
Rubik’s ParaCube: a Collection of Parallel

Implementations for Optimal Rubik’s Cube Solver

Tiane Zhu (tianez@), Chengzhi Huang (chengzhh@)

1 Introduction

A Rubik’s Cube is consisted of 6 faces. For a 3x3x3 Rubik’s Cube, each face is divided into 3 rows and 3

column, i.e. 9 squares. The ”solved” condition of a 3x3x3 Rubik’s Cube requires that each square on the

same face be consisted of same color, and no two faces share the same color. Conventionally, the 6 colors

are chosen to be White (W), Blue (B), Red (R), Yellow (Y), Green (G) and Orange (O).

Here is an alternative way to view the formation of a Rubik’s Cube: it is consisted of 27 sub-cubes (a.k.a

cubies), where 26 of them are visible. 8 out of 26 are corner cubies; 6 are center cubies; and the rest, 12, are

edge cubies. A Rubik’s Cube can be scrambled by rotating a row or column for 90, 180, or 270 degrees. By

rotating a row (or column), one is essentially rotating the entire 3x3x1 slice.

To describe the problem, we need to describe the condition of the Rubik’s Cube. To provide a solution,

we need to record the scramble steps to solve it. Note that the condition of a Rubik’s Cube can be described

as the ”solved” condition followed by a series of steps to scramble it. Hence, we need a way to formally

denote each possible scrable option given a Rubik’s cube.

1.1 Singmaster Notation

Singmaster notation was devised by David Singmaster. The notation uses six letters to denote the clockwise

turns: F for front, B for back, U for up, D for down, L for left and R for right. More specifically, since a

scramble can be turned 90, 180, or 270 degrees, the following notation is used:

1. F, B, U, D, L, R: 90 degrees clockwise

2. F2, B2, U2, D2, L2, R2: 180 degrees clockwise

3. F’, B’, U’, D’, L’, R’: 270 degrees clockwise (equivalent to 90 degrees anticlockwise)

There are more details to the Singmaster notation; but, for our purpose of parallelization, we do not

want to dive deeper into this topic. For simplicity, hereafter, and in the documentations of solver code, we

use these slightly modified definitions:

1. F1, B1, U1, D1, L1, R1: 90 degrees clockwise

2. F2, B2, U2, D2, L2, R2: 180 degrees clockwise

3. F3, B3, U3, D3, L3, R3: 270 degrees clockwise (equivalent to 90 degrees anticlockwise)

2 Summary

In this project, we implemented an optimal Rubik’s Cube solver based on the Iterative Deepening A* (IDA)

algorithm; similar to Richard Korf’s algorithm, the algorithm heuristics is based on a corner pattern database.

2

https://www.cs.princeton.edu/courses/archive/fall06/cos402/papers/korfrubik.pdf


This solver is equipped with multiple di�erent parallelization strategies, including ones implemented with

OpenMP and the others implemented with MPI.

We are proud to present the speedup factors we achieved with our implementations. The OpenMP

implementations were measured on latedays machines with Xeon Phi’s; the MPI implementaions were mea-

sured on Bridges Machines. Together with the results, we would love to share our analysis of parallelization

challenges and the ideas behind improvements.

3 Background

Given a scrambled Rubik’s Cube, we want the solver to return the smallest number of moves to transition the

input Cube to the ”solved” condition. Note that our inputs can be an ordered list of scrambles to generate

a Cube case from the ”solved” state, or simply colors on each of the Cube’s face.

Solving a Rubik’s cube may not be hard. Di�erent strategies have been proposed, e.g. Thistlethwaite’s

52-move algorithm. These algorithms mostly employ the idea of grouping cubies into favorable states, which

are easier to solve than pre-grouping Cube; this process is repeated until the Cube is solved. It is not hard

to show that such idea cannot generate optimal solution; hence, these algorithms are not the target for us.

3.1 IDA: Choice for Optimality and Memory

To find the optimal (shortest) solution, one can easily come up with the idea of using a search. The search

will be performed on a tree, where the tree nodes are states of a Rubik’s Cube and the edges are transitions

from a Cube state to another. Since one can always twist a Rubik’s cube (possibly with repeating states),

using Depth First Search (DFS) does not seem viable. Breadth First Search (BFS), on the other hand, will

find the shortest solution. Therefore, our first implementation was a BFS solver. We intend for this solver

to be a reference solution solver at simple problems; unsurprisingly, it would be killed when searching a

solution from the tree with depth only 7. Note that without pruning, the branching factor for the tree is 18.

At depth 7, the tree has already branched approximately 186 = 34012224 times.

Since the optimality achieved through BFS could not scale, we turned towards using the IDA algorithm.

IDA employs the general idea of a bounded guess DFS. During each iteration, a bound is selected. The tree is

then traversed with DFS, where leaf nodes are the ones with no child nodes with estimated distance towards

goal state remaining within bound. The bound is relaxed every time the DFS for an iteration finished with

no solution found.

For example, in the above graph, iteration i may be traversing the tree over blue edges with no solutions

found. Then, iteration i + 1 may traverse with blue plus green edges.

Note that the primary concern for IDA is the constraint on memory, hence it does not store which nodes

has been visited in the previous iteration (because otherwise, e.g. if leaf nodes are stored for continuation,

3

https://www.psc.edu/resources/bridges/
https://www.jaapsch.net/puzzles/thistle.htm
https://www.jaapsch.net/puzzles/thistle.htm


memory will soon be exhausted given the high branching factor of the search tree). Although there are

clearly repeated work in di�erent iterations, it is not our concern here for two reasons:

1. the high branching factor makes the repeated work less noticable; i.e. the repeated work for each

iteration is roughly 1/18 of the current iteration work.

