a-6 b+c$

To add the given expression we have arrange them column wise is given below:
$3 a-3 b+4 c$
$2 a+3 b-8 c$
$a-6 b+c$
6a-6b-3c
4. Given $5 x-8 y+2 z, 3 z-4 y-2 x, 6 y-z-x$ and $3 x-2 z-3 y$

To add the given expression we have arrange them column wise is given below:

$$
5 x-8 y+2 z
$$

$-2 x-4 y+3 z$
$-x+6 y-z$

$3 x-3 y-2 z$
$5 x-9 y+2 z$

5. Given $6 a x-2 b y+3 c z, 6 b y-11 a x-c z$ and $10 c z-2 a x-3 b y$

To add the given expression we have arrange them column wise is given below:
$6 a x-2 b y+3 c z$
$-11 a x+6 b y-c z$
$-2 a x-3 b y+10 c z$
$-7 a x+b y+12 c z$
6. Given $2 x^{3}-9 x^{2}+8,3 x^{2}-6 x-5,7 x^{3}-10 x+1$ and $3+2 x-5 x^{2}-4 x^{3}$

To add the given expression we have arrange them column wise is given below:
$2 x^{3}-9 x^{2}+8$
$7 x^{3}-10 x+1$
$3 x^{2}-6 x-5$

$-4 x^{3}-5 x^{2}+2 x+3$

7. Given $6 p+4 q-r+3,2 r-5 p-6,11 q-7 p+2 r-1$ and $2 q-3 r+4$

To add the given expression we have arrange them column wise is given below:

$$
6 p+4 q-r+3
$$

$-7 p+11 q+2 r-1$
$-5 p+2 r-6$
$2 q-3 r+4$
8. Given $4 x^{2}-7 x y+4 y^{2}-3,5+6 y^{2}-8 x y+x^{2}$ and $6-2 x y+2 x^{2}-5 y^{2}$

To add the given expression we have arrange them column wise is given below:

$$
4 x^{2}-7 x y+4 y^{2}-3
$$

$$
x^{2}-8 x y+6 y^{2}+5
$$

$2 x^{2}-2 x y-5 y^{2}+6$
$7 x^{2}+5 y^{2}-17 x y+8$

Subtract:

9. $3 a^{2} b$ from $-5 a^{2} b$

10. -8pq from 6pq
11.-2abc from -8abc
12.-16p from -11p
11. 2a-5b+2c-9 from 3a-4b-c+6

Solution:

9. Given $3 a^{2} b$ from $-5 a^{2} b$

According to the rules of subtraction of algebraic equations, we have both expressions with negative sign so we have to add the expressions.

Now arrange the variables in rows and columns we get

$$
-5 a^{2} b
$$

$3 a^{2} b$
$-8 a^{2} b$
And we have to keep big numerical sign
10. Given -8pq from $6 p q$

According to the rules of subtraction of algebraic equations, we have negative sign will becomes positive and so we have to keep the big numerical sign.
Now arrange the variables in rows and columns we get
6pq
-8pq
$+$
+14 pq
11. Given -2abc from -8abc

According to the rules of subtraction of algebraic equations, we have negative sign will becomes positive and so we have to keep the big numerical sign.
Now arrange the variables in rows and columns we get
$-8 a b c-(-2 a b c)=-8 a b c+2 a b c=+6 a b c$
-8abc
-2abc
$+$
+6 abc
12. Given -16p from -11p

According to the rules of subtraction of algebraic equations, we have negative sign will becomes positive and so we have to keep the big numerical sign.
Now arrange the variables in rows and columns we get
$-11 p-(-16 p)=-11 p+16 p=+5 p$
-16p
-11p
$+$
$+5 p$
13. Given $2 a-5 b+2 c-9$ from $3 a-4 b-c+6$

According to the rules of subtraction of algebraic equations, we have negative sign will becomes
positive and so we have to keep the big numerical sign.
Now arrange the variables in rows and columns we get
3a-4b-c+6
2a-5b+2c-9

$-\quad+-\quad+$
$+a+b-3 c+15$

Find each of the following products:

1. $(5 x+7) \times(3 x+4)$
2. $(4 x+9) \times(x-6)$
3. $(2 x+5) \times(4 x-3)$
4. $(3 y-8) \times(5 y-1)$
5. $(7 x+2 y) \times(x+4 y)$
6. $(9 x+5 y) \times(4 x+3 y)$
7. $(3 m-4 n) \times(2 m-3 n)$
8. $\left(x^{2}-a^{2}\right) \times(x-a)$
9. $\left(x^{2}-y^{2}\right) \times(x+2 y)$
10. $\left(3 p^{2}+q^{2}\right) \times\left(x^{2}-y^{2}\right)$
11. $\left(2 x^{2}-5 y^{2}\right) \times\left(x^{2}+3 y^{2}\right)$
12. $\left(x^{3}-y^{3}\right) \times\left(x^{2}+y^{2}\right)$
13. $\left(x^{4}+y^{4}\right) \times\left(x^{2}-y^{2}\right)$
14. $\left(x^{4}+\left(1 / x^{4}\right) \times(x+(1 / x))\right.$

Solution:

1. Given $(5 x+7) \times(3 x+4)$

To find the product of given expression we have to use horizontal method.
In that we have to multiply each term of one expression with each term of another Expression so by multiplying we get,

$$
\begin{aligned}
& (5 x+7) \times(3 x+4) \\
\Rightarrow & 5 x(3 x+4)+7(3 x+4) \\
\Rightarrow & 15 x^{2}+20 x+21 x+28 \\
\Rightarrow & 15 x^{2}+41 x+28
\end{aligned}
$$

2. Given $(4 x+9) \times(x-6)$

To find the product of given expression we have to use horizontal method.
In that we have to multiply each term of one expression with each term of another Expression so by multiplying we get,

$$
\begin{aligned}
& (4 x+9) \times(x-6) \\
\Rightarrow & 4 x(x-6)+9(x-6) \\
\Rightarrow & 4 x^{2}-24 x+9 x-54 \\
\Rightarrow & 4 x^{2}-15 x-54
\end{aligned}
$$

