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PREFACE 

Functional analysis is the study of certain topological-algebraic structures 
and of the methods by which knowledge of these structures can be applied 

to analytic problems. 
A good introductory text on this subject should include a presentation 

of its axiomatics (i.e., of the general theory of topological vector spaces), it 
should treat at least a few topics in some depth, and it should contain some 
interesting applications to other branches of mathematics. I hope that the 
present book meets these criteria. 

The subject is huge and is growing rapidly. (The bibliography in 
volume I of [4] contains 96 pages and goes only to 1957.) In order to write 
a book of moderate size, it was therefore necessary to select certain areas 
and to ignore others. I fully realize that almost any expert who looks at the 
table of contents will find that some of his or her (and my) favorite topics 
are missing, but this seems unavoidable. It was not my intention to write an 
encyclopedic treatise. I wanted to write a book that would open the way to 
further exploration. 

This is the reason for omitting many of the more esoteric topics that 
might have been included in the presentation of the general theory of topo
logical vector spaces. For instance, there is no discussion of uniform spaces, 
of Moore-Smith convergence, of nets, or of filters. The notion of complete
ness occurs only in the context of metric spaces. Bornological spaces are 
not mentioned, nor are barreled ones. Duality is of course presented, but 
not in its utmost generality. Integration of vector-valued functions is treated 
strictly as a tool; attention is confined to continuous integrands, with values 
in a Frechet space. 

Nevertheless, the material of Part I is fully adequate for almost all 
applications to concrete problems. And this is what ought to be stressed in 
such a course: The close interplay between the abstract and the concrete is 
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XiV PREFACE 

not only the most useful aspect of the whole subject but also the most 
fascinating one. 

Here are some further features of the selected material. A fairly large 
part of the general theory is presented without the assumption of local con
vexity. The basic properties of compact operators are derived from the 
duality theory in Banach spaces. The Krein-Milman theorem on the exis
tence of extreme points is used in several ways in Chapter 5. The theory of 
distributions and Fourier transforms is worked out in fair detail and is 
applied (in two very brief chapters) to two problems in partial differential 
equations, as well as to Wiener's tauberian theorem and two of its applica
tions. The spectral theorem is derived from the theory of Banach algebras 
(specifically, from the Gelfand-Naimark characterization of commutative 
B*-algebras) ; this is perhaps not the shortest way, but it is an easy one. The 
symbolic calculus in Banach algebras is discussed in considerable detail ; so 
are involutions and positive functionals. 

I assume familiarity with the theory of measure and Lebesgue integra
tion (including such facts as the completeness of the If-spaces), with some 
basic properties of holomorphic functions (such as the general form of 
Cauchy's theorem, and Runge's theorem), and with the elementary topo
logical background that goes with these two analytic topics. Some other 
topological facts are briefly presented in Appendix A. Almost no algebraic 
background is needed, beyond the knowledge of what a homomorphism is. 

Historical references are gathered in Appendix B. Some of these refer 
to the original sources, and some to more recent books, papers, or exposi
tory articles in which further references can be found. There are, of course, 
many items that are not documented at all. In no case does the absence of a 
specific reference imply any claim to originality on my part. 

Most of the applications are in Chapters 5, 8, and 9. Some are in 
Chapter 1 1  and in the more than 250 exercises ; many of these are supplied 
with hints. The interdependence of the chapters is indicated in the diagram 
on the following page. 

Most of the applications contained in Chapter 5 can be taken up well 
before the first four chapters are completed. It has therefore been suggested 
that it might be good pedagogy to insert them into the text earlier, as soon 
as the required theoretical background is established. However, in order 
not to interrupt the presentation of the theory in this way, I have instead 
started Chapter 5 with a short indication of the background that is needed 
for each item. This should make it easy to study the applications as early as 
possible, if so desired. 

In the first edition, a fairly large part of Chapter 1 0  dealt with differ
entiation in Banach algebras. Twenty years ago this (then recent) material 
looked interesting and promising, but it does not seem to have led any
where, and I have deleted it. On the other hand, I have added a few items 
which were easy to fit into the existing text: the mean ergodic theorem of 



1 
I 2 
I 

---------- 3 6 I 
I 4 
7 1 ---------10 /\ 5 I 

8 9 11 
I 12 
I 

1 3  

PREFACE XV 

von Neumann, the Hille-Y osida theorem on semigroups of operators, a 
couple of fixed point theorems, Bonsall's surprising application of the 
closed range theorem, and Lomonosov's spectacular invariant subspace 
theorem. I have also rewritten a few sections in order to clarify certain 
details, and I have shortened and simplified some proofs. 

Most of these changes have been made in response to much
appreciated suggestions by numerous friends and colleagues. I especially 
want to mention Justin Peters and Ralph Raimi, who wrote detailed 
critiques of the first edition, and the Russian translator of the first edition 
who added quite a few relevant footnotes to the text. My thanks to all of 
them ! 

Walter Rudin 
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Introduction 

CHAPTER 

TOPOLOGICAL 
VECTOR 

SPACES 

1.1 Many problems that analysts study are not primarily concerned with 
a single object such as a function, a measure, or an operator, but they deal 
instead with large classes of such objects. Most of the interesting classes 
that occur in this way turn out to be vector spaces, either with real scalars 
or with complex ones. Since limit processes play a role in every analytic 
problem (explicitly or implicitly), it should be no surprise that these vector 
spaces are supplied with metrics, or at least with topologies, that bear some 
natural relation to the objects of which the spaces are made up. The sim
plest and most important way of doing this is to introduce a norm. The 
resulting structure (defined below) is called a normed vector space, or a 
normed linear space, or simply a normed space. 

Throughout this book, the term vector space will refer to a vector 
space over the complex field ({ or over the real field R. For the sake of 
completeness, detailed definitions are given in Section 1 .4. 

1.2 Normed spaces A vector space X is said to be a normed space if to 
every x EX there is associated a nonnegative real number l lx l l ,  called the 
norm of x, in such a way that 
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4 PART 1 :  GENERAL THEORY 

(a) l l x  + Y ll < l l x l l + IIY II for all x and y in X, 

(b) ll,:x x ll = I ,:x I l l x l l if x EX and ,:x is a scalar, 

(c) l l x i i > O if x # O. 

The word " norm " is also used to denote the function that maps x 
to ll x l l .  

Every normed space may be regarded as a metric space, in which the 
distance d(x, y) between x and y is I I  x - y 11 . The relevant properties of d are 

(i) 0 < d(x, y) < oo for all x and y, 
(ii) d(x, y) = 0 if and only if x = y, 
(iii) d(x, y) = d(y, x) for all x and y, 
(iv) d(x, z) < d(x, y) + d(y, z) for all x, y, z. 

In any metric space, the open ball with center at x and radius r is 
the set 

B,(x) = {y : d(x, y) < r} . 
In particular, if X is a normed space, the sets 

B , (O) = {x : l l x ll < 1 }  and 

are the open unit ball and the closed unit ball of X, respectively. 
By declaring a subset of a metric space to be open if and only if it is a 

(possibly empty) union of open balls, a topology is obtained. (See Section 
1 .5 .) It is quite easy to verify that the vector space operations (addition and 
scalar multiplication) are continuous in this topology, if the metric is 
derived from a norm, as above. 

A Banach space is a normed space which is complete in the metric 
defined by its norm ; this means that every Cauchy sequence is required to 
converge. 

1.3 Many of the best-known function spaces are Banach spaces. Let us 
mention just a few types: spaces of continuous functions on compact 
spaces ; the familiar If-spaces that occur in integration theory; Hilbert 
spaces - the closest relatives of euclidean spaces ; certain spaces of differen
tiable functions ; spaces of continuous linear mappings from one Banach 
space into another; Banach algebras. All of these will occur later on in the 
text. 

But there are also many important spaces that do not fit into this 
framework. Here are some examples : 

(a) C(!l), the space of all continuous complex functions on some open set 
n in a  euclidean space R". 
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(b) H(Q), the space of all holomorphic functions in some open set Q in the 
complex plane. 

(c) c;_, the space of all infinitely differentiable complex functions on R" 
that vanish outside some fixed compact set K with nonempty interior. 

(d) The test function spaces used in the theory of distributions, and the 
distributions themselves. 

These spaces carry natural topologies that cannot be induced by 
norms, as we shall see later. They, as well as the normed spaces, are exam
ples of topological vector spaces, a concept that pervades all of functional 
analysis. 

After this brief attempt at motivation, here are the detailed definitions, 
followed (in Section 1 .9) by a preview of some of the results of Chapter 1 .  

1.4 Vector spaces The letters R and ({ will always denote the field of 
real numbers and the field of complex numbers, respectively. For the 
moment, let <I> stand for either R or ({. A scalar is a member of the scalar 
field <1>. A vector space over <I> is a set X, whose elements are called vectors, 
and in which two operations, addition and scalar multiplication, are defined, 
with the following familiar algebraic properties: 

(a) To every pair of vectors x and y corresponds a vector x + y, in such a 
way that 

x + y = y + x  and x + (y + z) = (x + y) + z ;  
X contains a unique vector 0 (the zero vector or origin of X) such that 
x + 0 = x for every x E X; and to each x E X corresponds a unique 
vector - x such that x + ( - x) = 0. 

(b) To every pair (a:, x) with a: E <I> and x E X corresponds a vector a:x, in 
such a way that 

1x = x ' a:({Jx) = (a:{J)x, 
and such that the two distributive laws 

a:(x + y) = a:x + a:y, (a: + {J)x = a:x + {Jx 
hold. 

The symbol 0 will of course also be used for the zero element of the 
scalar field. 

A real vector space is one for which <I> = R ;  a complex vector space is 
one for which <I> = ({. Any statement about vector spaces in which the 
scalar field is not explicitly mentioned is to be understood to apply to both 
of these cases. 
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If X is a vector space, A c X, B c X, x E X, and A. E <1>, the following 
notations will be used: 

x + A =  {x + a : a E A}, 

x - A =  {x- a: a E A}, 

A + B = {a +  b :  a E A, b E  B}, 

A.A = {A.a :  a E A} .  
In particular (taking A. = - 1  ), - A  denotes the set of all additive inverses of 
members of A. 

A word of warning : With these conventions, it may happen that 2A 'I 
A + A (Exercise 1 ). 

A set Y c X is called a subspace of X if Y is itself a vector space (with 
respect to the same operations, of course). One checks easily that this 
happens if and only if 0 E Y and 

,:xY + {JY c Y 
for all scalars ,:x and {J. 

A set C c X is said to be convex if 
tC + (1 - t)C c C (0 < t < 1). 

In other words, it is required that C should contain tx + (1 - t)y if x E C, 
y E C, and 0 < t < 1 .  

A set B c X is said to be balanced if ,:xB c B for every ,:x E <I> with 
I <X I < L 

A vector space X has dimension n (dim X =  n) if X has a basis 
{ u 1 , • • •  , un} · This means that every x E X  has a unique representation of the 
form 

x = ,:x u + ·· · + ,:x u 1 1 n n (<X; E <1>). 
If dim X =  n for some n, X is said to have finite dimension. If X =  {0}, then 
dim X =  0. 

Example. If X = ({ (a one-dimensional vector space over the scalar 
field ({}, the balanced sets are ({, the empty set 0, and every circular 
disc (open or closed) centered at 0. If X = R1 (a two-dimensional 
vector space over the scalar field R), there are many more balanced 
sets ; any line segment with midpoint at (0, 0) will do. The point is 
that, in spite of the well-known and obvious identification of ({ with 
R1, these two are entirely different as far as their vector space struc
ture is concerned. 

1.5 Topological spaces A topological space is a set S in which a collec
tion r of subsets (called open sets) has been specified, with the following 
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properties : S is open, 0 is open, the intersection of any two open sets is 
open, and the union of every collection of open sets is open. Such a collec
tion r is called a topology on S. When clarity seems to demand it, the topo
logical space corresponding to the topology r will be written (S, r) rather 
than S. 

Here is some of the standard vocabulary that will be used, if S and r 
are as above. 

A set E c S is closed if and only if its complement is open. The closure 
E of E is the intersection of all closed sets that contain E. The interior Eo of 
E is the union of all open sets that are subsets of E. A neighborhood of a 
point p E S is any open set that contains p. (S, r) is a Hausdorff space, and r 
is a Hausdorff topology, if distinct points of S have disjoint neighborhoods. 
A set K c S is compact if every open cover of K has a finite subcover. A 
collection r' c r is a base for r if every member of r (that is, every open set) 
is a union of members of r'. A collection y of neighborhoods of a point 
p E S  is a local base at p if every neighborhood of p contains a member of y. 

If E c S and if u is the collection of all intersections E n V, with 
V E r, then u is a topology on E, as is easily verified ; we call this the topol
ogy that E inherits from S. 

If a topology r is induced by a metric d (see Section 1 .2) we say that d 
and r are compatible with each other. 

A sequence { xn} in a Hausdorff space X converges to a point x E X 
(or limn�oo xn = x) if every neighborhood of x contains all but finitely many 
of the points xn . 

1.6 Topological vector spaces Suppose r ts a topology on a vector 
space X such that 

(a) every point of X is a closed set, and 
(b) the vector space operations are continuous with respect to r. 

Under these conditions, r is said to be a vector topology on X, and X 
is a topological vector space. 

Here is a more precise way of stating (a) : For every x E X, the set {x} 
which has x as its only member is a closed set. 

In many texts, (a) is omitted from the definition of a topological 
vector space. Since (a) is satisfied in almost every application, and since 
most theorems of interest require (a) in their hypotheses, it seems best to 
include it in the axioms. [Theorem 1 . 1 2  will show that (a) and (b) together 
imply that r is a Hausdorff topology.] 

To say that addition is continuous means, by definition, that the 
mapping 

(x, y) -+ x + y 
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of the cartesian product X x X into X is continuous : If x; E X  for i = 1 ,  2, 
and if V is a neighborhood of x1 + x2 , there should exist neighborhoods v; 
of x; such that 

Similarly, the assumption that scalar multiplication ts continuous means 
that the mapping 

(a:, x) -+ a:x 

of <I> x X into X is continuous :  If x E X, a: is a scalar, and V is a neighbor
hood of a:x, then for some r > 0 and some neighborhood W of x we have 
{3W c V whenever I {3- a: I < r. 

A subset E of a topological vector space is said to be bounded if to 
every neighborhood V of 0 in X corresponds a number s > 0 such that 
E c tV for every t > s. 

1.7 Invariance Let X be a topological vector space. Associate to each 
a E X and to each scalar A. # 0 the translation operator T;. and the multipli
cation operator M;., by the formulas 

T;.(x) = a + x, M;.(x) = A.x (x E X). 

The following simple proposition is very important: 

Proposition. Ta and M;. are homeomorphisms of X onto X. 
PROOF. The vector space axioms alone imply that T;. and M;. are 
one-to-one, that they map X onto X, and that their inverses are T_a 
and M 11;., respectively. The assumed continuity of the vector space 
operations implies that these four mappings are continuous. Hence 
each of them is a homeomorphism (a continuous mapping whose 
inverse is also continuous). //// 

One consequence of this proposition is that every vector topology r is 
translation-invariant (or simply invariant, for brevity) : A set E c X is open if 
and only if each of its translates a + E is open. Thus r is completely deter
mined by any local base. 

In the vector space context, the term local base will always mean a 
local base at 0. A local base of a topological vector space X is thus a 
collection !?I of neighborhoods of 0 such that every neighborhood of 0 con
tains a member of £?1. The open sets of X are then precisely those that are 
unions of translates of members of £?1. 
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A metric d on a vector space X will be called invariant if 

d(x + z, y + z) = d(x, y) 

for all x, y, z in X. 

1.8 Types of topological vector spaces In the following definitions, X 
always denotes a topological vector space, with topology r. 

(a) X is locally convex if there is a local base !?I whose members are 
convex. 

(b) X is locally bounded if 0 has a bounded neighborhood. 

(c) X is locally compact if 0 has a neighborhood whose closure is compact. 

(d) X is metrizable if r is compatible with some metric d. 
(e) X is an F-space if its topology r is induced by a complete invariant 

metric d. (Compare Section 1 .25.) 

(f) X is a Frechet space if X is a locally convex F-space. 

(g) X is normable if a norm exists on X such that the metric induced by 
the norm is compatible with r. 

(h) Normed spaces and Banach spaces have already been defined (Section 
1 .2). 

(i) X has the Heine-Borel property if every closed and bounded subset of 
X is compact. 

The terminology of (e) and (f) is not universally agreed upon : In 
some texts, local convexity is omitted from the definition of a Frechet space, 
whereas others use F-space to describe what we have called Frechet space. 

1.9 Here is a list of some relations between these properties of a topologi
cal vector space X. 

(a) If X is locally bounded, then X has a countable local base [part (c) of 
Theorem 1 . 1 5] .  

(b) X is metrizable if and only if X has a countable local base (Theorem 
1 .24). 

(c) X is normable if and only if X is locally convex and locally bounded 
(Theorem 1 . 39). 

(d) X has finite dimension if and only if X is locally compact (Theorems 
1 .2 1 ,  1 .22). 

(e) If a locally bounded space X has the Heine-Bore! property, then X has 
finite dimension (Theorem 1 .23). 



10 PART 1 :  GENERAL THEORY 

The spaces H(n) and C'f mentioned in Section 1 . 3  are infinite
dimensional Frechet spaces with the Heine-Bore! property (Sections 1 .45, 
1 .46). They are therefore not locally bounded, hence not normable ; they 
also show that the converse of (a) is false. 

On the other hand, there exist locally bounded F-spaces that are not 
locally convex (Section 1 .47). 

Separation Properties 

1 .10 Theorem Suppose K and C are subsets of a topological vector space 
X, K is compact, C is closed, and K n C = 0. Then 0 has a neighborhood V 
such that 

(K + V) n (C + V) = 0. 

Note that K + V is a union of translates x + V of V (x E K). Thus 
K + V is an open set that contains K. The theorem thus implies the exis
tence of disjoint open sets that contain K and C, respectively. 

PROOF. We begin with the following proposition, which will be useful 
in other contexts as well : 

If W is a neighborhood of O in X, then there is a neighborhood U 
of 0 which is symmetric (in the sense that U = - U) and which satisfies 
U + U c W. 

To see this, note that 0 + 0 = 0, that addition is continuous, and 
that 0 therefore has neighborhoods V" V1 such that V1 + V1 c W. If 

U = V, n V2 n ( - V,) n ( - V2), 
then U has the required properties. 

The proposition can now be applied to U in place of W and 
yields a new symmetric neighborhood U of 0 such that 

V + V + V + V c W. 

It is clear how this can be continued. 
If K = 0, then K + V = 0, and the conclusion of the theorem 

is obvious. We therefore assume that K # 0, and consider a point 
x E K. Since C is closed, since x is not in C, and since the topology of 
X is invariant under translations, the preceding proposition shows 
that 0 has a symmetric neighborhood V, such that x + V, + Vx + Vx 
does not intersect C; the symmetry of Vx shows then that 

( 1 )  
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Since K is compact, there are finitely many points Xu . . . , xn in K such 
that 

K c (x 1 + V,) u · · · u (xn + V,J 
Put V = Vx, n · · · n Vx • .  Then 

n n 
K + V c U (x; + Vx, + V) c U (x; + V,, + Vx), 

i= 1 i = 1 
and no term in this last union intersects C + V, by ( 1 ). This completes 
the proof. //// 

Since C + V is open, it is even true that the closure of K + V does not 
intersect C + V; in particular, the closure of K + V does not intersect C. 
The following special case of this, obtained by taking K = {0}, is of con
siderable interest. 

1.11  Theorem If !!I is a local base for a topological vector space X, then 
every member of :11 contains the closure of some member of f!l. 

So far we have not used the assumption that every point of X is a 
closed set. We now use it and apply Theorem 1 . 1 0  to a pair of distinct 
points in place of K and C. The conclusion is that these points have disjoint 
neighborhoods. In other words, the Hausdorff separation axiom holds : 

1.12 Theorem Every topological vector space is a Hausdorff space. 

We now derive some simple properties of closures and interiors in a 
topological vector space. See Section 1 .5 for the notations E and £". 
Observe that a point p belongs to E if and only if every neighborhood of p 
intersects E. 

1.13 Theorem Let X be a topological vector space. 

(a) If A c X then A = n (A + V), where V runs through all neighborhoods 
ofO. 

(b) If A c X and B c X, then A + B c A + B. 
(c) If Y is a subspace of X, so is Y. 
(d) If C is a convex subset of X, so are C and C. 
(e) If B is a balanced subset of X, so is B; if also 0 E Bo then Bo is balanced. 
( f) If Eis a bounded subset of X, so is E. 
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PROOF. (a) x E A if and only if (x + V) n A # 0 for every neighbor
hood V of 0, and this happens if and only if x E A - V for every such 
V. Since - V is a neighborhood of 0 if and only if V is one, the proof 
is complete. 

(b) Take a E A, b E  B; let W be a neighborhood of a + b. There 
are neighborhoods W1 and W2 of a and b such that W1 + W1 c W. 
There exist x E A n  W1 and y E B n W2 , since a E A and b E  B. Then 
x + y lies in (A + B) n W, so that this intersection is not empty. Con
sequently, a + b E A + B. 

(c) Suppose rx and fJ are scalars. By the proposition in Section 
1 .7, aY = rxY if rx # 0 ;  if rx = 0, these two sets are obviously equal. 
Hence it follows from (b) that 

rxY + {JY= rxY + {JY c rxY + {JY c Y ;  
the assumption that Y is a subspace was used in the last inclusion. 

The proofs that convex sets have convex closures and that bal
anced sets have balanced closures are so similar to this proof of (c} 
that we shall omit them from (d) and (e). 

(d) Since co c C and C is convex, we have 

tC 0 + (1 - t)C 0 c C 
if 0 < t < 1 .  The two sets on the left are open; hence so is their sum. 
Since every open subset of C is a subset of C o , it follows that C o  is 
convex. 

(e) If 0 < I rxl < 1 ,  then rxBo = (rxB)", since x -+  rxx is a homeo
morphism. Hence rxBo c rxB c B, since B is balanced. But rxBo is open. 
So rxBo c B0• If Bo contains the origin, then rxBo c Bo even for rx = o, 

(f) Let V be a neighborhood of 0. By Theorem 1 . 1 1 ,  W c V for 
some neighborhood W of 0. Since E is bounded, E c tW for all suffi
ciently large t. For these t, we have E c tW c tV. Ill 

1.14 Theorem In a topological vector space X, 

(a) every neighborhood ofO contains a balanced neighborhood ofO, and 
(b) every convex neighborhood of 0 contains a balanced convex neighbor

hood ofO. 

PROOF. (a) Suppose U is a neighborhood of 0 in X. Since scalar multi
plication is continuous, there is a b > 0 and there is a neighborhood 
V of 0 in X such that rx V c U whenever I rxl < b. Let W be the union 
of all these sets rxV. Then W is a neighborhood of 0, W is balanced, 
and W c U. 
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(b) Suppose U is a convex neighborhood of 0 in X. Let 
A = n rxU, where IX ranges over the scalars of absolute value 1 .  
Choose W as in part (a). Since W is balanced, rx- 1 W = W when 

l rx 1 = 1 ;  hence W c rxU. Thus W c A, which implies that the interior 
Ao of A is a neighborhood of 0. Clearly Ao c U. Being an intersection 
of convex sets, A is convex ; hence so is Ao. To prove that A0 is a 
neighborhood with the desired properties, we have to show that Ao is 
balanced; for this it suffices to prove that A is balanced. Choose r and 
fJ so that 0 < r < 1 , I fJ I = 1 .  Then 

r{JA = n r{JrxU = n rrxU. 
lal=l lal= l 

Since rxU is a convex set that contains 0, we have rrxU c rxU. Thus 
r{JA c A, which completes the proof. //// 

Theorem 1 . 1 4  can be restated in terms of local bases. Let us say that a 
local base [Jl is balanced if its members are balanced sets, and let us call fJl 
convex if its members are convex sets. 

Corollary 

(a) Every topological vector space has a balanced local base. 
(b) Every locally convex space has a balanced convex local base. 

Recall also that Theorem 1 . 1 1  holds for each of these local bases. 

1 .15 Theorem Suppose V is a neighborhood of 0 in a topological vector 
space X. 

(a) lf O < r1 < r2 < · · · and r,. -+ oo as n -+  oo, then 
00 

X =  U r,. V. 
n= l 

(b) Every compact subset K of X is bounded. 
(c) If b , > <52 > · · · and b,. -+ 0 as n -+  oo, and if V zs bounded, then the 

collection 

{b ,. V :  n = 1 ,  2, 3, . . .  } 
is a local base for X. 

PROOF. (a) Fix x E X. Since rx -+  rxx is a continuous mapping of the 
scalar field into X, the set of all rx with rxx E V is open, contains 0, 
hence contains 1/r,. for all large n. Thus (1 /r ,.)x E V, or x E r,. V, for 
large n. 
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(b) Let W be a balanced neighborhood of 0 such that W c V. 
By (a), 

00 

K c U nW. 
n=l 

Since K is compact, there are integers n 1 < · · · < n. such that 

K c n 1 W u · · · u n. W = n. W. 

The equality holds because W is balanced. If t > n. , it follows that 
K c tW c tV. 

(c) Let U be a neighborhood of 0 in X. If V is bounded, there 
exists s > 0 such that V c tV for all t > s. If n is so large that sbn < 1 ,  
it follows that V c ( l /bn)U. Hence U actually contains all but finitely 
many of the sets b" V. //// 

Linear Mappings 

1.16 Definitions When X and Y are sets, the symbol 

f: X -+  y 

will mean that f is a mapping of X into Y. If A c X and B c Y, the image 
f(A) of A and the inverse image or preimage f - 1(B) of B are defined by 

f(A) = {f(x) : x E A}, f - 1 (B) = {x : f(x) E B}. 

Suppose now that X and Y are vector spaces over the same scalar 
field. A mapping A :  X -+  Y is said to be linear if 

A(,:xx + {Jy) = ,:xAx + {JAy 

for all x and y in X and all scalars ,:x and {J. Note that one often writes Ax, 
rather than A(x), when A is linear. 

Linear mappings of X into its scalar field are called linear functionals. 
For example, the multiplication operators Mac of Section 1 .7 are linear, 

but the translation operators 7;. are not, except when a = 0. 
Here are some properties of linear mappings A :  X -+ Y whose proofs 

are so easy that we omit them; it is assumed that A c X and B c Y:  

(a) AO = 0. 
(b) If A is a subspace (or a convex set, or a balanced set) the same is true 

of A(A). 
(c) If B is a subspace (or a convex set, or a balanced set) the same is true 

of A - 1 (B). 
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(d) In particular, the set 

A - 1 ({0}) = {x E X : Ax = 0} = fi(A) 
is a subspace of X, called the null space of A. 

We now turn to continuity properties of linear mappings. 

1.17 Theorem Let X and Y be topological vector spaces. If A: X -+ Y is 
linear and continuous at 0, then A is continuous. In fact, A is uniformly contin
uous, in the following sense : To each neighborhood W of 0 in Y corresponds a 
neighborhood V ofO in X such that 

y - x E V implies Ay - Ax E W. 

PROOF. Once W is chosen, the continuity of A at 0 shows that 
AV c W for some neighborhood V of 0. If now y- x E V, the linear
ity of A shows that Ay - Ax = A(y - x) E W. Thus A maps the 
neighborhood x + V of x into the preassigned neighborhood Ax + W 
of Ax, which says that A is continuous at x. //II 

1.18 Theorem Let A be a linear functional on a topological vector space 
X. Assume Ax =I Ofor some x E X. Then each of thefollowingfour properties 
implies the other three : 

(a) A is continuous. 
(b) The null space fi(A) is closed. 
(c) ,t.(A) is not dense in X. 
(d) A is bounded in some neighborhood V ofO. 

PROOF. Since fi(A) = A  - 1 ({0}) and {0} is a closed subset of the scalar 
field <1>, (a) implies (b). By hypothesis, fi(A) =I X. Hence (b) implies (c). 

Assume (c) holds;  i.e., assume that the complement of JV(A) has 
nonempty interior. By Theorem 1 . 14, 

( 1) (x + V) n fi(A) = 0 

for some x E X and some balanced neighborhood V of 0. Then A V is 
a balanced subset of the field <1>. Thus either A V is bounded, in which 
case (d) holds, or A V = <1>. In the latter case, there exists y E V such 
that Ay = - Ax, and so x +  y E fi(A), in contradiction to ( 1 ). Thus 
(c) implies (d). 

Finally, if (d) holds then I Ax I < M for all x in V and for some 
M < oo. If r > 0 and if W = (r/M)V, then 1 Ax 1 < r for every x in W. 
Hence A is continuous at the origin. By Theorem 1 .17, this implies (a). 

II!! 
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Finite-Dimensional Spaces 

1 .19 Among the simplest Banach spaces are R" and ({", the standarf· 
n-dimensional vector spaces over R and ({, respectively, normed by mean 
of the usual euclidean metric : If, for example, 

(z; E ({,) 

is a vector in ({,", then 

Other norms can be defined on ({". For example, 

or l lz l l = max ( l z; l: 1 < i < n). 

These norms correspond, of course, to different metrics on ({" (when n > 1) 
but one can see very easily that they all induce the same topology on ({". 
Actually, more is true. 

If X is a topological vector space over ({, and dim X = n, then every 
basis of X induces an isomorphism of X onto ({". Theorem 1.21 will prove 
that this isomorphism must be a homeomorphism. In other words, this says 
that the topology of ({" is the only vector topology that an n-dimensional 
complex topological vector space can have. 

We shall also see that finite-dimensional subspaces are always closed 
and that no infinite-dimensional topological vector space is locally 
compact. 

Everything in the preceding discussion remains true with real scalars 
in place of complex ones. 

1.20 Lemma If X is a complex topological vector space and f: ({" _, X is 
linear, then f is continuous. 

PROOF. Let {e 1 , . . .  , en} be the standard basis of({," : The kth coordi
nate of ek is 1 ,  the others are 0. Put uk = f(ek), for k = 1 ,  . . .  , n. Then 
f(z) = z1 u1 + · · · + z" u" for every z = (z 1 ,  . • .  , z") in ({,". Every zk is a 
continuous function of z. The continuity off is therefore an immediate 
consequence of the fact that addition and scalar multiplication are 
continuous in X. /Ill 

1 .21 Theorem If n is a positive integer and Y is an n-dimensional sub· 
space of a complex topological vector space X, then 

(a) every isomorphism of({" onto Y is a homeomorphism, and 
(b) Y is closed. 
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PROOF. Let S be the sphere which bounds the open unit ball B of 
(/;". Thus z E S if and only if Ll zY = 1 ,  and z E B if and only if 
Ll z ; l 2 < 1. 

Suppose f: ([!'---> Y is an isomorphism. This means that f is 
linear, one-to-one, and f(ft") = Y. Put K = f(S). Since f is continuous 
(Lemma 1.20), K is compact. Since f(O) = 0 and f is one-to-one, 0 tj K, 
and therefore there is a balanced neighborhood V of 0 in X which 
does not intersect K. The set 

is therefore disjoint from S. Since f is linear, E is balanced, and hence 
connected. Thus E c B, because 0 E E, and this implies that the linear 
map f - 1 takes V n Y into B. Since f - 1 is an n-tuple of linear func
tionals on Y, the implication (d) ---> (a) in Theorem 1 . 1 8  shows thatf - 1 
is continuous. Thusfis a homeomorphism. 

To prove (b), choose p E Y, and let f and V be as above. For 
some t > 0, p E tV, so that p lies in the closure of 

Y n (t V) cf(tB) cf(tB). 

Being compact, f(tB) is closed in X. Hence p E f(tB) c Y, and this 
proves that Y = Y. Ill/ 

1.22 Theorem Every locally compact topological vector space X has 
finite dimension. 

PROOF. The ongm of X has a neighborhood V whose closure is 
com pact. By Theorem 1 .  15, V is bounded, and the sets 2-" V ( n = 1 ,  2, 
3, . . .  ) form a local base for X. 

The compactness of V shows that there exist x 1 , . . .  , xm in X 
such that 

Vc (x 1 + �V) u ... u (xm + �V). 

Let Y be the vector space spanned by x" . . .  , xm . Then dim Y < m. 
By Theorem 1 .21 ,  Y is a closed subspace of X. 