2. we believe the challenges of parallelization and such repeated work is completely independent.

Here is a piece of recursive pseudo-code for IDA from Wikipedia:

path current search path (acts like a stack)

node current node (last node in current path)

g the cost to reach current node

f estimated cost of the cheapest path (root..node..goal)

h(node) estimated cost of the cheapest path (node..goal)

cost(node, succ) step cost function

is_goal(node) goal test

successors(node) node expanding function, expand nodes ordered by g + h(node)

ida_star(root) return either NOT_FOUND or a pair with the best path and its cost

procedure ida_star(root)

bound := h(root)

path := [root]

loop

t := search(path, 0, bound)

if t = FOUND then return (path, bound)

if t = then return NOT_FOUND

bound := t

end loop

end procedure

function search(path, g, bound)

node := path.last

f := g + h(node)

if f > bound then return f

if is_goal(node) then return FOUND

min :=

for succ in successors(node) do

if succ not in path then

path.push(succ)

t := search(path, g + cost(node, succ), bound)

if t = FOUND then return FOUND

if t < min then min := t

path.pop()

end if

end for

return min

end function

3.2 Richard Korf’s Algorithm

IDA requires that the heuristic function h (which is used to estimate remaining distance from a node to

solution) to be admissible, i.e. the estimation is no greater than the true remaining distance. The core idea

of Richard Korf’s proposal on providing a better heuristic for the Rubik’s Cube search tree is to make use

of a series of pattern databases. For example, one database is the Corner Pattern Database (CornerDB);

this database stores all possible mappings between an encoded corner state and an h value, i.e. the highest

possible number of steps to the ”solved” condition from any Rubik’s Cube conditions with matching corner

cubies state. Similar ideas can be employed on edge states (edge databases). For our implementation, only

the CornerDB is used.

3.3 Computational Structure and Solution Depth

Let K be the average branching factor hereafter. For now, without pruning, K = 18.

4

https://en.wikipedia.org/wiki/Iterative_deepening_A*


First, since IDA is an iterative algorithm, we define the search graph for an iteration i to be Gi, and

the bound to be Bi. Bi increases as the number of iterations increases; more specifically, Bi+1 is always

the smallest estimation larger than Bi towards the goal state. Relaxing bounds allows Gi to keep growing

bigger. Note that although Bi can sometimes increase by more than 1, the current estimation is always

increased by 1 every time a child node is visited from a parent node (in the search tree for Rubik’s Cube, as

the path cost is always 1). Therefore, Gi+1 will always be at least one level bigger than Gi, with roughly K

times more nodes.

An important note, since IDA is an algorithm that stops once a solution is found, if solution is found

at depth i = I, the algorithm will likely not traverse the entire GI . Even for the blue and green edges

demonstration above, some green edges will be traversed before the blue edges in a serial execution, as the

sequential algorithm is inherently Depth first.

For a Rubik’s Cube case, we define solution depth as the number of scramble steps needed to solve it,

which is luckily the same as the tree traversal depth. Note that if a solution requires two F1 moves, its depth

is 1, since it can be completed with one F2 move.

3.4 Cube Representation and Key Data Structures

Our solver used the two pieces of information to store a Cube and perform transitions on it:

1. 6 three-by-three 2d arrays of bytes to represent colors of each face.

2. 1 eight-byte array to denote the orientation of each corner Cubie. Each Rubik’s Cube has these

following 8 corner cubies (represented by the color combinations) with their corresponding starting

position (represented by the three faces they are on):

Cubie = [RBY, RGY, RGW, RBW, OBW, OBY, OGY, OGW]

Corner = [ULB, URB, URF, ULF, DLF, DLB, DRB, DRF]

With scrambles, each Cubie may move to di�erent corner locations. Byte i in the 8-byte array cor-

responds to the orientation of the Cubie currently on Corner[i]. Note that orientations can have 3

values, enumerated as 0, 1, and 2. Both orientation and Cubie coloring are encoded into a database

lookup key. According to numerous di�erent references, there are 8! ◊ 37 = 88179840 possible corner

conditions (considering di�erent placements, and orientations of each Cubie). (This number is also the

possible number of conditions for an 2x2x2 Cube).

Next, for the search tree representation, node representation in the search tree has evolved multiple times.

For IDA implementations, a node data structure is used to record the current problem. It evolved from

partial problem state into complete problem state (as in the earlier recursive IDA implementation, some

parameters are carried by the function calls). The complete problem state for one iteration of IDA includes

an array of nodes, each with the following fields:

1. A current state cube

2. op, the next transition to explore (Any of F1, F2 ... D2, D3)

3. g, the current cost (which is also the depth of the search tree)

4. min, next iteration bound (minimum of current iteration estimates exceeding current iteration bound)

5



Finally, the database is adapted from another Rubik’s Cube Solver repository: https://github.com/

benbotto/rubiks-cube-cracker. This database is pretty well optimized in terms of size and used ar-

rays of values of size 4 bits to conserve space; it is possible to store heuristic values this way, since the key

is simply the index and the heuristics value for any corner condition towards goal state is no greater than

15. (Recap: heuristic value for a corner condition is the smallest possible number of steps to the goal state

from any Cube state with matching corner condition).

