
RTI Code Generator
for RTI Connext DDS

User's Manual

Version 2.3.3

Copyrights
© 2016 Real-Time Innovations, Inc.

All rights reserved.
Printed in U.S.A. First printing.

April 2016.

Trademarks

Real-Time Innovations, RTI, NDDS, RTI Data Distribution Service, DataBus, Connext, Micro DDS, the
RTI logo, 1RTI and the phrase, “Your Systems. Working as one,” are registered trademarks, trademarks
or service marks of Real-Time Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license
agreement.

Technical Support
Real-Time Innovations, Inc.
232 E. Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

mailto:support@rti.com
https://support.rti.com/

Chapter 1 Introduction 1
Chapter 2 Paths Mentioned in Documentation 2
Chapter 3 Command-Line Arguments for rtiddsgen 5
Chapter 4 Generated Files 13
Chapter 5 Customizing the Generated Code 17
Chapter 6 Boosting Performance with Server Mode 20

Chapter 1 Introduction

RTI Code Generator creates the code needed to define and register a user data type with Connext
DDS. Using Code Generator is optional if:

l You are using dynamic types (see Managing Memory for Built-in Types (Section 3.2.7) in
the RTI Connext DDS Core Libraries User’s Manual1).

l You are using one of the built-in types (see Built-in Data Types (Section 3.2) in the RTI
Connext DDS Core Libraries User’s Manual).

To use Code Generator, you will need to provide a description of your data type(s) in an IDL or
XML file. You can define multiple data types in the same type-definition file. For details on these
files, see the RTI Connext DDS Core Libraries User’s Manual (Sections 3.3 and 3.4).

1This document is provided with Connext DDS. You can also access it from the RTI Community’s
Documentation page.

1

http://community.rti.com/documentation
http://community.rti.com/documentation

Chapter 2 Paths Mentioned in
Documentation

The documentation refers to:

l <NDDSHOME>

This refers to the installation directory for Connext DDS.

The default installation paths are:
l Mac OS X systems:

/Applications/rti_connext_dds-version

l UNIX-based systems, non-root user:

/home/your user name/rti_connext_dds-version

l UNIX-based systems, root user:

/opt/rti_connext_dds-version

l Windows systems, user without Administrator privileges:

<your home directory>\rti_connext_dds-version

l Windows systems, user with Administrator privileges:

C:\Program Files\rti_connext_dds-version (for 64-bits machines) or
C:\Program Files (x86)\rti_connext_dds-version(for 32-bit machines)

You may also see $NDDSHOME or %NDDSHOME%, which refers to an environment
variable set to the installation path.

Wherever you see <NDDSHOME> used in a path, replace it with your installation path.

Note for Windows Users: When using a command prompt to enter a command that includes
the path C:\Program Files (or any directory name that has a space), enclose the path in
quotation marks. For example:

2

Chapter 2 Paths Mentioned in Documentation

3

“C:\Program Files\rti_connext_dds-version\bin\rtiddsgen”

or if you have defined the NDDSHOME environment variable:
“%NDDSHOME%\bin\rtiddsgen”

l RTI Workspace directory, rti_workspace

The RTI Workspace is where all configuration files for the applications and example files are
located. All configuration files and examples are copied here the first time you run RTI Launcher or
any script in <NDDSHOME>/bin. The default path to the RTI Workspace directory is:

l Mac OS X systems:

/Users/your user name/rti_workspace

l UNIX-based systems:

/home/your user name/rti_workspace

l Windows systems:

your Windows documents folder\rti_workspace

Note: 'your Windows documents folder' depends on your version of Windows.
For example, on Windows 7, the folder is C:\Users\your user name\Documents; on
Windows Server 2003, the folder is C:\Documents and Settings\your user
name\Documents.

You can specify a different location for the rti_workspace directory. See the RTI Connext DDS
Core Libraries Getting Started Guide for instructions.

l <path to examples>

Examples are copied into your home directory the first time you run RTI Launcher or any script in
<NDDSHOME>/bin. This document refers to the location of these examples as <path to
examples>.Wherever you see <path to examples>, replace it with the appropriate path.