Since V c Y + tV and since A Y = Y for every scalar A # 0, it 
follows that 

so that 

v c y + tv c y + y + ! v = y + ± v. 
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If we continue in this way, we see that 

00 

V c n (Y + r"V). 
n= l  

Since {2- "v} is a local base, it now follows from (a) of Theorem 1 . 1 3  
that V c Y. But Y = Y. Thus V c Y, which implies that k V c Y for 
k = 1 ,  2, 3, . . . .  Hence Y = X, by (a) of Theorem 1 . 1 5, and consequent
ly dim X <  m. //// 

1.23 Theorem If X is a locally bounded topological vector space with the 
H eine-Borel property, then X has finite dimension. 

PROOF. By assumption, the origin of X has a bounded neighborhood 
V. Statement (f) of Theorem 1 . 1 3  shows that V is also bounded. Thus 
V is compact, by the Heine-Bore! property. This says that X is locally 
compact, hence finite-dimensional, by Theorem 1 .22 . 

Metrization 

We recall that a topology r on a set X is said to be metrizable if there is a 
metric d on X which is compatible with r. In that case, the balls with radius 
1/n centered at x form a local base at x. This gives a necessary condition 
for metrizability which, for topological vector spaces, turns out to be also 
sufficient. 

1.24 Theorem If X is a topological vector space with a countable local 
base, then there is a metric d on X such that 

(a) d is compatible with the topology of X, 
(b) 
(c) 

the open balls centered at 0 are balanced, and 
d is invariant : d(x + z, y + z) = d(x, y)for x, y, z E X. 
If, in addition, X is locally convex, then d can be chosen so as to satisfy 

(a), (b), (c), and also 

(d) all open balls are convex. 

PROOF. By Theorem 1 . 1 4, X has a balanced local base { v.} such that 

( 1 )  (n + L 2, 3,  . . .  ) ; 

when X is locally convex, this IQcal base can be chosen so that each V. 
is also convex. 
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Let D be the set of all rational numbers r of the form 

n= l  
where each of the " digits" c;(r) is 0 or 1 and only finitely many are 1 .  
Thus each r E D satisfies the inequalities 0 < r < 1 .  

Put A(r) = X if r > 1 ;  for any r E D, define 

(3) 

Note that each of these sums is actually finite. Define 

(4) f(x) = inf {r :  x E A(r)} (x E X) 
and 

(5) d(x, y) =f(x - y) (x E X, y E X). 
The proof that this d has the desired properties depends on the 

inclusions 

(6) A(r) + A(s) c A(r + s) (r E D, s E D). 
Before proving (6), let us see how the theorem follows from it. 

Since every A(s) contains 0, (6) imples 

(7) A(r) c A(r) + A(t - r) c A(t) if r < t. 
Thus {A(r)} is totally ordered by set inclusion. We claim that 

(8) f(x + y) <f(x) + f(y) (x E X, y E X). 
In the proof of (8) we may, of course, assume that the right side is < 1. 
Fix e > 0. There exist r and s in D such that 

f(x) < r, f(y) < s, r + s <f(x) + f(y) + e. 

Thus x E A(r), y E A(s), and (6) implies x + y E A(r + s). Now (8) 
follows, because 

f(x + y) < r + s <f(x) + f(y) + e, 

and e was arbitrary. 
Since each A(r) is balanced, f(x) = f(- x). It is obvious that 

f (0) = 0. If x # 0, then x ¢: V, = A(2- ") for some n, and so 
f(x) > 2 -

n > 0. 
These properties of/show that (5) defines a translation-invariant 

metric d on X. The open balls centered at 0 are the open sets 

(9) Ba(O) = {x :f(x) < b} = U A(r). 
r<a 

If b < 2 -•, then Ba(O) c V, . Hence { B.,(O)} is a local base for the topol
ogy of X. This proves (a). Since each A(r) is balanced, so is each Ba(O). 
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If each V, is convex, so is each A(r), and (9) implies that the same is 
true of each B6(0), hence also of each translate of B6(0). 

We turn to the proof of (6). If r + s > 1 ,  then A(r + s) = X  and 
(6) is obvious. We may therefore assume that r + s < 1 ,  and we will 
use the following simple proposition about addition in the binary 
system of notation :  

If r, s, and r + s are in D and c.(r) + c.(s) # c.(r + s) for some n, 
then at the smallest n where this happens we have c.(r) = c.(s) = 0, 
c.(r + s) = 1 .  

Put r:x. = c.(r), fl. =  c.(s), Yn = c.(r + s). If r:x. + fl. =  Yn for all n 
then (3) shows that A(r) + A(s) = A(r + s). In the other case, let N be 
the smallest integer for which r:xN + fl N # y N. Then, as mentioned 
above, r:xN = flN = 0, YN = 1 .  Hence 

Likewise 

A(r) c r:x1 V1 + · · · + r:xN-I VN-I + VN+I + VN+2 + · · · 

c r:x I VI + . . .  + r:x N-I VN-I + VN +I + VN +I' 

A( s) c fl I VI + . . . + fl N - I VN-I + VN + I + VN + I • 

Since r:x. + fl. = Yn for all n < N, (1) now leads to 

A(r) + A(s) c y1 V1 + · · · + YN-I V,_1 + VN c A(r + s) 

because YN = 1. /Ill 

1.25 Cauchy sequences (a) Suppose d is a metric on a set X. A 
sequence { x.} in X is a Cauchy sequence if to every 6 > 0 there corresponds 
an integer N such that d(xm , x.) < 6 whenever m > N and n > N. If every 
Cauchy sequence in X converges to a point of X, then d is said to be a 
complete metric on X. 

(b) Let r be the topology of a topological vector space X. The notion 
of Cauchy sequence can be defined in this setting without reference to any 
metric : Fix a local base &I for r. A sequence { x.} in X is then said to be a 
Cauchy sequence if to every V E &I corresponds an N such that x. - xm E V 
if n > N and m > N. 

It is clear that different local bases for the same r give rise to the same 
class of Cauchy sequences. 

(c) Suppose now that X is a topological vector space whose topology 
r is compatible with an invariant metric d. Let us temporarily use the terms 
d-Cauchy sequence and r-Cauchy sequence for the concepts defined in (a) 
and (b), respectively. Since 

d(x. , xJ = d(x. - Xm, 0), 
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and since the d-balls centered at the origin form a local base for r, we 
conclude : 

A sequence { x.} in X is a d-Cauchy sequence if and only if it is a 
r-Cauchy sequence. 

Consequently, any two invariant metrics on X that are compatible 
with r have the same Cauchy sequences. They clearly also have the same 
convergent sequences (namely, the r-convergent ones). These remarks prove 
the following fact : 

If d1 and d2 are invariant metrics on a vector space X which induce the 
same topology on X, then 

(a) d1 and d2 have the same Cauchy sequences, and 
(b) d1 is complete if and only if d2 is complete. 

Invariance is needed in the hypothesis (Exercise 1 2). 
The following " dilation principle" will be used several times. 

1 .26 Theorem Suppose that (X, d 1 ) and (Y, d2) are metric spaces, and 
(X, d 1) is complete. If E is a  closed set in X, f: E---> Y is continuous, and 

d2(f(x'), f(x")) > d1(x', x") 
for all x', x" E E, thenf(E) is closed. 

PROOF. Pick y E f(E). There exist points x. E E so that y = lim f(x.). 
Thus {f(x.)} is Cauchy in Y. Our hypothesis implies therefore that 
{x.} is Cauchy in X. Being a closed subset of a complete metric space, 
E is complete ; hence there exists x = lim x. in E. Since f is contin
uous, 

f(x) = lim f(x.) = y. 
Thus y E f(E). Ill/ 

1.27 Theorem Suppose Y is a subspace of a topological vector space X, 
and Y is an F-space (in the topology inherited from X). Then Y is a closed 
subspace of X. 

PROOF. Choose an invariant metric d on Y, compatible with its topol
ogy. Let 

B,;n = {y E Y: d(y, 0) < �} 
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let U n be a neighborhood of 0 in X such that Y n U n = B l/n , and 
choose symmetric neighborhoods V, of 0 in X such that V, + V, c U,., 
and V, + 1 c V, . 

Suppose x E Y, and define 

E. = Y n (x + V,) (n = 1 ,  2, 3, . . .  ). 
If y1 E E. and y2 E E. , then y 1 - y2 lies in Y and also in V, + v. c:: 
u n '  hence in B I /n . The diameters of the sets E. therefore tend to (). 
Since each E. is nonempty and since Y is complete, it follows that the 
Y-closures of the sets E. have exactly one point Yo in common. 

Let W be a neighborhood of 0 in X, and define 

F. = Y n (x + W n V.). 

The preceding argument shows that the Y-closures of the sets F. have 
one common point Yw. But F. c E • .  Hence Yw = Yo. Since F. c:: 
x + W, it follows that Yo lies in the X -closure of x + W, for every W. 
This implies Yo = x. Thus x E Y. This proves that Y = Y. /II j 

The following simple facts are sometimes useful. 

1.28 Theorem 

(a) If d is a translation-invariant metric on a vector space X then 
d(nx, 0) � nd(x, 0) 

for every x E X and for n = 1, 2, 3, . . . .  

(b) If { x.} is a sequence in a metrizable topological vector space X and if 
x. ---> 0 as n ---> oo, then there are positive scalars Yn such that Yn---> oo and 
Yn Xn---> 0. 

PROOF. Statement (a) follows from 
n 

d(nx, 0) < L d(kx, (k - 1 )x) = nd(x, 0). 
k =l  

To prove (b), let d be a metric as in (a), compatible with the 
topology of X. Since d(x. , 0) ---> 0, there is an increasing sequence of 

positive integers nk such that d(x. , 0) < k - 2 if n > nk . Put Yn = 1 if 
n < n 1; put Yn = k if nk < n < nk + 1• For such n, 

d(y. x. , 0) = d(kx. , 0) < kd(x. , 0) < k- 1• 

Hence Yn x. ---> 0 as n ---> oo. !II/ 
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sound�dness and Continuity 

1.29 Bounded sets The notion of a bounded subset of a topological 
vector space X was defined in Section 1 .6 and has been encountered several 

times since then. When X is metrizable, there is a possibility of misunder

standing, since another very familiar notion of boundedness exists in metric 

spaces. 
If d is a metric on a set X, a set E c X is said to be d-bounded if there 

sa number M < oo such that d(z, y) < M for all x and y in E. 
If X it; a topological vector space with a compatible metric d, the 

bounded sets and the d-bounded ones need not be the same, even if d is 
invariant. For instance, if d is a metric such as the one constructed in 
Theorem 1.24, then X itself is d-bounded (with M = 1) but, as we shall see 
presently, X cannot be bounded, unless X =  {0}. If X is a normed space 
and d is the metric induced by the norm, then the two notions of 
bounded ness coincide ; but if d is replaced by d 1 = d/( 1 + d) (an invariant 
metric which induces the same topology) they do not. 

Whenever bounded subsets of a topological vector space are dis
cussed, it will be understood that the definition is as in Section 1 .6 :  A set E is 
bounded if, for every neighborhood V of 0, we have E c tV  for all suffi
ciently large t. 

We already saw (Theorem 1 . 1 5) that compact sets are bounded. To see 
another type of example, let us prove that Cauchy sequences are bounded 
(hence convergent sequences are bounded) : If { x.} is a Cauchy sequence in X, 
and V and W are balanced neighborhoods of 0 with V + V c W, then 
[part (b) of Section 1 .25] there exists N such that x. E xN + V for all n > N. 
Takes > 1 so that xN E sV. Then 

Xn E S V + V c S V + S V c S W (n > N). 

Hence x. � t W for all n > 1 ,  if t is sufficiently large. 
Also, closures of bounded sets are bounded (Theorem 1 . 1 3). 
On the other hand, if x # 0 and E = {nx: n = 1 ,  2, 3, . . .  }, then E is 

not bounded, because there is a neighborhood V of 0 that does not contain 
x; hence nx is not in n V; it follows that no n V contains E. 

Consequently, no subspace of X (other than {0}) can be bounded. 
The next theorem characterizes boundedness in terms of sequences. 

1.30 Theorem The following two properties of a set E in a topological 
vector space are equivalent :  

(a) E is bounded. 
(b) If { x.} is a sequence in E and {a:.} is a sequence of scalars such that 

a:. --> 0 as n --> oo, then a:. x. --> 0 as n ___. oo. 
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PROOF. Suppose E is bounded. Let V be a balanced neighborhood 
of 0 in X. Then E c tV fbr some t. If x. E E and rx. ---+ 0, there exists 
N such that l rx. I t < 1 if n > N. Since t- 1 E c V and V is balanced, 
rx. x. E V for all n > N. Thus rx. x. ---+ 0. 

Conversely, if E is not bounded, there is a neighborhood V of 0 
and a sequence r. ---+ oo such that no r. V contains E. Choose x. E E 
such that x. ¢' r. V. Then no r;; 'x. is in V, so that {r;; 'x.} does not 
converge to 0. //// 

1.31 Bounded linear transformations Suppose X and Y are topologi
cal vector spaces and A :  X ---+ Y is linear. A is said to be bounded if A maps 
bounded sets into bounded sets, i.e., if A(E) is a bounded subset of Y for 
every bounded set E c X. 

This definition conflicts with the usual notion of a bounded function 
as being one whose range is a bounded set. In that sense, no linear function 
(other than 0) could ever be bounded. Thus when bounded linear mappings 
(or transformations) are discussed, it is to be understood that the definition 
is in terms of bounded sets, as above. 

1.32 Theorem Suppose X and Y are topological vector spaces and 
A :  X ---+ Y is linear. Among the following four properties of A,  the implications 

(a) ---+ (b) ---+ (c) 

hold. If X is metrizable, then also 

(c) ---+ (d) ---+ (a), 

so that allfour properties are equivalent. 

(a) A is continuous. 
(b) A is bounded. 
(c) Ifx. ---+ 0 then {Ax. : n = 1 ,  2, 3, . . .  } is bounded. 
(d) If x. ---+ 0 then Ax. ---+ 0. 

Exercise 1 3  contains an example in which (b) holds but (a) does not. 

PROOF. Assume (a), let E be a bounded set in X, and let W be a 
neighborhood of 0 in Y. Since A is continuous (and AO = 0) there is a 
neighborhood V of 0 in X such that A( V) c W. Since E is bounded, 
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E c tV for all large t, so that 

A(E) c A(t V) = tA(V) c tW. 
This shows that A(E) is a bounded set in Y. 

Thus (a) ---> (b). Since convergent sequences are bounded, 
(b) ---> (c). 

Assume now that X is metrizable, that A satisfies (c), and that 
x. ---> 0. By Theorem 1.28, there are positive scalars Yn ---> oo such that 

Yn x. ---> 0. Hence { A(y. x.)} is a bounded set in Y, and now Theorem 
1 .30 implies that 

Ax. = y;; 1 A(y. x.) ---> 0 as n ---> oo. 

Finally, assume that (a) fails. Then there is a neighborhood W of 
0 in Y such that A - 1 (W) contains no neighborhood of 0 in X. If X 
has a countable local base, there is therefore a sequence { x.} in X so 
that x. ---> 0 but Ax. ¢: W. Thus (d) fails. //II 

Seminorms and Local Convexity 

1 .33 Definitions A seminorm on a vector space X is a real-valued func
tion p on X such that 

(a) p(x + y) < p(x) + p(y) and 
(b) p(,:xx) = I ,:x I  p(x) 

for all x and y in X and all scalars <X. 

Property (a) is called subadditivity. Theorem 1 .34 will show that a semi
norm p is a norm if it satisfies 

(c) p(x) # 0 if x # 0. 

A family f!JJ of seminorms on X is said to be separating if to each x # 0 
corresponds at least one p E f!JJ with p(x) # 0. 

Next, consider a convex set A c X which is absorbing, in the sense 
that every x E X  lies in tA for some t = t(x) > 0. [For example, (a) of 
Theorem 1 . 1 5  implies that every neighborhood of 0 in a topological vector 
space is absorbing. Every absorbing set obviously contains 0.] The 
Minkowskifunctional J..lA of A is defined by 

J..lA(x) = inf { t  > 0 :  t - 1x E A} (x E X). 

Note that J..lA(x) < oo for all x E X, since A is absorbing. The seminorms on 
X will turn out to be precisely the Minkowski functionals of balanced 
convex absorbing sets. 
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Seminorms are closely related to local convexity, in two ways : In 
every locally convex space there exists a separating family of continuous 
seminorms. Conversely, if f!JJ is a separating family of seminorms on a vector 
space X, then f!JJ can be used to define a locally convex topology on X with 
the property that every p E f!JJ is continuous. This is a frequently used 
method of introducing a topology. The details are contained in Theorems 
1 .36 and 1 .37. 

1 .34 Theorem Suppose p is a seminorm on a vector space X. Then 

(a) p(O) = 0. 
(b) I p(x) - p(y) I < p(x - y). 
(c) p(x) > 0. 
(d) { x :  p(x) = 0} is a subspace of X. 

(e) The set B = { x :  p(x) < 1 }  is convex, balanced, absorbing, and p = J..lB . 

PROOF. Statement (a) follows from p(exx) = I ex I p(x), with ex = 0. The 
subadditivity of p shows that 

p(x) = p(x - y + y) < p(x - y) + p(y) 
so that p(x) - p(y) < p(x - y). This also holds with x and y inter
changed. Since p(x - y) = p(y - x), (b) follows. With y = 0, (b) implies 
(c). If p(x) = p(y) = 0 and ex, f3 are scalars, (c) implies 

0 < p(exx + fly) < I ex I p(x) + I fl l  p(y) = 0. 

This proves (d). 
As to (e), it is clear that B is balanced. If x E B, y E B, and 

0 < t < 1 ,  then 

p(tx + ( 1  - t)y) < tp(x) + ( 1  - t)p(y) < 1 .  

Thus B is convex. If x E X and s > p(x) then p(s - 1 x) = s - 1p(x) < 1 .  

This shows that B is absorbing and also that J..LJx) < s. Hence J..lB < p. 
But if 0 < t < p(x) then p(t - 1x) > 1 ,  and so t - 1x is not in B. This 
implies p(x) < J..LJx) and completes the proof. //// 

1 .35 Theorem Suppose A is a convex absorbing set in a vector space X. 
Then 

(a) J..lA(x + y) < J..lA(x) + J..lA(y). 
(b) J..lA(tx) = tJ..LA(x) if t > 0. 
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(c) ilA is a seminorm if A is balanced. 
(d) If B = {x : J.LA(x) < 1} and C = {x : J.LA(x) < 1 }, then B c A c C  and 

ilB = IIA = J.lc · 

PROOF. If t = J.lA(x) + 6 and s = J.lA(Y) + 6, for some 6 > 0, then x/t and 
yjs are in A;  hence so is their convex combination 

x + y  t x s y - -- · - + · -
s + t s + t  t s + t  s 

This shows that f1A(x + y) < s + t = f1A(x) + f1A(Y) + 26, and (a) is 
proved. 

Property (b) is clear, and (c) follows from (a) and (b). 
When we turn to (d), the inclusions B c A c C show that Jlc < 

11-A < 118 • To prove equality, fix x E X, and choose s, t so that J1c(x) < 
s < t. Then x/s E C, f1A(x/s) < 1 ,  f1A(xjt) < sjt < 1 ;  hence x/t E B, so 
that 118(x) < t. This holds for every t > f1c(x). Hence J.L8(x) < J1c(x). //// 

1.36 Theorem Suppose !?I is a convex balanced local base in a topologi
cal vector space X. Associate to every V E !?I its Minkowski functional J.lv . 
Then 

(a) V = {x E X: J.Lv(x) < 1 },for every V E £?1, and 
(b) {!lv: V E !?I} is a separating family of continuous seminorms on X. 

PROOF. If x E V, then xjt E V for some t < 1 ,  because V is open ; 
hence !lv(x) < 1 .  If x tj V, then x/t E V implies t > 1 ,  because V is 
balanced ; hence J.lv(x) > 1 .  This proves (a). 

Theorem 1.35 shows that each J.lv is a seminorm. If r > 0, it 
follows from (a) and Theorem 1 .34 that 

I J.lv(x) - J.Lv(Y) I < J.lv(x - y) < r 

if x - y E rV. Hence J.lv is continuous. If x E X  and x # 0, then x tj V 
for some V E £?1. For this V, J.lv(x) > 1 .  Thus {J.Lv} is separating. //// 

1.37 Theorem Suppose flJ is a separating family of semi norms on a vector 
'Pace X. Associate to each p E :?J> and to each positive integer n the set 

V(p, n) = {x :  p(x) < �} 
Let ffl be the collection of all finite intersections of the sets V(p, n). Then ffl is 
a convex balanced local base for a topology r on X, which turns X into a 
locally convex space such that 
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Seminorms are closely related to local convexity, in two ways : In 
every locally convex space there exists a separating family of continuous 
seminorms. Conversely, if f!JJ is a separating family of seminorms on a vector 
space X, then f!JJ can be used to define a locally convex topology on X with 
the property that every p E f!JJ is continuous. This is a frequently used 
method of introducing a topology. The details are contained in Theorems 
1 .36 and 1 .37. 

1.34 Theorem Suppose p is a seminorm on a vector space X. Then 

(a) p(O) = 0. 
(b) I p(x) - p(y) I < p(x - y). 
(c) p(x) > 0. 
(d) {x : p(x) = 0} is a subspace of X. 

(e) The set B = { x :  p(x) < 1 }  is convex, balanced, absorbing, and p = J..lB . 

PROOF. Statement (a) follows from p(a:x) = I a: I p(x), with a: = 0. The 
subadditivity of p shows that 

p(x) = p(x - y + y) < p(x - y) + p(y) 
so that p(x) - p(y) < p(x - y). This also holds with x and y inter
changed. Since p(x - y) = p(y - x), (b) follows. With y = 0, (b) implies 
(c). If p(x) = p(y) = 0 and a:, f3 are scalars, (c) implies 

o < p(a:x + fly) < I a: I p(x) + I P I  p(y) = o. 
This proves (d). 

As to (e), it is clear that B is balanced. If x E B, y E B, and 
0 < t < 1, then 

p(tx + (1 - t)y) < tp(x) + (1 - t)p(y) < 1 .  

Thus B is convex. If x E X and s > p(x) then p(s - 1 x) = s - 1 p(x) < 1 .  

This shows that B is absorbing and also that J..LJx) < s. Hence J..lB < p. 
But if 0 < t < p(x) then p(t - 1 x) > 1 ,  and so t - 1 x is not in B. This 
implies p(x) < J..LJx) and completes the proof. //// 

1.35 Theorem Suppose A is a convex absorbing set in a vector space X. 
Then 

(a) J..lA(x + y) < J..lA(x) + J..lA(y). 
(b) J..lA(tx) = tJ..LA(x) if t > 0. 
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(c) J..lA is a seminorm if A is balanced. 

(d) If B = {x : J..lA(x) < 1 }  and C = {x : J..Lix) < 1 } , then B c A c C and 
J..lB = J..l A = J..lc • 

PROOF. If t = J..lA(x) + 6 and s = J..lA(Y) + 6, for some 6 > 0, then x/t and 
y/s are in A ;  hence so is their convex combination 

x + y  
s + t 

t X S y . - + . -

s + t  t s + t  s 
This shows that J..lA(x + y) < s + t = J..lA(x) + J..lA(Y) + 26, and (a) ts 
proved. 

Property (b) is clear, and (c) follows from (a) and (b). 
When we turn to (d), the inclusions B c A c C show that J..lc < 

J..lA < J..lB ·  To prove equality, fix x E X, and choose s, t so that J..Lc(x) < 

s < t. Then xjs E C, J..lA(x/s) < 1 ,  J..lA(x/t) < s/t < 1 ;  hence xjt E B, so 
that J..L8(x) < t. This holds for every t > J..Lc(x). Hence J..L8(x) < J..Lc(x). //II 

1 .36 Theorem Suppose &I is a convex balanced local base in a topologi
cal vector space X. Associate to every V E &I its Minkowski functional J..lv . 
Then 

(a) V = {x E X : J..lv(x) < l },for every V E &1, and 
(b) {J..lv : V E &I} is a separating family of continuous semi norms on X. 

PROOF. If x E V, then xjt E V for some t < 1 ,  because V is open;  
hence J..lv(x) < 1 .  If x tj V,  then x/t E V implies t > 1 ,  because V is 
balanced ; hence J..lv(x) > 1 .  This proves (a). 

Theorem 1 .35 shows that each J..lv is a seminorm. If r > 0, it 
follows from (a) and Theorem 1 .34 that 

I J..lv(x) - J..lv(Y) I < J..lv(x - y) < r 

if x - y E rV. Hence J..lv is continuous. If x E X  and x # 0, then x tj V 
for some V E &1. For this V, J..lv(x) > 1 .  Thus {J..Lv} is separating. //// 

1 .37 Theorem Suppose f!JJ is a separating family of seminorms on a vector 
space X. Associate to each p E f!JJ and to each positive integer n the set 

V(p, n) = {x :  p(x) < �} 
Let &I be the collection of all finite intersections of the sets V(p, n). Then &I is 
a convex balanced local base for a topology r on X, which turns X into a 
locally convex space such that 
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(a) every p E f!JJ is continuous, and 
(b) a set E c X is bounded if and only if every p E f!JJ is bounded on E. 

PROOF. Declare a set A c X to be open if and only if A is a (possibly 
empty) union of translates of members of &1. This clearly defines a 
translation-invariant topology r on X ;  each member of &I is convex 
and balanced, and &I is a local base for r. 

Suppose x E X, x # 0. Then p(x) > 0 for some p E f!JJ. Since x is 
not in V(p, n) if np(x) > 1 ,  we see that 0 is not in the neighborhood 
x - V(p, n) of x, so that x is not in the closure of {0}. Thus {0} is a 
closed set, and since r is translation-invariant, every point of X is a 
closed set. 

Next we show that addition and scalar multiplication arr con
tinuous. Let U be a neighborhood of 0 in X. Then 

(1) 
for some p 1 ,  • • •  , Pm E f!JJ and some positive integers n 1 ,  • • •  , nm . P ui 

(2) 

Since every p E f!JJ is subadditive, V + V c U. This proves th<.� �ddi
tion is continuous. 

Suppose now that x E X, rx is a scalar, and U and V ;1re as 
above. Then x E sV  for some s > 0. Put t =  s/(1 + I  rx I s). If y E ( ;- tV 
and I f3 - rx l  < 1/s, then 

which lies in 

fly - rxx = fl(y - x) + ({3 - rx)x 

I fl l  tV + I f3 - rx l  sV c V + V c U 
since I fl l  t < 1 and V is balanced. This proves that scalar mul'. - !Jlica
tion is continuous. 

Thus X is a locally convex space. The definition of V(p, n '  'Jhows 
that every p E f!JJ is continuous at 0. Hence p is continuous or X, by 
(b) of Theorem 1 .34. 

Finally, suppose E c X is bounded. Fix p E f!JJ. Since V(p � }  is a 
neighborhood of 0, E c kV(p, 1) for some k < oo. Hence p(x) <. h for 
every x E E. It follows that every p E f!JJ is bounded on E. 

Conversely, suppose E satisfies this condition, U is a neit3-:bor
hood of 0, and (1) holds. There are numbers Mi < oo such that Pi < 
Mi on E (1 < i < m). If n > Mi ni for 1 < i < m, it follows that 
E c nU, so that E is bounded. //// 

1 .38 Remarks (a) It was necessary to take finite intersections of the sets 
V(p, n) in Theorem 1 .37 ; the sets V(p, n) themselves need not form a local 
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base. (They do form what is usually called a subbase for the constructed 
topology.) To see an example of this, take X =  R2, and let f!J consist of the 
seminorms p 1 and p2 defined by P;(x) = I  X; I ;  here x = (x 1 , x2). Exercise 8 
develops this comment further. 

(b) Theorems 1 .36 and 1 .37 raise a natural problem : If &I is a convex 
balanced local base for the topology r of a locally convex space X, then &I 
generates a separating family f!J of continuous seminorms on X, as in 
Theorem 1 .36. This f!J in turn induces a topology r1 on X, by the process 
described in Theorem 1 . 37. Is r = r 1 ? 

The answer is affirmative. To see this, note that every p E f!J is r
continuous, so that the sets V(p, n) of Theorem 1 . 37 are in r. Hence r 1 c r. 
Conversely, if W E &I and p = J..lw ,  then 

W = {x : J..lw(x) < 1}  = V(p, 1). 

Thus W E r 1 for every W E &I;  this implies that r c r 1 • 

(c) If f!J = {p; : i = 1 ,  2, 3, . . .  } is a countable separating family of semi
norms on X, Theorem 1 .37 shows that f!J induces a topology r with a 
countable local base. By Theorem 1 .24, r is metrizable. In the present situ
ation, a compatible translation-invariant metric can be defined directly in 
terms of {p;} by setting 

(1) 
C; P;(x - y) d(x, y) = max 1 ( ) 

, 
i + Pi X - y 

where { c;} is some fixed sequence of positive numbers which converges to 0 
as i - _., oo. 

It is easy to verify that d is a metric on X. 

We claim that the balls 

B, = {x : d(O, x) < r} (0 < r < oo) 

form a convex balanced local base for r. 
Fix r. If c; < r (which holds for all but finitely many i, since c; -> 0), 

then c; P;/(1 + P;) < r. Hence B, is the intersection of finitely many sets of 
the form 

(3) {x :  P;(x) < 
r }. c. - r I 

namely those for which c; > r. These sets are open, since each P; is contin
uous (Theorem 1 .37). Thus B, is open, and, by Theorem 1 . 34, is also convex 
and balanced. 

Next, let W be a neighborhood of 0 in X. The definition of r shows 
that W contains the intersection of appropriately chosen sets 

(4) (1 < i < k). 
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If 2r < min {c 1 b 1 , . . .  , ck bd and x E B. , then 

(5) 
c1 p1(x) 

< r < 
c1 b 1 

1 + p1(x) 2 
(1 < i < k), 

which implies p1(x) < b1 • Thus B, c W. 
This proves our claim and also shows that d is compatible with r. 

1 .39 Theorem A topological vector space X is normable if and only if its 
origin has a convex bounded neighborhood. 

PROOF. If X is normable, and if II · I I  is a norm that is compatible with 
the topology of X, then the open unit ball { x :  I I  x II < 1 }  is convex and 
bounded. 

For the converse, assume V is a convex bounded neighborhood 
of 0. By Theorem 1 . 14, V contains a convex balanced neighborhood 
U of 0 ;  of course, U is also bounded. Define 

(1) I I  x I I  = .u(x) (x E X) 
where .u is the Minkowski functional of U. 

By (c) of Theorem 1 . 1 5, the sets rU (r > 0) form a local base for 
the topology of X. If x # 0, then x ¢. rU for some r > 0 ;  hence 
l l x l l > r. It now follows from Theorem 1 .35 that (1) defines a norm. 
The definition of the Minkowski functional, together with the fact that 
U is open, implies that 

(2) {x : l l x l l < r} = rU 
for every r > 0. The norm topology coincides therefore with the given 
one. /Ill 

Quotient Spaces 

1 .40 Definitions Let N be a subspace of a vector space X. For every 
x E X, let n(x) be the coset of N that contains x ;  thus 

n(x) = x + N. 
These cosets are the elements of a vector space X/N, called the quotient 
space of X modulo N, in which addition and scalar multiplication are 
defined by 

(1) n(x) + n(y) = n(x + y), ,:xn(x) = n(,:xx). 

[Note that now ,:xn(x) = N when ,:x = 0. This differs from the usual notation, 
as introduced in Section 1 .4.] Since N is a vector space, the operations (1) 
are well defined. This means that if n(x) = n(x') (that is, x' - x E N) and 
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(2) n(x) + n(y) = n(x') + n(y'), ,:xn( x') = ,:xn( x ). 
The origin of XIN is n(O) = N. By (1), n is a linear mapping of X onto XIN with N as its null space ; n is often called the quotient map of X onto X IN. 
Suppose now that T is a vector topology on X and that N is a closed 

subspace of X. Let TN be the collection of all sets E c XIN for which 
n- 1(E) E T. Then TN turns out to be a topology on XIN, called the quotient topology. Some of its properties are listed in the next theorem. Recall that 
an open mapping is one that maps open sets to open sets. 