Note, this section is meant to introduce the main data structures shared by all implementations of the

algorithm. OpenMP and MPI implementation-specific data structures will be covered below in their separate

sections, along with implementation details and analysis of progression.

4 Approach

Here is a list of Implementations progression for the OpenMP Implementation:

1. BFS Implementation (BFS)

2. IDA Recursive Sequential Implementation without Korf Database

3. IDA Recursive Sequential Implementation, (IDA_REC_SEQ)

4. IDA Recursive OpenMP Implementation with only first level parallelized

5. IDA Recursive OpenMP Implementation parallelizing at a level to spawn enough tasks (IDA_REC_OMP)

6. IDA Iterative Sequential Implementation, (IDA_ITER_SEQ)

7. IDA Iterative OpenMP Implementation with all tasks created all at once (IDA_ITER_OMP_MAIN_WORKER)

8. IDA Iterative OpenMP Implementation with each worker progress top few levels of tree and grab tasks

as needed (IDA_ITER_OMP)

9. IDA Iterative OpenMP Implementation with worker grab task and task stealing (IDA_ITER_OMP_UNEVEN)

10. IDA Recursive OpenMPI Implementation with only first level parallelized (IDA_MPI)

11. IDA Recursive OpenMPI Implementation with as many nodes as the processors (IDA_MPI2)

12. Incomplete IDA Iterative OpenMPI Implementation with job stealing (IDA_MPI3)

13. IDA Recursive OpenMPI Implementation with more frontier nodes than the processors and best-first

expansion (IDA_MPI4)

The names in the parentheses are method (implementation) names that can be used to parametrize the

paracube binary. For example,

./paracube -f input/t11 -t 4 IDA_ITER_OMP

will start the solver, and solve the given input/t11 case using the IDA_ITER_OMP method. For MPI,

mpirun -np 17 ./paracube IDA_MPI4 -p 17 -f input/t11

will start the solver, and solve the give input/t11 case with 1 master node and 16 worker nodes using the

IDA_MPI4 method.

6

https://github.com/benbotto/rubiks-cube-cracker
https://github.com/benbotto/rubiks-cube-cracker


4.1 Pre-IDA REC OMP

Here is a quick recap on the algorithms we implemented for the checkpoint report.

The naive BFS implementation can be used to resolve cubes with Solution depth of no more than 6. It

faces significant memory constraints as the branches expand exponentially with a high branching factor.

Next, we tested the basic IDA Recursive Sequential Implementation without Korf Database to resolve

cubes of depth 9 (rather quickly) on GHC machines.

With the help of the CornerDB, the IDAKDB (a.k.a IDA_REC_SEQ) implementation can resolve cubes up

to 11 rather quickly.

The last implementation for the checkpoint report was the ParaIDAKDB implementation; this imple-

mentation showed speedups for cube solving for cases t8 through t11. The speedup graph and analysis can

be found in the checkpoint report.

4.2 Speedup through pruning

Before further progressing onto OpenMP implementation, we introduced a function named can_prune, it

takes a previous transition and a current transition as arguments. The logic is as follows:

First, If the previous transition is any of F1, F2 or F3, we do not explore current transitions of F1, F2 or

F3. The reason is that any combinations of such two moves, will have e�ects on the cube equivalent to one

of the moves, e.g. F1 F2 == F3, F3 F3 == F2. Similar reasons apply for all transitions in classes B, L, R,

U, and D.

Next, If the previous transition is any of

1. F1, F2 or F3, we do not explore B1, B2 or B3

2. L1, L2 or L3, we do not explore R1, R2 or R3

3. U1, U2 or U3, we do not explore D1, D2 or D3

This is because exploring any transition in the F class then B class is equivalent to exploring any transitions

in B class then F class. Therefore, for the two commutative classes, we kept only one pair. E.g. U2 D1 ==

D1 U2.

After pruning, we estimated the branching factor K with a count of transitions from each iteration. The

resulting count showed that K is approximately 12.

5 OpenMP Implementation

5.1 IDA REC OMP and IDA ITER SEQ

The IDA_REC_OMP implementation was written to distribute enough tasks to di�erent workers. The number

of tasks created is dependent on the number of workers; we created a simple function mapping the number

of workers to tree depth (task_creation_depth_limit) for task creation. For example, 16 workers may

map to depth 3 and create 123 tasks, allowing each worker an average of 100 tasks. Load balancing is the

main concern of the implementation at this phase. We believed that with finer grained tasks, load balancing

will be better and the algorithm will scale better. Here is a piece of pseudo-code for the algorithm:

procedure ida_star(root)

bound := h(root)

path := [root]

loop

#pragma omp parallel {

7

https://github.com/chanzy3/Rubik-s-ParaCube/tree/f4f8db4b0e524edc99e87568abb3f40f0bec50f1
https://github.com/chanzy3/Rubik-s-ParaCube/tree/50a990617491d4df74d967765c69ab803b9203af
https://github.com/chanzy3/Rubik-s-ParaCube/tree/50a990617491d4df74d967765c69ab803b9203af
https://github.com/chanzy3/Rubik-s-ParaCube/tree/022add07846d758a25d15c4e007b81baab5a596f


#pragma omp single

t := search_shared(path, 0, bound)

}

if t = FOUND then return (path, bound)

if t = then return NOT_FOUND

bound := t

end loop

end procedure

function search_shared(path, g, bound)

node := path.last

f := g + h(node)

if f > bound then return f

if is_goal(node) then return FOUND

min :=

for succ in successors(node) do

if succ not in path then

if node.depth > task_creation_depth_limit {

#pragma omp task firstprivate(...) {

t := search(path, g + cost(node, succ), bound) // the same as the previous search

if t = FOUND then #pragma omp critical { update path }

if t < min then min := t

}

} else {

path.push(succ)

}

end if

end for

return min

end function

Although speedups were observed for core counts up to 16, we were not satisfied with the results. For

performance, we analyzed that the fidelity between this version of parallel algorithm and the sequential

algorithm is too low. The net e�ect was that speedups over di�erent runs were not stable (since the tasks

were picked up by the threads in di�erent orders during di�erent runs); this randomness caused evaluation

hard. We then tried to change the original recursive implementation into an iterative implementation to

enable more freedom with task management when compared to the recursive calls.