By default, the examples are copied to rti_workspace/version/examples

So the paths are:
l Mac OS X systems:

/Users/your user name/rti_workspace/version/examples

l UNIX-based systems:

/home/your user name/rti_workspace/version/examples

l Windows systems:

Chapter 2 Paths Mentioned in Documentation

your Windows documents folder\rti_workspace\version\examples

Note: 'your Windows documents folder' is described above.

You can specify that you do not want the examples copied to the workspace. See the RTI Connext DDS
Core Libraries Getting Started Guide for instructions.

4

Chapter 3 Command-Line Arguments for
rtiddsgen

On Windows systems: Before running rtiddsgen, run VCVARS32.BAT in the same command
prompt that you will use to run rtiddsgen. The VCVARS32.BAT file is usually located in <Visual
Studio Installation Directory>/VC/bin. Alternatively, run rtiddsgen from the Visual Studio
Command Prompt under the Visual Studio Tools folder.

If you are generating code for Connext DDS, the options are:
rtiddsgen [-help]

[-autoGenFiles <architecture>]
[-create <typefiles| examplefiles|makefiles>]
[-convertToIdl | -convertToXML | -convertToXsd]
[-D <name>[=<value>]]
[-d <outdir>]
[-disableXSDValidation]
[-dllExportMacroSuffix <suffix>]
[-enableEscapeChar]
[-example <architecture>]
[-express]
[-I <directory>]
[[-inputIdl] <IDLInputFile.idl> | [-inputXml] <XMLInputFile.xml>
|[-inputXsd <IDLInputFile.idl>]]
[-language <Ada|C|C++|C++03|C++11|C++/CLI|C#|Java>]
[-namespace]
[-noCopyable]
[-notypecode]
[-obfuscate]
[-package <packagePrefix>]
[-platform <architecture>]
[-ppDisable]
[-ppPath <path to preprocessor>]
[-ppOption <option>]
[-reader]
[-replace]
[-sequenceSize <unbounded sequences size>]
[-sharedLib]
[-stringSize <unbounded strings size>]

5

Chapter 3 Command-Line Arguments for rtiddsgen

6

[-U <name>]
[-unboundedSupport]
[-update <typefiles| examplefiles|makefiles>]
[-use42eAlignment]
[-use52CKeyhash]
[-use52JavaKeyhash]
[-V <name< [=<value>]]
[-verbosity [1-3]]
[-version]
[-writer]

If you have RTI CORBA Compatibility Kit, you can use the above options, plus these:
[-corba [CORBA Client header file]]
[-dataReaderSuffix <suffix>]
[-dataWriterSuffix <suffix>]
[-orb <CORBA ORB>]
[-typeSequenceSuffix <suffix>]

If you are generating code for RTI Connext DDS Micro, the options are:
rtiddsgen [-help]

[-create <typefiles| examplefiles|makefiles>]
[-convertToIdl | -convertToXML]
[-D <name>[=<value>]]
[-d <outdir>]
[-enableEscapeChar]
[-I <directory>]
[[-inputIdl] <IDLInputFile.idl> | [-inputXml] <XMLInputFile.xml>]
[-language <C|C++>]
[-micro]
[-namespace]
[-ppDisable]
[-ppPath <path to preprocessor>]
[-ppOption <option>]
[-reader]
[-replace]
[-sequenceSize <unbounded sequences size>]
[-stringSize <unbounded strings size>]
[-U <name>]
[-update <typefiles| examplefiles|makefiles>]
[-V <name< [=<value>]]
[-verbosity [1-3]]
[-version]
[-writer]

Table 3.1 Options for rtiddsgen describes the options.

Chapter 3 Command-Line Arguments for rtiddsgen

Option Description

-autoGenFiles <architecture>

Updates the auto-generated files, i.e, the typefiles and makefile/project files.

Valid options for <architecture> are listed in the RTI Connext DDS Core Platform Notes,
or you can replace <architecture> with the string universal
(-autoGenFiles universal) to generate compatible publisher/subscriber code for all
supported platforms. The universal architecture will not generate makefiles/project files.

This is a shortcut for:
-update typefiles -update makefiles -platform <architecture>

-create <typefiles|
examplefiles|makefiles>

Creates the files indicated (typefiles, examplefiles, or makefiles) if they do not exist.

If the files already exist, the files are not modified and a warning is printed.

There can be multiple -create options.

If both -create and -update are specified for the same file type, only the -update will be
applied.