1 .41 Theorem Let N be a closed subspace of a topological vector space X. Let T be the topology ofX and define TN as above. 
(a) TN is a vector topology on X IN; the quotient map n :  X -+ XIN is linear, continuous, and open. 
(b) If &I is a local base for T, then the collection of all sets n(V) with V E &I is a local base for TN .  
(c) Each of the following properties of X is inherited by XI N: local convexity, local boundedness, metrizability, normability. 
(d) If X is an F-space, or a Frechet space, or a Banach space, so is X IN. 

PROOF. Since n - 1 (A n B) =  n 1(A) n n- 1(B) and 

n - '(U E;,) = U n- 1 (£;,), 

TN is a topology. A set F c XIN is TN-closed if and only if n- 1(F) is 
T-closed. In particular, every point of X IN is closed, since 

n- 1(n(x)) = N + x 

and N was assumed to be closed. 
The continuity of n follows directly from the definition of TN . 

Next, suppose V E T. Since 

n- 1(n( V)) = N + V 

and N + V E T, it follows that n(V) E TN . Thus n is an open mapping. 
If now W is a neighborhood of 0 in XIN, there is a neighbor

hood V of 0 in X such that 

V + V c n- 1(W). 

Hence n(V) + n(V) c W. Since n is open, n(V) is a neighborhood of 0 
in X IN. Addition is therefore continuous in X 1 N. 
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The continuity of scalar multiplication in X/N is proved in the 
same manner. This establishes (a). 

It is clear that (a) implies (b). With the aid of Theorems 1 .32, 
1 .24, and 1 .39, it is just as easy to see that (b) implies (c). 

Suppose next that d is an invariant metric on X, compatible 
with r. Define p by 

p(n(x), n(y)) = inf { d(x - y, z) : z E N}. 

This may be interpreted as the distance from x - y to N. We omit the 
verifications that are now needed to show that p is well defined and 
that it is an invariant metric on X/N. Since 

n({x : d(x, 0) < r}) = {u :  p(u, 0) < r} ,  

it follows from (b) that p is compatible with rN . 
If X is normed, this definition of p specializes to yield what is 

usually called the quotient norm of X/ N :  

ll n(x) l l  = inf { l l x - z l l : z E N}. 

To prove (d) we have to show that p is a complete metric when
ever d is complete. 

Suppose { u.} is a Cauchy sequence in X/ N, relative to p. There 
is a subsequence { u.,} with p(u., u., + J < 2- i. One can then induc
tively choose x1 E X  such that n(x1) = u., and d(x ; ,  X;+ 1 ) < 2- i. If d is 
complete, the Cauchy sequence {x;} converges to some x E X. The 
continuity of n implies that u., ---> n(x) as i ---> oo. But if a Cauchy 
sequence has a convergent subsequence then the full sequence must 
converge. Hence p is complete, and so is the proof of Theorem 1 .4 1 .  

//// 

Here is an easy application of these concepts : 

1 .42 Theorem Suppose N and F are subspaces of a topological vector space X, N is closed, and F has finite dimension. Then N + F is closed. 
PROOF. Let n be the quotient map of X onto X/N, and give X/N its 
quotient topology. Then n(F) is a finite-dimensional subspace of X/N; 
since X/N is a topological vector space, Theorem 1 .21 implies that 
n(F) is closed in X/N. Since N + F = n - 1 (n(F)) and n is continuous, 
we conclude that N + F is closed. (Compare Exercise 20.) //// 

1 .43 Seminorms and quotient spaces Suppose p is a seminorm on a 
vector space X and 

N = {x :  p(x) = 0}. 
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Then N is a subspace of X (Theorem 1 .34). Let n be the quotient map of X 
onto X IN, and define 

p(n(x)) = p(x). 
If n(x) = n(y), then p(x - y) = 0, and since 

I p(x) - p(y) I < p(x - y) 
it follows that p(n(x)) = p(n(y)). Thus p is well defined on X IN, and it is now 
easy to verify that p is a norm on X IN. 

Here is a familiar example of this. Fix r, 1 < r < oo ;  let E be the space 
of all Lebesgue measurable functions on [0, 1 ]  for which { e } 1 /r 

p(f) = l ! f l l , = Jo l f(t) l' dt < 00. 

This defines a semi norm on E, not a norm, since II f I I , = 0 whenever f = 0 
almost everywhere. Let N be the set of these " null functions.'' Then EIN is 
the Banach space that is usually called E. The norm of E is obtained by the 
above passage from p to p. 

Examples 

1.44 The spaces C(!l) If n is a nonempty open set in some euclidean 
space, then n is the union of countably many compact sets K. # 0 which 
can be chosen so that K . lies in the interior of K. + 1 (n = 1 ,  2, 3, . . .  ). C(Q) is 
the vector space of all complex-valued continuous functions on n, topol
ogized by the separating family of semi norms 

( I )  P.(f) = sup { I f(x) I : x E K.}, 
in accordance with Theorem 1 .37. Since p 1 < p2 < · · · ,  the sets 

(2) Vn = {j E  C(Q) : p.{f) < �} ( n = 1 ,  2, 3, . . .  ) 

form a convex local base for C(Q). According to remark (c) of Section 1 . 38, 
the topology of C(Q) is compatible with the metric 

(3) d(f ) - 2 -"p.(f - g) , g - max . 
n 1 + Pn(f - g) 

If {;;}  is a Cauchy sequence relative to this metric, then P.(;; - Jj) ---> 0 for 
every n, as i, j ---> oo ,  so that { f;} converges uniformly on K. , to a function 
f E C(Q). An easy computation then shows d(J,;;) ---> 0. Thus d is a complete 
metric. We have now proved that C(Q) is a Frechet space. 

By (b) of Theorem 1 .37, a set E c C(Q) is bounded if and only if there 
are numbers M. < oo such that p.{f) < M. for all f E E; explicitly, 

(4) I f(x) l < M. if/ E E and x E K • .  
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Since every V, contains an f for which Pn + 1 (f) is as large as we please, it 
follows that no v. is bounded. Thus C(Q) is not locally bounded, hence is not normable. 

1.45 The spaces H(Q) Let n now be a nonempty open subset of the 
complex plane, define C(Q) as in Section 1 .44, and let H(Q) be the subspace 
of C(Q) that consists of the holomorphic functions in n. Since sequences of 
holomorphic functions that converge uniformly on compact sets have holo
morphic limits, H(Q) is a closed subspace of. C(Q). Hence H(Q) is a Frechet space. 

We shall now prove that H(Q) has the H eine-Borel property. It will 
then follow from Theorem 1 .23 that H(Q) is not locally bounded, hence is not normable. 

Let E be a closed and bounded subset of H(Q). Then E satisfies 
inequalities such as (4) of Section 1 .44. Montel's classical theorem about 
normal families (Th. 14.6 of [23] ')  implies therefore that every sequence 
{/;} c E has a subsequence th11t converges uniformly on compact subsets of 
n [hence in the topology of H(Q)] to somef E H(Q). Since E is closed,/ E E. 
This proves that E is compact. 

1 .46 The spaces C00(f!) and � K We begin this section by introducing 
some terminology that will be used in our later work with distributions. 

In any discussion of functions of n variables, the term multi-index 
denotes an ordered n-tuple 

( 1) 
of nonnegative integers r:xi . With each multi-index r:x is associated the differ
ential operator 

(2) 

whose order is 
(3) 

If I r:x I = 0, D"f = f 
l rx l  = rx ,  + · ·  · + rx • .  

A complex function f defined in some nonempty open set n c R" is 
said to belong to cn(Q) if D"f E C(Q) for every multi-index r:x. 

1 Numbers in brackets refer to sources listed in the bibliography. 
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The support of a complex function f (on any topological space) is the 
closure of {x : f(x) # 0}. 

If K is a compact set in R", then ::fJx denotes the space of all 
f E cn(R") whose support lies in K. (The letter g) has been used for these 
spaces ever since Schwartz published his work on distributions.) If K c n, 
then ::fJK may be identified With a SUbspace of C00(Q). We now define a topology on C00(0) which makes C00(Q) into a Frechet space with the Heine-Bore! property, such that ::fJx is a closed subspace of C00('0) whenever K c Q. 

To do this, choose compact sets Ki (i = 1, 2, 3 ,  . . . ) such that Ki lies in 
the interior of Ki+ I and n = u Ki . Define seminorms PN on C00(0), N = 1, 
2, 3, . . . , by setting 

(4) PN(f) = max { I D'Y(x) l :  x E KN ,  I <X I < N} .  
They define a metrizable locally convex topology on C00(Q) ; see Theorem 
1.37 and remark (c) of Section 1 .38. For each x E n, the functional f---> f(x) 
is continuous in this topology. Since fJJ x is the intersection of the null spaces 
of these functionals, as x ranges over the complement of K, it follows that 
!!} x is closed in C 00(0). 

A local base is given by the sets 

(5) VN = {f E C00(Q) : PN(f) < �} (N = 1, 2, 3, . . .  ). 

If {!;} is a Cauchy sequence in C00(Q) (see Section 1 .25) and if N is fixed, 
then _!; -f;. E VN if i and j are sufficiently large. Thus I DJi - D"fj l < 1/N on 
KN , if I ex I < N. It follows that each D)i converg:!s (uniformly on compact 
subsets of Q) to a function ga . In particular, fJx) --+ g0(x). It is now evident 
that g0 E C00(0), that ga = Dag0 , and that/; ---> g in the topology of C00(0). 

Thus C00(Q) is a Frechet space. The same is true of each of its closed 
subspaces ::fJx . 

Suppose next that E c C00(0) is closed and bounded. By Theorem 
1 .37, the boundedness of E is equivalent to the existence of numbers 
M N < oo such that PN(f) < M N for N = 1, 2, 3, . . . and for all f E E. The 
inequalities I D'Y I < M N , valid on KN when I ,:x I  < N, imply the equicon
tinuity of {DPf : f E  E} on K N_ 1 , if I P I  < N - 1.  It now follows from 
Ascoli's theorem (proved in Appendix A) and Cantor's diagonal process 
that every sequence in E contains a subsequence {/;} for which {DP.t;} con
verges, uniformly on compact subsets of n, for each multi-index p. Hence 
{!;} converges in the topology of cn(Q) . This proves that E is compact. 

Hence C00(0) has the Heine-Bore! property. It follows from Theorem 
1.23 that C00(Q) is not locally bounded, hence not normable. The same con
clusion holds for ::fJx whenever K has nonempty interior (otherwise ::fJx = 
{0}), because dim ::fJx = oo in that case. This last statement is a consequence 
of the following proposition : 
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If B 1 and B 2 are concentric closed balls in R", with B 1 in the interior of B2 , then there exists ¢ E C00(R") such that ¢(x) == 1 for every x E B1, ¢(x) = Ofor every x outside B2 , and 0 � ¢ < 1 on R". 
To find such a ¢, we construct g E C00(R 1 ) such that g(x) = 0 for x < a, g(x) = 1 for x > b (where 0 < a < b < XJ are preassigned) and put 

(6) ¢(x 1 , . . .  , xn) = 1 - g(xi + · · · + x;). 
The following construction of g has the advantage that suitable choices of 
{ b;} can lead to functions with other desired properties. 

Suppose 0 < a < b < oo .  Choose positive numbers b0 , b1 , b2 , . . .  , 
with Lb; = b - a ;  put 

(7) 
2" 

mn = (5 1 . . .  (5 n ( n = 1 ,  2, 3, . . .  ) ; 
let fo be a continuous monotonic function such that f0(x) = 0 when x < a, f0(x) = 1 when x > a + b0 ; and define 

(8) 
1 rx fn(x) = ()n 1 - o/n- l (t) dt (n = 1, 2, 3, . . .  ) . 

Differentiation of this integral shows, by induction, thatfn has n continuous 
derivatives and that I D"fn I < m" . If n > r, then 

(9) 

so that 

( 10) 

1 1"" D'fn(x) = - (D'fn 1 )(x - t) dt, ()n 0 
1?- -I D'/,. 1  < 111, · (n > r), 

again by induction on n. The mean value theorem, applied to (9), shows 
that 

( 1 1) (n > r + 2). 

Since Lb" < XJ ,  each { D'fn} converges, uniformly on ( - XJ ,  XJ ), as n ---> oo .  
Hence {!"} converges to a function g, with I D' g I < m, for r = 1 ,  2, 3, . . .  , 
such that g(x) = 0 for x < a and g(x) = 1 for x > b. 

1 .47 The spaces LP with 0 < p < 1 Consider a fixed p in this range. 
The elements of lJ' are those Lebesgue measurable functions f on [0, 1] for 
which 

( 1 )  A{f) = f I f(t) IP dt < oo,  
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with the usual identification of functions that coincide almost everywhere. 
Since 0 < p < 1, the inequality 

(2) 
holds when a > 0 and b > 0. This gives 

( 3) A{f + g) < A(f) + A(g), 
so that 
(4) d(f, g) = A{f- g) 
defines an invariant metric on E. That this d is complete is proved in the 
same way as in the familiar case p > 1 .  The balls 
(5) B, = {f E IJ': A( f) < r} 
form a local base for the topology of IJ. Since B 1 = r - 1 /p B, , for all r > 0, B1 is bounded. Thus IJ' is a locally bounded F-space. 

We claim that E contains no convex open sets, other than 0 and IJ'. 
To prove this, suppose V # 0 is open and convex in IJ'. Assume 

0 E V, without loss of generality. Then V :::J B, , for some r > 0. Pick f E IJ'. 
Since p < 1 ,  there is a positive integer n such that nP - 1 A( f) < r. By the 
continuity of the indefinite integral of I f JP, there are points 

0 = Xo < X1 < ' · ' < Xn = 1 
such that 

(6) L:� 1 i f(t) I P dt = n - 1 A(f) ( 1  < i < n). 
Define gi(t) = nf(t) if X; _ 1 < t < X; , g;(t) = 0 otherwise. Then gi E V, since 
(6) shows 
(7) ( 1  < i < n) 
and V :::J B, . Since V is convex and 

(8) 1 f = - (g 1 + ' ' ' + g n), n 
i t  follows thatf E V. Hence V = E. 

This lack of convex open sets has a curious consequence. 
Suppose A :  E -->  Y is a continuous linear mapping of IJ' into some 

locally convex space Y. Let &B be a convex local base for Y. If W E &1, then 
A. - 1 (W) is convex, open, not empty. Hence A- 1(W) = IJ'. Consequently, 
A.( I!') c W for every W E &1. We conclude that Af = 0 for every f E E. Thus 0 is the only continuous linear mapping of IJ' into any locally convex space Y, if 0 < p < 1 .  In particular, 0 is the onlv continuous linear functional on these E-spaces. . 

This is, of course, in violent contrast to the familiar case p � 1 .  
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Exercises 

1. Suppose X is a vector space. All sets mentioned below are understood to be 
subsets of X. Prove the following statements from the axioms as given in 
Section 1 .4. (Some of these are tacitly used in the text.) 
(a) If x E X and y E X there is a unique z E X such that x + z = y. 
(b) Ox = 0 = er:O if x E X and er: is a scalar. 
(c) 2A c A +  A ;  it may happen that 2A =f. A + A. 
(d) A is convex if and only if (s + t)A = sA + tA for all positive scalars s and t. 
(e) Every union (and intersection) of balanced sets is balanced. 
(f) Every intersection of convex sets is convex. 
(g) If 1 is a collection of convex sets that is totally ordered by set inclusion, 

then the union of all members of r is convex. 
(h) If A and B are convex, so is A + B. 
(i) If A and B are balanced, so is A + B. 
(j) Show that parts (f), (g), and (h) hold with subspaces in place of convex sets. 

2. The convex hull of a set A in a vector space X is the set of all convex com
binations of members of A, that is, the set of all sums 

in which x1 E A, t1 > 0, I t1 = 1 ;  n is arbitrary. Prove that the convex hull of A 
is convex and that it is the intersection of all convex sets that contain A. 

3. Let X be a topological vector space. All sets mentioned below are understood to 
be the subsets of X. Prove the following statements. 
(a) The convex hull of every open set is open. 
(b) If X is locally convex then the convex hull of every bounded set is bounded. 

(This is false without local convexity ; see Section 1 .47.) 
(c) If A and B are bounded, so is A + B. 
(d) If A and B are compact, so is A + B. 
(e) If A is compact and B is closed, then A + B is closed. 
(f) The sum of two closed sets may fail to be closed. [The inclusion in (b) of 

Theorem 1 . 1 3  may therefore be strict.] 
4. Let B = {(z 1, z2) E (p : I z 1 I < I z2 1 } .  Show that B is balanced but that its inte

rior is not. [Compare with (e) of Theorem 1 . 13 .] 
5. Consider the definition of " bounded set " given in Section 1 .6. Would the 

content of this definition be altered if it were required merely that to every 
neighborhood V of 0 corresponds some t > 0 such that E c tV?  

6. Prove that a set E in a topological vector space is bounded if and only if every 
countable subset of E is bounded. 

7. Let X be the vector space of all complex functions on the unit interval [0, 1], 
topologized by the family of seminorms 

Px(J) = I J(x) I (Q < X <  1). 

This topology is called the topology of pointwise convergence. Justify this ter
minology. 

Show that there is a sequence {J..} in X such that (a) {J..} converges to 0 
as n ---> oo ,  but (b) if {Yn} is any sequence of scalars such that Yn ---> oo then {Yn fn} 
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does not converge to 0. (Use the fact that the collection of all complex sequences 
converging to 0 has the same cardinality as [0, 1].) 

This shows that metrizability cannot be omitted in (b) of Theorem 1 .28. 
S. (a) Suppose fY is a separating family of seminorms on a vector space X. Let f2 

be the smallest family of seminorms on X that contains fY and is closed 
under max. [This means:  If p1 E fl, p2 E fl, and p = max (p1, p2), then 
p E fl.] If the construction of Theorem 1 .37 is applied to fY and to fl, show 
that the two resulting topologies coincide. The main difference is that f2 
leads directly to a base, rather than to a subbase. [See Remark (a) of Section 
1 . 38.] 

(b) Suppose f2 is as in part (a) and i\ is a linear functional on X. Show that i\ is 
continuous if and only if there exists a p E  f2 such that I i\x I < Mp(x) for all 
x E X  and some constant M < oo .  

9. Suppose 
(a) X and Y are topological vector spaces, 
(b) i\ : X --> Y is linear, 
(c) N is a closed subspace of X, 
(d) n :  X --> X/N is the quotient map, and 
(e) i\x = 0 for every x E N. 
Prove that there is a unique J :  X/ N --> Y which satisfies i\ = .f o n, that is, 
i\x = f(n(x)) for all x E X. Prove that this Jis linear and that i\ is continuous if 
and only iff is continuous. Also, i\ is open if and only iff is open. 

10. Suppose X and Y are topological vector spaces, dim Y < oo ,  i\ : X -->  Y is 
linear, and i\(X) = Y. 
(a) Prove that i\ is an open mapping. 
(b) Assume, in addition, that the null space of i\ is closed, and prove that i\ is 

then continuous. 
11.  If N is a subspace of a vector space X, the codimension of N in X is, by defini

tion, the dimension of the quotient space X/N. 
Suppose 0 < p < 1 and prove that every subspace of finite codimension is 

dense in I!. (See Section 1 .47.) 
12. Suppose d1(x, y) = I  x - y I , d2(x, y) = I q)(x) - q)(y) i .  where q)(x) = x/(1 + I x I ). 

Prove that d1 and d2 are metrics on R which induce the same topology, 
although d1 is complete and d2 is not. 

13. Let C be the vector space of all complex continuous functions on [0, 1] .  Define 

d(f, 
g) = f 1 I J(x) - g(x) I dx. Jo 1 + I f(x) - g(x) I 

Let (C, a) be C with the topology induced by this metric. Let (C, r) be the 
topological vector space defined by the seminorms 

px(f) = I f(x) I (0 < X S 1), 
in accordance with Theorem 1 .37. 
(a) Prove that every r-bounded set in C is also a-bounded and that the identity 

map id : (C, r) --> (C, a) therefore carries bounded sets into bounded sets. 
(b) Prove that id : (C, r) --> (C, a) is nevertheless not continuous, although it is 

sequentially continuous (by Lebesgue's dominated convergence theorem). 
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Hence (C, r) is not metrizable. (See Appendix A6, or Theorem 1 .32.) Show 
also directly that ( C, r) has no countable local base. 

(c) Prove that every continuous linear functional on (C, r) is of the form 
n J---> I C; f(x;) 

i =  1 

for some choice of x 1 , . • .  , x" in [0, 1] and some c; E q;. 
(d) Prove that (C, a) contains no convex open sets other than 0 and C. 
(e) Prove that id : (C, a) ---> (C, r) is not continuous. 

14. Put K = [0, 1] and define '?L!K as in Section 1 .46. Show that the following three 
families of seminorms (where n = 0, 1 ,  2, . . . ) define the same topology on '2! K ,  if D = djdx: 
(a) I I D"f ll oo = sup { I D"f(x) l :  - oo < x < oo } . 
(b) I I D"f ll 1 = rl D"{(x) I dx. 

(cJ I ID"f l l 2 = {fi D"J(xW dxf2 

15. Prove that the spaces C(Q) (Section 1.44) do not have the Heine-Bore! property. 
16. Prove that the topology of C(Q) does not depend on the particular choice of 

{ Kn}, as long as this sequence satisfies the conditions specified in Section 1.44. 
Do the same for C"'(Q) (Section 1.46). 

17. In the setting of Section 1.46, prove that f---> D"f is a continuous mapping of 
C"'(Q) into C"'(Q) and also of '2! K into '2! K ,  for every multi-index cx. 

18. Prove the proposition concerning addition in the binary system which was used 
at the end of the proof of Theorem 1 .24. 

19. Suppose M is a dense subspace of a topolo�ical vector space X, Y is an F-space, 
and i\ :  M ---> Y is continuous (relative to the topology that M inherits from X) 
and linear. Prove that i\ has a continuous linear extension A : X ---> Y. 

Suggestion : Let V,. be balanced neighborhoods of 0 in X such that 
vn + vn c V.- 1  and such that d(O, i\x) < T "  if X E M n v,. . If X E X  and X" E (x + V,.) n M, show that {Ax"} is a Cauchy sequence in Y, and define Ax to be 
its limit. Show that A is well defined, that Ax = i\x if x E M, and that A is linear 
and continuous. 

20. For each real number t and each integer n, define e"(t) = ei"', and define 

(n = 1 ,  2, 3, . . .  ). 
Regard these functions as members of e( - n, n). Let X 1 be the smallest closed 
subspace of e that contains e0 , e1 , e2 , • • .  , and let X 2 be the smallest closed 
subspace of e that containsf1 ,f2 ,f3 ,  . • . •  Show that X1 + X2 is dense in e but 
not closed. For instance, the vector 

is in e but not in X 1 + X 2 . (Compare with Theorem 1.42.) 



CHAPTER l :  TOPOLOGICAL VECTOR SPACES 4} 

21.  Let V be a neighborhood of O in a topological vector space X. Prove that there 
is a real continuous function f on X such that f(O) == 0 and f(x) = 1 outside V. 
(Thus X is a completely regular topological space.) Suggestion : Let V,. be bal
anced neighborhoods of 0 such that V1 + V1 c V and V,. + 1 + V,. + 1 c:: Vn . Con
struct/ as in the proof of Theorem 1 .24. Show thatf is continuous at 0 and that 

I f(x) -f(y) I <f(x - y). 

22. Iffis a complex function defined on the compact interval I = [0, 1] c R, define 

wiJ(f) = sup { l f(x) -f(y) l :  l x - Y l  < o, x E /, y E I} .  

If 0 < cx < 1 ,  the corresponding Lipschitz space Lip cx consists of allffor which 

1 1! 11 = I  f(O) I +  sup {o - ·wif) : o > 0} 

is finite. Define 

lip cx = {fE Lip cx :  lim o- "wif) = 0}. 
b-�o 

Prove that Lip cx is a Banach space and that l ip cx is a closed subspace of Lip cx. 
23. Let X be the vector space of all continuous functions on the open segment (0, 1). 

For f E X and r > 0, let V(J, r) consist of all g E X such that I g(x) -f(x) I < r 
for all x E (0, 1). Let r be the topology on X that these sets V(J, r) generate. 
Show that addition is r-continuous but scalar multiplication is not. 

24. Show that the set W that occurs in the proof of Theorem 1 . 14 need not be 
convex, and that A need not be balanced unless U is convex. 



CHAPTER 

COMPLETENESS 

The validity of many important theorems of analysis depends on the com
pleteness of the systems with which they deal. This accounts for the inade
quacy of the rational number system and of the Riemann integral (to 
mention just the two best-known examples) and for the success encountered 
by their replacements, the real numbers and the Lebesgue integral. Baire's 
theorem about complete metric spaces (often called the category theorem) is 
the basic tool in this area. In order to emphasize the role played by the 
concept of category, some theorems of this chapter (for instance, Theorems 
2.7 and 2. 1 1) are stated in a little more generality than is usually needed. 
When this is done, simpler versions (more easily remembered but sufficient 
for most applications) are also given. 

Baire Category 

2.1 Definition Let S be a topological space. A set E c S is said to be 
nowhere dense if its closure E has an empty interior. The sets of the first 
category in S are those that are countable unions of nowhere dense sets. Any 
subset of S that is not of the first category is said to be of the second 
category in S. 

This terminology (due to Baire) is admittedly rather bland and unsug
gestive. Meager and nonmeager have been used instead in some texts. But 
" category arguments " are so entrenched in the mathematical literature and 
are so well known that it seems pointless to insist on a change. 

Here are some obvious properties of category that will be freely used 
in the sequel : 

42 
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(a) If A c B and B is of the first category in S, so is A. 

(b) Any countable union of sets of the first category is of the first category. 
(c) Any closed set E c S whose interior is empty is of the first category 

in S. 

(d) If h is a homeomorphism of S onto S and if E c S, then E and h(E) 
have the same category in S. 

2.2 Baire's theorem If S is either 

(a) a complete metric space, or 
(b) a locally compact H ausdor.ff space, 

then the intersection of every countable collection of dense open subsets of S is 
dense in S. 

This is often called the category theorem, for the following reason. 
If { Ei} is a countable collection of nowhere dense subsets of S, and if 

V; is the complement of E; , then each V; is dense, and the conclusion of 
Baire's theorem is that () V; # 0· Hence S # U Ei . 

Therefore, complete metric spaces, as well as locally compact Haus-
dorff spaces, are of the second category in themselves. 

PROOF. Suppose vl , Vz ' v3 ' . . .  are dense open subsets of s. Let Bo be 
an arbitrary nonempty open set in S. If n ;e.: 1 and an open B, _ 1  # 0 
has been chosen, then (because V,. is dense) there exists an open 
B, # 0 with 

In case (a), B, may be taken to be a ball of radius < 1/n ;  in case (b) the 
choice can be made so that B, is compact. Put 

00 

K = () B, . 
n = l  

In case (a), the centers of the nested balls B, form a Cauchy sequence 
which converges to some point of K, and so K # 0. In case (b), 
K # 0 by compactness. Our construction shows that K c B0 and 
K c V,. for each n. Hence B0 intersects () V, . //II 

The Banach-Steinhaus Theorem 

2.3 Equicontinuity Suppose X and Y are topological vector spaces and 
r is a collection of linear mappings from X into Y. We say that r is 
equicontinuous if to every neighborhood W of 0 in Y there corresponds a 
neighborhood V of 0 in X such that A(V) c W for all A E r. 
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If r contains only one A, equicontinuity is. of course, the same as 
continuity (Theorem 1 . 1 7). We already saw (Theorem 1 . 32) that continuous 
linear mappings are bounded. Equicontinuous collections have this 
boundedness property in a uniform manner (Theorem 2.4). It is for this 
reason that the Banach-Steinhaus theorem (2.5) is often referred to as the 
uniform boundedness principle. 

2.4 Theorem Suppose X and Y are topological vector spaces, r is an 
equicontinuous collection of linear mappings from X into Y, and E is a 
bounded subset of X. Then Y has a bounded subset F such that A(E) c F for 
every A E r. 

PROOF. Let F be the union of the sets A(E), for A E r. Let W be a 
neighborhood of 0 in Y. Since r is equicontinuous, there is a neigh
borhood V of 0 in X such that A( V) c W for all A E r. Since E is 
bounded, E c tV for all sufficiently large t. For these t, 

A(E) c A(tV) = tA(V) c tW, 

so that F c tW . Hence F is bounded. /Ill 

2.5 Theorem (Banach-Steinhaus) Suppose X and Y are topological 
vector spaces, r is a collection of continuous linear mappings from X into Y, 
and B is the set of all x E X whose orbits 

r(x) = {Ax : A E r} 

are bounded in Y. 
If B is of the second category in X, then B = X and r is equi

continuous. 

PROOF. Pick balanced neighborhoods W anc U of 0 in Y such that 
0 + 0 c W. Put 

E = () A - 1 (0). 
A e r  

If x E B, then r(x) c nU for some n, so that x E nE. Consequently, 
00 B c U nE. 

n = I  

At least one nE is of the second category in X, since this is true of B. 
Since x --+ nx is a homeomorphism of X onto X, E is itself of the 
second category in X. But E is closed because each A is continuous. 
Therefore E has an interior point x. Then x - E contains a neighbor-
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hood V of 0 in X, and 

A( V) c Ax - A( E) c 0 - 0 c W 
for every A E r. 

This proves that r is equicontinuous. By Theorem 2.4, r is uni
formly bounded ; in particular, each r(x) is bounded in Y. Hence 
B = X. M 
In many applications, the hypothesis that B is of the second category 

is a consequence of Baire's theorem. For example, F-spaces are of the 
second category. This gives the following corollary of the Banach-Steinhaus 
theorem : 

2.6 Theorem If r is a collection of continuous linear mappings from an 
F -space X into a topological vector space Y, and if the sets 

r(x) = {Ax : A E r} 
are bounded in Y,for every x E X, then r is equicontinuous. 

Briefly, pointwise boundedness implies uniform boundedness 
(Theorem 2.4). 

As a special case of Theorem 2.6, let X and Y be Banach spaces, and 
suppose that 

( 1) sup I I Ax ll < oo for every x E X. 
A e r  

The conclusion is that there exists M < oo such that 

(2) 

Hence 

(3) 

II Ax lf < M  

II Ax l l < Ml lx l l 

if l l x ll < 1 and A E r. 

if X E X and A E r. 

The following theorem establishes the continuity of limits of sequences 
of continuous linear mappings : 

2.7 Theorem Suppose X and Y are topological vector spaces, and {A.} is 
a sequence of continuous linear mappings of X into Y. 

(a) If C is the set o.f all x E X for which {A. x} is a Cauchy sequence in Y, 
and if C is of the second category in X, then C = X. 

(b) If L is the set of all x E X at which 

Ax = lim A. x 
. �  00 
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exists, if L is of the second category in X, and if Y is an F-space, then L = X and A :  X -4 Y is continuous. 

PROOF. (a) Since Cauchy sequences are bounded (Section 1 .29), the 
Banach-Steinhaus theorem asserts that {A.} is equicontinuous. 

One checks easily that C is a subspace of X. Hence C is dense. 
(Otherwise, C is a proper subspace of X;  proper subspaces have 
empty interior ;  thus C would be of the first category.) 

Fix x e X ; let W be a neighborhood of 0 in Y. Since {A.} is 
equicontinuous, there is a neighborhood V of 0 in X such that 
A.(V) c W for n = 1 ,  2, 3, . . . . Since C is dense, there exists 
x' E C n (x + V). If n and m are so large that 

the identity 

(A. - Am)x = A.(x - x') + (A. - Am)x' + Am(x' - x) 
shows that A. x - Am x E W + W + W. Consequently, {A. x} ts a 
Cauchy sequence in Y, and x E C. 

(b) The completeness of Y implies that L = C. Hence L = X, by 
(a). If V and W are as above, the inclusion A.(V) c W, valid for all n, 
implies now that A(V) c W Thus A is continuous. //// 

The hypotheses of (b) of Theorem 2.7 can be modified in various ways. 
Here is an easily remembered version : 

2.8 Theorem If {A.} is a sequence of continuous linear mappings from an 
F-space X into a topological vector space Y, and if 

Ax = lim A. x 

exists for every x E X, then A is continuous. 