Also note that, normally, we would expect the the worker who has found a solution to notify all other

workers to terminate. This feature is also missing in this version of code. The amount of unnecessary work

has greatly harmed the speedup from having parallel worker threads.

This missing notification is added in the next version of code, the iterative implementation of sequential

IDA. With IDA_ITER_SEQ, to keep track of the nodes and current traversal, we used an array of tree nodes

from the current traversal node to root of tree. This array is used as a stack for iterative IDA and an

array when outputting results. The op field in the nodes definition (problem state definition above) is used

to record which transition to explore next. Current node op is compared with previous node op to prune

unnecessary branches, as mentioned in section 4.2.

5.2 IDA ITER OMP MAIN WORKER

From the sequential iterative IDA, we re-implemented the same parallelization idea of having a main worker

spawn tasks, and letting other worker threads grab the tasks. The main worker will join the other workers

once task creation is complete. The purpose of this algorithm is to serve as a basis for improvement in the

IDA algorithm. Additionally, without random task grabbing order, we were able to eliminate the randomness

mentioned above.

Furthermore, here are the three improvements for this algorithm when compared to the previous IDA_REC_OMP:

1. The worker that found a solution now notifies the other works by writing a global flag. The frequency

8



of notification is purely dependent on how often each worker checks the global flag. For simplicity, we

let each worker check the flag at each node in this implementation. Later on, we reduced the frequency

to whenever a node is fully traversed (i.e. all child nodes that should be visited in current iteration

has been visited).

2. A new data structure was introduced: a list of tree nodes shared by many workers. This is similar to

the data structure in the recursive implementation; the main di�erence is that in the previous recursive

implementation, this list was not shared. We hope that eventually many workers can operate on this

list and perform some sort of task grabbing in order they’d like. Some potential problems including

contention will be explored below.

3. The function mapping inputs to number of tasks to create has been changed. A very important aspect

of the algorithm is that for any sub-tree, each branch from the sub-tree root may be of vastly di�erent

heights due to heuristics and pruning. This means that simply dividing the task up for each thread

will not su�ce when the tree depth is high, i.e. a case with high solution depth at high iteration count.

We introduced a configurable maximum task size, hoping to make sure that tasks are not too di�erent.

The same function now generates a depth between minimum task creation depth (based on number of

workers) and maximum task size.

5.3 IDA ITER OMP

We experimented with di�erent maximum task size, in terms of depth of subtree, D, to search. Through

various experiments and measuresments, we explore that D = 9 seems to be the sweet spot for cases up

to t14 (solution depth 14). With smaller D, too many tasks were created (note that tasks were created

sequentially by the main worker previously) and the task management cost became too high. With larger

D, we would be gradually reverting back to the state of the implementation before introducing D.

Next, an implementation where tasks were created by worker threads as needed was introduced. We

hope to avoid task management cost and amortize out task creation cost to di�erent workers. Recall that

we started sharing the data structure for top level task creation path. Each worker process in turn gains

exclusive access on this path. Tree traversal will be continued from where the previous task left o�. Once

current node depth reaches D, the worker would stop, copy problem into its private problem storage, and

release exclusive access before starting to work on the sub-problem.

A huge concern here is the synchronization wait time for the sequential access to the shared data structure.

Using a wallclock timer, we measured that for the test cases we had, often enough, although workers are

waiting on each other at the beginning, the tasks were di�erent enough so that the workers were barely waiting

for exclusive access when trying to grab a next task. The wait time introduced by this synchronization with

D = 9 is for case t13 is less than 1%.

The speedups we observed for this implementation is very good, even very similar to the IDA_ITER_OMP_UNEVEN

task stealing implementation below. We were hoping to further improve the algorithm along the ideas of

that ”each branch from the sub-tree root may be of vastly di�erent heights due to heuristics and pruning”.

Hence, task stealing idea was introduced next.

5.4 IDA ITER OMP UNEVEN

Firstly, to better illustrate the purpose of task stealing, consider the following search graph for an iteration

9



With one level of task spawn, in the most extreme case, only one out of the many tasks is non-trivial.

This task may be given to a thread and the other threads are simply waiting for it to perform sequential

algorithm. We can reasonably expect the speedup from this scenario to be abysmal. Note, this imbalanced

subtree property of IDA is eventually limiting to the overall speedup. (We will discuss in further details in

the Results and Analysis sections).

To enable task stealing, after allocating their local copy of problem storage, each worker exposes a pointer

to the storage into a global pointer array. For simplicity, we also defined a task stealing depth limit S (with

a best value 3 from experiments and measurements). After repeatedly dividing tasks through stealing,

ultimately, the task spawning is stopped when the value of (IDA iteration bound - current node depth)

reaches threshold value S.