-convertToIdl Converts the input type description file into IDL format. This option creates a new file
with the same name as the input file and a .idl extension.

-convertToXML Converts the input type description file into XML format. This option creates a new file
with the same name as the input file and a .xml extension.

-convertToXsd Converts the input type description file into XSD format. This option creates a new file
with the same name as the input file and a .xsd extension.

-corba [CORBA Client header file]
This option is only available when using the RTI CORBA Compatibility Kit for Connext
DDS (available for purchase as a separate product and described in the RTI Connext DDS
Core Libraries User’s Manual).

-D <name>[=<value>]
Defines preprocessor macros.

On Windows systems, enclose the argument in quotation marks:
-D "<name>[=<value>]"

-d <outdir> Generates the output in the specified directory. By default, Code Generator will generate
files in the directory where the input type-definition file is found.

-dataReaderSuffix <suffix>

Only applies if -corba [CORBA Client header file] is also specified.

Assigns a suffix to the name of a DataReader interface.

By default, the suffix is DataReader. Therefore, given the type Foo, the name of the
DataReader interface will be FooDataReader.

-dataWriterSuffix <suffix>

Only applies if -corba [CORBA Client header file] is also specified.

Assigns a suffix to the name of a DataWriter interface. By default, the suffix is
DataWriter. Therefore, given the type Foo, the name of the DataWriter interface will be
FooDataWriter.

Table 3.1 Options for rtiddsgen

7

Chapter 3 Command-Line Arguments for rtiddsgen

8

Option Description

-disableXSDValidation

Causes Code Generator not to check that the input XSD file is well-formed.

The use of this option is not recommended in general, as Code Generatormay receive
invalid inputs.

-dllExportMacroSuffix <suffix>
Defines the suffix of the macro that is used to export symbols when building Windows
DLLs. The default macro is NDDS_USER_DLL_EXPORT. When this option is
specified, the name of the macro is NDDS_USER_DLL_EXPORT_<Suffix>.

-enableEscapeChar Enables use of the escape character '_' in IDL identifiers.

-example <architecture>

Generates type files, example files, and a makefile.

This is a shortcut for:
-create typefiles -create examplefiles -create makefiles -platform <architecture>

Valid options for <architecture> are listed in the RTI Connext DDS Core Libraries
Platform Notes or you can replace <architecture> with the string universal
(-example universal) to generate compatible publisher/subscriber code for all supported
platforms. The universal architecture will not generate makefiles/project files.

-express

Generates the C# project files needed to build with Microsoft Visual Studio Express.

This option is only compatible with architectures i86Win32VS2008 and
i86Win32VS2010. Newer versions of Microsoft Visual Studio Express Edition do not
need this flag.

-I <directory> Adds to the list of directories to be searched for type-definition files (IDL or XML files).
Note: A type-definition file in one format cannot include a file in another format.

-inputIdl Indicates that the input file is an IDL file, regardless of the file extension.

-inputXml Indicates that the input file is an XML file, regardless of the file extension.

-inputXsd Indicates that the input file is an XSD file, regardless of the file extension.

IDLInputFile.idl A file containing IDL descriptions of your data types. If -inputIdl is not used, the file must
have a '.idl' extension.

-help Prints out the command-line options for rtiddsgen.

For Connext DDS Core:

-language
<Ada|C|C++|C++03|C++11|C++/CLI|C#|Java>

For Connext DDS Micro:

-language <C|C++>

Specifies the language to use for the generated files. The default language is C++.

Table 3.1 Options for rtiddsgen

Chapter 3 Command-Line Arguments for rtiddsgen

Option Description

-metp
Generates code for the Multi-Encapsulation Type Support (METP) library.

The METP library requires a special version of RTI Connext DDS DDS Core; please
contact support@rti.com for more information.

-micro
Generates code and support files for Connext DDS Micro, instead of Connext DDS
Professional. Use -micro -help to list the options supported by Code Generator when
targeting RTI Connext DDS Micro.

-namespace Specifies the use of C++ namespaces. (For C++ only. For C++/CLI and C#, it is
implied—namespaces are always used.)

-noCopyable Forces Code Generator to put ‘copy’ logic into the corresponding TypeSupport class,
rather than the type itself. This option is only used for Java code generation.