3. Given $(2 x+5) \times(4 x-3)$

To find the product of given expression we have to use horizontal method.
In that we have to multiply each term of one expression with each term of another

Expression so by multiplying we get,
$(2 x+5) \times(4 x-3)$
$\Rightarrow 2 \mathrm{x}(4 \mathrm{x}-3)+5(4 \mathrm{x}-3)$
$\Rightarrow 8 x^{2}-6 x+20 x-15$
$\Rightarrow 8 x^{2}+14 x-15$
4. Given $(3 y-8) \times(5 y-1)$

To find the product of given expression we have to use horizontal method.
In that we have to multiply each term of one expression with each term of another Expression so by multiplying we get,

$$
\begin{aligned}
& (3 y-8) \times(5 y-1) \\
\Rightarrow & 3 y(5 y-1)-8(5 y-1) \\
\Rightarrow & 15 y^{2}-3 y-40 y+8 \\
\Rightarrow & 15 y^{2}-43 y+8
\end{aligned}
$$

5. Given $(7 x+2 y) \times(x+4 y)$

To find the product of given expression we have to use horizontal method.
In that we have to multiply each term of one expression with each term of another
Expression so by multiplying we get,
$(7 x+2 y) \times(x+4 y)$
$\Rightarrow 7 x(x+4 y)+2 y(x+4 y)$
$\Rightarrow 7 x^{2}+28 x y+2 y x+8 y^{2}$
$\Rightarrow 7 x^{2}+30 x y+8 y^{2}$
6. Given $(9 x+5 y) \times(4 x+3 y)$

To find the product of given expression we have to use horizontal method.
In that we have to multiply each term of one expression with each term of another Expression so by multiplying we get,

$$
\begin{aligned}
& (9 x+5 y) \times(4 x+3 y) \\
& \Rightarrow 9 x(4 x+3 y)+5 y(4 x+3 y) \\
& \Rightarrow 36 x^{2}+27 x y+20 y x+15 y^{2} \\
& \Rightarrow 36 x^{2}+47 x+15 y^{2}
\end{aligned}
$$

7. Given $(3 m-4 n) \times(2 m-3 n)$

To find the product of given expression we have to use horizontal method.
In that we have to multiply each term of one expression with each term of another
Expression so by multiplying we get,

$$
\begin{aligned}
& (3 m-4 n) \times(2 m-3 n) \\
& \Rightarrow 3 m(2 m-3 n)-4 n(2 m-3 n) \\
& \Rightarrow 6 m^{2}-9 m n-8 m n+12 n^{2} \\
& \Rightarrow 6 m^{2}-17 m n+12 n^{2}
\end{aligned}
$$

RS Aggarwal Solutions for Class 8 Chapter 6 Operations on Algebraic Expressions

8. Given $\left(x^{2}-a^{2}\right) \times(x-a)$

To find the product of given expression we have to use horizontal method.
In that we have to multiply each term of one expression with each term of another
Expression so by multiplying we get,
$\left(x^{2}-a^{2}\right) \times(x-a)$
$\Rightarrow x^{2}(x-a)-a^{2}(x-a)$
$\Rightarrow x^{3}-a x^{2}-a^{2} x+a^{3}$
9. Given $\left(x^{2}-y^{2}\right) \times(x+2 y)$

To find the product of given expression we have to use horizontal method.
In that we have to multiply each term of one expression with each term of another
Expression so by multiplying we get,
$\left(x^{2}-y^{2}\right) \times(x+2 y)$
$\Rightarrow x^{2}(x+2 y)-y^{2}(x+2 y)$
$\Rightarrow x^{3}+2 x^{2} y-x y^{2}-2 y^{3}$
10. Given $\left(3 p^{2}+q^{2}\right) \times\left(2 p^{2}-3 q^{2}\right)$

To find the product of given expression we have to use horizontal method.
In that we have to multiply each term of one expression with each term of another Expression so by multiplying we get,
$\left(3 p^{2}+q^{2}\right) \times\left(2 p^{2}-3 q^{2}\right)$
$\Rightarrow 3 p^{2}\left(2 p^{2}-3 q^{2}\right)+q^{2}\left(2 p^{2}-3 q^{2}\right)$
$\Rightarrow 6 p^{4}-7 p^{2} q^{2}-3 q^{4}$
11. Given $\left(2 x^{2}-5 y^{2}\right) \times\left(x^{2}+3 y^{2}\right)$

To find the product of given expression we have to use horizontal method.
In that we have to multiply each term of one expression with each term of another Expression so by multiplying we get,
$\left(2 x^{2}-5 y^{2}\right) \times\left(x^{2}+3 y^{2}\right)$
$\Rightarrow 2 x^{2}\left(x^{2}+3 y^{2}\right)-5 y^{2}\left(x^{2}+3 y^{2}\right)$
$\Rightarrow 2 x^{4}+x^{2} y^{2}-15 y^{4}$
12. Given $\left(x^{3}-y^{3}\right) \times\left(x^{2}+y^{2}\right)$

To find the product of given expression we have to use horizontal method.
In that we have to multiply each term of one expression with each term of another Expression so by multiplying we get,
$\left(x^{3}-y^{3}\right) \times\left(x^{2}+y^{2}\right)$
$\Rightarrow x^{3}\left(x^{2}+y^{2}\right)-y^{3}\left(x^{2}+y^{2}\right)$
$\Rightarrow x^{5}+x^{3} y^{2}-x^{2} y^{3}-y^{5}$
13. Given $\left(x^{4}+y^{4}\right) \times\left(x^{2}-y^{2}\right)$

To find the product of given expression we have to use horizontal method.
In that we have to multiply each term of one expression with each term of another