To some extent, this is less about task stealing than enabling smart multi level task spawn. In the figure

below, the triangular areas are subtrees that are not pruned, the green edges are example edges of the entire

tree. We want to load balance and spawn tasks at di�erent levels, while some tasks has already been handed

over to individual worker threads:

Note that the order of worker thread to steal from is quite important. This is one of the ways through

which we can reduce possible contention. For example, we have experimented with the strategy below (see

pseudocode). We believe this order will, to the largest degree, reduce the amount of workers trying to steal

10



from the same worker unless there are only few to steal from. Consider 8 threads, instead of a simple for

loop of i from 0 through 7, thread 5 would steal from workers in the following order:

order (i): 0 1 2 3 4 5 6 7

thread_id to steal from: 5 4 7 6 1 0 3 2

which can be generated iwth the following logic

thread_id[0] = omp_get_thread_num()

for i = (1..7)

j = next_power_2(i) / 2

i_alt = i - j

thread_id[i] = thread_id[i_alt] xor j

Although we have observed some speedup with this order than the simple for loop order (which will be the

same for each worker thread). The speedup was not significant enough given our test cases, and hence it

was not adopted eventually.

Note this algorithm is still having very di�erent execution order when compared to the sequential IDA,

since the parallel portion of it is inherently breadth first, i.e. workers work on independent tasks first. As

mentioned in the final Results and Analysis section, we eventually determined that it is not reasonable for

all workers to work on the same subtree at once just to create fidelity; reasons include contention and, more

importantly, the goal state can very well be hidden in the last node that the sequential algorithm is going

to traverse in an iteration, in which case, there will be no problem of fidelity.

6 OpenMPI-IDA*

As timed allowed, we decided to further progress out implementation using OpenMPI. We were hoping that

with this new implementation platform and programming model, more load balancing techniques can be

explored.

Our IDA* algorithm with the message passing model will generally be divided into two parts: the master

node will be responsible for generating enough frontier nodes and then assign each frontier node to worker

nodes for parallel searching. After obtaining frontier nodes, worker nodes will start sequential IDA* and

then report the searching bound back to the master node.

6.1 Basic MPI-IDA* algorithm

6.1.1 Generating frontier nodes

Initially there is one root, it will be expanded into as many frontier nodes as processors. Out of the many

algorithms to perform this task, we arbitrarily chose breadth-first search for this initial distribution. For the

cases where the expansion of a root node exceeds the number of processors, we only generate a part of its

children and contract the other parts to its parent as well as an indication (record) on which of the successor

nodes has been generated. The initial cost bound is set to be the minimum of estimated distance to goal

state (f) value of all generated frontier nodes. Note f is the sum of g, which is the cost of current node from

root, and h, the corresponding heuristic value read from database given the corner conditions.

6.1.2 Assigning frontier nodes

After generating enough frontier nodes, the master node will start sending frontier nodes to worker nodes.

Notice that instead of sending frontier nodes themselves, we compress the information by sending the path

from the tree root to frontier nodes. After receiving messages from the master node, the worker nodes

will start performing sequential IDA* independently and report back the minimum f value that exceeds the

11



current bound. If a worker node finds an optimal solution, it will report back to the master node, and master

node will attempt to abort the MPI session immediately. If the worker nodes fail to find the optimal solution

in an iteration, the master node will update the cost bound to the minimum of all f values that the worker

nodes reported back, and broadcast this updated cost bound to every worker node for starting their next

iterations.

6.2 Improving MPI-IDA*

In the basic MPI-IDA* algorithm shown above, since we only generate as many frontier nodes as the number

of processors, in every iteration, worker nodes that finish their jobs earlier will become idle and wait for the

other worker nodes, which will result in poor load balancing. In order to mitigate this issue, we propose a

better way to generate frontier nodes.

6.2.1 Better Initial Distribution

First observe that tree nodes with the same f value usually tend to generate sub-trees of comparable size.

Bearing this in mind, during the generation of frontier nodes, we implement best first expansion, i.e. we only

expand those having lower f value until number of frontier nodes equal to the number of processors. This

will give us better load balancing by improving initial distribution. The speed-up of this best-first expansion

will be discussed in section 7.2. The data structured used here is a priority queue. The task generation

based on f is key point here.

6.2.2 Dynamic Workload Assignments

Within each iteration, a processor which completes searching its sub-tree will wait for remaining processors

to finish. The ideal solution would be to let idle nodes steal work from busy nodes. Unfortunately, we were

not given time to implement this in OpenMPI. Instead, we create more frontier nodes (4000 in our case) than

the number of processors so that whenever a worker node finishes processing its sub-tree, it can immediately

inform the master node and get the other part of the work. This will ensure a better form of load balancing

except that idle nodes still need to wait for busy nodes when the remaining number of frontier nodes are

less than the number of processors.