PROOF. Theorem 2.6 implies that {A.} is equicontinuous. Therefore if 
W is a neighborhood of 0 in Y, we have A.(V) c W for all n and for 
some neighborhood V of 0 in X. It follows that A( V) c W; hence 

(being obviously linear) A is continuous. //// 

In the following variant of the Banach-Steinhaus theorem the cate
gory argument is applied to a compact set, rather than to a complete metric 
one. Convexity also enters here in an essential way (Exercise 8). 

2. 9 Theorem Suppose X and Y are topological vector spaces, K is a 
compact convex set in X, r is a collection of continuous linear mappings of X 
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into Y, and the orbits 

r(x) = {Ax : A E r} 
are bounded subsets of Y,for every x E K. 

Then there is a bounded set B c Y such that A(K) c B for every A E r. 

PROOF. Let B be the union of all sets r(x), for x E K. Pick balanced 
neighborhoods W and U of 0 in Y such that 0 + 0 c W. Put 

(1) 

If x E K, then r(x) c nU for some n, so that x E nE. Consequently, 

00 

(2) K = U (K n nE). 
n = I  

Since E is closed, Baire's theorem shows that K n nE has nonempty 
interior (relative to K) for at least one n. 

We fix such an n, we fix an interior point x0 of K n nE, we fix a 
balanced neighborhood V of 0 in X such that 

(3) K n (x0 + V) c nE, 

and we fix a p > 1 such that 

(4) K c x0 + pV. 

Such a p exists since K is compact. 
If now x is any point of K and 

(5) 
then z E K, since K is convex. Also, 

(6) 

by (4). Hence z E nE, by (3). Since A(nE) c nO for every A E r and 
since x = pz - (p - 1)x0 , we have 

Ax E pnO - (p - 1)n0  c pn( O + 0) c pnW. 
Thus B c pn W, which proves that B is bounded. /Ill 

The Open Mapping Theorem 

2.10  Open mappings Suppose f maps S into T, where S and T are 
topological spaces. We say that f is open at a point p E S  iff( V) contains a 
neighborhood of f(p) whenever V is a neighborhood of p. We say that f is 
open iff(V) is open in T whenever U is open in S. 
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It is clear that f is open if and only iff is open at every point of S. 
Because of the invariance of vector topologies, it follows that a linear 
mapping of one topological vector space into another is open if and only if 
it is open at the origin. 

Let us also note that a one-to-one continuous mapping / of S onto T 
is a homeomorphism precisely whenf is open. 

2.11 The open mapping theorem Suppose 

(a) X is an F-space, 
(b) Y is a topological vector space, 
(c) A :  X ---+ Y is continuous and linear, and 
(d) A(X) is of the second category in Y. 

Then 

(i) A(X) = Y, 
(ii) A is an open mapping, and 
(iii) Y is an F-space. 

PROOF. Note that (ii) implies (i), since Y is the only open subspace of 
Y. To prove (ii), let V be a neighborhood of 0 in X. We have to show 
that A( V) contains a neighborhood of 0 in Y. 

Let d be an invariant metric on X that is compatible with the 
topology of X. Define 

( 1) v. = {x : d(x, 0) < 2 -"r} ( n = 0, 1 ,  2, . . .  ), 
where r > 0 is so small that V0 c V. We will prove that some neigh
borhood W of 0 in Y satisfies 

(2) 

(3) 

W c A( V1) c A(V). 

Since VI :::l v2 - v1 '  statement (b) of Theorem 1 . 1 3  implies 

A(V1) :::l A( V2) - A( V2) :::l A( V2) - A( V2). 

The first part of (2) will therefore be proved if we can show that A( V2) 
has nonempty interior. But 

00 

(4) A(X) = U kA( V2), k = I  

because V2 is a neighborhood of 0. At least one kA( V2) is therefore of 
the second category in Y. Since y ---+ ky is a homeomorphism of Y 
onto Y, A( V2) is of the second category in Y. Its closure therefore has 
nonempty interior. 
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To prove the second inclusion in (2), fix y 1 E A( Vd. Assume 
n > 1 and Y. has been chosen in A(V,). What was just proved for V1 
holds equally well for V, + 1 , so that A( V,+ I ) contains a neighborhood 
of O. Hence 

(5) (Y. - A( V, + I )) n A( V,) # 0. 

This says that there exists x. E V, such that 

(6) 
Put Yn + 1 = Yn - Ax • . Then Yn + 1 E A( V, + 1 ), and the construction pro
ceeds. 

Since d(x. , 0) < 2 - "r, for n = 1 ,  2, 3, . . .  , the sums x 1 + · · · + x. 
form a Cauchy sequence which converges (by the completeness of X) 
to some x E X, with d(x, 0) < r. Hence x E V. Since 

(7) 
m m 
L Ax. = L (Yn - Yn + l ) = Y1 - Ym + l • n = l  n = l  

and since Ym + 1 ---+ 0 as m ---+ oo (by the continuity of A), we conclude 
that y1 = Ax E A( V). This gives the second part of (2), and (ii) is 
proved. 

Theorem 1 .4 1  shows that X/N is an F-space, if N is the null 
space of A. Hence (iii) will follow as soon as we exhibit an iso
morphism f of X 1 N onto Y which is also a homeomorphism. This can 
be done by defining 

(8) f(x + N) = Ax (x E X). 
It is trivial that this f is an isomorphism and that Ax = f(n(x)), where 
n is the quotient map described in Section 1 .40. If V is open in Y, then 

(9) 
is open, since A is continuous and n is open. Hence f is continuous. If 
E is open in XjN, then 

( 10) f(E) = A(n - 1(£)) 
is open, since n is continuous and A is open. Consequently, f is a 
homeomorphism. //// 

2.12 Corollaries 

(a) If A is a continuous linear mapping of an F-space X onto an F-space Y, 
then A is open. 

(b) If A satisfies (a) and is one-to-one, then A - 1 : Y ---+ X is continuous. 
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(c) If X and Y are Banach spaces, and if A :  X ---+ Y is continuous, linear, 
one-to-one, and onto, then there exist positive real numbers a and b such 
that 

a ll x ll < II Ax ll < b ll x ll 
for every x E X. 

(d) If r 1 c r 2 are vector topologies on a vector space X and if both (X, r 1 ) 
and (X, r 2) are F -spaces, then r 1 = r 2 .  

PROOF. Statement (a) follows from Theorem 2.1 1 and Baire's theorem, 
since Y is now of the second category in itself. Statement (b) is an 
immediate consequence of (a), and (c) follows from (b). The two 
inequalities in (c) simply express the continuity of A - 1 and of A. 
Statement (d) is obtained by applying (b) to the identity mapping of 
(X, r2) onto (X, r 1 ). II II 

The Closed Graph Theorem 

2.13 Graphs If X and Y are sets and f maps X into Y, the graph off is 
the set of all points (x,f(x)) in the cartesian product X x Y. If X and Y are 
topological spaces, if X x Y is given the usual product topology (the small
est topology that contains all sets U x V with U and V open in X and Y, 
respectively), and iff : X ---+ Y is continuous, one would expect the graph off 
to be closed in X x Y (Proposition 2. 1 4). For linear mappings between 
F-spaces this trivial necessary condition is also sufficient to assure conti
nuity. This important fact is proved in Theorem 2. 1 5. 

2.14 Proposition If X is a topological space, Y is a Hausdorff space, and 
f :  X ---+ Y is continuous, then the graph G off is closed. 

PROOF. Let n be the complement of G in X X y ;  fix (xo ' Yo) E n. 
Then Yo # f(x0). Thus Yo and f(x0) have disjoint neighborhoods V 
and W in Y. Since f is continuous, x0 has a neighborhood U such that 
f(U) c W. The neighborhood U x V of (x0 , y0) lies therefore in Q. 
This proves that n is open. I I I I 

Note : One cannot omit the hypothesis that Y is a Hausdorff space. 
To see this, consider an arbitrary topological space X, and let f :  X ---+ X be 
the identity. Its graph is the diagonal 

D = {(x, x): x E X} c X x X. 
The statement " D is closed in X x X "  is just a rewording of the Hausdorff 
separation axiom. 



2.15 The closed graph theorem Suppose 

(a) X and Y are F-spaces, 
(b) A :  X --+  Y is linear, 
(c) G = {(x, Ax) : x E X} is closed in X x Y. 

Then A is continuous. 
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PROOF. X x Y is a vector space if addition and scalar multiplication 
are defined componentwise : 

There are complete invariant metrics dx and dy on X and Y, respec
tively, which induce their topologies. If 

d((x i > Y 1 ), (x2 , Y2)) = dx(x l , x2) + dy(y l , Y2), 
then d is an invariant metric on X x Y which is compatible with its 
product topology and which makes X x Y into an F-space. (The easy 
but tedious verifications that are needed here are left as an exercise.) 

Since A is linear, G is a subspace of X x Y. Closed subsets of 
complete metric spaces are complete. Therefore G is an F-space. 

Define n1 : G --+  X and n2 : X x Y --+  Y by 

n2(x, y) = y. 
Now n1 is a continuous linear one-to-one mapping of the F-space G 
onto the F-space X. It follows from the open mapping theorem that 

ni 1 : X --+  G 
is continuous. But A = n2 o ni 1 and n2 is continuous. Hence A is 
continuous. //// 

Remark. The crucial hypothesis (c), that G is closed, is often verified 
in applications by showing that A satisfies property (c') below : 

(c') If {x.} is a sequence in X such that the limits 
x = lim x. and y = lim Ax. 

exist, then y = Ax. 

Let us prove that (c') implies (c). Pick a limit point (x, y) of G. 
Since X x Y is metrizable, 

(x, y) = lim (x. , Ax.) 
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for some sequence {x.}. It follows from the definition of the product 
topology that x. -4 x and Ax. -4 y. Hence y = Ax, by (c'), and so 
(x, y) E G, and G is closed. 

It is just as easy to prove that (c) implies (c'). 

Bilinear Mappings 

2.16  Definitions Suppose X, Y, Z are vector spaces and B maps 
X x Y into Z. Associate to each x E X and to each y E Y the mappings 

Bx: Y -4 Z and BY : X -4 Z 

by defining 

Bx(Y) = B(x, y) = BY(x). 
B is said to be bilinear if every Bx and every BY are linear. 

If X, Y, Z are topological vector spaces and if every Bx and every BY is 
continuous, then B is said to be separately continuous. If B is continuous 
(relative to the product topology of X x Y) then B is obviously separately 
continuous. In certain situations, the converse can be proved with the aid of 
the Banach-Steinhaus theorem. 

2.17  Theorem Suppose B :  X x Y -4 Z is bilinear and separately contin
uous, X is an F-space, and Y and Z are topological vector spaces. Then 

(1) B(x. , Y.) -4 B(x0 , y0) in Z 
whenever x. -4 x0 in X and Yn -4 Yo in Y. If Y is metrizable, it follows that B 
is continuous. 

PROOF. Let U and W be neighborhoods of 0 in Z such that 
U + U c W. Define 

b.(x) = B(x, Y.) (x E X, n = 1 ,  2, 3, . . .  ). 
Since B is continuous as a function of y, 

lim b.(x) = B(x, Yo) (x E X). 

Thus {b.(x)} is a bounded subset of Z, for each x E X. Since each b. is 
a continuous linear mapping of the F-space X, the Banach-Steinhaus 
theorem 2.6 implies that {b.} is equicontinuous. Hence there is a 
neighborhood V of 0 in X such that 

b.( V) c U ( n = 1 ,  2, 3, . . .  ). 



CHAPTER 2 :  COMPLETENESS 53 

Note that 

B(x. , Y.) - B(xo , Yo) = b.(x. - Xo) + B(xo , Yn - Yo). 
If n is sufficiently large, then (i) x. E x0 + V, so that b.(x. - x0) E U, 
and (ii) B(x0 , Yn - y0) E U, since B is continuous in y and B(x0 , 0) = 
0. Hence 

B(x. , Y.) - B(x0 , y0) E V + V c W 
for all large n. This gives (1 ). 

If Y is metrizable, so is X x 
follows from (1). (See Appendix A6.) 

Y, and the continuity of B then 
/Ill 

Exercises 

1. If X is an infinite-dimensional topological vector space which is the union of 
countably many finite-dimensional subspaces, prove that X is of the first cate
gory in itself. Prove that therefore no infinite-dimensional F-space has a count
able Hamel basis. 

(A set p is a Hamel basis for a vector space X if p is a maximal linearly 
independent subset of X. Alternatively, p is a Hamel basis if every x E X has a 
unique representation as a .finite linear combination of elements of p.) 

2. Sets of first and second category are "small " and " large " in a topological sense. 
These notions are different when " small " and " large " are understood in the 
sense of measure, even when the measure is intimately related to the topology. 
To see this, construct a subset of the unit interval which is of the first category 
but whose Lebesgue measure is 1 .  

3. Put K = [- 1 , 1] ; define �K as in Section 1 .46 (with R in place of R"). Suppose 
{!.} is a sequence of Lebesgue integrable functions such that 

1\cf> = !�� f/.(t)cf>(t) dt 

exists for every cf> E �K · Show that 1\ is a continuous linear functional on �K · 
Show that there is a positive integer p and a number M < ex:; such that 

f/.(t)cf>(t) dt < M IIDPcf> ll oo 

for all n. For example, if f.(t) = n3t on [ - 1/n, 1 /n] and 0 elsewhere, show that 
this can be done with p = 1 .  Construct an example where it can be done with 
p = 2 but not with p = 1 .  

4. Let L1 and I3 be the usual Lebesgue spaces on the unit interval. Prove that I3 is 
of the first category in JJ, in three ways : 
(a) Show that {f :  J I f 1 2 < n} is closed in JJ but has empty interior. 
(b) Put g. = n on [0, n- 3], and show that 

f fg. --+ 0 

for every f E I3 but not for every f E L1 . 
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(c) Note that the inclusion map of I3 into L1 is continuous but not onto. 
Do the same for I! and IJ if p < q. 

5. Prove results analogous to those of Exercise 4 for the spaces tP, where tP is the 
Banach space of all complex functions x on {0, 1, 2, . . .  } whose norm 

is finite. 
6. Define the Fourier coefficients](n) of a function! E I3(T) (T is the unit circle) by 

, 1 fn ·e, . 8 f(n) = -
f(e' ,e - '" d(J 

2n: - x  

for all n E Z (the integers). Put 
n 

An f =  L ](k). 
k= -n 

Prove that {f E I3(T) :  Iimn�oo An f exists} is a dense subspace of I3(T) of the 
first category. 

7. Let C(T) be the set of all continuous complex functions on the unit circle T. 
Suppose { Yn} (n E Z) is a complex sequence that associates to each f E C(T) a 
function Af E C(T) whose Fourier coefficients are 

(A f) ' (n) = yn f(n) (n E Z). 

(The notation is as in Exercise 6.) Prove that { Yn} has this multiplier property if 
and only if there is a complex Borel measure Jl. on T such that 

Yn = f e - ine dJI.(O) (n E Z). 

Suggestion : With the supremum norm, C(T) is a Banach space. Apply the 
closed graph theorem. Then consider the functional 

CD 

f-+ (Af)( 1) = L Yn ](n) 
- oo  

and apply the Riesz representation theorem ([23], Th. 6. 19). (The above series 
may not converge ; use it only for trigonometric polynomials.) 

S. Define functionals A,; on t 2 (see Exercise 5) by 
m 

Am x = L n2x(n) (m = 1 , 2, 3, . . .  ). 
n= 1 

Define xn E t2 by xn(n) = 1/n, xn(i) = 0 if i -=1- n. Let K c t 2 consist of 0, xl, x2 , 
x3 , . . . .  Prove that K is compact. Compute Am xn . Show that {Am x} is bounded 
for each x E K but {Am xm} is not. Convexity can therefore not be omitted from 
the hypotheses of Theorem 2.9. 
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Choose en > 0 so that I en = 1 , I nen = <X) .  Take X = I en xn . Show that 
x lies in the closed convex hull of K (by definition, this is the closure of the 
convex hull) and that { i\m x} is not bounded. 

Show that the convex hull of K is not closed. 
9. Suppose X, Y, Z are Banach spaces and 

B: X X y ..... z 
is bilinear and continuous. Prove that there exists M < CfJ such that 

/ / B(x, y) / / < M//x /1 // y / / (x E X, y E Y). 

Is completeness needed here? 
10. Prove that a bilinear mapping is continuous if it is continuous at the origin 

(0, 0). 
11.  Define B(x�> x2 ; y) = (x1 y, x2 y). Show that B is a bilinear continuous mapping 

of R2 x R onto R2 which is not open at (1 , 1 ;  0). Find all points where this B is 
open. 

12. Let X be the normed space of all real polynomials in one variable, with 

, ,! II = r / f(t) / dt. 

Put B(f, g) = g f(t)g(t) dt, and show that B is a bilinear functional on X x X 
which is separately continuous but is not continuous. 

13. Suppose X is a topological vector space which is of the second category in itself. 
Let K be a closed, convex, absorbing subset of X. Prove that K contains a 
neighborhood of 0. 
Suggestion : Show first that H = K n ( - K) is absorbing. By a category argu
ment, H has interior. Then use 

2H = H + H = H - H. 

Show that the result is false without convexity of K, even if X = R2. Show that 
the result is false if X is I3 topologized by the 1!-norm (as in Exercise 4). 

14. (a) Suppose X and Y are topological vector spaces, {An} is an equicontinuous 
sequence of linear mappings of X into Y, and C is the set of all x at which 
{i\.(x)} is a Cauchy sequence in Y. Prove that C is a closed subspace of X. 

(b) Assume, in addition to the hypotheses of (a), that Y is an F-space and that 
{i\.(x)} converges in some dense subset of X. Prove that then 

i\(x) = lim i\.(x) 

exists for every x E X and that i\ is continuous. 
15. Suppose X is an F-space and Y is a subspace of X whose complement is of the 

first category. Prove that Y = X. Hint : Y must intersect x + Y for every x E X. 
16. Suppose that X and K are metric spaces, that K is compact, and that the graph 

off : X -+  K is a closed subset of X x K. Prove that f is continuous. (This is an 
analogue of Theorem 2. 15 but is much easier.) Show that compactness of K 
cannot be omitted from the hypotheses, even when X is compact. 



CHAPTER 

CONVEXITY 

This chapter deals primarily (though not exclusively) with the most impor
tant class of topological vector spaces, namely, the locally convex ones. The 
highlights, from the theoretical as well as the applied standpoints, are 
(a) the Hahn-Banach theorems (assuring a supply of continuous linear func
tionals that is adequate for a highly developed duality theory), (b) the 
Banach-Alaoglu compactness theorem in dual spaces, and (c) the Krein
Milman theorem about extreme points. Applications to various problems in 
analysis are postponed to Chapter 5. 

The Hahn-Banach Theorems 

The plural is used here because the term " Hahn-Banach theorem " is cus
tomarily applied to several closely related results. Among these are the 
dominated extension theorems 3.2 and 3.3 (in which no topology is involved), 
the separation theorem 3.4, and the continuous extension theorem 3.6. 
Another separation theorem (which implies 3.4) is stated as Exercise 3. 

3.1 Definitions The dual space of a topological vector space X is the 
vector space X* whose elements are the continuous linear functionals on X. 

Note that addition and scalar multiplication are defined in X* by 

(,:xA)x = ,:x · Ax. 
It is clear that these operations do indeed make X* into a vector space. 

56 
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It will be necessary to use the obvious fact that every complex vector 
space is also a real vector space, and it will be convenient to use the follow
ing (temporary) terminology : An additive functional A on a complex vector 
space X is called real-linear (complex-linear) if A(a:x) = a:Ax for every x E X 
and for every real (complex) scalar a:. Our standing rule that any statement 
about vector spaces in which no scalar field is mentioned applies to both 
cases is unaffected by this temporary terminology and is still in force. 

If u is the real part of a complex-linear functional f on X, then u is 
real-linear and 

(1) f(x) = u(x) - iu(ix) (x E X) 

because z = Re z - i Re (iz) for every z E ({. 
Conversely, if u :  X ---+ R is real-linear on a complex vector space X 

and if f is defined by (1), a straightforward computation shows that f is 
complex-linear. 

Suppose now that X is a complex topological vector space. The above 
facts imply that a complex-linear functional on X is in X* if and only if its 
real part is continuous, and that every continuous real-linear u :  X ---+ R is 
the real part of a uniquef E X*. 

3.2 Theorem Suppose 

(a) M is a subspace of a real vector space X, 
(b) p :  X ---+ R satisfies 

p(x + y) < p(x) + p(y) and 
if X E X, y E X, t > 0, 

(c) f :  M ---+ R is linear andf(x) < p(x) on M. 

Then there exists a linear A :  X ---+ R such that 

Ax = f(x) (x E M) 
and 

p(tx) = p(x) 

- p( - x) < Ax <  p(x) (x E X). 

PROOF. If M # X, choose x1 E X, x1 ¢' M, and define 

M 1 = {x + tx 1 :  x E M, t E R}. 
It is clear that M 1 is a vector space. Since 

f(x) + f(y) = f(x + y) < p(x + y) < p(x - x t) + p(x 1 + y), 
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we have 

(1 )  f(x) - p(x - x 1 ) < p(y + xd -f(y) (x, y E M). 
Let rx be the least upper bound of the left side of ( 1 ), as x ranges over 
M. Then 

(2) 
and 

(3) 

(4) 

f(y) + rx < p(y + x d 
Define f1 on M 1 by 

f1 (x + txd = f(x) + trx 
Thenf1 = f on M, andf1 is linear on M 1 .  

(x E M) 

(y E M). 

(x E M, t E R). 

Take t > 0, replace x by t - 1 x in (2), replace y by t - 1 y in (3), and 
multiply the resulting inequalities by t. In combination with (4), this 
proves that f1 < p on M 1 . 

The second part of the proof can be done by whatever one's 
favorite method of transfinite induction is ; one can use well-ordering, 
or Zorn's lemma, or Hausdorff's maximality theorem. 

Let f!l> be the collection of all ordered pairs (M', f'), where M' is 
a subspace of X that contains M and f' is a linear functional on M' 
that extends f and satisfies f' < p on M'. Partially order f!l> by declar
ing (M', f') < (M", f") to mean that M' c M" and f" = f' on M'. By 
Hausdorff's maximality theorem there exists a maximal totally 
ordered subcollection n of f!l>. 

Let <I> be the collection of all M' such that (M',f') E n. Then <I> is 
totally ordered by set inclusion, and the union M of all members of <I> 
is therefore a subspace of X. If x E M  then x E M' for some M' E <I> ;  
define A x  = f'(x), where f' is the function which occurs in the pair 
(M',f') E Q. 

It is now easy to check that A is well defined on M, that A is 
linear, and that A < p. If M were a proper subspace of X, the first 
part of the proof would give a further extension of A, and this would 
contradict the maximality of n. Thus M = X. 

Finally, the inequality A < p implies that 

- p( - x) < - A( - x) = Ax 
for all x E X. This completes the proof. /Ill 

3.3 Theorem Suppose M is a subspace of a vector space X, p is a semi
norm on X, andfis a linear functional on M such that 

I f(x) I < p{x) (x E M). 
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Thenf extends to a linear functional A on X that satisfies 

I Ax I <  p(x) (x E X). 

PROOF. If the scalar field is R, this is contained in Theorem 3.2, since p 
now satisfies p( - x) = p(x). 

Assume that the scalar field is ({. Put u = Re f By Theorem 3.2 
there is a real-linear U on X such that U = u on M and U < p on X. 
Let A be the complex-linear functional on X whose real part is U. The 
discussion in Section 3 . 1  implies that A = f on M. 

Finally, to every x E X corresponds an rx E ({, I rx l = 1 ,  such that 
rxAx = I Ax 1 .  Hence 

I Ax I = A(rxx) = U(rxx) < p(rxx) = p(x). Ill/ 

Corollary. If X is a normed space and x0 E X, there exists A E X* such 
that 

Axo = ll xo l l and l Ax I <  l l x l l  for all x E X. 

PROOF. If x0 = 0, take A = 0. If x0 ¥- 0, apply Theorem 3.3, with 
p(x) = l l x l l , M the one-dimensional space generated by x0 , and 
f(rxx0) = rx l l xo ll on M. //// 

3.4 Theorem Suppose A and B are disjoint, nonempty, convex sets in a 
topological vector space X. 

(a) If A is open there exist A E X* and y E R such that 
Re Ax < y < Re Ay 

for every x E A and for every y E B. 
(b) If A is compact, B is closed, and X is locally convex, then there exist 

A E X*, y 1  E R, y2 E R, such that 
Re Ax < y 1 < y2 < Re Ay 

for every x E A and for every y E B. 

Note that this is stated without specifying the scalar field ; if it is R, 
then Re A = A, of course. 

PROOF. It is enough to prove this for real scalars. For if the scalar field 
is ({ and the real case has been proved, then there is a continuous 
real-linear A 1 on X that gives the required separation ; if A is the 
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unique complex-linear functional on X whose real part is A1, then 
A E X*. (See Section 3. 1 .) Assume real scalars. 

(a) Fix A0 E A, b0 E B. Put x0 = b0 - a0 ; put C = A - B + x0 • 
Then C is a convex neighborhood of 0 in X. Let p be the Minkowski 
functional of C. By Theorem 1 .35, p satisfies hypothesis (b) of 
Theorem 3.2. Since A n B = 0, x0 tj C, and so p(x0) > 1 .  

Define f(tx0) = t on the subspace M of X generated by x0 • If 
t > 0 then 

f(tx0) = t < tp(x0) = p(tx0) ; 
if t < 0 then f(tx0) < 0 < p(tx0). Thus f < p on M. By Theorem 3.2, f 
extends to a linear functional A on X that also satisfies A < p. In 
particular, A < 1 on C, hence A > - 1 on - C, so that 1 A 1 < 1 on the 
neighborhood C n ( - C) of 0. By Theorem 1 . 1 8, A E X*. 

If now rx E A and b E B, we have 

Aa - Ab + 1 = A(a - b + x0) < p(a - b + x0) < 1 

since Ax0 = 1 ,  a - b + x0 E C, and C is open. Thus Aa < Ab. 
It follows that A(A) and A(B) are disjoint convex subsets of R, 

with A(A) to the left of A(B). Also, A(A) is an open set since A is open 
and since every nonconstant linear functional on X is an open 
mapping. Let y be the right end point of A(A) to get the conclusion of 
part (a). 

(b) By Theorem 1 . 1 0  there is a convex neighborhood V of 0 in 
X such that (A + V) n B = 0. Part (a), with A + V in place of A, 
shows that there exists A E X* such that A(A + V) and A(B) are dis
joint convex subsets of R, with A(A + V) open and to the left of A(B). 
Since A(A) is a compact subset of A(A + V), we obtain the conclusion 
of (b). II// 
Corollary. If X is a locally convex space then X* separates points on 
X. 

PROOF. If x 1 E X, x2 E X, and x 1 # x2 , apply (b) of Theorem 3.4 with 
A =  {xd, B = {x2} .  //// 

3.5 Theorem Suppose M is a subspace of a locally convex space X, and 
x0 E X. If x0 is not in the closure of M, then there exists A E X* such that 
Ax0 = 1 but Ax = Ofor every x E M. 

PROOF. By (b) of Theorem 3.4, with A =  {x0} and B = M, there exists 
A E X* such that Ax0 and A(M) are disjoint. Thus A(M) is a proper 
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subspace of the scalar field. This forces A(M) = {0} and Ax0 # 0. The 
desired functional is obtained by dividing A by Ax0 • /Ill 

Remark. This theorem is the basis of a standard method of treating 
certain approximation problems : In order to prove that an x0 E X lies 
in the closure of some subspace M of X it suffices (if X is locally 
convex) to show that Ax0 = 0 for every continuous linear functional 
A on X that vanishes on M. 

3.6 Theorem Iff is a continuous linear functional on a subspace M of a 
locally convex space X, then there exists A E X* such that A = f on M. 

Remark. For normed spaces this is an immediate corollary of 
Theorem 3.3. The general case could also be obtained from 3.3, by 
relating the continuity of linear functionals to seminorms (see Exercise 
8, Chapter 1 ). The proof given below shows that Theorem 3.6 depends 
only on the separation property of Theorem 3.5. 

PROOF. Assume, without loss of generality, that f is not identically 0 
on M. Put 

M0 = {x E M : f(x) = 0} 
and pick x0 E M such that f(x0) = 1 .  Since f is continuous, x0 is not in 
the M -closure of M 0 ,  and since M inherits its topology from X, it 
follows that x0 is not in the X -closure of M 0 • 

Theorem 3.5 therefore assures the existence of a A E X* such 
that Ax0 = 1 and A = 0 on M 0 .  

If x E M, then x -f(x)x0 E M0 , since f(x0) = 1 .  Hence 

Ax -f(x) = Ax -f(x)Ax0 = A(x -f(x)x0) = 0. 

Thus A = f on M. /Ill 

We conclude this discussion with another useful corollary of the 
separation theorem. 

3.7 Theorem Suppose B is a convex, balanced, closed set in a locally 
convex space X, x0 E X, but x0 ¢' B. Then there exists A E X* such that 
I Ax I < 1 for all x E B, but Ax0 > 1 .  

PROOF. Since B is closed and convex, we can apply (b) of Theorem 3.4, 
with A =  {x0} , to obtain A 1 E X* such that A1x0 = rei9 lies outside 
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the closure K of A1(B). Since B is balanced, so is K. Hence there 
exists s, 0 < s < r, so that I z I < s for all z E K. The functional 
A = s- 1 e - ;o A 1 has the desired properties. I I I I 

Weak Topologies 

3.8 Topological preliminaries The purpose of this section is to explain 
and illustrate some of the phenomena that occur when a set is topologized 
in several ways. 

Let T 1 and T 2 be two topologies on a set X, and assume T 1 c T 2 ; that 
is, every T 1 -open set is also T 2-open. Then we say that T 1 is weaker than T 2 , 
or that T2 is stronger than T 1 .  [Note that (in accordance with the meaning of 
the inclusion symbol c )· the terms " weaker " and " stronger " do not 
exclude equality.] In this situation, the identity mapping on X is continuous 
from (X, T2) to (X, Td and is an open mapping from (X, Td  to (X, T2). 

As a first illustration, let us prove that the topology of a compact 
Hausdorff space has a certain rigidity, in the sense that it cannot be 
weakened without losing the Hausdorff separation axiom and cannot be 
strengthened without losing compactness : 

(a) l/ T1 c T2 are topologies on a set X, ij T 1 is a Hausdorff topology, and if 
T2 is compact, then T 1  = T2 • 

To see this, let F c X be T 2-closed. Since X is T 2-compact, so is F. 
Since T 1 c T 2 , it follows that F is T 1 -compact. (Every T 1 -open cover of F is 
also a T2-open cover.) Since T 1  is a Hausdorff topology, it follows that F is 
T 1 -closed. 

As another illustration, consider the quotient topology TN of XIN, as 
defined in Section 1 .40, and the quotient map n :  X --+ X IN. By its very 
definition, TN is the strongest topology on XIN that makes n continuous, 
and it is the weakest one that makes n an open mapping. Explicitly, if T' 
and T" are topologies on X IN, and if n is continuous relative to T' and open 
relative to T", then T' c TN c T". 

Suppose next that X is a set and fF is a nonempty family of mappings 
f: X --+ ¥1 , where each ¥1 is a topological space. (In many important cases, 
¥1 is the same for all f E f/'.) Let T be the collection of all unions of finite 
intersections of sets f - 1

(V), with f E fF and V open in ¥1 . Then T is a 
topology on X, and it is in fact the weakest topology on X that makes every 
f E fF continuous : If T' is any other topology with that property, then 
T c T'. This T is called the weak topology on X induced by fl', or, more 
succinctly, the fF -topology of X. 

The best-known example of this situation is undoubtedly the usual 
way in which one topologizes the cartesian product X of a collection of 
topological spaces X a .  If n11(x) denotes the a:th coordinate of a point x E X, 
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then nat maps X onto X at ,  and the product topology r of X is, by definition, 
its {na} -topology, the weakest one that makes every nat continuous. Assume 
now that every X at is a compact Hausdorff space. Then r is a compact topol
ogy on X (by Tychonoff's theorem), and proposition (a) implies that r 
cannot be strengthened without spoiling Tychonoff's theorem. 