Expression so by
multiplying we get,
$\left(x^{4}+y^{4}\right) \times\left(x^{2}-y^{2}\right)$
$\Rightarrow x^{4}\left(x^{2}-y^{2}\right)+y^{4}\left(x^{2}-y^{2}\right)$
$\Rightarrow x^{6}-x^{4} y^{2}+x^{2} y^{4}-y^{6}$
14. Given $\left(x^{4}+\left(1 / x^{4}\right) \times(x+(1 / x))\right.$

To find the product of given expression we have to use horizontal method.
In that we have to multiply each term of one expression with each term of another
Expression so by multiplying we get,

$$
\begin{aligned}
& \left(x^{4}+\left(1 / x^{4}\right) \times(x+(1 / x))\right. \\
& \Rightarrow x^{4}(x+(1 / x))+\left(1 / x^{4}\right)(x+(1 / x)) \\
& \Rightarrow x^{5}+x^{3}+\left(1 / x^{3}\right)+\left(1 / x^{5}\right)
\end{aligned}
$$

Find each of the following products:
15. $\left(x^{2}-3 x+7\right) \times(2 x+3)$
16. $\left(3 x^{2}+5 x-9\right) \times(3 x-5)$
17. $\left(x^{2}-x y+y^{2}\right) \times(x+y)$
18. $\left(x^{2}+x y+y^{2}\right) \times(x-y)$

Solution:

15. Given $\left(x^{2}-3 x+7\right) \times(2 x+3)$

To find the product of given expression we have to use horizontal method.
In that we have to multiply each term of one expression with each term of another
Expression so by multiplying we get,

$$
\begin{aligned}
& \left(x^{2}-3 x+7\right) \times(2 x+3) \\
\Rightarrow & 2 x\left(x^{2}-3 x+7\right)+3\left(x^{2}-3 x+7\right) \\
\Rightarrow & 2 x^{3}-6 x^{2}+14 x+3 x^{2}-9 x+21 \\
\Rightarrow & 2 x^{3}-3 x^{2}+5 x+21
\end{aligned}
$$

16. Given $\left(3 x^{2}+5 x-9\right) \times(3 x-5)$

To find the product of given expression we have to use horizontal method.
In that we have to multiply each term of one expression with each term of another
Expression so by multiplying we get,

$$
\begin{aligned}
& \left(3 x^{2}+5 x-9\right) \times(3 x-5) \\
& \Rightarrow 3 x\left(3 x^{2}+5 x-9\right)-5\left(3 x^{2}+5 x-9\right) \\
& \Rightarrow 9 x^{3}+15 x^{2}-27 x-15 x^{2}-25 x+45 \\
& \Rightarrow 9 x^{3}-52 x+45
\end{aligned}
$$

17. Given $\left(x^{2}-x y+y^{2}\right) \times(x+y)$

To find the product of given expression we have to use horizontal method.

RS Aggarwal Solutions for Class 8 Chapter 6

 Operations on Algebraic ExpressionsIn that we have to
multiply each term of one expression with each term of another
Expression so by multiplying we get,
$\left(x^{2}-x y+y^{2}\right) \times(x+y)$
$\Rightarrow x\left(x^{2}-x y+y^{2}\right)+y\left(x^{2}+x y+y^{2}\right)$
$\Rightarrow x^{3}-x^{2} y-y^{2} x+x^{2} y+y^{2} x+y^{3}$
$\Rightarrow\left(x^{3}+y^{3}\right)$
18. Given $\left(x^{2}+x y+y^{2}\right) \times(x-y)$

To find the product of given expression we have to use horizontal method.
In that we have to multiply each term of one expression with each term of another
Expression so by multiplying we get,

$$
\begin{aligned}
& \left(x^{2}+x y+y^{2}\right) \times(x-y) \\
\Rightarrow & \left(x^{2}+x y+y^{2}\right)-y\left(x^{2}+x y+y^{2}\right) \\
\Rightarrow & x^{3}+x^{2} y+y^{2} x-x^{2} y-y^{2} x+y^{3} \\
\Rightarrow & \left(x^{3}-y^{3}\right)
\end{aligned}
$$

EXERCISE 6C

1. Divide:
(i) $24 x^{2} y^{3}$ by $3 x y$
(ii) $36 x y z^{2}$ by $-9 x z$
(iii) $-72 x^{2} y^{2} z$ by $-12 x y z$
(iv) $-56 m n p^{2}$ by 7 mnp

Solution:

(i) Given $24 x^{2} y^{3}$ by $3 x y$
$\Rightarrow 24 x^{2} y^{3} /(3 x y)$
On dividing monomial by a monomial we have divide same variables of each
Expressions
On simplifying we get,

$$
\Rightarrow 8 x y^{2}
$$

(ii) Given $36 x y z^{2}$ by $-9 x z$
$\Rightarrow 36 x y z^{2} /(-9 x z)$
On dividing monomial by a monomial we have divide same variables of each Expressions
On simplifying we get
$\Rightarrow-4 y z$
(iii) Given $-72 x^{2} y^{2} z$ by $-12 x y z$
$\Rightarrow-72 x^{2} y^{2} z /(-12 x y z)$
On dividing monomial by a monomial we have divide same variables of each Expressions
On simplifying we get
$\Rightarrow 6 x y$
(iv) Given $-56 m n p^{2}$ by $7 m n p$
$\Rightarrow-56 \mathrm{mnp}^{2} /(7 \mathrm{mnp})$
On dividing monomial by a monomial we have divide same variables of each Expressions
On simplifying we get

$$
\Rightarrow-8 p
$$

2. Divide:

(i) $5 \mathrm{~m}^{3}-30 \mathrm{~m}^{2}+45 \mathrm{~m}$ by 5 m
(ii) $8 x^{2} y^{2}-6 x y^{2}+10 x^{2} y^{3}$ by $2 x y$
(iii) $9 x^{2} y-6 x y+12 x y^{2}$ by $-3 x y$
(iv) $12 x^{2}+8 x^{3}-6 x^{2}$ by $-2 x^{2}$