Our final version MPI-IDA* will be the following:

num_expand number of frontier nodes to expand

cube scrambled cube

init_node node containing initial scrambled-cube state, op path and depth

is_contract is partial contraction

pq priority queue containing un-expanded nodes, nodes with smaller f-values

will be popped first

n_current top node in the priority queue

frontier_nodes array containing all frontier nodes

num_termination number of worker nodes that finish their jobs in an iteration

bound threshold in current iteration

next_bound cost threshold in next iteration

contract(node) function to contract unvisited children nodes to their

parents with indication of visited nodes

successors(node) node expanding function

search(path, g, bound) sequential ida* search algorithm

init_node_from_cube(cube) function to initialize node from cube

function best_first_expand(init_node, num_expand)

pq.push(init_node)

while (pq.size() < num_expand)

n_current = pq.top()

pq.pop()

for (child : successors(n_current))

12



if (child is not the last successor of the current node)

pq.push(child)

break

else

pq.push(contract(child))

while (pq is not empty)

frontier_nodes.push_back(pq.top())

pq.pop()

return frontier_nodes

function run_master(cube)

init_node := init_node_from_cube(cube)

frontier_nodes := best_first_expand(init_node, num_expand)

while (1)

MPI_Recv(&buf, ANY_TAG, mpi_sta)

// Receive ALLOCATE_TAG from worker node

if (mpi_sta.TAG == ALLOCATE_TAG)

if (i == frontier_nodes.size())

num_termination++

else

// Send START_TAG and frontier node to worker node i

MPI_Send(frontier_nodes[i], START_TAG, mpi_sta.MPI_SOURCE)

i++

// Receive UPDATE_TAG from worker node

if (mpi_sta.TAG == UPDATE_TAG)

if (buf.found == FOUND)

MPI_Abort()

else

next_bound := min(buf.bound, next_bound)

if (num_termination == num_worke_nodes)

bound := next_bound

i = 0

num_termination = 0

for (n : worker_nodes)

MPI_Send(frontier_nodes[i], START_TAG, n)

function run_worker()

while (1)

// Request jobs from master node

MPI_Send(NULL, ALLOCATE_TAG, 0)

// Waiting for START_TAG from master node

MPI_Recv(&node, START_TAG, 0)

ans = search(path, node.depth, node.bound)

// Report result back to master node

MPI_Send(&ans, UPDATE_TAG, 0)

procedure ida_solve_mpi(cube)

if (rank == 0)

run_master(cube)

else

run_worker()

7 Results And Analysis

To our very best understanding, IDA with Rubik’s Cube heuristics is not simple to parallelize. We are proud

of the results we obtained, since there are many reasons for which, achieving linear speedup is hard at high

degree of parallelism.

7.1 IDA ITER OMP UNEVEN

We present the results from a few aspects.

13



7.1.1 Absolute Runtime

For the checkpoint version of OpenMP parallelization, with 4 threads, input case t11 requires approximately

40000ms to complete. For the task stealing OpenMP implementation, this same input case t11 requires only

4880 ms to complete with 4 threads. This is more than 8◊ faster. On average, the speedups for other cases

are also very noticable. Note that since the new algorithm scales better, the results at higher core counts

will only be better than 8◊. Below are the table to compare runtimes for cases t11 and t10 between the two

implementations:

1 2 4 8 16
t10 15970.5066 10290.5766 6796.0824 4425.493 3753.4566
t11 93589.3556 60826.4756 39414.3522 28903.532 24988.423

Table 1: Checkpoint OMP absolute runtime in ms

1 2 4 8 16
t10 3335.111 2031.965 1199.159 753.198 482.133
t11 16582.16 7937.705 4887.533 2244.976 1942.877

Table 2: Task Stealing OMP absolute runtime in ms

7.1.2 Scaling Factor

First, we present the scaling factor results:

1 2 4 8 16 32 64 128
t10 1 1.641323054 2.78120833 4.427933956 6.917408682 9.657470898 12.99842933 13.70223789
t11 1 2.089037071 3.392746402 7.386341769 8.534848063 9.825481181 10.37752888 20.28068828
t12 1 2.023726278 4.019036572 6.785506016 10.46016241 12.58392021 12.30555961 13.6365893
t13 1 1.947263426 3.894505955 6.924669819 10.84914962 13.21445822 13.25753313 13.18187134

Table 3: Speedup over num threads = 1

Note that it may appear that scaling has slowed down, but notice for t11, the scaling at num threads =

128 is great. This measurement is persistent, and we provide a detailed explanation below in the analysis

portion, as for why the scaling factor is not always linear, or may even appear to be inconsistent (i.e. in the

t11 case) or superlinear.

7.2 MPI IDA*

The following is the scaling factor results with IDA_MPI4

14



1 2 4 8 16 32 64 128
t10 1 1.95584 3.71722 6.89632 12.88925 16.98076 19.20603 20.63036
t11 1 1.99426 3.86253 7.87419 16.34622 31.43206 39.57494 86.04127
t12 1 1.94990 3.25169 4.75886 5.83740 7.01641 6.70384 6.75849
t13 1 1.96897 3.64491 6.29554 10.45602 17.41019 23.11048 26.21127

Table 4: Speedup over num worker nodes = 1

Note for test case t12, the scaling factor is pretty low, while the other scaling factors are fairly decent.

Test case t11 is an interesting case. We believe that the scale up is achieved by doing no unnecessary work

(see section 8.2). We speculate that test case t12 may not be scaling so well for similar reasons.

8 Analysis

Given the complexity of tasks for IDA*, which we will explain below, we believe MPI and OpenMP are far

superior platform choices than GPUs.

8.1 Property of IDA with Korf Database as heuristics

Firstly, we introduce the test cases used to perform this analysis. Given a series of steps to resolve a Rubik’s

Cube case, these steps can be any of the steps in these three lists:

1. S1 = [F1, B1, L1, R1, U1, D1]

2. S2 = [F2, B2, L2, R2, U2, D2]

3. S3 = [F3, B3, L3, R3, U3, D3]

Since we are not aware of the solutions steps needed ahead of time, there is no reason to enforce one order

of traversal over another. Hence, for simplicity, the order of our algorithm’s node traversal is always in S1,

S2, S3. This means that to find a solution, U = [F1 B1 U1], will take strictly less time than the solution

V = [F3 B3 U3].