In the last sentence a special case of the following proposition was 
tacitly used : 

(b) If $- is a family of mappings f: X ---+ ¥1 , where X is a set and each ¥1 is 
a Hausdorff space, and if ff separates points on X, then the ff-topology 
of X is a Hausdorff topology. 
For if p # q are points of X, then f(p) # f(q) for some f E ff ;  the 

points f(p) and f(q) have disjoint neighborhoods in ¥1 whose inverse images 
under fare open (by definition) and disjoint. 

Here is an application of these ideas to a metrization theorem. 

(c) If X is a compact topological space and if some sequence {f.} of contin
uous real-valued functions separates points on X, then X is metrizable. 
Let r be the given topology of X. Suppose, without loss of generality, 

that I f. I < 1 for all n, and let rd be the topology induced on X by the 
metric 

00 

d(p, q) = l: r ·  I f.(p) -f.(q) 1 . n � l  
This is indeed a metric, since {f.} separates points. Since each f. ts 
r-continuous and the series converges uniformly on X x X, d is a 
r-continuous function on X x X. The balls 

B,(p) = {q E X : d(p, q) < r} 
are therefore r-open. Thus rd c r. Since rd is induced by a metric, rd is a 
Hausdorff topology, and now (a) implies that r = rd . 

The following lemma has applications in the study of vector topol
ogies. In fact, the case n = 1 was needed (and proved) at the end of 
Theorem 3.6. 

3.9 Lemma Suppose A 1 , • • • , A. and A are linear functionals on a vector 
space X. Let 

N = {x : A 1x = · · · = A . x  = 0}. 
The following three properties are then equivalent : 

(a) There are scalars a:1 , • • •  , a. such that 
A =  a:IA I + . . .  + a:. A • . 
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(b) There exists y < oo such that 

I Ax I < y max I A; x I 
(c) Ax = 0 for every x E N. 

l :5, i :5, n  (x E X). 

PROOF. It is clear that (a) implies (b) and that (b) implies (c). Assume (c) 
holds. Let <I> be the scalar field. Define n :  X ---+ <I>" by 

n(x) = (A 1x, . . .  , A. x). 
If n(x) = n(x'), then (c) implies Ax = Ax'. Hence f(n(x)) = Ax defines a 
linear functional f on n(X). Extend f to a linear functional F on <1>". 
This means that there exist rx; E <I> such that 

Thus 
n 

Ax = F(n(x)) = F(A 1 x, . . .  , A. x) = L rx; A; x, 
i= I 

which is (a). II// 

3.10  Theorem Suppose X is a vector space and X' is a separating vector 
I 

space of linear functionals on X. Then the IX'-topology -r' makes X into a 
locally convex space whose dual space is X'. 

The assumptions on X' are, more explicitly, that X' is closed under 
addition and scalar multiplication and that Ax1 # Ax2 for some A E X' 
whenever x 1  and x2 are distinct points of X. 

PROOF. Since R and q; are Hausdorff �paces, (b) of Section 3.8 shows 
that -r' is a Hausdorff topology. The linearity of the members of X' 
shows that -r' is translation-invariant. If A 1 , . . .  , A. E X', if r; > 0, and 
if 

( 1)  
then V is convex, balanced, and V E -r'. In fact, the collection of all V 
of the form (1 )  is a local base for -r'. Thus -r' is a locally convex topol
ogy on X. 

If ( 1 )  holds, then 1 V + !V  = V. This proves that addition is 
continuous. Suppose x E X and r:x is a scalar. Then x E sV  for some 
s > 0. If I P - r:x I < r and y - x E r V then 

py - r:xx = (/J - r:x)y + r:x(y - x) 
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lies in V, provided that r is so small that 

r(s + r) + I <X I r < 1 .  

Hence scalar multiplication is continuous. 
We have now proved that r' is a locally convex vector topology. 

Every A E X' is r' -continuous. Conversely, suppose A is a r' -con
tinuous linear functional on X. Then I Ax I < 1 for all x in some set V 
of the form ( 1 ). Condition (b) of Lemma 3.9 therefore holds ; hence so 
does (a) : A = L �X; A; .  Since A; E X' and X' is a vector space, A E X'. 
This completes the proof. I I I I 

Note : The first part of this proof could have been based on Theorem 
1 .37 and the separating family of seminorms PA(A E X') given by PA(x) = 
l Ax I . 

3.1 1  The weak topology of a topological vector space Suppose X is 
a topological vector space (with topology r) whose dual X* separates points 
on X. (We know that this happens in every locally convex X. It also 
happens in some others ; see Exercise 5.) The X*-topology of X is called the 
weak topology of X. 

We shall let X w denote X topologized by this weak topology rw . 
Theorem 3. 1 0  implies that X w is a locally convex space whose dual is 
also X*. 

Since every A E X* is r-continuous and since rw is the weakest topol
ogy on X with that property, we have rw c r. In this context, the given 
topology r will often be called the original topology of X. 

Self-explanatory expressions such as original neighborhood, weak 
neighborhood, original closure, weak closure, originally bounded, weakly 
bounded, etc., will be used to make it clear with respect to which topology 
these terms are to be understood. 

1 

For instance, let {x.} be a sequence in X. To say that x. ---+ 0 originally 
means that every original neighborhood of 0 contains all x. with sufficiently 
large n. To say that x. ---+ 0 weakly means that every weak neighborhood of 
0 contains all x. with sufficiently large n. Since every weak neighborhood of 

1 When X is a Frechet space (hence, in particular, when X is a Banach space) the original 
topology of X is usually called its strong 10pology. In that context. the terms " strong " and 
" strongly " will be used in place of " original " and " originally." For locally convex spaces in 
general, the term " strong topology " has been given a specific technical meaning. See [ 15], pp. 
256-258 ;  also [14], p. 169. 1! seems t herefore advisable to use " original " in the present general 
discussion. 
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0 contains a neighborhood of the form 

( 1 )  

where A; E X* and r; > 0, it is easy to see that x. ---+ 0 weakly if and only if 
Ax. ---+ Ofor every A E X*. 

Hence every originally convergent sequence converges weakly. (The 
converse is usually false ; see Exercises 5 and 6.) 

Similarly, a set E c X is weakly bounded (that is, E is a bounded 
subset of X w) if and only if every V as in (1) contains tE for some 
t = t(V) > 0. This happens if and only if there corresponds to each A E X* 
a number y(A) < oo such that I Ax I < y(A) for every x E E. In other words, 
a set E c X is weakly bounded if and only if every A E X* is a bounded 
function on E. 

Let V again be as in ( 1 ), and put 

N = {x : A 1x = · · · = A . x  = 0}. 

Since x ---+ (A 1x, . . .  , A. x) maps X into ({ with null space N, we see 
that dim X < n + dim N. Since N c V, this leads to the following conclu
siOn. 

If X is infinite-dimensional then every weak neighborhood of 0 contains 
an infinite-dimensional subspace ; hence X w is not locally bounded. 

This implies in many cases that the weak topology is strictly weaker 
than the original one. Of course, the two may coincide : Theorem 3 . 10  
implies that (X w)w = X w .  

We now come to a more interesting result. 

3.12  Theorem Suppose E is a convex subset of a locally convex space X. 
Then the weak closure Ew of E is equal to its original closure E. 

PROOF. Ew is weakly closed, hence originally closed, so that E c Ew . 
To obtain the opposite inclusion, choose x0 E X, x0 tj E. Part (b) of 
the separation theorem 3.4 shows that there exist A E X* and y E R 
such that, for every x E E, 

Re Ax0 < y < Re Ax. 

The set { x :  Re Ax < y} is therefore a weak neighborhood of x0 that 
does not intersect E. Thus x0 is not in Ew . This proves Ew c £. //II 

Corollaries. For convex subsets of a locally convex space, 

(a) originally closed equals weakly closed, and 
(b) originally dense equals weakly dense. 
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The proofs are obvious. Here is another noteworthy consequence of 
Theorem 3. 1 2. 

3.13 Theorem Suppose X is a metrizable locally convex space. If {x.} is 
a sequence in X that converges weakly to some x E X, then there is a 
sequence {y;} in X such that 

(a) each Y; is a convex combination of finitely many x. , and 
(b) Y; ---+ x orig inally. 

Conclusion (a) says, more explicitly, that there exist numbers rx;. > 0, 
such that 

00 

L !Xin = 1 ,  n = J 
00 

Y; = L rx;. x. ' n = J  
and, for each i, only finitely many rx;. are #0. 

PROOF. Let H be the convex hull of the set of all x. ; let K be the weak 
closure of H. Then x E K.  By Theorem 3 . 12, x is also in the original 
closure of H. Since the original topology of X is assumed to be 
metrizable, it follows that there is a sequence {y;} in H that converges 
originally to x. /Ill 

To get a feeling for what is involved here, consider the following 
example. 

Let K be a compact Hausdorff space (the unit interval on the real line 
is a sufficiently interesting one), and assume thatf andf. (n = 1 ,  2, 3, . . .  ) are 
continuous complex functions on K such that f.(x) ---+ f(x) for every x E K, 
as n ---+ oo ,  and such that I f.(x) I < 1 for all n and all x E K. Theorem 3. 1 3  
asserts that there are convex combinations of the f. that converge uniformly 
tof 

To see this, let C(K) be the Banach space of all complex continuous 
functions on K, normed by the supremum. Then strong convergence is the 
same as uniform convergence on K. If J..l is any complex Borel measure 
on K, Lebesgue's dominated convergence theorem implies that J f. dJ..L ---+ 
J f dJ..L. Hence f. ---+ f weakly, by the Riesz representation theorem which 
identifies the dual of C(K) with the space of all regular complex Borel mea
sures on K. Now Theorem 3. 1 3  can be applied. 

After this short detour we now return to our main line of develop-
ment. 

3.14 The weak*-topology of a dual space Let X again be a topologi
cal vector space whose dual is X*. For the definitions that follow, it is 
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irrelevant whether X* separates points on X or not. The important obser
vation to make is that every x E X  induces a linear functional fx on X*, 
defined by 

fx A = Ax, 
and that {fx :  x E X} separates points on X*. 

The linearity of each fx is obvious ; if fx A = fx A' for all x E X, then 
Ax = A'x for all x, and so A = A' by the very definition of what it means 
for two functions to be equal. 

We are now in the situation described by Theorem 3. 10, with X* in 
place of X and with X in place of X'. 

The X-topology of X* is called the weak*-topology of X* 
(pronunciation : weak star topology). 

Theorem 3. 10 implies that this is a locally convex vector topology on 
X* and that every linear functional on X* that is weak*-continuous has the 
form A ---+ Ax for some x E X. 

The weak*-topologies have a very important compactness property to 
which we now turn our attention. Various pathological features of the 
weak- and weak*-topologies are described in Exercises 9 and 10. 

Compact Convex Sets 

3.15 The Banach-Aiaoglu theorem If V is a neighborhood of 0 in a 
topological vector space X and if 

K = {A E X* :  I Ax I <  1 for every x E V } 
then K is weak*-compact. 

Note : K is sometimes called the polar of V . It is clear that K is 
convex and balanced, because this is true of the unit disc in ({ (and of the 
interval [ - 1 , 1]  in R). There is some redundancy in the definition of K, 
since every linear functional on X that is bounded on V is continuous, 
hence is in X*. 

PROOF. Since neighborhoods of 0 are absorbing, there corresponds to 
each x E X  a number y(x) < oo such that x E y(x) V . Hence 

(1 ) I Ax I < y(x) (x E X, A E K). 
Let Dx be the set of all scalars rx such that I rx l  < y(x). Let r be the 

product topology on P, the cartesian product of all Dx , one for each 
x E X. Since each Dx is compact, so is P, by Tychonoff's theorem. The 
elements of P are the functions! on X (linear or not) that satisfy 

(2) I f(x) I < y(x) (x E X). 
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Thus K c X* n P. It follows that K inherits two topologies : 
one from X* (its weak*-topology, to which the conclusion of the 
theorem refers) and the other, r, from P. We will see that 

(a) these two topologies coincide on K, and 

(b) K is a closed subset of P. 

Since P is compact, (b) implies that K is r-compact, and then (a) 
implies that K is weak*-compact. 

Fix some A0 E K. Choose X; E X, for 1 < i < n ;  choose {J > 0. 
Put 

(3) wl = {A E X* :  I Ax; - Ao X; I < {J for 1 ::::;; i < n} 
and 

(4) w2 = {! E P :  l f(x;) - Ao xi I <  {J for 1 < i < n} . 

Let n, x; , and b range over all admissible values. The resulting sets W1 
then form a local base for the weak*-topology of X* at A0 and the 
sets W2 form a local base for the product topology r of P at A0 . Since 
K c P n X*, we have 

This proves (a). 
Next, suppose fo is in the r-closure of K. Choose x E X, y E X, 

scalars rx and fJ, and e > 0. The set of all f E P such that I f -fo I < e 
at x, at y, and at rxx + fJy is a r-neighborhood of fo . Therefore K 
contains such anf Since thisjis linear, we have 

fo(rxx + fJy) - rxfo(x) - fJfo(Y) 
= Uo -f)(rxx + fJy) + rx(f -foXx) + fJU -fo)(y), 

so that 

I fo(rxx + fJy) - rxfo(x) - fJfo(Y) I < (1 + I rx l  + I fJ I )e. 

Since e was arbitrary, we see that fo is linear. Finally, if x E V and 
e > 0, the same argument shows that there is an f E K such that 
I f(x) -j0(x) I < e. Since I f(x) I < 1 ,  by the definition of K, it follows 
that I f0(x) I < 1 .  We conclude that fo E K. This proves (b) and hence 
the theorem. /Ill 

When X is separable (i.e., when there is a countable dense set in X), 
then the conclusion of the Banach-Alaoglu theorem can be strengthened by 
combining it with the following fact : 
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3.16 Theorem If X is a separable topological vector space, if K c X*, 
and if K is weak*-compact, then K is metrizable, in the weak*-topology. 

Warning : It does not follow that X* itself is metrizable in its weak*
topology. In fact, this is false whenever X is an infinite-dimensional Banach 
space. See Exercise 1 5. 

PROOF. Let {xn} be a countable dense set in X. Put fn(A) = Axn , for 
A E X*. Each fn is weak*-continuous, by the definition of the weak*
topology. If fn(A) = fn(A') for all n, then Axn = A'xn for all n, which 
implies that A = A', since both are continuous on X and coincide on 
a dense set. 

Thus Un} is a countable family of continuous functions that 
separates points on X*. The metrizability of K now follows from (c) of 
Section 3.8. //// 

3.1 7 Theorem If V is a neighborhood of 0 in a separable topological 
vector space X, and if {An} is a sequence in X* such that 

(x E V, n = 1 ,  2, 3, . . .  ), 
then there is a subsequence {AnJ and there is a A E X* such that 

Ax = lim An, x  (x E X). 
i- 00 

In other words, the polar of V is sequentially compact in the weak*
topology. 

PROOF. Combine Theorems 3 . 1 5  and 3. 1 6. /Ill 

The next application of the Banach-Alaoglu theorem involves the 
Hahn-Banach theorem and a category argument. 

3.18 Theorem In a locally convex space X, every weakly bounded set is 
originally bounded, and vice versa. 

Part (d) of Exercise 5 shows that the local convexity of X cannot be 
omitted from the hypotheses. 

PROOF. Since every weak neighborhood of 0 in X is an original neigh
borhood of 0, it is obvious from the definition of " bounded " that 
every originally bounded subset of X is weakly bounded. The con
verse is the nontrivial part of the theorem. 
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Suppose E c X is weakly bounded and U is an original neigh
borhood of 0 in X. 

Since X is locally convex, there is a convex, balanced, original 
neighborhood V of 0 in X such that V c U. Let K c X* be the polar 
of V :  

(1) K = {A E X* : 1 Ax l < 1  for all x E V}. 
We claim that 

(2) V= {x E X : I Ax 1 < 1  for all A E K}.  
It is clear that V is a subset of the right side of (2) and hence so is V, 
since the right side of (2) is closed. Suppose x0 E X but x0 ¢. V. 
Theorem 3.7 (with V in place of B) then shows that Ax0 > 1 for some 
A E K. This proves (2). 

Since E is weakly bounded, there corresponds to each A E X* a 
number y(A) < oo such that 

(3) I Ax I < y(A) (x E E). 
Since K is convex and weak*-compact (Theorem 3. 1 5) and since the 
functions A ---> Ax are weak*-continuous, we can apply Theorem 2.9 
(with X* in place of X and the scalar field in place of Y) to conclude 
from (3) that there is a constant y < oo such that 

(4) l Ax I <  y (x E E, A E K). 
Now (2) and (4) show that y - I x E V c U for all x E E. Since V ts 
balanced, 

(5) E c t V c tU (t > y). 

Thus E is originally bounded. 

Corollary. If X is a normed space, if E c X, and if 
(6) sup I Ax I < oo (A E X*) 

x e E  

then there exists y < oo such that 

(7) l l x l l < Y (x E E). 

Ill/ 

PROOF. Normed spaces are locally convex ; (6) says that E is weakly 
bounded, and (7) says that E is originally bounded. /Ill 

We now turn to the question : What can one say about the convex 
hull H of a compact set K ?  Even in a Hilbert space, H need not be closed, 
and there are situations in which R is not compact (Exercises 20, 22). In 
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Frechet spaces the latter pathology does not occur (Theorem 3 .20). The 
proof of this will depend on the fact that a subset of a complete metric 
space is compact if and only if it is closed and totally bounded (Appendix 
A4). 

3.19 Definitions (a) If X is a vector space and E c X, the convex hull 
of E will be denoted by co(E). Recall that co(E) is the intersection of all 
convex subsets of X which contain E. Equivalently, co(E) is the set of all 
finite convex combinations of members of E. 

(b) If X is a topological vector space and E c X, the closed convex 
hull of E, written co( E), is the closure of co(E). 

(c) A subset E of a metric space X is said to be totally bounded if E 
lies in the union of finitely many open balls of radius 6, for every 6 > 0. 

The same concept can be defined in any topological vector space, 
metrizable or not : 

(d) A set E in a topological vector space X is said to be totally 
bounded if to every neighborhood V of 0 in X corresponds a finite set F 
such that E c F + V. 

If X happens to be a metrizable topological vector space, then these 
two notions of total boundedness coincide, provided we restrict ourselves to 
invariant metrics that are compatible with the topology of X. (The proof of 
this is as in Section 1 .25.) 

3.20 Theorem 

(a) If A 1 , • • •  , An are compact convex sets in a topological vector space X, 
then co( A 1 u · · · u An) is compact. 

(b) If X is a locally convex topological vector space and E c X is totally 
bounded, then co(E) is totally bounded. 

(c) If X is a Frechet space and K c X is compact, then co(K) is compact. 
(d) If K is a compact set in Rn, then co(K) is compact. 

PROOF. (a) Let S be the simplex in Rn consisting of all s = (s 1 , . . .  , sn) 
with s. > 0 s + · · · + s = 1 Put A = A x · · · x A Define 1 - ' 1 n · 1 n · 
f :  s X A ->  X by 

( 1 )  

and put K = f(S x A). 
It is clear that K is compact and that K c co(A 1 u · · · u An)· 

We will see that this inclusion is actually an equality. 
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If (s, a) and (t, b) are in S x A and if rx > 0, fJ > 0, rx + fJ = 1 ,  
then 

(2) rxf(s, a) + {Jf(t, b) = f(u, c), 
where u = rxs + {Jt E S and c E A, because 

(3) 
rxsi ae + fJte b1 

C; = R E A; rxse + pte (1 < i < n). 

This shows that K is convex. Since Ai c K for each i [take s1 = 1 in 
( 1 ), si = O  for j # i], the convexity of K implies that co(A 1 u · · ·  u 
An) c K. This proves (a). 

(b) Let U be a neighborhood of 0 in X. Choose a convex neigh
borhood V of 0 in X such that V + V c U. Then E c F + V for 
some finite set F c X. Hence E c co(F) + V. The latter set is convex. 
It follows that 

(4) co(E) c co(F) + V. 

But co(F) is compact [a special case of (a)], and therefore co(F) c 
F 1 + V for some finite set F 1 c X. Thus 

(5) co( E) c F 1 + V + V c F 1 + U. 

Since U was arbitrary, co(E) is totally bounded. 

(c) Closures of totally bounded sets are totally bounded in every 
metric space, and hence are compact in every complete metric space 
(Appendix A4). So if K is compact in a Frechet space, then K is obvi
ously totally bounded ; hence co(K) is totally bounded, by (b), and 
therefore co(K) is compact. 

(d) Let S be the simplex in w+ 1 consisting of all t = (t 1 , . . . , 
tn + 1) with t1 > 0 and L t1 = 1 .  Let K be compact, K c Rn. By the 
proposition that follows, x E co(K) if and only if 

(6) 

for some t E S and x1 E K ( 1  < i < n + 1 ). In other words, co(K) is the 
image of S x Kn + 1 under the continuous mapping 

(7) 

Hence co(K) is compact. Ill/ 

Proposition. If E c Rn and x E co(E), then x lies in the convex hull of 
some subset of E which contains at most n + 1 points. 

PROOF. It is enough to show that if k > n and x = L� + 1 t1 Xe is a 
convex combination of some k + 1 vectors x1 E Rn, then x is actually a 
convex combination of some k of these vectors. 
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Assume, with no loss of generality, that ti > 0 for 1 < i < k + 1 .  
The null space of the linear map 

(8) 

which sends Rk + 1 
into Rn x R, has positive dimension, since k > n. 

Hence there exists (a� >  . . .  , ak + 1), with some ai # 0, so that L ai xi = 0 
and L ai = 0. Since ti > 0 for all i, there is a constant A. such that 
I A.ai I < ti for all i and A.ai = ti for at least one j. Setting ci = ti - A.ai , 
we conclude that x = L ci xi and that at least one ci is 0 ;  note also 
that L ci = L ti = 1 and that ci > 0 for all i. /II/ 

The following analogue of part (b) of the separation theorem 3.4 will 
be used in the proof of the Krein-Milman theorem. 

3.21 Theorem Suppose X is a topological vector space on which X* 
separates points. Suppose A and B are disjoint, nonempty, compact, convex 
sets in X. Then there exists A E X* such that 

( 1 )  sup Re Ax < inf Re Ay. 
x e A  y e B  

Note that part of the hypothesis is weaker than in (b) of Theorem 3.4 
(since local convexity of X implies that X* separates points on X) ; to make 
up for this, it is now assumed that both A and B are compact. 

PROOF. Let X w be X with its weak topology. The sets A and B are 
evidently compact in X w .  They are also closed in X w (because X w is a 
Hausdorff space). Since X w is locally convex, (b) of Theorem 3.4 can 
be applied to X w in place of X ;  it gives us a A E (X w)* that satisfies 
( 1 ). But we saw in Section 3 .1 1 (as a consequence of Theorem 3. 10) 
that (Xw)* = X*. !!!! 

3.22 Extreme points Let K be a subset of a vector space X. A non
empty set S c K is called an extreme set of K if no point of S is an internal 
point of any line interval whose end points are in K, except when both end 
points are in S. Analytically, the condition can be expressed as follows : If 
x E K, y E K, 0 < t < 1 ,  and 

( 1  - t)x + ty E S, 

then x E S and y E S. 
The extreme points of K are the extreme sets that consist of just one 

point. 
The set of all extreme points of K will be denoted by E(K). 
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The following two theorems show that under certain conditions E(K) 
is quite a large set. 

3.23 The Krein-Milman theorem Suppose X is a topological vector 
space on which X* separates points. If K is a nonempty compact convex set in 
X, then K is the closed convex hull of the set of its extreme points. 

In symbols, K = co(E(K)). 

PROOF. Let f!l> be the collection of all compact extreme sets of K. Since 
K E f!l>, f!l> # 0. We shall use the following two properties of f!l> :  

(a) The intersection S of any nonempty subcollection of f!l> is a member 
of f!l>, unless S = 0. 

(b) If S E f!l>, A E X*, J.l is the maximum ofRe A on S, and 

SA = {x E S: Re Ax = J.L}, 
then SA E f!l>. 

The proof of (a) is immediate. To prove (b), suppose tx + 
( 1 - t)y = z E SA , x E K, y E K, 0 < t < 1 .  Since z E S and S E f!l>, we 
have x E S and y E S. Hence Re Ax < J.l, Re Ay < J.l. Since Re Az = J.l 
and A is linear, we conclude : Re Ax = J.l = Re Ay. Hence x E SA and 
y E SA . This proves (b). 

Choose some S E f!l>. Let f!l>' be the collection of all members of 
f!l> that are subsets of S. Since S E f!l>', f!l>' is not empty. Partially order 
f!l>' by set inclusion, let n be a maximal totally ordered subcollection 
of f!l>', and let M be the intersection of all members of Q. Since Q is 
a collection of compact sets with the finite intersection property, 
M # 0. By (a), M E f!l>'. The maximality of n implies that no proper 
subset of M belongs to f!l>. It now follows from (b) that every A E X* 
is constant on M. Since X* separates points on X, M has only one 
point. Therefore M is an extreme point of K. 

We have now proved that 

( 1 )  E(K) n S # 0 

for every S E f!l>. In other words, every compact extreme set of K con
tains on extreme point of K. 

Since K is compact and convex (the assumed convexity of K will 
now be used for the first time), we have 

(2) co(E(K)) c K 
and this shows that co(E(K)) is compact. 

Assume, to reach a contradiction, that some x0 E K is not 
in co(E(K)). Theorem 3.21 furnishes then a A E X* such that 
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Re Ax < Re Ax0 for every x E co(E(K)). If KA is defined as in (b), then 
KA E f!JJ. Our choice of A shows that KA is disjoint from co(E(K)), and 
this contradicts ( 1 ). I I I I 

Remark. The convexity of K was used only to show that co(E(K)) is 
compact. If X were assumed to be locally convex, the compactness of 
co(E(K)) would not be needed, since one could use (b) of Theorem 3.4 
in place of Theorem 3.2 1 .  The above argument proves then that K c 
co(E(K)). The following version of the Krein-Milman theorem is thus 
obtained : 

3.24 Theorem If K is a compact subset of a locally convex space then 
K c co(E(K)). 

Equivalently, co(K) = co(E(K)). 
It may happen in this situation that co(K) has extreme points which 

are not in K. (See Exercise 33.) The next theorem shows that this pathology 
cannot occur if co(K) is compact. Therefore it occurs in no Frechet space, 
by (c) of Theorem 3.20. 

3.25 Milman's theorem If K is a compact set in a locally convex space 
X, and if co(K) is also compact, then every extreme point of co(K) lies in K. 

PROOF. Assume that some extreme point p of co(K) is not in K. Then 
there is a convex balanced neighborhood V of 0 in X such that 

( 1 )  (p + V) n K = 0. 

Choose xi > . . .  , x,; in K so that K c Ui (xi + V). Each set 

(2) (1 < i < n) 

is convex and also compact, since Ai c co(K). Also, K c A1 u · · · u 
An . Part (a) of Theorem 3.20 shows therefore that 

(3) co(K) c co(A 1 u · · · u An) =  co(A 1 u · · · u An)· 
But the opposite inclusion holds also, because Ai c co(K) for each i. 
Thus 

(4) 

In particular, p = t 1y 1 + · · · + tN YN , where each Yi lies in some 
Ai > each ti is positive, and L ti = 1 .  The grouping 

(5) (1 ) t1 Y1 + · · · + tN YN p = t iYI + - t l t1 + · · · + tN 
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exhibits p as a convex combination of two points of co(K), by (4). 
Since p is an extreme point of co(K), we conclude from (5) that y1 = p. 
Thus, for some i, 

(6) p E A1 c x1 + V c  K + V, 
which contradicts (1 ). [Note that A1 c x1 + V, by (2), because V is 
convex.] //// 

Vector-Valued Integration 

Sometimes it is desirable to be able to integrate functions f that are defined 
on some measure space Q (with a real or complex measure J.l) and whose 
values lie in some topological vector space X. The first problem is to associ
ate with these data a vector in X that deserves to be called 

1! dJ.l, 

i.e., which has at least some of the properties that integrals usually have. 
For instance, the equation 

ought to hold for every A E X*, because it does hold for sums, and because 
integrals are (or ought to be) limits of sums in some sense or other. In fact, 
our definition will be based on this single requirement. 

Many other approaches to vector-valued integration have been 
studied in great detail ; in some of these, the integrals are defined more 
directly as limits of sums (see Exercise 23). 

3.26 Definition Suppose p. is a measure on a measure space Q, X is a 
topological vector space on which X* separates points, and f is a function 
from Q into X such that the scalar functions Af are integrable with respect 
to J.l, for every A E X* ; note that Af is defined by 

(1) (1\f)(q) = A(f(q)) (q E Q). 

If there exists a vector y E X such that 

(2) Ay = 1 (Af) dJ.l 

for every A E X*, then we define 

(3) 
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Remarks. It is clear that there is at most one such y, because X* 
separates points on X. Thus there is no uniqueness problem. 

Existence will be proved only in the rather special case (sufficient 
for many applications) in which Q is compact and f is continuous. In 
that case,f(Q) is compact, and the only other requirement that will be 
imposed is that the closed convex hull of f(Q) should be compact. By 
Theorem 3.20, this additional requirement is automatically satisfied 
when X is a Frechet space. 

Recall that a Borel measure on a compact (or locally compact) Haus
dorff space Q is a measure defined on the a-algebra of all Borel sets in Q ;  
this is the smallest a-algebra that contains all open subsets of Q. A probabil
ity measure is a positive measure of total mass 1 .  

3.27 Theorem Suppose 

(a) X is a topological vector space on which X* separates points, and 
(b) J..l is a Borel probability measure on a compact Hausdorff space Q. 

Iff :  Q ---> X is continuous and if co(f(Q)) is compact in X, then the 
integral 

( 1 )  

exists, in the sense of Definition 3.26. 
Moreover, y E co(f(Q)). 

Remark. If v is any positive Borel measure on Q, then some scalar 
multiple of v is a probability measure. The theorem therefore holds 
(except for its last sentence) with v in place of J..l. It can then be 
extended to real-valued Borel measures (by the Jordan decomposition 
theorem) and (if the scalar field of X is ({,) to complex ones. 

Exercise 24 gives another generalization. 

PROOF. Regard X as a real vector space. Put H = co(f(Q)). We have 
to prove that there exists y E H such that 

(2) Ay = L (A/) dj.l 

for every A E X*. 
Let L = {A I > . . .  , An} be a finite subset of X*. Let EL be the set 

of all y E R that satisfy (2) for every A E L. Each EL is closed (by the 
continuity of A) and is therefore compact, since R is compact. If no EL 
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is empty, the collection of all EL has the finite intersection property. 
The intersection of all EL is therefore not empty, and any y in it 
satisfies (2) for every A E X*. It is therefore enough to prove EL # 0. 

Regard L = (A I > . . .  , An) as a mapping from X into Rn, and put 
K = L(f(Q)). Define 

(3) m; = 1 (Ai f) dJ.L ( 1  < i < n). 

We claim that the point m = (mi > . . .  , mn) lies in the convex hull of K. 
If t = (t I > . . .  , tn) E W is not in this hull, then [by Theorem 3.20 

and (b) of Theorem 3.4 and the known form of the linear functionals 
on Rn] there are real numbers c 1 , . . •  , en such that 

(4) 
n n 
L ciui < L ci ti 
i= 1 i = 1 

if u = (ul , . . .  , un) E K. Hence 

n n 
(5) L c; Ad(q) < L ci ti i = 1 i = 1 

(q E Q). 

Since J.l is a probability measure, integration of the left side of (5) gives 

L ci mi < L ci ti . Thus t # m. 
This shows that m lies in the convex hull of K. Since 

K = L(f(Q)) and L is linear, it follows that m = Ly for some y in the 
convex hull H off(Q). For this y we have 

(6) Ai y = mi = 1 (Ad) dJ.L ( 1  < i < n). 

Hence y E EL . This completes the proof. Ill/ 

3.28 Theorem Suppose 

(a) X is a topological vector space on which X* separates points, 
(b) Q is a compact subset of X, and 
(c) the closed convex hull R of Q is compact. 

Then y E R if and only if there is a regular Borel probability measure J.l 

on Q such that 

( 1 )  y = 1 X dJ.L(X). 

Remarks. The integral is to be understood as in Definition 3.26, with 
f(x) = x. 