RS Aggarwal Solutions for Class 8 Chapter 6 Operations on Algebraic Expressions

Solution:

(i) Given $5 m^{3}-30 m^{2}+45 m$ by $5 m$
$\Rightarrow-5 m^{3}-30 m^{2}+45 \mathrm{~m} /(5 \mathrm{~m})$
On dividing polynomial by a monomial we have divide every variables of polynomial
By monomial
On simplifying we get
$\Rightarrow \mathrm{m}^{2}-6 \mathrm{~m}+9$
(ii) Given $8 x^{2} y^{2}-6 x y^{2}+10 x^{2} y^{3}$ by $2 x y$
$\Rightarrow 8 x^{2} y^{2}-6 x y^{2}+10 x^{2} y^{3} /(2 x y)$
On dividing polynomial by a monomial we have divide every variables of polynomial
By monomial
On simplifying we get
$\Rightarrow 4 \mathrm{xy}-3 \mathrm{y}+5 \mathrm{xy}^{2}$
(iii) Given $9 x^{2} y-6 x y+12 x y^{2}$ by $-3 x y$
$\Rightarrow 9 x^{2} y-6 x y+12 x y^{2} /(-3 x y)$
On dividing polynomial by a monomial we have divide every variables of polynomial
By monomial
On simplifying we get
$\Rightarrow-3 x+2-4 y$
(iv) Given $12 x^{2}+8 x^{3}-6 x^{2}$ by $-2 x^{2}$
$\Rightarrow 12 x^{2}+8 x^{3}-6 x^{2} /\left(-2 x^{2}\right)$
On dividing polynomial by a monomial we have divide every variables of polynomial
By monomial
On simplifying we get
$\Rightarrow-6 x^{2}-4 \mathrm{x}+3$
Write the quotient and remainder when we divide:
3. $\left(x^{2}-4 x+4\right)$ by $(x-2)$
4. $\left(x^{2}-4\right)$ by $(x+2)$
5. $\left(x^{2}+12 x+35\right)$ by $(x+7)$
6. $\left(15 x^{2}+x-6\right)$ by $(3 x+2)$
7. $\left(14 x^{2}-53 x+45\right)$ by $(7 x-9)$

Solution:

3. Given $\left(x^{2}-4 x+4\right)$ by $(x-2)$

On dividing polynomial by a binomial we have divide every variables of polynomial By binomial we get

$$
\begin{gathered}
x-2 \\
x - 2 \longdiv { x ^ { 2 } - 4 x + 4 } \\
x^{2}-2 x \\
-\quad+ \\
\hline-2 x+4 \\
-2 x+4 \\
+\quad- \\
\hline
\end{gathered}
$$

Here quotient is $x-2$ and remainder is 0
4. Given $\left(x^{2}-4\right)$ by $(x+2)$

On dividing polynomial by a binomial we have divide every variables of polynomial By binomial

$$
\begin{array}{r}
x-2 \\
x + 2 \longdiv { x ^ { 2 } - 4 } \\
x^{2}+2 x \\
-\quad- \\
\frac{-2 x-4}{-2 x-4} \\
\frac{+\quad+}{x}
\end{array}
$$

Here quotient is $x-2$ and remainder is 0
5. Given $\left(x^{2}+12 x+35\right)$ by $(x+7)$

On dividing polynomial by a binomial we have divide every variables of polynomial By binomial

$$
\begin{array}{r}
x + 7 \longdiv { x + 5 } \\
\begin{array}{r}
x^{2}+12 x+35 \\
x^{2}+7 x \\
-\quad- \\
\hline 5 x+35 \\
5 x+35 \\
\frac{-\quad-}{x} \\
\hline
\end{array}
\end{array}
$$

Here quotient is $x+5$ and remainder is 0
6. Given $\left(15 x^{2}+x-6\right)$ by $(3 x+2)$

On dividing polynomial by a binomial we have divide every variables of polynomial By binomial

$$
\begin{array}{r}
3 x + 2 \longdiv { 1 5 x ^ { 2 } + x - 6 } \\
15 x^{2}+10 x \\
-\frac{-}{-9 x-6} \\
\frac{-9 x-6}{+\quad+} \\
\hline
\end{array}
$$

Here quotient is $5 \mathrm{x}-3$ and remainder is 0
7. Given $\left(14 x^{2}-53 x+45\right)$ by $(7 x-9)$

On dividing polynomial by a binomial we have divide every variables of polynomial By binomial

$$
\begin{array}{r}
7 x - 9 \longdiv { 1 4 x ^ { 2 } - 5 3 x + 4 5 } \\
14 x^{2}-18 x \\
\frac{+}{-35 x+45} \\
\frac{-35 x+45}{+} \\
\frac{+}{x}
\end{array}
$$

Here quotient is $2 \mathrm{x}-5$ and remainder is 0

1. Find each of the following products:

(i) $(x+6)(x+6)$
(ii) $(4 x+5 y)(4 x+5 y)$
(iii) $(7 a+9 b)(7 a+9 b)$
(iv) $((2 / 3) x+(4 / 5) y)((2 / 3) x+(4 / 5) y)$
(v) $\left(x^{2}+7\right)\left(x^{2}+7\right)$
(vi) $\left((5 / 6) a^{2}+2\right)\left((5 / 6) a^{2}+2\right)$

Solution:

(i) Given that $(x+6)(x+6)$

But we can write the given expression as $(x+6)(x+6)=(x+6)^{2}$
But we have $(a+b)^{2}=a^{2}+2 a b+b^{2}$
On applying above identity in the given expression we get,
$(x+6)^{2}=x^{2}+2 \times(6)+6^{2}$
$(x+6)^{2}=x^{2}+12 x+36$
(ii) Given that $(4 x+5 y)(4 x+5 y)$