Our normal t1-t13 test cases all contain solutions of pattern similar to V, i.e. all steps come from S3.

Hence, we created a few other test cases:

1. t13 all i1, where the solution depth is still 13, but all solution steps come from S1.

2. t13 last i1, where the solution depth is also 13, but only the last solution step comes from S1.

3. t13 scale, where the solution depth is also 13, but one of the 13 solution step (higher up in the search

tree, earlier in the traversal steps) comes from S1.

15



Had we created test case t13 first i1, (where the solution depth is also 13, but the first solution step comes

from S1), we would expect to see similar results when compared to t13 scale. As we will demonstrate, the

order of traversal in the top levels of the search tree matters a lot for algorithm’s absolute speed. See below

graph for IDA_ITER_OMP_UNEVEN on the new cases:

We can observe that, as expected, the absolute time in terms of execution is the lowest for t13 all i1, next

lowest for t13 scale. Next that t13 scale is still much faster than t13 last i1, since the solution step from S1

is much higher up in the search tree.

Here are the speedup measurements when running IDA_ITER_OMP_UNEVEN on these new test cases:

1 2 4 8 16 32 64 128
t13 1 1.9472 3.89450 6.92466 10.8491 13.2144 13.2575 13.1818

t13 all i1 1 2.0091 3.9305 6.4686 9.3658 11.2325 10.8604 11.4029
t13 last i1 1 1.9795 3.9605 6.9173 10.8892 13.2720 13.1271 13.2671
t13 scale 1 1.9976 3.9789 6.9260 10.8838 13.1754 13.1725 12.7074

Table 5: Speedup over num threads = 1

We can observe that scaling is much weaker for the t13 all i1 case with IDA_ITER_OMP_UNEVEN. This is

expected, and alludes to the next section analyzing the part of work that the parallel implementations will

carry out, while the sequential implementations will not perform. Note this is also the ultimate limiting

factor for which parallel implementations do not always scale as well in the Rubik’s Cube Solver.

Here are the speedup measurements when running IDA_MPI4 on these new test cases:

16



1 2 4 8 16 32 64 128
t13 1 1.96897 3.64491 6.29554 10.45602 17.41019 23.11048 26.21127

t13 all i1 1 2.91462 5.54191 10.61928 19.85256 40.74670 54.97080 59.74378
t13 last i1 1 1.89606 3.16883 4.44172 5.24991 5.44232 5.45020 5.46048
t13 scale 1 2.06226 3.95001 7.75040 15.43716 32.35369 63.52471 106.24747

Table 6: Speedup over num worker nodes = 1

The MPI_IDA4 numbers are more interesting to observe. We failed to find a detailed explanation on why

the scaling factor for case t13 last i1 is much lower. We speculate that this is caused by the same reason as

we will explain in the next section.

8.2 E�ciency factor of the algorithm in Parallel

In this section, we intend to provide an analysis on the main reasons why we believe parallelizing IDA*

algorithm with the Korf Database as heuristics becomes increasingly harder as the degree of parallelism

increases.

1. IDA* does not traverse the entire graph at its final iteration. The amount of work at the previous

iterations is minimal when compared to the last with K ¥ 12 after pruning.

2. To avoid synchronizations costs, parallel algorithms almost always avoid dependencies. Hence, the

fidelity between parallel implementation and sequential implementation is low. In cases where not the

entire graph is traversed, parallel algorithm is doomed to perform unnecessary work. (If we know the

solution placement ahead of time we may be able to avoid this, but we do not understand enough

about the heuristic values in Korf’s Pattern Database; these heuristic values would a�ect the search

tree formation greatly.)

17



To be more specific, when traversing the above tree and find the solution at the bottom of the green traversal

path, a sequential algorithm would finish red traversal paths, then continue onto green and return as soon

as solution is found. However, for parallel algorithm, multiple workers would speed up traversing the red

portion greatly. One worker will then continue onto the green path, while its peers will work on the blue

paths (which are unnecessary). At this point, the speedup brought by the introducing more workers into

running the algorithms is reduced. This is likely the reason why the t13 all i1 case is having a reduced

speedup factor, as the additional workers are simply working on the blue tasks.

Given the above two limitations, if we want to achieve good speedup when compared against the sequential

algorithm, we must find the balanced point of creating tasks and allow dependencies in algorithm; i.e. to

allow some more workers to work on the green path and less workers to work on the blue path. However, this

is against the spirit of parallelization and, in particular, hard since we do not know where exactly the green

path is. As the balanced point for our implementations, the dependencies we are allowing here is achieved

through task stealing and sub task granularity. There is certainly future work in this area, which we will

mention below. But, again, for the reason that we cannot expect where the solution will hide in the search

tree, there is no reason to introduce too much dependency, which may simply cause slow down.

Note that the above diagram also demonstrated how super linear speedup may be achieved (e.g in the

OpenMPI implementations). If the green task is a very light weight task, while the red tasks are very heavy

weight, parallelization may allow workers to find the solution before even finishing all the red tasks as in the

sequential case, or finishing some of the red tasks as in cases where less workers are allocated.