80 PART I :  GENERAL THEORY 

Recall that a positive Borel measure on Q is said to be regular if 
J..L(E) = sup {J..L(K) : K c E} = inf {J..L(G) : E c G} 

for every Borel set E c Q, where K ranges over the compact subsets 
of E and G ranges over the open supersets of E. 

The integral ( 1 )  represents every y E R as a " weighted average " 
of Q, or as the " center of mass " of a certain unit mass distributed 
over Q. 

We stress once more that (c) follows from (b) if X is a Frechet 
space. 

PROOF. Regard X again as a real vector space. Let C(Q) be the Banach 
space of all real continuous functions on Q, with the supremum norm. 
The Riesz representation theorem identifies the dual space C(Q)* with 
the space of all real Borel measures on Q that are differences of 
regular positive ones. With this identification in mind, we define a 
mappmg 

(3) 

by 

(4) 

¢ :  C(Q)* -> X 

¢(J..L) = 1 X dJ..L(X). 

Let P be the set of all regular Borel probability measures on Q. 
The theorem asserts that ¢(?) = R. 

For each x E Q, the unit mass bx concentrated at x belongs to P. 
Since ¢(bx) = x, we see that Q c ¢(?). Since ¢ is linear and P is 
convex, it follows that H c ¢(?), where H is the convex hull of Q. By 
Theorem 3.27, ¢(P) c R. Therefore all that remains to be done is to 
show that ¢(?) is closed in X. 

This is a consequence of the following two facts : 

(i) P is weak*-compact in C(Q)*. 

(ii) The mapping ¢ defined by (4) is continuous if C(Q)* is given its 
weak*-topology and if X is given its weak topology. 

Once we have (i) and (ii), it follows that ¢(?) is weakly compact, 
hence weakly closed, and since weakly closed sets are strongly closed, 
we have the desired conclusion. 

To prove (i), note that 

(5) p c {J..l : 1 h dJ..l
1 
< 1 if l l h l l < 1 } 

and that this larger set is weak*-compact, by the Banach-Alaoglu 
theorem. It is therefore enough to show that P is weak*-closed. 
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If h E C(Q) and h > 0, put 

(6) 

Since J..l ---> J h dJ..l is continuous, by the definition of the we1k*
topology, each Eh is weak*-closed. So is the set 

(7) 

Since P is the intersection of E and the sets Eh , P is weak*-closcd. 
To prove (ii) it is enough to prove that ¢ is continuous at tne 

origin, since ¢ is linear. Every weak neighborhood of 0 in X contains 
a set of the form 

(8) W = {y E X : I A i y l < r1 for 1 < i < n}, 
where A1 E X* and r1 > 0. The restrictions of the Ai to Q lie in C(Q). 
Hence 

(9) V = {J..l E C(Q)* :  J
Q
A1 dJ..l < r1 for 1 < i < n} 

is a weak*-neighborhood of 0 in C(Q)*. But 

(10) L A1 dJ..l = A{L x dJ..L(x)) = A1 ¢(J..L), 

by Definition 3.26. It follows from (8), (9), and ( 1 0) that ¢( V) c W. 
Hence ¢ is continuous. //// 

The following simple inequality sharpens the last assertion in the 
statement of Theorem 3.27. 

3.29 Theorem Suppose Q is a compact Hausdorff space, /" is a Banach 
space,f :  Q ---> X is continuous, and J..l is a positive Borel measure a , 1  Q. Then 

f
Q
! dJ..l < L I I! II dj.l. 

PROOF. Put y = J f dJ..L. By the corollary to Theorem 3.3, there is a 
A E X* such that Ay = II Y II and l Ax I <  ll x ll for all x E X. In particu
lar, 

I Af(s) I < II f(s) ll 
for all s E Q. By Theorem 3.27, it follows that 

II y II = Ay = J>'\f) dj.l < L II ! I I  dj.l. /Ill 
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Holomorphic Functions 

In the study of Banach algebras, as well as in some other contexts, it is 
useful to enlarge the concept of holomorphic function from complex-valued 
ones to vector-valued ones. (Of course, one can also generalize the domains, 
by going from ({ to q;n and even beyond. But this is another story.) There 
are at least two very natural definitions of " holomorphic " available in 1his 
general setting, a " weak " one and a " strong " one. They turn out to define 
the same class of functions if the values are assumed to lie in a Frechet 
space. 

3.30 Definition Let Q be an open set in ({ and let X be a complex 
topological vector space. 

(a) A function f :  Q -> X is said to be weakly holomorphic in Q if 1\f is 
holomorphic in the ordinary sense for every A E X*. 

(b) A function/ :  Q -> X is said to be strongly holomorphic in Q if 

lim 
f(w) -f(z) 

w � z w - z 

exists (in the topology of X) for every z E n. 

Note that the above quotient is the product of the scalar (w - z)- 1 

and the vectorf(w) -f(z) in X. 
The continuity of the functionals A that occur in (a) makes it obvious 

that every strongly holomorphic function is weakly holomorphic. The con
verse is true when X is a Frechet space, but it is far from obvious. (Recall 
that weakly convergent sequences may very well fail to converge originally.) 
The Cauchy theorem will play an important role in this proof, as will 
Theorem 3.1 8. 

The index of a point z E ({ with respect to a closed path r that does 
not pass through z will be denoted by Indr (z). We recall that 

1 l d( 
Indr (z) = -2 . r . nz r � - z 

All paths considered here and later are assumed to be piecewise contin
uously differentiable, or at least rectifiable. 

3.31 Theorem Let Q be open in ({, let X be a complex Frechet space, 
and assume that 

j : Q -. X  

is weakly holomorphic. The following conclusions hold : 

(a) f is strongly continuous in n. 
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(b) The Cauchy theorem and the Cauchy formula hold: If r is a closed path 
in Q such that Indr (w) = Ofor every w ¢. Q, then 

(1) 

and 

(2) 

Lf(') d' = o, 

if z E n and Indr (z) = 1 .  If r I and r 2 are closed paths in n such that 

Indr1 (w) = Indr2 (w) 
for every w ¢. n, then 

(3) 

(c) f is strongly holomorphic in n. 

The integrals in (b) are to be understood in the sense of Theorem 3.27. 
Either one can regard d( as a complex measure on the range of r (a 
compact subset of (/:), or one can parametrize r and integrate with respect 
to Lebesgue measure on a compact interval in R. 

PROOF. (a) Assume 0 E n. We shall prove that f is strongly contin
uous at 0. Define 

(4) .1, = {z E ({ :  l z l < r}. 

Then .12, c Q for some r > 0. Let r be the positively oriented bound
ary of .12, .  

(5) 

Fix A E X*. Since Afis holomorphic, 

(Af)(z) - (Af)(O) 
= 

__!_ ( (Af)(C) d( 
z 2ni Jr (( - zK 

if 0 < I z I < 2r. Let M(A) be the maximum of I Af I on .12, .  If 
0 < j z I < r, it follows that 

(6) l z - 1A[f(z) - f(O)] I <  r - 1 M(A). 

The set of all quotients 

(7) { f(z) � f(O) 
: o < I z I < r} 
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is therefore weakly bounded in X. By Theorem 3. 1 8, this set is also 
strongly bounded. Thus if V is any (strong) neighborhood of 0 in X, 
there exists t < oo such that 

(8) f(z) -f(O) E zt V (O < 1 z 1 < r). 

Consequently, f(z) ---> f(O) strongly, as z ---> 0. [It may be of some inter
est to observe that the proof of (a) used only the local convexity of X. 
Neither metrizability nor completeness has played a role so far.] 

This was the crux of the matter. The rest is now almost auto
matic. 

(b) By (a) and Theorem 3.27, the integrals in (1) to (3) exist. 
These three formulas are correct (by the theory of ordinary holo
morphic functions) if f is replaced in them by Af, where A is any 
member of X*. The formulas are therefore correct as stated, by Defi
nition 3.26. 

(c) Assume, as in the proof of (a), that A2, c n, and choose r 
as in (a). Define 

(9) 

The Cauchy formula (2) shows, after a small computation, that 

(10) 

(1 1 ) 

.. , wht>,,, .. I • • 

f . .o...( z-'-) =-'-f-'-(O__:_) 
= · ...;- 7 nl z) y ,_. \ z 

Let V be a convex balanced neighborhood of 0 in X. Put 
K = {!(() : I ( I = 2r}. Then K is compact, so that K c tV  for some 
t < oo .  If s = tr - 2 and I z I < r, it follows that the integrand (1 1) lies in 
sV  for every e. Thus g(z) E s V if 1 z 1 < r. The left side of (10) therefore 
converges strongly to y, as z ---> 0. //II 

The following extension of Liouville's theorem concerning bounded 
entire functions does not even depend on Theorem 3.3 1 .  It can be used in 
the study of spectra in Banach algebras. (See Exercise 10, Chapter 10.) 

3.32 Theorem Suppose X is a complex topological vector space on which 
X* separates points. Suppose f :  ({ ---> X  is weakly holomorphic and f( ({) is a 
weakly bounded subset of X. Then f is constant. 
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PROOF. For every A E X*, Af is a bounded (complex-valued) entire 
function. If z E q;, it follows from Liouville's theorem that 

Since X* 
Z E ({. 

Af(z) = Af(O). 

separates points op X, this implies f(z) = f(O), for every 
/Ill 

Part (d) of Exercise 5 describes a weakly bounded set which is not 
originally bounded, in an F-space X on which X* separates points. 
Compare with Theorem 3 . 18. 

Exercises 

1 .  Call a set H c R" a hyperplane if there exist real numbers a1, • • •  , a. , c (with 
ai #- 0 for at least one i) such that H consists of all points x = (x 1, • • •  , x.) that 
satisfy L ai xi = c. 

Suppose E is a convex set in R", with nonempty interior, and y is a 
boundary point of E. Prove that there is a hyperplane H such that y E H and E 
lies entirely on one side of H. (State the conclusion more precisely.) Suggestion : 
Suppose 0 is an interior point of E, let M be the one-dimensional subspace that 
contains y, and apply Theorem 3.2. 

2. Suppose I3 = /3([- 1, 1 ]), with respect to Lebesgue measure. For each scalar cx, 

let E. be the set of all continuous functions f on [ - 1, 1] such that f(O) = cx. 

Show that each E. is convex and that each is dense in /3. Thus E. and Ep are 
disjoint convex sets (if cx #- [J) which cannot be separated by any continuous 
linear functional i\ on 13. Hint: What is i\(E.)? 

3. Suppose X is a real vector space (without topology). Call a point x0 E A c X an 
internal point of A if A - x0 is an absorbing set. 
(a) Suppose A and B are disjoint convex sets in X, and A has an internal point. 

Prove that there is a nonconstant linear functional i\ on X such that 
i\(A) n i\(B) contains at most one point. (The proof is similar to that of 
Theorem 3.4.) 

(b) Show (with X =  R2, for example) that it may not be possible to have i\(A) 
and i\(B) disjoint, under the hypotheses of (a). 

4. Let t"' be the space of all real bounded functions x on the positive integers. Let 
T be the translation operator defined on t"' by the equation 

(rx)(n) = x(n + 1 )  ( n = 1 , 2, 3, . . .  ). 

Prove that there exists a linear functional i\ on t"' (called a Banach limit) such 
that 
(a) i\rx = i\x, and 
(b) lim inf x(n) < i\x < lim sup x(n) 

for every x E t"'. 
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Suggestion: Define 

x( 1 )  + · · · + x(n) i\ n X = __:._.:..._ ___ _;_:_ n 

M = { x  E too : lim A.x = i\x  exists} 

p(x) = lim sup A. x 

and apply Theorem 3.2. 
5. For 0 < p < oo, let tP be the space of all functions x (real or complex, as the 

case may be) on the positive integers, such that 
00 
L I x(n) IP < oo .  

n= l 

For 1 < p < oo ,  define ll x ii P = {L I x(n) IP} 1 1P, and define ll x ll oo = sup. I x(n) 1 .  
(a) Assume 1 < p < oo .  Prove that ll x ii P and ll x ll oo make tP and t"' into Banach 

spaces. If p - 1 + q - 1 = 1 , prove that (tP)* = tq, in the following sense : There 
is a one-to-one correspondence i\ +---+ y between (tP)* and tq, given by 

i\x = L x(n)y(n) 

(b) Assume 1 < p < oo and prove that tP contains sequences that converge 
weakly but not strongly. 

(c) On the other hand, prove that every weakly convergent sequence in t 1  con
verges strongly, in spite of the fact that the weak topology of t 1  is different 
from its strong topology (which is induced by the norm). 

(d) If 0 < p < 1 , prove that tP, metrized by 
00 

d(x, y) = L 1 x(n) - y(n) IP, 
n = l  

is a locally bounded F-space which is not locally convex but that (tP)* 
nevertheless separates points on tP. (Thus there are many convex open sets 
in tP but not enough to form a base for its topology.) Show that (tP)* = too, 
in the same sense as in (a). Show also that the set of all x with I: I x(n) I < 1 is 
weakly bounded but not originally bounded. 

(e) For 0 < p < 1 , let TP be the weak*-topology induced on too by tP; see (a) and 
(d). If 0 < p < r < 1 , show that TP and T, are different topologies (is one 
weaker than the other ?) but that they induce the same topology on each 
norm-bounded subset of too . Hint : The norm-closed unit ball of too is 
weak*-compact. 

6. Put f..(t) = einr ( - n  < t < n); let IJ = IJ( - n, n), with respect to Lebesgue 
measure. If 1 < p < oo ,  prove that f. ---> 0 weakly in JJ, but not strongly. 

7. L00([0, 1]) has its norm topology ( II f II oo is the essential supremum of I f  I )  and its 
weak*-topology as the dual of IJ. Show that C, the space of all continuous 
functions on [0, 1], is dense in L00 in one of these topologies but not in the 
other. (Compare with the corollaries to Theorem 3.1 2.) Show the same with 
" closed " in place of " dense." 
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8. Let C be the Banach space of all complex continuous functions on [0, 1], with 
the supremum norm. Let B be the closed unit ball of C. Show that there exist 
continuous linear functionals i\ on C for which i\(B) is an open subset of the 
complex plane ; in particular, I i\ I attains no maximum on B. 

9. Let E c 13(-n, n) be the set of all functions 
f. (t) = eimr + meinr 

m. n ' 

where m, n are integers and 0 < m < n. Let E 1 be the set of all g E I3 such that 
some sequence in E converges weakly to g. (E 1 is called the weak sequential 
closure of E.) 
(a) Find all g E E1 • 
(b) Find all g in the weak closure Ew of E. 
(c) Show that 0 E Ew but 0 is not in E 1 , although 0 lies in the weak sequential 

closure of E 1 • 
This example shows that a weak sequential closure need not be weakly 

sequentially closed. The passage from a set to its weak sequential closure is 
therefore not a closure operation, in the sense in which that term is usually used 
in topology. (See also Exercise 28.) 

10. Represent t1 as the space of all real functions x on S = {(m, n) : m > 1, n > 1 } ,  
such that 

ll x ll 1 = L l x(m, n) l < oo .  

Let c0 be the space of all real functions y on S such that y(m, n) ---> 0 as 
m + n ---> oo ,  with norm II yll oo = sup I y(m, n) 1 . 

Let M be the subspace of t1 consisting of all x E t 1 that satisfy the equa-
tions 

00 

mx(m, 1) = L x(m, n) (m = 1 ,  2, 3, . . .  ). 
n= 2 

(a) Prove that t 1 = (c0)*. (See also Exercise 24, Chapter 4.) 
(b) Prove that M is a norm-closed subspace of t1• 
(c) Prove that M is weak*-dense in t 1 [relative to the weak*-topology given 

by (a)]. 
(d) Let B be the norm-closed unit ball of t1 •  In spite of (c), prove that the 

weak*-closure of M 11 B contains no ball. Suggestion : If b > 0 and m > 2/b, 
then 

1/ x ll b 
I x(m, 1 )  I < -;;;- < 

2 

if x E M 11 B, although x(m, 1) = b for some x E bB. Thus bB is not in the 
weak*-closure of M 11 B. Extend this to balls with other centers. 

(e) Put x0(m, 1) = m- 2, x0(m, n) = 0 when n > 2. Prove that no sequence in M is 
weak*-convergent to x0 , in spite of (c). Hint : Weak*-convergence of { xJ to 
x0 implies that xim, n) ---> x0(m, n) for all m, n, as j ---> oo ,  and that { II xi II d is 
bounded. 

11.  Let X be an infinite-dimensional Frechet space. Prove that X*, with its weak*
topology, is of the first category in itself. 
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12. Show that the norm-closed unit ball of c0 is not weakly compact ; recall that 
(c0)* = t 1 (Exercise 10). 

13. PutfN(t) = N - 1 L,�,! 1 ei"'. Prove that fN ---> 0 weakly in 13(- n, n). 
By Theorem 3. 1 3, some sequence of convex combinations of the fN con

verges to 0 in the /3-norm. Find such a sequence. Show that gN = N- 1(!1 + · · · 
+ fN) will not do. 

14. (a) Suppose Q is a locally compact Hausdorff space. For each compact K c Q 
define a seminorm PK on C(!l), the space of all complex continuous functions 
on n, by 

PK(f) = sup { I  f(x) I : x E K}. 

Give C(Q) the topology induced by this collection of seminorms. Prove that 
to every i\ E C(!l)* correspond a compact K c Q and a complex Borel 
measure 11 on K such that 

i\f = ifdl1 [f E C(Q])J . 

(b) Suppose Q is an open set in (/;. Find a countable collection r of measures 
with compact support in Q such that H(Q) (the space of all holomorphic 
functions in Q) consists of exactly those f E C(Q) which satisfy J f d11 = 0 for 
every 11 E r. 

1 5. Let X be a topological vector space on which X* separates pnints. Prove that 
the weak*-topology of X* is metrizable if and only if X has a finite or countable 
Hamel basis. (See Exercise 1 ,  Chapter 2 for the definition.) 

16. Prove that the closed unit ball of I! (relative to Lebesgue measure on the unit 
mterval) has no extreme points but that every point on the " surface " of the unit 
ball in E ( 1 < p < oo) is an extreme point of the ball. 

17. Determine the extreme points of the closed unit ball of C, the space of all con
tinuous functions on the unit interval, with the supremum norm. (The answer 
depends on the choice of the scalar field.) 

18. Let K be the smallest convex set in R3 that contains the points ( 1 ,  0, 1), ( 1 ,  0, 
- 1), and (cos 8, sin 8, 0), for 0 < () < 2n. Show that K is compact but that the 

set of all extreme points of K is not compact. Does such an example exist in R2 ? 
19. Suppose K is a compact convex set in R". Prove that every x E K is a convex 

combination of at most n + 1 extreme points of K. Suggestion : Use induction 
on n. Draw a line from some extreme point of K through x to where it leaves K. 
Use Exercise 1 .  

20. Let {ub u2 , u3 , . . .  } be a sequence of pairwise orthogonal unit vectors in a 
Hilbert space. Let K consist of the vectors 0 and n - lu. (n > 1) . Show that (a) K 
is compact ; (b) co(K) is bounded ; (c) co(K) is not closed. Find all extreme points 
of co(K). 

21. If 0 < p < 1 ,  every f E E (except f = 0) is the arithmetic mean of two functions 
whose distance from 0 is less than that of f (See Section 1 .47.) Use this to 
construct an explicit example of a countable compact set K in E (with 0 as its 
only limit point) which has no extreme point. 

22. If 0 < p < 1 , show that ('P contains a compact set K whose convex hull is 
unbounded. This happens in spite of the fact that (tP)* separates points on tP ; 
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see Exercise 5. Suggestion : Define x. E tP by 

x.(m) = 0 if m #- n. 

Let K consist of O, x1 , x2 , x3 , • • • •  If 

YN = N- l(xl + . . .  + xN), 

show that {YN} is unbounded in tP. 
23. Suppose 11 is a Borel probability measure on a compact Hausdorff space Q, X is 

a Frechet space, and/ :  Q ---> X is continuous. A partition of Q is, by definition, a 
finite collection of disjoint Borel subsets of Q whose union is Q. Prove that to 
every neighborhood V of 0 in X there corresponds a partition {E;} such that the 
difference 

lies in V for every choice of s; E E; . (This exhibits the integral as a strong limit 
of " Riemann sums.") Suggestion : Take V convex and balanced. If i\ E X* and if 
I Ax I < 1 for every x E V, then I i\z I < 1 ,  provided that the sets E; are chosen so 
that f(s) - f(t) E V whenever s and t lie in the same E; . 

24. In addition to the hypotheses of Theorem 3.27, assume that T is a continuous 
linear mapping of X into a topological vector space Y on which Y* separates 
points, and prove that 

Hint : i\ T E X* for every i\ E Y*. 
25. Let E be the set of all extreme points of a compact set K in a topological vector 

space X on which X* separates points. Prove that to every y E K corresponds a 
regular Borel probability measure 11 on Q = E such that 

y = LX d11(X). 

26. Suppose Q is a region in {/;, X is a Frechet space, and f :  Q ---> X is holomorphic. 
(a) State and prove a theorem concerning the power series representation off, 

that is, concerning the formulaf(z) = L (z - a)"c. , where c. E X. 
(b) Generalize Morera's theorem to X-valued holomorphic functions. 
(c) For a sequence of complex holomorphic functions in n, uniform con

vergence on compact subsets of Q implies that the limit is holomorphic. 
Does this generalize to X -valued holomorphic functions ? 

27. Suppose { er:;} is a bounded set of distinct complex numbers,f(z) = L� c. z" is an 
entire function with every c. #- 0, and 

Prove that the vector space generated by the functions g; is dense in the Fn!chet 
space H( (/:) defined in Section 1.45. 
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Suggestion : Assume 11 Is a measure with compact support such that 
J g, d11 = 0 for all i. Put 

cf>(w) = f f(wz) d11(z) (w E (/:). 

Prove that c/>(w) = 0 for all w. Deduce that J z" d11(z) = 0 for n = 1 , 2, 3, . . . .  Use 
Exercise 14. 

Describe the closed subspace of H((/:) generated by the functions g, if some 
of the c. are 0. 

28. Suppose X is a Frechet space (or, more generally, a metrizable locally convex 
space). Prove the following statements : 
(a) X* is the union of countably many weak*-compact sets E • .  

(b) If X is separable, each E. is metrizable. The weak*-topology of X* is there
fore separable, and some countable subset of X* separates points on X. 
(Compare with Exercise 1 5.) 

(c) If K is a weakly compact subset of X and if x0 E K is a weak limit point of 
some countable set E c K, then there is a sequence { x.} in E which con
verges weakly to x0 • Hint : Let Y be the smallest closed subspace of X that 
contains E. Apply (b) to Y to conclude that the weak topology of K n Y is 
metrizable. 

Remark : The point of (c) is the existence of convergent subsequences 
rather than subnets. Note that there exist compact Hausdorff spaces in 
which no sequence of distinct points converges. For an example, see Exercise 
18, Chapter 1 1 . 

29. Let C(K) be the Banach space of all continuous complex functions on the 
compact Hausdorff space K, with the supremum norm. For p E K, define i\P E 
C(K)* by i\Pf = f(p). Show that p ..... i\P is a homeomorphism of K into C(K}*, 
equipped with its weak*-topology. Part (c) of Exercise 28 can therefore not be 
extended to weak*-compact sets. 

30. Suppose that p is an extreme point of some convex set K, and that p = 

t 1x 1 + · · · + t. x. , where L t, = 1, t, > 0 and x, E K for all i. Prove that x, = p 
for all i. 

31. Suppose that A1 ,  • • •  , A. are convex sets in a vector space X. Prove that every 
x E co( A 1 u · · · u A.) can be represented in the form 

with a, E A, and t, > 0 for all i, L t, = 1 .  
32. Let X be an infinite-dimensional Banach space and let S = { x E X :  I I  x I I  = 1 } be 

the unit sphere of X. We want to cover S with finitely many closed balls, none 
of which contains the origin of X. Can this be done in (a) every X, (b) some X, 
(c) no X? 

33. Let C(I) be the Banach space of all continuous complex functions on the closed 
unit interval I, with the supremum norm. Let M = C(J)*, the space of all 
complex Borel measures on I. Give M the weak*-topology induced by C(I). 

For each t E I, let e, E M be the " evaluation functional " defined by e.f = 
f(t), and define i\ E M by i\f = Jb f(s) ds. 
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(a) Show that t - e, is a continuous map from I into M and that K = {e, : t E I} 
is a compact set in M. 

(b) Show that i\ E co(K). 
(c) Find all 11 E co(K). 
(d) Let X be the subspace of M consisting of all finite linear combinations 

with complex coefficients ci . Note that co(K) c X and that X 11 co(K) is 
the closed convex hull of K within X. Prove that i\ is an extreme point of 
X 11 co(K), even though i\ is not in K. 



CHAPTER 

DUALITY IN 
BANACH 
SPACES 

The Normed Dual of a Normed Space 

Introduction If X and Y are topological vector spaces, §l(X, Y) will 
denote the collection of all bounded linear mappings (or operators ! of X 
into Y. For simplicity, §l(X, X) will be abbreviated to .t?J'(X). Each .?l(X, Y) 
is itself a vector space, with respect to the usual definitions of addition and 
scalar multiplication of functions. (This depends only on the vector space 
structure of Y, not on that of X.) In general, there are many ways in which 
§l(X, Y) can be made into a topological vector space. 

In the present chapter, we shall deal only with normed spaces X and 
Y. In that case, §l(X, Y) can itself be normed in a very natural way. When 
Y is specialized to be the scalar field, so that §l(X, Y) is the dual spzce X* 
of X, the above-mentioned norm on §l(X, Y) defines a topology on X* 
which turns out to be stronger than its weak*-topology. The relations 
between a Banach space X and its normed dual X* form the main topic of 
this chapter. 

4.1 Theorem Suppose X and Y are normed spaces. Associate to each 
A E §l(X, Y) the number 
(1) I I A II = sup { II Ax ll : x E X, l l x l l < 1 } . 

92 
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This definition of II A II makes 9l(X, Y) into a normed space. If Y is a Banach 
space, so is Pl(X, Y). 

PROOF. Since subsets of normed spaces are bounded if and only if they 
!ir i :1 some multiple of the unit ball, II A ll < oo for every A E Pl(X, Y). 
If rx is a scalar, then (rxAXx) = rx • Ax, so that 

(2) 
. The triangle inequality in Y sho,vs that 

I I (A J + Az)x ll = IIA 1x + Az x ll < II A 1x l l  + I I Az x ll 
< ( I I A I I I + IIAz l l ) l lx l l < II A I I I  + II Az l l 

for every x E X with l lx II < 1 .  Hence 

(3) 
If A f= 0, then Ax f= 0 for some x E X ; hence II A I I  > 0. Thus Pl(X, Y) 
is a normed space. 

Assume now that Y is complete and that {A.} is a Cauchy 
sequence in Pl(X, Y). Since 

(4) 

and since it is assumed that I I  A. - Am II ---> 0 as n and m tend to oo ,  

{A. x} is a Cauchy sequence in Y for every x E X. Hence 

(5) Ax = lim A. x 

exists. It is clear that A :  X ---> Y is linear. If 6 > 0, the right side of (4) 
does not exceed 6 ll x l l , provided that m and n are sufficiently large. It 
follows that 

(6) 

for all large m. Hence I I Ax ll < ( II Am ll + 6) l l x l l , so that A E Pl(X, Y), 
and I I A - Am II < 6. Thus Am ---> A in the norm of Pl(X, Y). This estab
lishes the completeness of Pl(X, Y). /Ill 

4.2 Duality It will be convenient to designate elements of the dual 
space X* of X by x* and to write 

(1) <x, x*) 
in place of x*(x). This notation is well adapted to the symmetry (or duality) 
that exists between the action of X* on X on the one hand and the action 
of X on X* on the other. The following theorem states some basic proper
ties of this duality. 
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4.3 Theorem Suppose B is the closed unit ball of a normed space X. 
Define 

l lx* ll = sup { I <x, x*) 1 : x E B} 

for every x* E X*. 

(a) This norm makes X* into a Banach space. 
(b) Let B* be the closed unit ball of X*. For every x E X, 

llx ll = sup { I <x, x*) 1 : x* E B*}. 

Consequently, x* ---> <x, x*) is a bounded linear functional on X*, of 
norm l l x l l ·  

(c) B* is weak*-compact. 

PROOF. Since §l(X, Y) = X*, when Y is the scalar field, (a) is a corol
lary of Theorem 4. 1 .  

Fix x E X. The corollary to Theorem 3.3 shows that there exists 
y* E B* such that 

(1) <x, y*) = l lx 1 1 . 
On the other hand, 

(2) I <x, x*) I < l lx l l l lx* I I  < l lx I I 
for every x* E B*. Part (b) follows from (1) and (2). 

Since the open unit ball U of X is dense in B, the definition of 
l lx* II shows that x* E B* if and only if I <x, x*) I < 1 for every x E U. 
Part (c) now follows directly from Theorem 3 . 15. //// 

Remark. The weak*-topology of X* is, by definition, the weakest one 
that makes all functionals 

x* ---> <x, x*) 

continuous. Part (b) shows therefore that the norm topology of X* is 
stronger than its weak*-topology ; in fact, it is strictly stronger, unless 
dim X < oo ,  since the proposition stated at the end of Section 3. 1 1  
holds for the weak*-topology as well. 

Unless the contrary is explicitly stated, X* will from now on 
denote the normed dual of X (whenever X is normed), and all topo
logical concepts relating to X* will refer to its norm topology. This 
implies in no way that the weak*-topology will not play an important 
role. 

We now give an alternative description of the operator norm defined 
in Theorem 4. 1 .  
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4.4 Theorem If X and Y are normed spaces and if A E &#(X, Y), then 

II A II = sup { I (Ax, y* ) l : l l x l l < 1 ,  l l y* ll < 1 } . 

PROOF. Apply (b) of Theorem 4.3 with Y in place of X. This gives 

I I Ax ll = sup { I  (Ax, y*) 1 :  l l y* ll < 1 }  
for every x E X. To complete the proof, recall that 

I I A II = sup { I IAx ll : l lx l l < 1 } .  /Ill 

4.5 The secQild dual of a Banach space The normed dual X* of a 
Banach space X is itself a Banach space and hence has a normed dual of its 
own, denoted by X**. Statement (b) of Theorem 4.3 shows that every x E X  
defines a unique <f>x E X**, by the equation 

(1) (x, -x*)  = (x*, <f>x) (x* E X*), 
and that 

(2) 1 1 </>x ll = ll x l l  (x E X). 

It follows from (1) that ¢ :  X --+  X** is linear ; by (2), 4> is an isometry. Since 
X is now assumed to be complete, <f>(X) is closed in X**. 

Thus <P is an isometric isomorphism of X onto a closed subspace of X**. 
Frequently, X i�. ideQ.tified With </>(X) ; then X is regarded as a sub

space of X**. 
The members of </>(X) are exactly those linear functionals on X* that 

are continuous relative to its weak*-topology. (See Section 3.1 4.) Since the 
norm topology of X* is stronger, it may happen that <f>(X) is a proper 
subspace of X**. But there are many important spaces X (for example, all 
B'-spaces with 1 < p < oo) for which <f>(X) = X** ;  these are called reflexive. 
Some oftheir properties are given in Exercise 1 .  

It should be stressed that, in order for X to be reflexive, the existence 
of some isometric isomorphism 4> of X onto X** is not enough ; it is crucial 
that the identity (1) be satisfied by <f>. 

4.6 Annihilators Suppose X is a Banach space, M is a subspace of X, 
and N is a subspace of X* ; neither M nor N is assumed to be closed. Their 
annihilators M J. and J. N are defined as follows : 

MJ. = {x* E X* : (x, x*) = 0 for all x E M}, 
J.N = {x E X : (x, x*) = 0 for all x* E N}. 

Thus MJ. consists of all bounded linear functionals on X that vanish 
on M, and J.N is the subset of X on which every member of N vanishes. It 
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is clear that M .L and .L N are vector spaces. Since l:.!f .L is the intersection of 
the null spaces of the functionals </Jx, where x ranges over M (see Section 
4.5), Ml. is a weak*-closed subspace of X*. The proof that .LN is a norm
closed subspace of X is even more direct. The following theorem describes 
the duality between these two types of annihilators. 