-notypecode

Disables type-code support.

If you are using a large data type (more than 64 K) and type-code support, you will see a
warning when type-code information is sent. Code Generator has a type-code size limit of
64K. To avoid the warning when working with data types with type codes larger than
64K, turn off type-code support by using -notypecode.

Type-code support must be enabled if you are going to use ContentFilteredTopics with the
default SQL filter.

-obfuscate Generates an obfuscated IDL file from the input file. Note that even if the input type is
XML, this option generates an obfuscated IDL file.

-orb <CORBA ORB>

Only applies if -corba [CORBA Client header file] is also specified.

Specifies the CORBA ORB. The majority of generated code is independent of the ORB.
However, for some IDL features, the generated code depends on the ORB. Code
Generator generates code compatible with ACE-TAO or JacORB. To select an ACE_
TAO version, use the -orb option. The default is ACE_TAO1.6.

-package <packagePrefix>
Specifies the root package into which generated classes will be placed. It applies to Java
only. If the type-definition file contains module declarations, those modules will be
considered subpackages of the package specified here.

-platform <architecture>

Required if -create makefiles or -update makefiles is used.

Valid options for <architecture> are listed in the RTI Connext DDS Core Libraries
Platform Notes or you can replace <architecture> with the string universal
(-platform universal) to generate compatible publisher/subscriber code for all supported
platforms. The universal architecture will not generate makefiles/project files.

-ppDisable Disables the preprocessor.

Table 3.1 Options for rtiddsgen

9

Chapter 3 Command-Line Arguments for rtiddsgen

10

Option Description

-ppOption <option>
Specifies a preprocessor option. This option can be used multiple times to provide the
command-line options for the specified preprocessor. See -ppPath <path to
preprocessor>.

-ppPath <path to preprocessor>

Specifies the preprocessor. If you only specify the name of an executable (not a complete
path to that executable), the executable must be found in your Path. The default value is
cpp for non-Windows architectures and cl.exe for Windows architectures.

If you use -ppPath to provide the full path and filename for cl.exe or the cpp
preprocessor, you must also use -ppOption <option> to set the following preprocessor
options:

If you use a non-default path for cl.exe, you also need to set:

-ppOption /nologo -ppOption /C -ppOption /E -ppOption /X

If you use a non-default path for cpp, you also need to set:

-ppOption -C

-reader Generates support for a DataReader (only with -micro).

-replace

Deprecated option. Instead, use -update <typefiles| examplefiles|makefiles> for the proper
files (typefiles, examplefiles, makefiles).

This option is maintained for backwards compatibility. It allows Code Generator to
overwrite any existing generated files.

If it is not present and existing files are found, Code Generatorwill print a warning but
will not overwrite them.

-sequenceSize
<unbounded sequences size> Sets the size assigned to unbounded sequences. The default value is 100 elements.

-sharedLib Generates makefiles that compile with the Connext DDS shared libraries (by default, the
makefile will link with the static libraries)

-stringSize
<unbounded strings size>

Sets the size assigned to unbounded strings, not counting a terminating NULL character.
The default value is 255 bytes.

-typeSequenceSuffix <suffix>

This option can only be used with the -corba [CORBA Client header file] option.

Assigns a suffix to the names of the implicit sequences defined for IDL types. By default,
the suffix is Seq. Therefore, given the type 'Foo' the name of the implicit sequence will be
FooSeq.

-U <name> Cancels any previous definition of <name>.

Table 3.1 Options for rtiddsgen

Chapter 3 Command-Line Arguments for rtiddsgen

Option Description

-unboundedSupport

Generates code that supports unbounded sequences and strings. This option is not
supported in Ada. When the option is used, the command-line options -sequenceSize and
-stringSize are ignored.

This option also affects the way unbounded sequences are deserialized. When a sequence
is being received into a sample from the DataReader's cache, the old memory for the
sequence will be deallocated and memory of sufficient size to hold the deserialized data
will be allocated. When initially constructed, sequences will not preallocate any elements
having a maximum of zero elements.

For more information on using the -unboundedSupport, including some required QoS
settings, see these sections in the RTI Connext DDS Core Libraries User's Manual:

l Section 20.1.3, Writer-Side Memory Management when Using Java

l Section 20.2.2, Reader-Side Memory Management when Using Java

-update <typefiles|
examplefiles|makefiles>

Creates the files indicated if they do not exist.