8.3 Attempt for better Load Balancing

As discussed above, for the MPI implementation, during the initial distribution, we only expand on nodes

having smaller f values so that all generated frontier nodes will have sub-trees of comparable sizes. Ad-

ditionally, we divide the entire search into finer grained pieces (hence more) so that idle workers will be

dynamically allocated more tasks. Note that smaller f values represent further distances from the goal state;

hence these nodes will more likely to be a root node for larger sub-trees. Dividing up larger trees and keeping

smaller trees is likely going to produce better balanced load, when compared to dividing up smaller trees

and keeping larger trees.

18



9 Future Work

9.1 Increase Fidelity between parallel and sequential implementations

To clarify, we are listing this item as a possible future work direction, although we are not fully convinced

about its value. The supporting reason would be that, for the final iteration of IDA*, performing depth first

will likely find solution faster when compared to breadth first (and incur less work). Hence, fidelity to the

sequential algorithm is probably going to allow measurements be closer to a near optimal speedup. However,

since, again, we cannot guess where the solution will hide in the search tree, and the search order of the

sequential algorithm can be any order, we did not chose to implement the parallel algorithm this way. (Not

to mention that we also want to avoid synchronization costs).

9.2 More detailed analysis of the heuristics numbers in the Korf Pattern database

This is a tasks that may allow a more detailed design of the parallel algorithms (e.g. how to spawn tasks,

etc.,). We believe that the heuristic values in the Pattern Database will educate us about the formation of

the search tree. However, we did not perform this task due to time limitations and also that this may not

be a very scalable task, e.g. what about the database for a 4x4x4 Cube? It may indicate a very di�erent

search tree formation than the one for a 3x3x3 Cube, so that our well-designed algorithm for 3x3x3 Cube

will not work well for a 4x4x4 Cube Solver.

10 References

1. Nargolkar, A. (2006) Solving the Rubik’s Cube with Parallel Processing. Arlington, TX: the University

of Texas. Available From: UTA Libraries [accessed 14 Oct 2020].

2. Cook, D. Varnell, C. (1998) Adaptive Parallel Iterative Deepening Search. Arlington, TX: Journal of

Artificial Intelligence Research. Available From: JAIR Archive [accessed 29 Oct 2020].

3. V. Nageshwara Rao, Vipin Kumar and K. Ramesh (1987) A Parallel Implementation of Iterative-

Deepening A*. Austin, TX: AAAI-87 Proceedings. Available From: AAAI Archive [accessed 29 Oct

2020].

4. Z. Hafidi, E-G Talbi and G. Goncalves (1995) Load Balancing and Parallel Tree Search: the MPIDA*

Algorithm. Lille, France: PARCO. Available From: Semantic Scholar Archive [accessed 29 Oct 2020].

11 Work Distribution

Nov 4 - Nov 16

3 Implement software from scratch, Cube representations etc., and benchmarking tools for di�erent

implementations;

3 Complete basic sequential implementation for resolving cubes in small number of steps;

3 Parallelize the basic implementation to adapt to large number of steps;

3 Measure all implemented code

Nov 16 - Nov 23

19



3 Implement the more sophisticated (Iterative Deepening A based) algorithms (Korf DB) discussed in

the paper.

3 Construct IDA with database (Database adapted from this repo: https://github.com/benbotto/

rubiks-cube-cracker/tree/2.2.0)

3 Perform measurements for IDA with Korf (only corner) DB over BFS.

Nov 23 - Nov 30

3 Adapt database complete. (We spend some time to port our code and make sure our model works with

the given database).

3 Parallelize IDA with Korf DB using OMP, and perform measurements.

3 Incorporate di�erent heuristics and branch pruning techniques that we came up with (work in progress,

delayed as we were blocked previous on constructing our own DB)

Nov 30 - Dec 4

3 (tianez) continued improvement of branch pruning techniques and OMP.

3 (chengzhh) MPI implementation of the optimal cube solver. We expect the OMP and MPI algorithms

to be di�erent.

Dec 4 - Dec 9

3 (team) Measurements over all implemented algorithms and understand the new performance charac-

teristics.

3 (team) deep dive into OMP and MPI implementations

Dec 9 - Dec 14

3 (team) deep dive into OMP and MPI implementations

3 (team) Prepare for poster session and final report.

We would like a 50/50 division.

20

https://github.com/benbotto/rubiks-cube-cracker/tree/2.2.0
https://github.com/benbotto/rubiks-cube-cracker/tree/2.2.0

	Introduction
	Singmaster Notation

	Summary
	Background
	IDA: Choice for Optimality and Memory
	Richard Korf's Algorithm
	Computational Structure and Solution Depth
	Cube Representation and Key Data Structures

	Approach
	Pre-IDA_REC_OMP
	Speedup through pruning

	OpenMP Implementation
	IDA_REC_OMP and IDA_ITER_SEQ
	IDA_ITER_OMP_MAIN_WORKER
	IDA_ITER_OMP
	IDA_ITER_OMP_UNEVEN

	OpenMPI-IDA*
	Basic MPI-IDA* algorithm
	Generating frontier nodes
	Assigning frontier nodes

	Improving MPI-IDA*
	Better Initial Distribution
	Dynamic Workload Assignments


	Results And Analysis
	IDA_ITER_OMP_UNEVEN
	Absolute Runtime
	Scaling Factor

	MPI_IDA*

	Analysis
	Property of IDA with Korf Database as heuristics
	Efficiency factor of the algorithm in Parallel
	Attempt for better Load Balancing

	Future Work
	Increase Fidelity between parallel and sequential implementations
	More detailed analysis of the heuristics numbers in the Korf Pattern database

	References
	Work Distribution