But we can write the given expression as $(4 x+5 y)(4 x+5 y)=(4 x+5 y)^{2}$
But we have $(a+b)^{2}=a^{2}+2 a b+b^{2}$
On applying above identity in the given expression we get,
$(4 x+5 y)^{2}=(4 x)^{2}+2(4 x)(5 y)+(5 y)^{2}$
$(4 x+5 y)^{2}=16 x^{2}+40 x y+25 y^{2}$
(iii) Given that $(7 a+9 b)(7 a+9 b)$

But we can write the given expression as $(7 a+9 b)(7 a+9 b)=(7 a+9 b)^{2}$ But we have $(a+b)^{2}=a^{2}+2 a b+b^{2}$
On applying above identity in the given expression we get,
$(7 a+9 b)^{2}=(7 a)^{2}+2(7 a)(9 b)+(9 b)^{2}$
$(7 a+9 b)^{2}=49 a^{2}+126 a b+81 b^{2}$
(iv) Given that ((2/3) $x+(4 / 5) y)((2 / 3) x+(4 / 5) y)$

But we can write the given expression as

$$
((2 / 3) x+(4 / 5) y)((2 / 3) x+(4 / 5) y)=((2 / 3) x+(4 / 5) y)^{2}
$$

But we have $(a+b)^{2}=a^{2}+2 a b+b^{2}$
On applying above identity in the given expression we get, $((2 / 3) x+(4 / 5) y)^{2}=((2 / 3) x)^{2}+2((2 / 3) x)((4 / 5) y)+((4 / 5) y)^{2}$ $((2 / 3) x+(4 / 5) y)^{2}=(4 / 9) x^{2}+(16 / 15) x y+(16 / 25) y^{2}$
(v) Given that $\left(x^{2}+7\right)\left(x^{2}+7\right)$

But we can write the given expression as
$\left(x^{2}+7\right)\left(x^{2}+7\right)=\left(x^{2}+7\right)^{2}$
But we have $(a+b)^{2}=a^{2}+2 a b+b^{2}$
On applying above identity in the given expression we get, $\left(x^{2}+7\right)^{2}=\left(x^{2}\right)^{2}+2\left(\left(x^{2}\right)(7)+(7)^{2}\right.$
$\left(x^{2}+7\right)^{2}=x^{4}+14 x^{2}+49$
(vi) Given that ((5/6) $\left.a^{2}+2\right)\left((5 / 6) a^{2}+2\right)$

But we can write the given expression as
$\left((5 / 6) a^{2}+2\right)\left((5 / 6) a^{2}+2\right)=\left((5 / 6) a^{2}+2\right)^{2}$
But we have $(a+b)^{2}=a^{2}+2 a b+b^{2}$
On applying above identity in the given expression we get,
$\left((5 / 6) a^{2}+2\right)^{2}=\left((5 / 6) a^{2}\right)^{2}+2\left((5 / 6) a^{2}\right)(2)+(2)^{2}$
$\left((5 / 6) a^{2}+2\right)^{2}=(25 / 36) a^{4}+(10 / 3) a^{2}+4$
2. Find each of the following products:
(i) $(x-4)(x-4)$
(ii) $(2 x-3 y)(2 x-3 y)$
(iii) $((3 / 4) x-(5 / 6) y)((3 / 4) x+(5 / 6) y)$
(iv) $(x-(3 / x))(x-(3 / x))$
(v) $\left((1 / 3) x^{2}-9\right)\left((1 / 3) x^{2}-9\right)$
(vi) $\left((1 / 2) y^{2}-(1 / 3) y\right)\left((1 / 2) y^{2}-(1 / 3) y\right)$

Solution:

(i) Given $(x-4)(x-4)$

But we can write the given expression as $(x-4)(x-4)=(x-4)^{2}$
But we have $(a-b)^{2}=a^{2}-2 a b+b^{2}$
On applying above identity in the given expression we get,
$(x-4)^{2}=x^{2}-2 x(4)+4^{2}$
$(x-4)^{2}=x^{2}-8 x+16$
(ii) Given (2x-3y) (2x-3y)

But we can write the given expression as $(2 x-3 y)(2 x-3 y)=(2 x-3 y)^{2}$
But we have $(a-b)^{2}=a^{2}-2 a b+b^{2}$
On applying above identity in the given expression we get,
$(2 x-3 y)^{2}=4 x^{2}-2(2 x)(3 y)+9 y^{2}$
$(2 x-3 y)^{2}=4 x^{2}-12 x y+9 y^{2}$
(iii) Given that ((3/4) $x-(5 / 6) y)((3 / 4) x+(5 / 6) y)$

But we can write the given expression as
$((3 / 4) x-(5 / 6) y)((3 / 4) x+(5 / 6) y)=((3 / 4) x-(5 / 6) y)^{2}$
But we have $(a-b)^{2}=a^{2}-2 a b+b^{2}$

RS Aggarwal Solutions for Class 8 Chapter 6 Operations on Algebraic Expressions

On applying above identity in the given expression we get, $((3 / 4) x-(5 / 6) y)^{2}=((3 / 4) x)^{2}-2((3 / 4) x)((5 / 6) y)+((5 / 6) y)^{2}$ $((3 / 4) x-(5 / 6) y)^{2}=(9 / 16) x^{2}-(15 / 12) x y+(25 / 36) y^{2}$
(iv) Given that $(x-(3 / x))(x-(3 / x))$

But we can write the given expression as

$$
(x-(3 / x))(x-(3 / x))=(x-(3 / x))^{2}
$$

But we have $(a-b)^{2}=a^{2}-2 a b+b^{2}$
On applying above identity in the given expression we get,
$(x-(3 / x))^{2}=(x)^{2}-2(x)(3 / x)+(3 / x)^{2}$
$(x-(3 / x))^{2}=x^{2}-6+\left(9 / x^{2}\right)$
(v) Given that ((1/3) $\left.x^{2}-9\right)\left((1 / 3) x^{2}-9\right)$