4.7 Theorem Under the preceding hypotheses, 

(a) .L(M.L) is the norm-closure of M in X, and 
(b) (.L N).L is the weak*-closure of N in X*. 

As regards (a), recall that the norm-closure of M equals its weak 
closure, by Theorem 3. 1 2. 

PROOF. If x E M, then (x, x*) = 0 for every x* E M.L, so that 
x E .L(M.L). Since .L(M.L) is norm-closed, it contains the norm-closure 
M of M. On the other hand, if x ¢. M the Hahn-Banach theorem 
yields an x* E M.l such that (x, x*) i= 0. Thus x ¢. .l(M.L), and (a) is 
proved. 

Similarly, if x* E N, then (x, x*) = 0 for every x E .LN, so that 
x* E (.LN).l. This weak*-closed subspace of X* contains the weak*
closure N of N. If x* ¢. N, the Hahn-Banach theorem (applied to the 
locally convex space X* with its weak*-topology) implies the exis
tence of an x E .LN such that (x, x*) i= 0 ;  thus x* ¢. (.LN).L, which 
proves (b). /II/ 

Observe, as a corollary, that every norm-closed subspace of X is the 
annihilator of its annihilator and that the same is true of every weak*
closed subspace of X*. 

4.8 Duals of subspaces and of quotient spaces If M is a closed sub
space of a Banach space X, then X/M is also a Banach space, with respect 
to the quotient norm. This was defined in the proof of (d) of Theorem 1 .4 1 .  
The duals of M and of X I M can be described with the aid of the annihilator 
M.L of M. Somewhat imprecisely, the result is that 

M* = X*/M.L and (X/M)* = M.L. 

This is imprecise because the equalities should be replaced by isometric 
isomorphisms. The following theorem describes these explicitly. 
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4.9 Theorem Let M be a closed subspace of a Banach space X. 

(a) The Hahn-Banach theorem extends each m* E M* to a functional 
x* E X*. Define 

am* = x* + M.L. 
Then a is an isometric isomorphism of M* onto X*/M.L. 

(b) Let n : X --+ X/ M be the quotient map. Put Y = X/ M. For each y* E Y*, 
define 

ry* = y*n. 

Then r is an isometric isomorphism of Y* onto M.L. 

PROOF. (a) If x* and xt are extensions of m*, then x* - xt is in M.l ; 
hence x* + M.L = xt + M.i. Thus a is well defined. A trivial verifica
tion shows that a is linear. Since the restriction of every x* E X* to M 
is a member of M*, the range of a is all of X*jM.L. 

Fix m* E M*. If x* E X* extends m*, it is obvious that 
l lm* l l  < l l x* ll - The greatest lower bound of the numbers l l x* ll so 
obtained is l l x* + M.l l l , by the definition of the quotient norm. Hence 

l l m* ll < ll am* ll < l lx* l l -

But Theorem 3.3 furnishes an extension x* of m* with l l x* ll = lim* II . 
It follows that II am* II = l im* I I - This completes (a). 

(b) If x E X  and y* E Y*, then nx E Y ;  hence x --+  y*nx is a con
tinuous linear functional on X which vanishes for x E M. Thus 
ry* E M.l. The linearity of r is obvious. Fix x* E M.l. Let N be the 
null space of x*. Since M c N, there is a linear functional A on Y 
such that An = x*. The null space of A is n(N), a closed subspace of 
Y, by the definition of the quotient topology in Y = X/M. By 
Theorem 1 . 1 8, A is continuous, that is, A E Y*. Hence rA = An =  x*. 
The range of r is therefore all of M.l. 

It remains to be shown that r is an isometry. 
Let B be the open unit ball in X. Then nB is the open unit ball 

of Y = nX. Since ry* = y*n, we have 

l l ry* I I  = l l y*n l l  = sup { I (nx, y*) I : x E B} 

= sup { I (y, y*) I : y E nB} = l l y* l l  
for every y* E Y*. 

Adjoints 

Ill/ 

We shall now associate with each T E al(X, Y) its adjoint, an operator 
T* E al(Y*, X*), and will see how certain properties of T are reflected in 
the behavior of T*. If X and Y are finite-dimensional, every T E &#(X, Y) 
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can be represented by a matrix [T] ; in that case, [T*] is the transpose of 
[T], provided that the various vector space bases are properly chosen. No 
particular attention will be paid to the finite-dimensional case in what 
follows, but historically linear algebra did provide the background and 
much of the motivation that went into the construction of what is now 
known as operator theory. 

Many of the nontrivial properties of adjoints depend on the complete
ness of X and Y (the open mapping theorem will play an important role). 
For this reason, it will be assumed throughout that X and Y are Banach 
spaces, except in Theorem 4. 1 0, which furnishes the definition of T*. 

4.10 Theorem Suppose X and Y are normed spaces. To each 
T E al(X, Y) corresponds a unique T* E al( Y*, X*) that satisfies 
(1) (Tx, y* ) = (x, T*y*) 
for all x E X  and all y* E Y*. Moreover, T* satisfies 
(2) I I  T* II = I I T il -

PROOF. If y* E Y* and T E &#(X, Y), define 

(3) T*y* = y* o T. 
Being the composition of two continuous 
T*y* E X*. Also, 

linear 

(x, T*y* ) = (T*y*)(x) = y*(Tx) = (Tx, y*), 

. 
mappmgs, 

which is (1). The fact that (1) holds for every x E X  obviously deter
mines T*y* uniquely. 

If y* E Y* and y* E Y* then I 2 ' 

(x, T*(yt + y!)) = ( Tx, Yt + y! )  
= ( Tx, YD + ( Tx, YD 
= (x, T*yt) + (x, T*y!) 
= (x, T*yt + T*y!)  

for every x E X, so that 

(4) T*(yt + Y!) = T*yt + T*y! . 
Similarly, T*(IXy*) = IXT*y*. Thus T* : Y* --+ X* is linear. Finally, (b) 
of Theorem 4.3 leads to 

II T il = sup { I  (Tx, y*) l : l l x ll < 1 , I IY* I I  < 1 }  

= sup { I (x, T*y*) I : l l x l l  < 1 ,  l l y* I I  < 1 }  
= sup { I I T*y* ll : I IY* I I  < 1 }  = I I T* I I · /Ill 
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4.1 1 Notation If T maps X into Y, the null space and the range of T 
will be denoted by .AI(T) and PA(T), respectively : 

fi(T) = {x E X: Tx = 0}, 
fl(T) = {y E Y :  Tx = y for some x E X}. 

The next theorem concerns annihilators ; see Section 4.6 for the notation. 

4.12 Theorem Suppose X and Y are Banach spaces, and T E &#(X, Y). 
Then 

.AI(T*) = fl(T).L and .AI(T) = .Lfl(T*) . 

PROOF. In each of the following two columns, each statement is obvi
ously equivalent to the one that immediately follows andjor precedes 
it. 

y* E fi(T*). 

T*y* = 0. 
(x, T*y*) = 0 for all x. 

( Tx, y*) = 0 for all x. 

y* E fl(T).l. 

Corollaries 

(a) fi(T*) is weak*-closed in Y*. 

X E fi(T). 

Tx = 0. 
( Tx, y*) = 0 for all y*. 

(x, T*y*) = 0 for all y*. 

X E .lfi(T*). 

(b) fl(T) is dense in Y if and only if T* is one-to-one. 
(c) T is one-to-one if and only if fl(T*) is weak*-dense in X*. 

Ill/ 

Recall that M.l is weak*-closed in Y* for every subspace M of 
Y. In particular, this is true of PA(T).L. Thus (a) follows from the 
theorem. 

As to (b), fl(T) is dense in Y if and only if fl( T).L = {0} ; in that 
case, fi(T*) = {0}. 

Likewise, .Lfl(T*) = {0} if and only if fl(T*) is annihilated by no 
x E X  other than x = 0 ;  this says that Pl(T*) is weak*-dense in X*. 

Note that the Hahn-Banach theorem 3.5 was tacitly used in the 
proofs of (b) and (c). 

There is a useful analogue of (b), namely, that Bl(T) is all of Y if 
and only if T* is one-to-one and its inverse [mapping fl(T*) onto Y*] 
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is bounded. The equivalence of (a) and (d) in the following theorem 
expresses this in slightly different terms. Theorem 4. 15 is closely 
related. The union of the following three theorems is sometimes called 
the closed range theorem. 

4.13 Theorem Let U and V be the open unit balls in the Banach spaces 
X and Y, respectively. If T E &B(X, Y) and () > 0, then the implications 

(a) --+ (b) --+ (c) --+ (d) 
hold among the following statements : 

(a) I I T*y* ll > b l l y* l l for every y* E Y*. 
(b) T(U) => b V. 
(c) T(U) => () V. 

(d) T(X) = Y. 

Moreover, if(d) holds, then (a) holds for some () > 0. 

PROOF. Assume (a), and pick y0 ¢ T(U). Since T(U)"is convex, closed, 
and balanced, Theorem 3.7 shows that there is a y* such that 
I (y, y*) I < 1 for every y E T(U), but I (y0 , y*) I > 1 . If x E U, it 
follows that 

I (x, T*y*) I = I (Tx, y* ) I < 1 .  
Thus I I T*y* II < 1 ,  and now (a) gives 

(j < (j I (Yo , y*) I < b i iYo ll l l y* ll < I I  Yo I I  II T*y* ll < I IYo l l . 
It follows that y E T(U) if I I Y I I  < b. Thus (a) --+ (b). 

Next, assume (b). Take (j = 1 ,  without loss of generality. Then 
== 
T(U) :::::> V. To every y E Y and every e > 0 corresponds therefore an 
x E X  with l l x l l < I I Y I I and I IY - Tx l l < e. 

Pick Yl E v. Pick en > 0 so that 

n = l 
Assume n > 1 and Yn is picked. There exists xn such that l l xn l l < I IYn l l  
and l lYn - Txn ll < en . Put 

Yn + l = Yn - Txn . 
By induction, this process defines two sequences {xn} and {Yn} · Note 
that 
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Hence 
00 00 00 

L ll xn ll < ll x 1 l l + L en < I IY 1 I I + L en < 1 .  
n = l n = l 

It follows that X = L xn is in u (see Exercise 23) and that 

N N 
Tx = lim l: Txn = lim L (Yn - Yn + l ) = yl 

since YN + 1 ...... 0 as N ....,. w .  Thus y1 = Tx E T(U), which proves (c). 
Note that the preceding argument is just a specialized version of 

part of the proof of the open mapping theorem 2. 1 1 . 
That (c) implies (d) is obvious. 
Assume (d). By the open mapping theorem, there is a () > 0 such 

that T(U) => () V. Hence 

II T*y* l l  = sup { I (x, T*y*) I :  x E U} 
= sup { I < Tx, y*) I : x E U} 
> sup { I (y, y*) 1 :  y E () V} = b ll y* l l  

for every y* E Y*. This is (a). Ill/ 

4.14 Theorem If X and Y are Banach spaces and if T E &#(X, Y), then 
each of the following three conditions implies the other two : 

(a) fl(T) is closed in Y. 
(b) fl(T*) is weak*-closed in X*. 
(c) fl(T*) is norm-closed in X*. 

Remark. Theorem 3 . 1 2  implies that (a) holds if and only if fl(T) is 
weakly closed. However, norm-closed subspaces of X* are not always 
weak*-closed (Exercise 7, Chapter 3). 

PROOF. It is obvious that (b) implies (c). We will prove that (a) implies 
(b) and that (c) implies (a). 

Suppose (a) holds. By Theorem 4. 1 2  and (b) of Theorem 4.7, 
fi(T).L is the weak*-closure of fl(T*). To prove (b) it is therefore 
enough to show that fi(T).L c fl(T*). 

Pick x* E fi(T).L. Define a linear functional A on fl(T) by 

ATx = (x, x*) (x E X). 
Note that A is well defined, for if Tx = Tx', then x - x' E fi(T) ;  
hence 

(x - x', x*) = 0. 
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The open mapping theorem applies to 

T :  X --+  fl(T) 
since fl(T) is assumed to be a closed subspace of the complete space Y 
and is therefore complete. It follows that there exists K < oo such that 
to each y E fl(T) corresponds an x E X  with Tx = y, l l x l l < K I IY I I , 
and 

l Ay I = I ATx l = I (x, x*) l  < K I IY I I I I x* l l ·  
Thus A is continuous. By the Hahn-Banach theorem, some y* E Y* 
extends A. Hence 

( Tx, y*) = ATx = (x, x*) (x E X). 
This implies x* = T*y*. Since x* was an arbitrary element of fi(T).L, 
we have shown that fi(T).L c fl(T*). Thus (b) follows from (a). 

Suppose next that (c) holds. Let Z be the closure of fl(T) in Y. 
Define S E &#(X, Z) by setting Sx = Tx. Since fl(S) is dense in Z, 
Corollary (b) to Theorem 4. 1 2  implies that 

S* : Z* --+ X* 
is one-to-one. 

If z* E Z*, the Hahn-Banach theorem furnishes an extension y* 
of z* ; for every x E X, 

(x, T*y*) = (Tx, y*) = (Sx, z*) = (x, S*z*). 
Hence S*z* = T*y*. It follows that S* and T* have identical ranges. 
Since (c) is assumed to hold, fl(S*) is closed, hence complete. 

Apply the open mapping theorem to 

S* : Z* --+ fl(S*). 
Since S* is one-to-one, the conclusion is that there is a constant c > 0 
which satisfies 

c ll z* ll < II S*z* ll 
for every z* E Z*. Hence S :  X --+  Z is an open mapping, by Theorem 
4. 1 3. In particular, S(X) = Z. But fl(T) = fl(S), by the definition of S. 
Thus fl(T) = Z, a closed subspace of Y. 

This completes the proof that (c) implies (a). II I I 

The following consequence is useful in applications. 

4.15 Theorem Suppose X and Y are Banach spaces, and T E &#(X, Y). 
Then 
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(b) T* is one-to-one and fl(T*) is norm-closed. 

PROOF. If (a) holds then T* is one-to-one, by Theorem 4. 1 2. The 
implication (d) --+ (a) of Theorem 4. 1 3  shows that T* is (a multiple of) 
a dilation ; hence fl(T*) is closed, by Theorem 1 .26. 

If (b) holds, then PA(T) is dense in Y, again by Theorem 4. 1 2, and 
fl(T) is closed by Theorem 4. 1 4. 

Compact Operators 

4.1 6  Definition Suppose X and Y are Banach spaces and U is the open 
unit ball in X. A linear map T :  X --+  Y is said to be compact if the closure of 
T(U) is compact in Y. It is clear that T is then bounded. Thus T E al(X, Y). 

Since Y is a complete metric space, the subsets of Y whose closure is 
compact are precisely the totally bounded ones. Thus T E al(X, Y) is 
compact if and only if T(U) is totally bounded. Also, T is compact if and 
only if every bounded sequence {x"} in X contains a subsequence {x",} such 
that {Tx",} converges to a point of Y. . 

Many of the operators that arise in the study of integral equations are 
compact. This accounts for their importance from the standpoint of appli
cations. They are in some respects as similar to linear operators on finite
dimensional spaces as one has any right to expect from operators on 
infinite-dimensional spaces. As we shall see, these similarities show up par
ticularly strongly in their spectral properties. 

4.1 7  Definitions (a) Suppose X is a Banach space. Then &#(X) [which is 
an abbreviation for &#(X, Y)] is not merely a Banach space (see Theorem 
4. 1 )  but also an algebra : If S E al(X) and T E &#(X), one defines ST E &#(X) 
by 

(STXx) = S(T(x)) (x E X). 
The inequality 

li ST I I  < l i S I I  II Til 

is trivial to verify. 
In particular, powers of T E al(X) can be defined : T0 

= I, the identity 
mapping on X, given by Ix = x, and T" = TT"- 1 , for n = 1 ,  2, 3, . . . . 

(b) An operator T E e8(X) is said to be invertible if there exists 
S E al(X) such that 

ST = I = TS. 
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In this case, we write S = T- 1 . By the open mapping theorem, this happens 
if and only if JV(T) = {0} and PA(T) = X. 

(c) The spectrum a(T) of an operator T E al(X) is the set of all scalars 
A such that T - AI is not invertible. Thus A E a(T) if and only if at least one 
of the following two statements is true : 

(i) The range of T - AI is not all of X. 
(ii) T - AI is not one-to-one. 

If (ii) holds, A. is said to be an eigenvalue of T; the corresponding 
eigenspace is JV(T - AI) ; each x E JV(T - AI) (except x = 0) is an eigen
vector of T ;  it satisfies the equation 

Tx = AX. 

Here are some very easy facts which will illustrate these concepts. 

4.18 Theorem Let X and Y be Banach spaces. 

(a) If T E al(X, Y) and dim PA(T) < oo ,  then T is compact. 
(b) If T E al(X, Y), T is compact, and PA(T) is closed, then dim PA(T) < oo .  

(c) The compact operators form a closed subspace of &#(X, Y) in its norm-
topology. 

(d) If T E &#(X), T is compact, and A #  0, then dim JV(T - AI) < oo .  

(e) If dim X = oo ,  T E &#(X), and T is compact, then 0 E a(T). 
(f) If S E &#(X), T E al(X), and T is compact, so are ST and TS. 

PROOF. Statement (a) is obvious. If PA(T) is closed, then PA(T) is com
plete (since Y is complete), so that T is an open mapping of X onto 
PA(T) ; if T is compact, it follows that PA(T) is locally compact ; thus (b) 
is a consequence of Theorem 1 .22. 

Put Y = JV(T - AI) in (d). The restriction of T to Y is a 
compact operator whose range is Y. Thus (d) follows from (b), and so 
does (e), for if 0 is not in a(T), then PA(T) = X. The proof of (f) is 
trivial. 

If S and T are compact operators from X into Y, so is S + T, 
because the sum of any two compact subsets of Y is compact. It 
follows that the compact operators form a subspace L of &#(X, Y). 
To complete the proof of (c), we now show that L is closed. Let T E 

&#(X, Y) be the closure of L, choose r > 0, and let U be the open unit 
ball in X. There exists S E L with li S - T il < r. Since S(U) is totally 
bounded, there are points x1 , . . .  , x" in U such that S(U) is covered 
by the balls of radius r with centers at the points Sx; . Since 
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I I Sx - Tx ll < r for every x E U, it follows that T(U) is covered by the 
balls of radius 3r with centers at the points Tx; . Thus T(U) is totally 
bounded, which proves that T E L. //// 

The main objective of the rest of this chapter is to analyze the spec
trum of a compact T E &#(X). Theorem 4.25 contains the principal results. 
Adjoints will play an important role in this investigation. 

4.19 Theorem Suppose X and Y are Banach spaces and T E al(X, Y). 
Then T is compact if and only if T* is compact. 

PROOF. Suppose T is compact. Let {y: } be a sequence in the unit ball 
of Y*. Define 

fn(Y) = (y, Y:) (y E Y). 
Since l fb) -f.(y') l < I IY - y' l l , {!"} is equicontinuous. Since T(U) 
has compact closure in Y (as before, U is the unit ball of X), Ascoli's 
theorem implies that {!"} has a subsequence {/,..} that converges uni
formly on T(U). Since 

II T*y:, - T*y� ll = sup I <  Tx, y:, - y:j> I 
= sup lfn;(Tx) -fn/Tx) I , 

the supremum being taken over x E U, the completeness of X* 
implies that { T*y:,} converges. Hence T* is compact. 

The second half can be proved by the same method, but it may 
be more instructive to deduce it from the first half. 

Let ¢ :  X --+  X** and t/1 :  Y --+  Y** be the isometric embeddings 
given by the formulas 

(x, x*) = (x*, <f>x) 
as in Section 4.5. Then 

and (y, y*) = (y*, 1/!y), 

(y*, 1/! Tx) = (Tx, y*) = (x, T*y*) = (T*y*, <f>x) = (y*, T**<f>x) 
for all x E X and y* E Y*, so that 

!/IT =  T**<f>. 
If x E U, then <f>x lies in the unit ball U** of X**. Thus 

t/IT(U) c T**(U**). 

Now assume that T* is compact. The first half of the theorem 
shows that T** :  X** --+ Y** is compact. Hence T**(U**) is totally 
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bounded, and so is its subset 1/!T(U). Since t/1 is an isometry, T(U) is 
also totally bounded. Hence T is compact. /Ill 

4.20 Definition Suppose M is a closed subspace of a topological vector 
space X. If there exists a closed subspace N of X such that 

X = M + N  and M n N = {0}, 
then M is said to be complemented in X. In this case, X is said to be the 
direct sum of M and N, and the notation 

X = M $ N  

is sometimes used. 
We shall see examples of uncomplemented subspaces in Chapter 5. At 

present we need only the following simple facts. 

4.21 Lemma Let M be a closed subspace of a topological vector space X. 

(a) If X is locally convex and dim M < oo ,  then M is complemented in X. 
(b) If dim (X/M) < oo ,  then M is complemented in X. 

The dimension of X/M is also called the codimension of M in X. 

PROOF. (a) Let {e1 , . . .  , en} be a basis for M. Every x E M  has then a 
unique representation 

x = 1X1(x)e1 + · · · + Cln(x)e" . 
Each IX; is a continuous linear functional on M (Theorem 1 .21 and 
Lemma 1 .20) which extends to a member of X*, by the Hahn-Banach 
theorem. Let N be the intersection of the null spaces of these exten
sions. Then X = M $ N. 

(b) Let n :  X -+ X/M be the quotient map, let {e1, . . .  , en} be a 
basis for XjM, pick x1 E X  so that nx1 = e1 ( 1  < i < n), and let N be 
the vector space spanned by { x 1 , • . •  , x"} .  Then X = M $ N. //// 

4.22 Lemma If M is a subspace of a normed space X, if M is not dense 
in X, and if r > 1 ,  then there exists x E X such that 

l l x ll < r but I I X - y II ;;:::: 1 for all y E M. 

PROOF. There exists x1 E X  whose distance from M is 1 ,  that is, 

inf { II x 1 - y II : y E M} = 1 .  

Choose y1 E M  such that l l x 1 - y1 ll < r, and put x = x 1 - Yt- //// 
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4.23 Theorem If X is a Banach space, T E &#(X), T is compact, and 
A # 0, then T - AI has closed range. 

PROOF. By (d) of Theorem 4. 1 8, dim fi(T - AI) < oo. By (a) of 
Lemma 4.21 ,  X is the direct sum of fi(T - AI) and a closed subspace 
M. Define an operator S E al(M, X) by 

(1) Sx = Tx - AX. 

then S is one-to-one on M. Also, Bi(S) = Yi(T -. AI). To show that 
Bi(S) is closed, it suffices to show the existence of an r > 0 such that 

(2) rll x l l  < II Sx ll for all x E M, 

by Theorem 1 .26. 
If (2) fails for every r > 0, there exists {x"} in M such that 

l l xn l l = 1 ,  Sx" --+ 0, and (after passage to a subsequence) Tx" --+ x0 for 
some x0 E X. ('Fbi.S is where compactness of T is used.) It follows that 
AX" --+ x0 • Thus x0 E M, and 

Sx0 = lim (ASx") = 0. 

Since S is one-to-one, x0 = 0. But ll xn ll = 1 for all n, and x0 = 

lim A.x" , and so l l xo l l = I A I > 0. This contradiction proves (2) for 
some r > 0. //// 

4.24 Theorem Suppose X is a Banach space, T E al(X), T is compact, 
r > 0, and E is a  set of eigenvalues A of T such that I A I > r. Then 

(a) for each A E E, Yi(T - AI) # X, and 
(b) E is a  .finite set. 

PROOF. We shall first show that if either (a) or (b) is false then there 
exist closed subs paces M" of X and scalars A" E E such that 

(1) 

(2) 

and 

(3) 

T(Mn) c M" for n > 1 ,  

(T - A" J)(MJ c Mn - 1 for n > 2. 

The proof will be completed by showing that this contradicts the 
compactness of T. 
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Suppose (a) i:,;  false. Then fl(T - A0 I) = X for some A0 E E. Put 
S = T - .A0 !, and 1J.�fine Mn to be the null space of sn. (See Section 
4. 17.) Since ),0 is au eigenvalue of T, there exists x1 E M1, x 1 i= 0. 
Since Yl(S) = X, there is a sequence { xn} in X such that Sxn + 1 = xn , 
n = 1 ,  2, 3, . . . . Then 

(4) but 

Hence Mn is a proper closed subspace of Mn + 1 . It follows that (1) to 
(3) hold, with An = Ao . [Note that (2) holds because ST = TS.] 

Suppose (b) is false. Then E contains a sequence Pn} of distinct 
eigenvalues of T. Choose corresponding eigenvectors en , and let Mn 
be the (finite-dimensional, hence closed) subspace of X spanned by 
{e 1 , . . .  , en} · Since the An are distinct, {e 1 , . . .  , en} is a linearly indepen
dent set, so that Mn_ 1 is a proper subspace of Mn . This gives (1). If 
x E Mn , then 

which shows that Tx E M n and 

(T - An l)x = 1X1(A , - An)e 1 + . . .  + 1Xn- 1(An - 1 - An)en - 1 E Mn - 1 · 
Thus (2) and (3) hold. 

Once we have closed subspaces Mn satisfying (1) to (3), Lemma 
4.22 gives us vectors Yn E M n , for n = 2, 3, 4, . . .  , such that 

(5) 1 1Yn 1 1 < 2 and l lYn - x ll > 1 if X E Mn- 1 · 
If 2 < m < n, define 

(6) 

By (2) and (3), z E Mn _ 1 . Hence (5) shows that 

I I TYn - Tym ll = II An Yn - z l l = I An I l l Yn - An- 1z l l > I A.n l  > r. 
The sequence { Tyn} has therefore no convergent subsequences, 
although {Yn} is bounded. This is impossible if T is compact. //// 

4.25 Theorem Suppose X is a Banach space, T E &#(X), and T is 
compact. 

(a) If A i= 0, then the four numbers 
IX = dim fi(T - AI) 
f3 = dim Xjfl(T - AI) 

IX* = dim fi(T* - AI) 
/3* = dim X* I fl(T* - AI) 
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are equal and finite. 
(b) If A # 0 and A E a(T) then A is an eigenvalue of T and of T*. 
(c) a(T) is compact, at most countable, and has at most one limit point, 

namely, 0. 

Note : The dimension of a vector space is here understood to be either 
a nonnegative integer or the symbol oo .  The letter I is used for the identity 
operators on both X and X* ; thus 

(T - AI)* = T* - A.I* = T* - AI, 

since the adjoint of the identity on X is the identity on X*. 
The spectrum a(T) of T was defined in Section 4. 1 7. Theorem 4.24 

contains a special case of (a) : f3 = 0 implies IX = 0. This will be used in the 
proof of the inequality (4) below. 

It should be noted that a(T) is compact even if T is not (Theorem 
10. 1 3). The compactness of T is needed for the other assertions in (c). 

PROOF. Put S =  T - AI, to simplify the writing. 
We begin with an elementary observation about quotient spaces. 

Suppose M0 is a closed subspace of a locally convex space Y, and k is 
a positive integer such that k < dim YjM0 . Then there are vectors 
y1 , . . .  , L in Y such that the vector space Mi generated by M0 and 
y1 , . . .  , Yi contains Mi- l as a proper subspace. By Theorem 1 .42, each 
M; is closed. By Theorem 3.5, there are continuous linear functionals 
A1, . . .  , Ak on Y such that A; yi = 1 but A;y = 0 for all y E Mi - l · 
These functionals are linearly independent. The following conclusion 
is therefore reached : If L denotes the space of all continuous linear 
functionals on Y that annihilate M 0 ,  then 
{1) dim Y/M0 < dim L. 

Apply this with Y = X, M0 = �(S). By Theorem 4.23, �(S) is 
closed. Also, L = �(S)J. = fi(S*), by Theorem 4. 1 2, so that (1) 
becomes 

(2) f3 < IX*. 

Next, take Y = X* with its weak*-topology ; take M0 = �(S*). 
By Theorem 4. 14, �(S*) is weak*-closed. Since L now consists of all 
weak*-continuous linear functionals on X* that annihilate �(S*), L is 
isomorphic to J.�(S*) = fi(S) (Theorem 4. 1 2), and (1) becomes 

(3) 

(4) 

fJ* < IX. 

Our next objective is to prove that 

a <  f3. 
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Once we have (4), the inequality 

(5) IX* < fJ* 

is also true, since T* is a compact operator (Theorem 4.19). Since 
IX < oo by (d) of Theorem 4. 1 8, (a) is an obvious consequence of the 
inequalities (2) to (5). 

Assume that (4) is false. Then IX > f3. Since IX < oo, Lemma 4.21 
shows that X contains closed subspaces E and F such that dim F = f3 
and 

(6) X = JV(S) EB E = PA(S) EB F. 
Every x E X  has a unique representation x = x1 + x2 , with x1 E 
JV(S), x2 E E. Define n :  X --+ JV(S) by setting nx = x1 . It is easy to see 
(by the closed graph theorem, for instance) that n is continuous. 

Since we assume that dim X(S) > dim F, there is a linear 
mapping 4> of X(S) onto F such that <f>x0 = 0 for some x0 i= 0. Define 

(7) <l>x = Tx + <f>nx (x E X). 

Then <I> E &#(X). Since dim fA(</>) < oo ,  <f>n is a compact operator ; 
hence so is <I> (Theorem 4. 1 8). 

Observe that 

(8) <I> - ).J = S + <f>n. 
If x E E, then nx = 0, (<I> - ).I)x = Sx; hence 

(9) 

If x E X(S), then nx = x, 
( 10) 

and therefore 

(<I> - ).I)(E) = PA(S). 

(<I> - ).I)x = cpx, 

(1 1) (<I> - ).J)(JV(S)) = cp(JV(S)) = F. 
It follows from (9) and ( 1 1 ) that 

( 12) PA( <I> - ).I) => fA( S) + F = X. 

But if ( 1 0) is used with x = x0 , we see that ). is an eigenvalue of 
<1>, ahd since <I> is compact, Theorem 4.24 shows that the range of 
<I> - ).J cannot be all of X. This contradicts ( 12) ;  hence (4) is true and 
(a) is proved. 

Part (b) follows from (a), for if ). is not an eigenvalue of T, then 
1X(T) = 0, and (a) implies that f3(T) = 0, that is, that PA( T - ).I) = X. 
Thus T - ).J is invertible, so that ). ¢ a(T). 

It now follows from (b) of Theorem 4.24 that 0 is the only pos
sible limit point of a(T), that a(T) is at most countable, and that 
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a(T) u {0} is compact. If dim X < oo ,  then a(T) is finite ; if 
dim X =  oo ,  then 0 E a(T), by (e) of Theorem 4. 1 8. Thus a(T) is 
compact. This gives (c) and completes the proof of the theorem. I Ill 

Exercises 

Throughout this set of exercises, X and Y denote Banach spaces, unless the contrary 
is explicitly stated. 

1. Let 4> be the embedding of X into X** described in Section 4.5. Let r be the 
weak topology of X, and let a be the weak*-topology of X**-the one induced 
by X*. 
(a) Prove that 4> is a homeomorphism of (X, r) onto a dense subspace of 

(X**, a). 
(b) If B is the closed unit ball of X, prove that ¢(B) is a-dense in the closed unit 

ball of X**. (Use the Hahn-Banach separation theorem.) 
(c) Use (a), (b), and the Banach-Alaoglu theorem to prove that X is reflexive if 

and only if B is weakly compact. 
(d) Deduce from (c) that every norm-closed subspace of a reflexive space X is 

reflexive. 
(e) If X is reflexive and Y is a closed subspace of X, prove that X/Y is reflexive. 
(f) Prove that X is reflexive if and only if X* is reflexive. 
Suggestion : One half follows from (c) ; for the other half, apply (d) to the sub
space ¢(X) of X**. 

2. Which of the spaces c0 , (1 , (P, t"' are reflexive? Prove that every finite
dimensional normed space is reflexive. Prove that C, the supremum-normed 
space of all complex continuous functions, on the unit interval, is not reflexive. 

3. Prove that a subset E of !!4(X, Y) is equicontinuous if and only if there exists 
M < oo such that ! lA II < M for every A E E. 

4. Recall that X* = !!4(X, (/:), if (/: is the scalar field. Hence A* E !14( (/:, X*) for every 
A E X*. Identify the range of A*. 