Is the files already exist, this overwrites the files without printing a warning.

There can be multiple -update options.

If both -create and -update are specified for the same file type, only the -update will be
applied.

-use42eAlignment

Makes the generated code compatible with RTI Data Distribution Service 4.2e. This

option should be used when compatibility with 4.2e is required and the topic data types

contain double, long long, unsigned long long, or long double members. The usage of this
option also requires setting the following properties to "1" in the DataWriter and
DataReader QoS:

l DataWriter QoS: dds.data_writer.type_support.use_42e_alignment

l DataReader QoS: dds.data_reader.type_support.use_42e_alignment

-use52CKeyhash This option should be used when generating Java and .NET code for keyed mutable types
in order to have keyhash generation that is compatible with C/C+/C03/C+11.

-use52JavaKeyhash This option should be used when compatibility with 5.2 and earlier is required in Java and
.NET when using keyed mutable types

-V <name< [=<value>]
Defines a user variable that can be used in the templates as $userVarList.name or
$userVarList.name.equals(value). The variables defined with this option are case
sensitive.

Table 3.1 Options for rtiddsgen

11

Chapter 3 Command-Line Arguments for rtiddsgen

12

Option Description

-verbosity [1-3]

Sets the Code Generator verbosity:

1: Exceptions

2: Exceptions and warnings

3: Exceptions, warnings and information (Default)

-version Displays the version of Code Generator being used, such as 2.x.y, as well as the
version of the templates being used (xxxx-xxxx-xxxx).

-writer Generates support for a DataWriter (only with -micro).

XMLInputFile.xml A file containing XML descriptions of your data types. If -inputXml is not used, the file
must have an .xml extension.

Table 3.1 Options for rtiddsgen

Note: Before using a makefile created by Code Generatorto compile an application, make sure the
${NDDSHOME} environment variable is set as described in the RTI Connext DDS Core Libraries
Getting Started Guide.

Chapter 4 Generated Files

The following tables show the files that Code Generator creates for an example IDL file called
Hello.idl.

l Table 4.1 C, C++, C++/CLI, C# Files Created for Example “Hello.idl”

l Table 4.2 Java Files Created for Example “Hello.idl”

l Table 4.3 Ada Files Created for Example “Hello.idl”

Generated Files Description

The following files are required for the user data type. The source files should be compiled and linked with your application. The
header files are required to use the data type in source.

You should not modify these files unless you intend to customize the generated code supporting your type.

Hello.[c,cxx, cpp]
HelloSupport.[c, cxx, cpp]
HelloPlugin.[c,cxx, cpp]

Generated code for the data types. These files contain the implementation for
your data types.

Hello.h
HelloSupport.h
HelloPlugin.h

Header files that contain declarations used in the implementation of your data
types.

The following optional files are generated when you use the -example <architecture> command-line option. You may modify
and use these files as a way to create simple applications that publish or subscribe to the user data type.

Hello_publisher.[c, cxx, cpp, cs]

Example code for an application that publishes the user data type. This example
shows the basic steps to create all of the DDS objects needed to send data.

You will need to modify the code to set and change the values being sent in the
data structure. Otherwise, just compile and run.

Table 4.1 C, C++, C++/CLI, C# Files Created for Example “Hello.idl”

13

Chapter 4 Generated Files

14

Generated Files Description

Hello_subscriber.[c, cxx, cpp,cs]

Example code for an application that subscribes to the user data type. This
example shows the basic steps to create all of the DDS objects needed to receive
data using a “listener” function.

No modification of this file is required. It is ready for you to compile and run.

Hello.sln,
Hello_publisher.v[c, cs, cx]proj, Hello_
subscriber.v[c, cs, cx]proj

Microsoft Visual Studio solution and project files, generated only for Visual
Studio-based architectures. To compile the generated source code, open the
workspace file and build the two projects.

makefile_Hello_<architecture> Makefile for non-Visual-Studios-based architectures. An example
<architecture> is i86Linux2.6gcc4.4.5.

Table 4.1 C, C++, C++/CLI, C# Files Created for Example “Hello.idl”

Data Type Generated Files Description

Since the Java language requires individual files to be created for each class, Code Generatorwill generate a source file for every IDL
construct that translates into a class in Java.