But we can write the given expression as
$\left.\left((1 / 3) x^{2}-9\right)\left((1 / 3) x^{2}-9\right)=\left((1 / 3) x^{2}-9\right)\right)^{2}$
But we have $(a-b)^{2}=a^{2}-2 a b+b^{2}$
On applying above identity in the given expression we get,
$\left.\left((1 / 3) x^{2}-9\right)\right)^{2}=((1 / 3) x)^{2}-2\left((1 / 3) x^{2}\right)(9)+(9)^{2}$
$\left.\left((1 / 3) x^{2}-9\right)\right)^{2}=\left((1 / 9) x^{4}\right)-6 x^{2}+81$
(vi) Given that ((1/2) $\left.y^{2}-(1 / 3) y\right)\left((1 / 2) y^{2}-(1 / 3) y\right)$

But we can write the given expression as
$\left((1 / 2) y^{2}-(1 / 3) y\right)\left((1 / 2) y^{2}-(1 / 3) y\right)=\left((1 / 2) y^{2}-(1 / 3) y\right)^{2}$
But we have $(a-b)^{2}=a^{2}-2 a b+b^{2}$
On applying above identity in the given expression we get,
$\left((1 / 2) y^{2}-(1 / 3) y\right)^{2}=\left((1 / 2) y^{2}\right)^{2}-2\left((1 / 2) y^{2}\right)(1 / 3) y+(1 / 3) y^{2}$
$\left((1 / 2) y^{2}-(1 / 3) y\right)^{2}=\left((1 / 4) y^{4}-(1 / 3) y^{3}+(1 / 9) y^{2}\right.$

3. Expand:

(i) $(8 a+3 b)^{2}$
(ii) $(7 x+2 y)^{2}$
(iii) $(5 x+11)^{2}$
(iv) $((a / 2)+(2 / a))^{2}$
(v) $((3 x / 4)+(2 y / 9))^{2}$
(vi) $(9 x-10)^{2}$
(vii) $\left(x^{2} y-y z^{2}\right)^{-2}$
(viii) $\left((x / y)-((y / x))^{2}\right.$

Solution:

(i) Given $(8 a+3 b)^{2}$

According to the identity $(a+b)^{2}=a^{2}+2 a b+b^{2}$ we have to expand the given expression, $(8 a+3 b)^{2}=(8 a)^{2}+2(8 a)(3 b)+(3 b)^{2}$ $(8 a+3 b)^{2}=64 a^{2}+48 a b+9 b^{2}$

RS Aggarwal Solutions for Class 8 Chapter 6 Operations on Algebraic Expressions

(ii) Given $(7 x+2 y)^{2}$

According to the identity $(a+b)^{2}=a^{2}+2 a b+b^{2}$ we have to expand the given expression, $(7 x+2 y)^{2}=(7 x)^{2}+2(7 x)(2 y)+(2 y)^{2}$
$(7 x+2 y)^{2}=49 x^{2}+28 x y+4 y^{2}$
(iii) Given $(5 x+11)^{2}$

According to the identity $(a+b)^{2}=a^{2}+2 a b+b^{2}$ we have to expand the given expression, $(5 x+11)^{2}=(5 x)^{2}+2(5 x)(11)+(11)^{2}$
$(5 x+11)^{2}=25 x^{2}+110 x+121$
(iv) Given $((a / 2)+(2 / a))^{2}$

According to the identity $(a+b)^{2}=a^{2}+2 a b+b^{2}$ we have to expand the given expression,
$((a / 2)+(2 / a))^{2}=(a / 2)^{2}+2(a / 2)(2 / a)+(2 / a)^{2}$
$((a / 2)+(2 / a))^{2}=a^{2} / 4+2+4 / a^{2}$
(v) Given $((3 x / 4)+(2 y / 9))^{2}$

According to the identity $(a+b)^{2}=a^{2}+2 a b+b^{2}$ we have to expand the given expression, $((3 x / 4)+(2 y / 9))^{2}=(3 x / 4)^{2}+2(3 x / 4)(2 y / 9)+(2 y / 9)^{2}$
$((3 x / 4)+(2 y / 9))^{2}=9 x^{2} / 16+(1 / 3) x y+\left(4 y^{2} / 81\right)$
(vi) Given $(9 x-10)^{2}$

According to the identity $(a-b)^{2}=a^{2}-2 a b+b^{2}$ we have to expand the given expression,
$(9 x-10)^{2}=(9 x)^{2}-2(9 x)(10)+(10)^{2}$
$(9 x-10)^{2}=81 x^{2}-180 x+100$
(vii) Given $\left(x^{2} y-y z^{2}\right)^{-2}$

According to the identity $(a-b)^{2}=a^{2}-2 a b+b^{2}$ we have to expand the given expression,
$\left(x^{2} y-y z^{2}\right)^{-2}=\left(x^{2} y\right)^{2}-2\left(x^{2} y\right)\left(y z^{2}\right)+\left(y z^{2}\right)^{2}$
$\left(x^{2} y-y z^{2}\right)^{-2}=x^{4} y^{2}-2 x^{2} y^{2} z^{2}+y^{2} z^{4}$
(viii) Given $\left((x / y)-((y / x))^{2}\right.$

According to the identity $(a-b)^{2}=a^{2}-2 a b+b^{2}$ we have to expand the given expression, $\left((x / y)-((y / x))^{2}=(x / y)^{2}-2(x / y)(y / x)+(y / x)^{2}\right.$
$\left((x / y)-((y / x))^{2}=x^{2} / y^{2}-2+y^{2} / x^{2}\right.$
4. Find each of the following products:
(i) $(x+3)(x-3)$
(ii) $(2 x+5)(2 x-5)$
(iii) $(8+x)(8-x)$
(iv) $(7 x+11 y)(7 x-11 y)$
(v) $\left(5 x^{2}+(3 / 4) y^{2}\right)\left(5 x^{2}-(3 / 4) y^{2}\right)$
(vi) $((4 x / 5)-(5 y / 3))$
$((4 x / 5)+(5 y / 3))$
(vii) $((x+(1 / x))((x-(1 / x))$
(viii) $((1 / x)+(1 / y))((1 / x)-(1 / y))$
(ix) $(2 a+(3 / b))(2 a-(3 / b))$