Constants Hello.java Class associated with the constant

Enums Hello.java Class associated with enum type

Structures/Unions

Hello.java

HelloSeq.java

HelloDataReader.java

HelloDataWriter.java

HelloTypeSupport.java

Structure/Union class

Sequence class

DDS DataReader and DataWriter classes

Support (serialize, deserialize, etc.) class

Typedef of sequences or
arrays

Hello.java

HelloSeq.java

HelloTypeSupport.java

Wrapper class

Sequence class

Support (serialize, deserialize, etc.) class

The following optional files are generated when you use the -example <architecture> command-line option. You may modify and use
these files as a way to create simple applications that publish or subscribe to the user data type.

Table 4.2 Java Files Created for Example “Hello.idl”

Chapter 4 Generated Files

Data Type Generated Files Description

Structures/Unions

HelloPublisher.java

HelloSubscriber.java

Example code for applications that publish or subscribe to the user data type. You
should modify the code in the publisher application to set and change the value of the
published data. Otherwise, both files should be ready to compile and run.

makefile_Hello_
<architecture>

Makefile for non-Windows-based architectures. An example <architecture> is
i86Linux2.6gcc4.4.5jdk.

Structures/Unions/
Typedefs/Enums

HelloTypeCode.java

(Note: this is not
generated if you use -
notypecode)

Type code class associated with the IDL type, Hello

Table 4.2 Java Files Created for Example “Hello.idl”

Generated Files Description

Hello[.h,.c]

Generated code for the data types, which contain the implementation for the data types, and header
files that contain declarations used in the implementation of the data types.

HelloSupport[.h,.c]

HelloPlugin[.h,.c]

hello_idl_file[.adb, .ads]

hello_idl_file-hello_datawriter
[.adb,.ads]

DataReader and DataWriter classes and serialize/deserialize methods.hello_idl_file-hello_datareader
[.adb,.ads]

hello_idl_file-hello_typesupport
[.adb,.ads]

hello_idl_file-hello_publisher
[.adb,.ads]
(in the samples/ directory)

Example code for an application that publishes the user data type. You will need to modify the
code to set and change the values being sent in the data structure. Otherwise, just compile and run.
The subscriberlistener file implements the on_data_available() callback.

hello_idl_file-hello_subscriber
[.adb,.ads]
(in the samples/ directory)

hello_idl_file-hello_subscriberlistener
[.adb,.ads]
(in the samples/ directory)

Table 4.3 Ada Files Created for Example “Hello.idl”

15

Chapter 4 Generated Files

16

Generated Files Description

hello.gpr
Project files using Ada-like syntax.These files define the build-related characteristics of the
application. These characteristics include the list of sources, the location of those sources, the
location of the generated object files, the name of the main program, and the options for the
various tools involved in the build process. Each of them is for a different set of files (hello-
samples is for the examples, hello_c is for the c files and hello is for rest of the ada files.)

hello_c.gpr

hello-samples.gpr (in the samples
directory)

Table 4.3 Ada Files Created for Example “Hello.idl”

Chapter 5 Customizing the Generated
Code

Code Generator allows you to customize the generated code for different languages by changing
the provided templates. This version does not allow you to create new output files.

You can load new templates using the following command in an existing template, where
<pathToTemplate> is relative to the <NDDSHOME>/resource/app/app_
support/rtiddsgen/templates folder:
#parse(“<pathToTemplate>/template.vm”)

If that template.vm file contains macros, you can use it within the original template. If
template.vm contains just plain text without macros, that text will be included directly in the
original file.

You can customize the behavior of a template by using the predefined set of variables provided
with Code Generator. For more information, see the tables in RTI_rtiddsgen_template_
variables.xlsx.

This file contains two different sheets: Language-Templates and Template variables. The
Language-Template sheet shows the correspondence between the Velocity Templates used and the
generated files for each language. If, for example, we want to add a method in C in the Hello.c file,
we would need to modify the template typeBody.vm under the templates/c directory.

The scope of a template can be:

l type: If we generate a file with that template for each type in the IDL file. For example in
Java, where we generate a TypeSupport file for each type in the IDL.

l file: If we generate a file with that template for each IDL file. For example in C, we generate
a single plugin file containing all the types Plugin information.

17

Chapter 5 Customizing the Generated Code

18

l lastTopLevelType: If we generate a file with that template for the last top-level type in the IDL file.
This is commonly used for the publisher/subscriber examples.

l module: If we generate a file with that template for each module in the IDL file. This is used in
Ada, where there are files that contain all the types of a module.

l topLevelType: if we generate a file with that template for each type in the idl file. This is used in
ADA where the publisher/subscriber files are only generated for top level types

The table also shows the top_level variables that can be used for that templates. These variables are
explained in the sheet Template variables. For example in Java, the main unit of variables are the
constructMap which is a hashMap of variables that represent a type. In C, we will have as the main unit
the constructMapList, which is a List of constructMap. In the Template variables sheet, we can see which
variables are contained in each constructMap, the constructKind or type that it is applicable to and the
value that it contains depending on the language we use.

One important variable that contains the constructMap for a type is the memberFieldMapList. This list
represent the members contained within the type. Each member is also represented as a hashMap whose
variables are also described in the Template variables sheet.

Apart from that there are environmental or general variables that are not related with the types that are
defined within a hashMap called envMap.

Let’s see how to use these variables with an example. Suppose we want to generate a method in C that
prints the members for a structure and, if it is an array or sequence, its corresponding size. For this IDL:
module Mymodule{

struct MyStruct{
long longMember;
long arrayMember [2][100];
sequence<char,2> sequenceMember;
sequence <long, 5> arrayOfSequenceMember[28];

};
};

We want to generate this:
void MyModule_MyStruct_specialPrint(){

printf(" longMember \n");
printf(" arrayMember is an array [2, 100] \n ");
printf(" sequenceMember is a sequence <2> \n");
printf(" arrayOfSequenceMember is an array [28] is a sequence <5> ");

}

The code in the template would look like this:
We go through all the list of types
#foreach ($node in $constructMapList)
##We only want the method for structs
#*--*##if ($node.constructKind.equals(“struct”))
void ${node. nativeFQName}_specialPrint(){

Chapter 5 Customizing the Generated Code

##We go through all the members and call to the macros that check if they are array or
sequences
#*----*##foreach($member in $node.memberFieldMapList)
print("$member.name #isAnArray($member) #isASeq($member) \n");
#*----*##end
}
#*--*##end
#end

The isAnArray macro checks if the member is an array (i.e, has the variable dimensionList) and in that
case, prints it:
#macro (isAnArray $member)
#if($member.dimensionList) is an array $member.dimensionList #end
#end

The isASeq macro checks if the member is an sequence (i.e, has the variable seqSize) and in that case,
prints it:
#macro (isASeq $member)
#if($member.seqSize) is a sequence <$member.seqSize> #end
#end

You can add new variables to the templates using the -V <name< [=<value>] command-line option when
starting Code Generator. This variable will be added to the userVarList hashMap. You can refer to it in the
template as $userVarList.name or $userVarList.name.equals(value).

For more information on velocity templates, see http://velocity.apache.org/engine/releases/velocity-
1.5/user-guide.html.

19

http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html

Chapter 6 Boosting Performance with
Server Mode

If you need to invoke Code Generator multiple times with different parameters and/or type files,
there will be a performance penalty derived from loading the JVM and compiling the velocity
templates.

To help with the above scenario, you can run Code Generator in server mode. Server mode runs a
native executable that opens a TCP connection to a server instance of the code generator that is
spawned the first time the executable is run, as depicted below:

When Code Generator is used in server mode, JVM is loaded a single time when the server is
started; the velocity templates are also compiled a single time.

To invoke Code Generator in server mode, use the script rtiddsgen_server(.bat), which is in the
scripts directory.

The Code Generator server will automatically stop if it is not used for a certain amount of time.
The default value is 20 seconds; you can change this by editing the rtiddsgen_server script and
adjusting the value of the parameter, -n_servertimeout.

20

	Chapter 1 Introduction
	Chapter 2 Paths Mentioned in Documentation
	Chapter 3 Command-Line Arguments for rtiddsgen
	Chapter 4 Generated Files
	Chapter 5 Customizing the Generated Code
	Chapter 6 Boosting Performance with Server Mode