Solution:

(i) Given $(x+3)(x-3)$

By using the formula $(a+b)(a-b)=a^{2}-b^{2}$
Applying the formula we get
$(x+3)(x-3)=x^{2}-3^{2}$
$(x+3)(x-3)=x^{2}-9$
(ii) Given $(2 x+5)(2 x-5)$

By using the formula $(a+b)(a-b)=a^{2}-b^{2}$
Applying the formula we get
$(2 x+5)(2 x-5)=(2 x)^{2}-5^{2}$
$(2 x+5)(2 x-5)=4 x^{2}-25$
(iii) Given $(8+x)(8-x)$

By using the formula $(a+b)(a-b)=a^{2}-b^{2}$
Applying the formula we get
$(8+x)(8-x)=(8)^{2}-x^{2}$
$(8+x)(8-x)=64-x^{2}$
(iv) Given $(7 x+11 y)(7 x-11 y)$

By using the formula $(a+b)(a-b)=a^{2}-b^{2}$
Applying the formula we get
$(7 x+11 y)(7 x-11 y)=(7 x)^{2}-(11 y)^{2}$
$(7 x+11 y)(7 x-11 y)=49 x^{2}-121 y^{2}$
(v) Given $\left(5 x^{2}+(3 / 4) y^{2}\right)\left(5 x^{2}-(3 / 4) y^{2}\right)$

By using the formula $(a+b)(a-b)=a^{2}-b^{2}$
Applying the formula we get
$\left(5 x^{2}+(3 / 4) y^{2}\right)\left(5 x^{2}-(3 / 4) y^{2}\right)=\left(5 x^{2}\right)^{2}-\left((3 / 4) y^{2}\right)^{2}$
$\left(5 x^{2}+(3 / 4) y^{2}\right)\left(5 x^{2}-(3 / 4) y^{2}\right)=25 x^{4}-(9 / 16) y^{4}$
(vi) Given $((4 x / 5)-(5 y / 3))((4 x / 5)+(5 y / 3))$

By using the formula $(a+b)(a-b)=a^{2}-b^{2}$
Applying the formula we get
$((4 x / 5)-(5 y / 3))((4 x / 5)+(5 y / 3))=(4 x / 5)^{2}-\left((5 y / 3)^{2}\right.$
$((4 x / 5)-(5 y / 3))((4 x / 5)+(5 y / 3))=\left(16 x^{2} / 25\right)-\left(25 y^{2} / 15\right)$
(vii) Given $((x+(1 / x))((x-(1 / x))$

By using the formula $(a+b)(a-b)=a^{2}-b^{2}$
Applying the formula we get
$((x+(1 / x)))\left((x-(1 / x))=(x)^{2}-(1 / x)^{2}\right.$
$\left((x+(1 / x))\left((x-(1 / x))=\left(x^{2}\right)-\left(1 / x^{2}\right)\right.\right.$
(viii) Given $((1 / x)+(1 / y))((1 / x)-(1 / y))$

By using the formula $(a+b)(a-b)=a^{2}-b^{2}$
Applying the formula we get
$((1 / x)+(1 / y))((1 / x)-(1 / y))=(1 / x)^{2}-(1 / y)^{2}$
$((1 / x)+(1 / y))((1 / x)-(1 / y))=\left(1 / x^{2}\right)-\left(1 / y^{2}\right)$
(ix) Given $(2 a+(3 / b))(2 a-(3 / b))$

By using the formula $(a+b)(a-b)=a^{2}-b^{2}$
Applying the formula we get
$(2 a+(3 / b))(2 a-(3 / b))=(2 a)^{2}-(3 / b)^{2}$
$(2 a+(3 / b))(2 a-(3 / b))=4 a^{2}-\left(9 / b^{2}\right)$

5. Using the formula for squaring a binomial, evaluate the following:

(i) $(54)^{2}$
(ii) $(82)^{2}$
(iii) $(103)^{2}$
(iv) $(704)^{2}$

Solution:

(i) Given $(54)^{2}$

But we can write 54 as $50+4$
And also we know that $(a+b)^{2}=a^{2}+2 a b+b^{2}$
By applying the above identity we get
$(54)^{2}=(50+4)^{2}=50^{2}+2(50)(4)+4^{2}$
$(50+4)^{2}=2500+400+16=2916$
(ii) Given $(82)^{2}$

But we can write 82 as $80+2$
And also we know that $(a+b)^{2}=a^{2}+2 a b+b^{2}$
By applying the above identity we get
$(82)^{2}=(80+2)^{2}=80^{2}+2(80)(2)+2^{2}$
$(80+2)^{2}=6400+320+4=6724$
(iii) Given $(103)^{2}$

But we can write 103 as $100+3$
And also we know that $(a+b)^{2}=a^{2}+2 a b+b^{2}$

By applying the
above identity we get

$$
\begin{aligned}
& (103)^{2}=(100+3)^{2}=100^{2}+2(100)(3)+3^{2} \\
& (100+3)^{2}=10000+600+9=10609
\end{aligned}
$$

(iv) Given (704) ${ }^{2}$

But we can write 704 as $700+4$
And also we know that $(a+b)^{2}=a^{2}+2 a b+b^{2}$
By applying the above identity we get
$(704)^{2}=(700+4)^{2}=700^{2}+2(700)(4)+4^{2}$
$(700+4)^{2}=490000+2800+16=495616$
6. using the formula for squaring a binomial, evaluate the following:
(i) $(69)^{2}$
(ii) $(78)^{2}$
(iii) $(197)^{2}$
(iv) $(999)^{2}$

Solution:

(i) Given $(69)^{2}$

But we can write 69 as 70-1
And also we know that $(a-b)^{2}=a^{2}-2 a b+b^{2}$
By applying the above identity we get
$(69)^{2}=(70-1)^{2}=70^{2}-2(70)(1)+1^{2}$
$(70-1)^{2}=4900-140+1=4761$
(ii) Given $(78)^{2}$

But we can write 78 as 80-2
And also we know that $(a-b)^{2}=a^{2}-2 a b+b^{2}$
By applying the above identity we get
$(78)^{2}=(80-2)^{2}=80^{2}-2(80)(2)+2^{2}$
$(80-2)^{2}=6400-320+4=6084$
(iii) Given (197) ${ }^{2}$

But we can write 197 as 200-3
And also we know that $(a-b)^{2}=a^{2}-2 a b+b^{2}$
By applying the above identity we get
$(197)^{2}=(200-3)^{2}=200^{2}-2(200)(3)+3^{2}$
$(200-3)^{2}=40000-1200+9=38809$
(iv) Given (999) ${ }^{2}$

But we can write
999 as 1000-1
And also we know that $(a-b)^{2}=a^{2}-2 a b+b^{2}$ By applying the above identity we get $(999)^{2}=(1000-1)^{2}=1000^{2}-2(1000)(1)+1^{2}$
$(1000-1)^{2}=1000000-2000+1=998001$

EXERCISE 6E

PAGE NO: 94

Select the correct answer in each of the following:

1. The sum of $(6 a+4 b-c+3),(2 b-3 c+4),(11 b-7 a+2 c-1)$ and $(2 c-5 a-6)$ is
(a) $(4 a-6 b+2)$
(b) $(-3 a+14 b-3 c+2)$
(c) $(-6 a+17 b)$
(d) $(-6 a+6 b+c-4)$

Solution:

(c) $(-6 a+17 b)$

Explanation:

Given ($6 a+4 b-c+3$), $(2 b-3 c+4)$, ($11 \mathrm{~b}-7 a+2 c-1$) and ($2 c-5 a-6$)
To add the given expression we have arrange them column wise is given below:

$$
\begin{gathered}
6 a+4 b-c+3 \\
+2 b-3 c+4 \\
-7 a+11 b+2 c-1 \\
-5 a \quad+2 c-6 \\
\hline-6 a+17 b
\end{gathered}
$$

2. $\left(3 q+7 p^{2}-2 r^{3}+4\right)-\left(4 p^{2}-2 q+7 r^{3}-3\right)=$?
(a) $\left(p^{2}+2 q+5 r^{3}+1\right)$
(b) $\left(11 p^{2}+q+5 r^{3}+1\right)$
(c) $\left(-3 p^{2}-5 q+9 r^{3}-7\right)$
(d) $\left(3 p^{2}+5 q-9 r^{3}+7\right)$

Solution:

(d) $\left(3 p^{2}+5 q-9 r^{3}+7\right)$

Explanation:

Given $\left(3 q+7 p^{2}-2 r^{3}+4\right)-\left(4 p^{2}-2 q+7 r^{3}-3\right)$
According to the rules of subtraction of algebraic equations, we have negative sign will Becomes positive and so we have to keep the big numerical sign.
Now arrange the variables in rows we get
$\left(3 q+7 p^{2}-2 r^{3}+4\right)-\left(4 p^{2}-2 q+7 r^{3}-3\right)=\left(3 p^{2}+5 q-9 r^{3}+7\right)$
3. $(x+5)(x-3)=$?
(a) $x^{2}+5 x-15$
(b) $x^{2}-3 x-15$
(c) $x^{2}+2 x+15$
(d) $x^{2}+2 x-15$

Solution:

(d) $x^{2}+2 x-15$

Explanation:
Given ($x+5$) ($x-3$)
By solving in horizontal method we get

$$
(x+5)(x-3)=x(x-3)+5(x-3)
$$

$$
(x+5)(x-3)=x^{2}-
$$

$3 x+5 x-15$

$$
(x+5)(x-3)=x^{2}+2 x-15
$$

4. $(2 x+3)(3 x-1)=$?
(a) $\left(6 x^{2}+8 x-3\right)$
(b) $\left(6 x^{2}+7 x-3\right)$
(c) $\left(6 x^{2}-7 x-3\right)$
(d) $\left(6 x^{2}-7 x+3\right)$

Solution:

$$
\text { (b) }\left(6 x^{2}+7 x-3\right)
$$

Explanation:

Given ($2 x+3$) $(3 x-1)$
By solving in horizontal method we get
$(2 x+3)(3 x-1)=2 x(3 x-1)+3(3 x-1)$
$(2 x+3)(3 x-1)=\left(6 x^{2}+7 x-3\right)$
5. $(x+4)(x+4)=$?
(a) $\left(x^{2}+16\right)$
(b) $\left(x^{2}+4 x+16\right)$
(c) $\left(x^{2}+8 x+16\right)$
(d) $\left(x^{2}+16 x\right)$

Solution:

(c) $\left(x^{2}+8 x+16\right)$

Explanation:

Given $(x+4)(x+4)=(x+4)^{2}$
By expanding the given expression by using $(a+b)^{2}=a^{2}+2 a b+b^{2}$ we get $(x+4)^{2}=x^{2}+2(x)(4)+4^{2}=x^{2}+8 x+16$
6. $(x-6)(x-6)=$?
(a) $\left(x^{2}-36\right)$
(b) $\left(x^{2}+36\right)$
(c) $\left(x^{2}-6 x+36\right)$
(d) $\left(x^{2}-12 x+36\right)$

Solution:

(d) $\left(x^{2}-12 x+36\right)$

Explanation:

Given ($x-6$) $(x-6)=(x-6)^{2}$
By expanding the given expression by using $(a-b)^{2}=a^{2}-2 a b+b^{2}$ we get $(x-6)^{2}=x^{2}-2(x)(6)+6^{2}=x^{2}-12 x+36$