5. Prove that T E fll(X, Y) is an isometry of X onto Y if and only if T* is an 
isometry of Y* onto X*. 

6. Let a and r be the weak*-topologies of X* and Y*, respectively, and prove that 
S is a continuous linear mapping of (Y*, r) into (X*, a) if and only if S = T* for 
some T E f?l(X, Y). 

7. Let IJ be the usual space of integrable functions on the closed unit interval J, 
relative to Lebesgue measure. Suppose T E !!4(L1, Y), so that T* E !!4(Y*, L00). 
Suppose !Jf(T*) contains every continuous function on J. What can you deduce 
about T? 

8. Prove that (ST)* = T*S* . Supply the hypotheses under which this makes sense. 
9. Suppose S E fll(X), T E !!4(X). 

(a) Show, by an example, that ST = I does not imply TS = I. 
(b) However, assume T is compact, show that 

S(I - T) = I if and only if (I - T)S = I, 

and show that either of these equalities implies that I - (I - n- I IS 

compact. 
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10. Assume T E §l(X) is compact, and assume either that dim X = oo or that the 
scalar field is (/;. Prove that a(T) is not empty. However, a(T) may be empty if 
dim X < oo and the scalar field is R. 

11.  Suppose dim X < oo and show that the equality {3* = {3 of Theorem 4.25 
reduces to the statement that the row rank of a square matrix is equal to its 
column rank. 

12. Suppose T E §l(X, Y) and 9£(T) is closed in Y. Prove that 

dim %(T) = dim X*/9t(T*), 

dim .A/(T*) = dim Y/9t(T). 

This generalizes the assertions IX = {3* and IX* = {3 of Theorem 4.25. 
13. (a) Suppose T E §I( X, Y), T,. E §I( X, Y) for n = 1, 2, 3, . . .  , each T,. has finite

dimensional range, and lim I I T - T,.ll  = 0. Prove that T is compact. 
(b) Assume Y is a Hilbert space, and prove the converse of (a) : Every compact 

T E §l(X, Y) can be approximated in the operator norm by operators with 
finite-dimensional ranges. Hint : In a Hilbert space there are linear projec
tions of norm 1 onto any closed subspace. (See Theorems 5 . 16, 12.4.) 

14. Define a shift operator S and a multiplication operator M on t2 by {0 if n = 0, 
(Sx)(n) = . 

x(n - 1) If n > 1 , 

(Mx)(n) = (n + W 1 x(n) if n > 0. 

Put T = MS. Show that T is a compact operator which has no eigenvalue and 
whose spectrum consists of exactly one point. Compute I I T" I I , for n = 1 , 2, 3, . . .  , 
and compute limn�oo I I T" I I 11". 

15. Suppose J.l is a finite (or a-finite) positive measure on a measure space Q, J.l x J.l 
is the corresponding product measure on Q x n, and K E I3(J.l x J.l). Define 

(Tf)(s) = I K(s, t)f(t) dJ.l(t) 

(a) Prove that T E §l(J3(J.l)) and that 

II T l l 2 < If I K(s, t) 1 2  dJ.l(s) dJ.l(t). 
nn 

(b) Suppose ai , bi are members of J3(J.l), for 1 < i < n, put K 1 (s, t) = L a�s)bi(t), 
and define T1 in terms of K 1 as T was defined in terms of K. Prove that 
dim 9£(T1 ) < n. 

(c). Deduce that T is a compact operator on I3(J.l). Hint : Use Exercise 1 3 . 
(d) Suppose A E (/;, A #- 0. Prove : Either the equation 

Tf- },f= g 

has a unique solution f E I3(J.l) for every g E J3(J.l) or there are infinitely 
many solutions for some g and none for others. (This is known as the Fred
holm alternative.) 

(e) Describe the adjoint of T. 



16. Define 

CHAPTER 4:  DUAUTY !N BANACH SPACES 113 

{(1 - s)t 
K(s, t) = 

(1 - t)s 
if 0 < t < s 
if s < t < 1  

and define T E �(13(0, 1)) by 

(Tf)(s) = f K(s, t)f(t) dt (0 < s < 1) .  

(a) Show that the eigenvalues of T are (nrr)- 2, n = 1 , 2, 3, . . .  , that the corre
sponding eigenfunctions are sin nnx, and that each eigenspace is one
dimensional. Hint : If A #- 0, the equation Tf = }if implies that f is infinitely 
differentiable, that }if" + f = 0, and that f(O) = f(1) = 0. The case A =  0 can 
be treated separately. 

(b) Show that the above eigenfunctions form an orthogonal basis for 13(0, 1). 
(c) Suppose g(t) = L en sin nnt. Discuss the equation Tf- }if= g. 
(d) Show that T is also a compact operator on C, the space of all continuous 

functions on [0, 1]. Hint : If {.J;} is uniformly bounded, then { TJ;} is equi
continuous. 

17. If 13 = 13(0, co) relative to Lebesgue measure, and if 

1 is 
(Tf)(s) = - f(t) dt 

s 0 
(0 < s < co), 

prove that T E �(13) and that T is not compact. (The fact that I I  Ti l  < 2 is a 
special case of Hardy's inequality. See p. 72 of [23].) 

18. Prove the following statements : 
(a) If {x"} is a weakly convergent sequence in X, then { l lxn l l }  is bounded. 
(b) If T E �(X, Y) and x" -> x weakly, then Tx" -> Tx weakly. 
(c) If T E �(X, Y), if x" -> x weakly, and if T is compact, then II Tx" - Tx ll -> 0. 
(d) Conversely, if X is reflexive, if T E �(X, Y), and if II Tx" - Tx II -> 0 when-

ever x" -> x weakly, then T is compact. Hint : Use (c) of Exercise 1 ,  and part 
(c) of Exercise 28 in Chapter 3. 

(e) If X is reflexive and T E �(X, t 1), then T is compact. Hence 9£(T) #- t1 . 
Hint : Use (c) of Exercise 5 of Chapter 3. 

(f) If Y is reflexive and T E �(c0 , Y), then T is compact. 
19. Suppose Y is a closed subspace of X, and x� E X*. Put 

J.l = sup { I  (x, x�) 1 :  x E Y, l lx l l < 1 } ,  

b = inf { l lx* - x�l l : x* E Y�}. 

In other words, f1 is the norm of the restriction of x� to Y, and b is the distance 
from x� to the annihilator of Y. Prove that f1 = b. Prove also that b = 
llx* - x� ll for at least one x* E Y�. 

20. Extend Sections 4.6 to 4.9 to locally convex spaces. (The word " isometric " must 
of course be deleted from the statement of Theorem 4.9.) 

21 . Let B and B* be the closed unit balls in X and X*, respectively. The following is 
a converse of the Banach-Alaoglu theorem : If E is a convex set in X* such that 
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E n (rB*) is weak*-compact for every r > 0, then E is weak*-closed. (Corollary : 
A subspace of X* is weak*-closed if and only if its intersection with B* is 
weak*-compact.) 

Complete the following outline of the proof. 
(i) E is norm-closed. 
(ii) Associated to each F c X its polar 

P(F) = {x* : I (x, x*) I < 1 for all x E F}. 

The intersection of all sets P(F), as F ranges over the collection of all finite 
subsets of r - 1 B, is exactly rB*. 

(iii) The theorem is a consequence of the following proposition : If, in addition 
to the stated hypotheses, E n B* = 0, then there exists x E X such that 
Re (x, x*) > 1for every x* E E. 

(iv) Proof of the proposition :  Put F0 = {0}. Assume finite sets F0 , . • .  , Fk - l 
have been chosen so that iFi c B and so that 

( 1 )  P(F 0) n · · · n P(F k- d n E n kB* = 0. 
Note that ( 1 )  is true for k = 1 .  Put 

Q = P(F0) n · · · n P(Fk_ 1) n E n  (k + 1)B*. 

If P(F) n Q # 0 for every finite set F c k - 1 B, the weak*-compactness of 
Q, together with (ii), implies that (kB*) n Q # 0, which contradicts (1 ). 
Hence there is a finite set F k c k- 1 B such that ( 1 )  holds with k + 1 in place 
of k. The construction can thus proceed. It yields 

00 

(2) E n n P(Fk) = 0. k � l  
Arrange the members of U Fk in a sequence {x.}. Then l lx. l l -> 0. Define 
T:  X* -> c0 by 

Tx* = {(x. , x*)} .  

Then T(E) is a convex subset of c0 . By (2), 

II Tx* ll = sup I (x. , x*) I > 1 
n 

for every x* E E. Hence there is a scalar sequence {IX.}, with I I IX. I < oo, 
such that 

00 

Re I IX.(x. , x*) < 1 
n= l 

for every x* E E. To complete the proof, put x = I IX. x • . 

22. Suppose T E §l(X), T is compact, .A. #  0, and S = T - U. 
(a) If .A/(S") = %(S" + 1 ) for some nonnegative integer n, prove that .A/(S") = 

.A/(S"+k) for k = 1 ,  2, 3, . . . . 
(b) Prove that (a) must happen for some n. (Hint : Consider the proof of 

Theorem 4.24.) 
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(c) Let n be the smallest nonnegative integer for which (a) holds. Prove that 
dim fi(S") is finite, that 

X = fi(S") Et> Yl(S"), 

and that the restriction of S to Yl(S") is a one-to-one mapping of Yl(S") onto 
Yl(S"). 

23. Suppose {x.} is a sequence in a Banach space X, and 
00 
I ll x. l l = M < oo. 

n =  1 

Prove that the series I x. converges to some x E X. Explicitly, prove that 

lim l lx - (x 1 + · · · + x.) ll = 0. 

Prove also that l lx l l < M. (These facts were used in the proof of Theorem 4. 1 3.) 
24. Let c be the space of all complex sequences 

X =  {x 1 , Xz , X3 , . • .  } 

for which X00 = lim x. exists (in �). Put l lx l l = sup I x. 1 .  Let c0 be the subspace 
of c that consists of all x with X00 = 0. 
(a) Describe explicitly two isometric isomorphisms u and v, such that u maps c* 

onto t1 and v maps c� onto t1• 
(b) Define S :  c0 -> c by Sf = f Describe the operator vS*u- 1 that maps t1 to t 1 . 
(c) Define T:  c ->  c0 by setting 

if n > 1 .  

Prove that T is one-to-one and that Tc = c0 . Find II T i l  and I I  T- 1 1 1 . 
Describe the operator uT*v - 1 that maps t1 to t 1 . 

25. If T E gj(X, Y) and Yl(T*) = .AI(T)�, prove that Yl(T) is closed. 
26. Assume T E gj(X, Y) and T(X) = Y. Show that there exists b > 0 such that 

S(X) = Y for all S E gj(X, Y) with l iS - Til < b. 
27. Suppose T E gj(X). Prove that A E u(T) if and only if there is a sequence {x.} in 

X, l lx. l l  = 1, for which 

lim II Tx. - h. II = o. 

[Thus every A E u(T) which is not an eigenvalue of T is an " approximate " 
eigenvalue.] 



CHAPTER 

SOME 
APPLICATIONS 

This chapter contains some applications of the preceding abstract material 
to more concrete problems in analysis. Most of these applications depend 
only on a small part of the contents of Chapters 1 through 4. Here is a 
partial list of the theorems, ordered more or less according to prerequisites. 

Theorems 
5.23 
5.27 
5.1, 5.2 
5.4 
5.5, 5.7, 5.10, 5.1 1  
5.18 
5.9, 5.21 

Prerequisites 
Vector topologies 

Minkowski functionals (and Brouwer's fixed point theorem) 

Closed graph theorem 
Hahn-Banach theorem 

Banach-Aiaoglu and Krein-Milman theorems 

Banach-Steinhaus theorem and vector-valued integrals 
Closed range theorem 

A Continuity Theorem 

One of the very early theorems in functional analysis (Hellinger and 
Toeplitz, 19 10) states that if T is a linear operator on a Hilbert space H 
which is symmetric in the sense that 

(Tx, y) = (x, Ty) 

116 
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for all x e H and y e H, then T is continuous. Here (x, y) denotes the usual 
Hilbert space inner product. (See Section 12. 1 .) 

If {xn} is a sequence in H such that l l xn l l -+ 0, the symmetry of T 
implies that Txn -+ 0 weakly. (This depends on knowing that all continuous 
linear functionals on H are given by inner products.) The Hellinger-Toeplitz 
theorem is therefore a consequence of the following one. 

5.1 Theorem Suppose X and Y are F-spaces, Y* separates points on Y, 
T: X -+  Y is linear, and A Txn -+ 0 for every A E Y* whenever xn -+ 0. Then 
T is continuous. 

PROOF. Suppose xn -+ X and Txn -+ y. If A E Y*, then 

AT(xn - x) -+ 0 
so that 

Ay = lim ATxn = ATx. 
Consequently, y = Tx, and the closed graph theorem can be applied. 

/Ill 

In the context of Banach spaces, Theorem 5. 1 can be stated as 
follows : If T :  X -+  Y is linear, if l l xn l l -+ 0 implies that Txn -+ 0 weakly, then 
ll xn ll -+ 0 actually implies that I I  Txn ll -+ 0. 

To see that completeness is important here, let X be the vector space 
of all complex infinitely differentiable functions on ( - oo, oo) which vanish 
outside the unit interval, put 

(f, g) = il jg, l l f l l  = (f, f)1 12, 

and define T:  X -+  X by (Tf)(x) = if'(x). Then (Tf, g) = (f, Tg), but T is 
not continuous. 

Closed Subspaces of LP-Spaces 

The proof of the following theorem of Grothendieck also involves the 
closed graph theorem. 

5.2 Theorem Suppose 0 < p < oo, and 

(a) Ji is a probability measure on a measure space n. 

(b) S is a closed subspace of I!'(Ji). 
(c) S c L00(Ji). 

Then S is finite-dimensional. 
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PROOF. Let j be the identity map that takes S into L00, where S is given 
the .IT-topology, so that S is complete. If {!.} is a sequence in S such 
that f. --+f in S and f. --+  g in L00, it is obvious that f = g a.e. Hence j 
satisfies the hypotheses of the closed graph theorem, and we conclude 
that there is a constant K < oo such that 

(1) 1 1 / 11 oo < K II J I I P 
for all j E S. As usual, 11 / I I P means (f l f 1P d,u)11P, and 1 1 / l l oo  is the 
essential supremum of I f 1 . If p < 2 then II f li P < I I ! 1 1 2 . If 2 < p < oo, 
integration of the inequality 

leads to 1 1 ! 1 1 oo < KP12 II f ll 2 . In either case, we have a constant M < oo 
such that 

(2) 11 / l l oo  < M II J I I 2 (f E S). 

In the rest of the proof we shall deal with individual functions, 
not with equivalence classes modulo null sets. 

Let { 4> 1 , • • •  , 4>.} be an orthonormal set in S, regarded as a sub
space of I!. Let Q be a countable dense subset of the euclidean unit 
ball B of �·. If c = (c 1 , . . •  , c.) E B, define.fc = L ci <Pi · Then l l .fc l l 2 < 1 ,  
and so II fc I I  oo < M. Since Q is countable, there is a set !l' c n, with 
,u(!l') = 1 ,  such that I .fc(x) I < M for every c E Q and for every x E !l'. 
If x is fixed, c --+  I .fc(x) I is a continuous function on B. Hence 
I .fc(x) I < M whenever c E B and x E !l'. It follows that L I </>i(x) 1 2 < 
M2 for every x E !l'. Integration of this inequality gives n < M2. We 
conclude that dim S < M2. This proves the theorem. //// 

It is crucial in this theorem that L00 occurs in the hypothesis (c). To 
illustrate this we will now construct an infinite-dimensional closed subspace 
of L1 which lies in L4• For our probability measure we take Lebesgue 
measure on the circle, divided by 2n. 

5.3 Theorem Let E be an infinite set of integers such that no integer has 
more than one representation as a sum of two members of E. Let P E be the 
vector space of all finite sums f of the form 

00 (1) f(eio) = L c(n)einO 
n:::: - oo 

in which c(n) = 0 whenever n is not in E. Let SE be the !!-closure ofPE . Then 
SE is a closed subspace of L4• 
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An example of such a set is furnished by 2k, k = 1 ,  2, 3, . . . .  Much 
slower growth can also be achieved. 

PROOF. Iff is as in ( 1 ), then 

f2(ei8) = L c(n)2e2in8 + L c(n)c(m)ei(n + m)8. 
n 

Our combinatorial hypothesis about E implies that 

f I f 1 4 = f I /2 1 2 = � I c(n) 14 + 4 
m
�

n 
I c(m) 1 2 1 c(n) 1 2 

so that 

(2) 

Holder's inequality, with 3 and 1 as conjugate exponents, gives 

(3) 

It follows from (2) and (3) that 

(4) 1 1 ! 1 1 4 < 2114 11 ! 1 1 2 and 

for every f E P E .  Every .V-Cauchy sequence in P E is therefore also a 
Cauchy sequence in L4• Hence SE c L4. The obvious inequality 
1 1! 11 1 < 1 1! 11 4 then shows that SE is closed in L4. //// 

An interesting result can be obtained by applying a duality argument 
to the second inequality (4). Recall that the Fourier coefficients g(n) of every 
g E L00 satisfy L I g(n) 1 2 < oo .  The next theorem shows that nothing more 
can be said about the restriction of g to E. 

5.4 Theorem If E is as in Theorem 5.3 and if 

- oo  

then there exists g E L00 such that g(n) = a(n)for every n E E. 

PROOF. Iff E P E ,  the preceding proof shows that 

I Lf (n)a(n) l < A{L; 1 /(n) l 2} 112 = A ll f ll 2 < 2112A II f ll 1 . 

Hence f-+ L;J (n)a(n) is a linear functional on P E which is continuous 
relative to the .V-norm. By the Hahn-Banach theorem, this functional 
has a continuous linear extension to L1 . Hence there exists g E L00 
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(with II g II oo < 2112 A) such that 

I ](n)a(n) = __!_ f" f(e - io)g(eio) d() 
_ 

oo 2n _ ,  

Withf(ei8) = einO (n E E), this shows that g(n) = a(n). 

The Range of a Vector-Valued Measure 

/Ill 

We now give a rather striking application of the theorems of Krein-Milman 
and Banach-Alaoglu. 

Let 9R be a a-algebra. A real-valued measure A. on 9R is said to be 
nonatomic if every set E E 9R with I A. I (E) > 0 contains a set A E 9R with 
0 < I A. I (A) < I A. I (E). Here I A. I denotes the total variation measure of A. ;  the 
terminology is as in [23] .  

5.5 Theorem Suppose 11-1 , . . .  , lin are real-valued nonatomic measures on 
a a-algebra 9R. Define 

11-(E) = (/i 1(E), . . .  , 11-.(E)) (E E 9R). 
Then 11- is a function with domain 9R whose range is a compact convex subset 
ofR". 

PROOF. Associate to each bounded measurable real function g the 
vector 

Ag = (f g dJi 1 , . . •  , f g d11-.) 
in R". Put a =  l /1- 1 1 + · · · + I Ji. l . If g 1 = g2 a.e. [a], then Ag 1 = Ag2 . 
Hence A may be regarded as a linear mapping of L00(a) into R". 

Each Iii is absolutely continuous with respect to a. The Radon
Nikodym theorem [23] shows therefore that there are functions 
hi E I!(a) such that dJi; = hi da (1 < i < n). Hence A is a weak*
continuous linear mapping of L00(a) into R" ; recall that L00(a) = L1(a)*. 
Put 

K = {g E L00(a) : 0 < g < 1 } .  

It is obvious that K is convex. Since g E K if and only if 

0 < f fg da < f fda 
for every nonnegative f E I!(a), K is weak*-closed. And since K lies in 
the closed unit ball of L00(a), the Banach-Alaoglu theorem shows that 
K is weak*-compact. Hence A(K) is a compact convex set in R". 
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We shall prove that ,u(9Jl) = A(K). 
If XE is the characteristic function of a set E E 9Jl, then XE E K 

and ,u(E) = Ag. Thus ,u(9Jl) c A(K). To obtain the opposite inclusion, 
pick a point p E A(K) and define 

K P = { g E K :  Ag = p}. 
We have to show that KP contains some XE , for then p = ,u(E). 

Note that KP is convex ; since A is continuous, KP is weak*
compact. By the Krein-Milman theorem, KP has an extreme point. 

Suppose g0 E K P and g0 is not a characteristic function in L00(a). 
Then there is a set E E 9Jl and an r > 0 such that a(E) > 0 and r < 

g0 < 1 - r on E. Put Y = XE · L00(a). Since a(E) > 0 and a is non
atomic, dim Y > n. Hence there exists g E Y, not the zero element of 
L00( a), such that Ag = 0, and such that - r < g < r. It follows that 
g0 + g and g0 - g are in KP . Thus g0 is not an extreme point of KP . 

Every extreme point of K P is therefore a characteristic function. 
This completes the proof. I I I I 

A Generalized Stone-Weierstrass Theorem 

The theorems of Krein-Milman, Hahn-Banach, and Banach-Alaoglu will 
now be applied to an approximation problem. 

5.6 Definitions Let C(S) be the familiar sup-normed Banach space of 
all continuous complex functions on the compact Hausdorff space S. A 
subspace A of C(S) is an algebra if fg E A whenever f E A and g E A. A set 
E c S is said to be A-antisymmetric if every f E A which is real on E is 
constant on E;  in other words, the algebra AE which consists of the 
restrictions fiE of the functions f E A to E contains no nonconstant real 
functions. 

For example, if S is a compact set in q; and if A consists of all f E C(S) 
that are holomorphic in the interior of S, then every component of the 
interior of S is A-antisymmetric. 

Suppose A c C(S), p E S, q E S, and write p ""'  q provided that there is 
an A-antisymmetric set E which contains both p and q. It is easily verified 
that this defines an equivalence relation in S and that each equivalence class 
is a closed set. These equivalence classes are the maximal A-antisymmetric 
sets. 

5.7 Bishop's theorem Let A be a closed subalgebra of C(S). Suppose 
g E C(S) and giE E AEfor every maximal A-antisymmetric set E. Then g E A. 

Stated differently, the hypothesis on g is that to every maximal A
antisymmetric set E corresponds a function! E A which coincides with g on 
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E;  the conclusion is that one f exists which does this for every E, namely, 
! = g. 

A special case of Bishop's theorem is the Stone-Weierstrass theorem : 
Suppose that 

(a) A is a closed subalgebra of C(S), 
(b) A is self-adjoint (i.e.,JE  Afor allfE A), 
(c) A separates points on S, and 
(d) at every p E S,f(p) # 0 for some f E A. Then A = C(S). 

For in this case the real-valued members f + j of A separate points on 
S. Therefore no A-antisymmetric set contains more than one point. It 
follows that every g E C(S) satisfies the hypothesis of Bishop's theorem. 

PROOF. The annihilator AJ. of A consists of all regular complex Borel 
measures /1- on S such that Sf dJi = 0 for every f E A. Define 

K = {Ji E AJ. : II !il l < 1 } ,  
where II Ji ll = I Ji I (S). Then K is convex, balanced, and weak*-compact, 
by (c) of Theorem 4.3. If K = {0}, then AJ. = {0} ; hence A = C(S), and 
there is nothing to prove. 

Assume K # {0}, and let /1- be an extreme point of K. Clearly, 
II Ji ll = 1 . Let E be the support of Ji; this means that E is compact, that 
I Ji I (E) = II Jil l , and that E is the smallest set with these two properties. 

We claim : E is antis ymmetric. 
Consider an f E A with fiE real ; without loss of generality, 

- 1  <f < 1 on E. Define measures a and r by 

da = W +f) dJi, dr = W - f) dJi. 
Since A is an algebra, a E AJ. and r E AJ.. Since 1 + f and 1 - f are 
positive on E, l l a l l > 0, ll r l l > 0, and 

II a II + II r II = � L (1 + f) d I /1- I + � L (1 - f) d I /1- I = I /1- I (E) = 1 .  

This shows that /1- is a convex combination of the measures a 1 = 

a/ ll a l l and r1 = r/ ll r l l . Both of these are in K. Since Ji is extreme in K, 
Ji = a 1 •  In other words, 

W + f) dJi = l l a l l dJi. 
Therefore/ = 2 11 a l l  - 1 on E, i.e.,JIE is constant. 

This proves our claim. 
If g satisfies the hypothesis of the theorem, it follows that 

S g dJi = 0 for every /1- that is extreme in K, hence for every Ji in the 
convex hull of these extreme points. Since /1- --+  S g dJi is a weak*-
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continuous function on K, the Krein-Milman theorem implies that 
J g d11 = 0 for every 11 E K, hence for every 11 E A .L. 

Every continuous linear functional on C(S) that annihilates A 
thus also annihilates g. Hence g E A, by the Hahn-Banach separation 
theorem. //// 

Note : If (d) is dropped from the hypotheses of the Stone-Weierstrass 
theorem, then (c) implies that there is at most one p0 E S, where f(p0) = 0 
for every f E A. If this is the case, then the proof shows that A = {! E C(S) : 
f(po) = 0} . 

Here is an example that illustrates Bishop's theorem : 

5.8 Theorem Suppose 

(a) K is a compact subset of R" x q; and 
(b) ift = (t 1 , • • •  , t.) E R", the set 

K1 = {z E (/; :  (t, z) E K }  
does not separate (/;. If g E C(K), define g1 on K1 by g1(z) = g(t, z). 

Assume that g E C(K), that each g1 is holomorphic in the interior of K1 
and that s > 0. Then there is a polynomial P in the variables t 1 ,  . . . , t. , z such 
that 

I P(t, z) - g(t, z) I < e 

for every (t, z) E K. 

PROOF. Let A be the closure in C(K) of the set of all polynomials 
P(t, z). Since the real polynomials on R" separate points, every 
A-antisymmetric set lies in some K1 • By Theorem 5.7 it is therefore 
enough to show that to every t E R" corresponds an f E A such that 
;; = 9t . 

Fix t E R". By Mergelyan's theorem [23] there are polynomials 
P �z) such that 

00 

(z E K1) 
i = 1 

and I pi I < r i if i > 1 .  There is a polynomial Q on R" that peaks at t, 
in the sense that Q(t) = 1 but I Q(s) I < 1 if s # t and Ks # 0. Consider 
a fixed i > 1 .  The functions <Pm defined on K by 

<f>m(s, z) = I Qm(s)P �z) I 
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form a monotonically decreasing sequence of continuous functions 
whose limit is < r 1 at every point of K. Since K is compact, it follows 
that there is a positive integer m1 such that <Pm,(s, z) < 2 -

1 at every 
point of K. The series 

00 

f(s, z) = L Qm'(s)P1(z) 
i = 1 

converges uniformly on K. Hencef E A, and obviously f. = g, . /Ill 

Two Interpolation Theorems 

The proof of the first of these theorems involves the adjoint of an operator. 
The second furnishes another application of the Krein-Milman theorem. 

The first one (due to Bishop) again concerns C(S). Our notation is as 
in Theorem 5.7. 

5.9 Theorem Suppose Y is a closed subspace of C(S), K is a compact 
subset of S, and I Ji I (K) = 0 for every Ji E YJ.. If g E C(K) and I g I < 1 ,  it 
follows that there exists f E Y such that fiK = g and I f I < 1 on S. 

Thus every continuous function on K extends to a member of Y. In 
other words, the restriction map f--+ fiK maps Y onto C(K). 

This theorem generalizes the following special case. 
Let A be the disc algebra, i.e., the set of all continuous functions on 

the closure of the unit disc U in q; which are holomorphic in U. Take 
S = T, the unit circle. Let Y consist of the restrictions to T of the members 
of A. By the maximum modulus theorem, Y is a closed subspace of C(T). If 
K c T is compact and has Lebesgue measure 0, the theorem of F. and M. 
Riesz [23] states precisly that K satisfies the hypothesis of Theorem 5.9. 
Consequently, to every g E C(K) corresponds an f E A such that f = g on K. 

PROOF. Let p :  Y --+ C(K) be the restriction map defined by pf = fiK .  
We have to prove that p maps the open unit ball of Y onto the open 
unit ball of C(K). 

Consider the adjoint p* : M(K) --+ Y*, where M(K) = C(K)* is 
the Banach space of all regular complex Borel measures on K, with 
the total variation norm II Ji l l = I /1- I (K). For each /1- E M(K), p* /1- is a 
bounded linear functional on Y ;  by the Hahn-Banach theorem, p*Ji 
extends to a linear functional on C(S), of the same norm. In other 
words, there exists a E M(S), with ll a l l = I I P*!i l l , such that 

if da = (f, p*Ji) = (pf, Ji) = Lf d!i 
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for every f E Y. Regard /1- as a member of M(S), with support in K. 
Then a - /1- E Y.L, and our hypothesis about K implies that 
a( E) = Ji(E) for every Borel set E c K. Hence II Ji I I < II al l .  We con
clude that l l !i l l < l l p*Ji l l .  By (b) of Theorem 4. 1 3, this inequality proves 
the theorem. I I I I 

Note : Since l i P* I I = II P I I < 1 ,  we also have l l a l l < I I !i l l  in the preceding 
proof. It follows that a = li· Hence p* /1- has a unique norm-preserving exten
sion to C(S). 

Our second interpolation theorem concerns finite Blaschke products, 
i.e., functions B of the form 

N TI z 
- ct.k B(z) = c 

1 
_ , 

k = 1 - ct.k z 

where I c I = 1 and I cxk I < 1 for 1 < k < N. It is easy to see that the finite 
Blaschke products are precisely those members of the disc algebra whose 
absolute value is 1 at every point of the unit circle. 

The data of the Pick-Nevanlinna interpolation problem are two finite 
sets of complex numbers, {z0 , . . .  , zn} and {w0 , . . .  , wn}, all of absolute value 
less than 1 ,  with z1 #- zj if i #- j. The problem is to find a holomorphic func
tion f in the open unit disc U, such that I f(z) I < 1 for all z E U, and such 
that 

f(z;) = wi (0 < i < n). 

The data may very well admit no solution. For example, if { z0 , z d = 
{0, i} and {w0 , wd = {0, n, the Schwarz lemma shows this. But if the 
problem has solutions, then among them there must be some very nice 
ones. The next theorem shows this. 

5.10 Theorem Let {zo ' . . .  ' zn} , { Wo ' . . .  ' wn} be Pick-Nevanlinna data. 
Let E be the set of all holomorphic functions f in U such that I f I < 1 and 
f(z1) = wi for 0 < i < n. If E is not empty, then E contains a finite Blaschke 
product. 

PROOF. Without loss of generality, assume z0 = w0 = 0. We will show 
that there is a holomorphic function F in U which satisfies 

(1) 

(2) 

Re F(z) > 0 for z E U, F(O) = 1, 

1 + wi F(zi) = fJ1 = 1 - WI 
for 1 < i < n, 
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and which has the form 

(3) � ak + z 
F(z) = L. ck , k = 1 ak - z 

where ck > 0, L ck = 1, and I ak I = 1 .  Once such an F is found, put 
B = (F - 1)/(F + 1). This is a finite Blaschke product that 
satisfies B(zi) = wi for 0 < i < n. 

Let K be the set of all holomorphic functions F in U that 
satisfy (1 ). 

(4) 

Associate to each /i E M(T) = C(T)* the function f" eio + z ·o F,.Jz) = io dJi(e' ) 
_ ,  e - z (z E U). 

If P is the set of all Borel probability measures on T, then Ji � F 11 is a 
one-to-one correspondence between P and K (Theorems 1 1 .9 and 
1 1 .30 of [23]). Define A :  M(T) -+ q;• by 

(5) Ali = (F 11(z 1 ), • . .  , F ,.Jz.)). 
Since E is assumed to be nonempty, there exists /io E P such that 

(6) AJio = f3 = (/31 , · · . ,  f3.). 

Since P is convex and weak*-compact, and since A is linear and 
weak*-continuous, A(P) is a convex compact set in q; = R2". Since 
f3 E A(P), f3 is a convex combination of N < 2n + 1 extreme points of 
A(P) (Exercise 19, Chapter 3). If y is an extreme point of A(P), then 
A - 1 (y) is an extreme set of K, and every extreme point of A - 1(y) (their 
existence follows from the Krein-Milman theorem) is an extreme point 
of P. It follows that there are extreme points f..1 1 , • • •  , f..IN of P and 
positive numbers ck with L ck = 1 ,  such that 

(7) 

Being an extreme point of P, each lik that occurs in (7) has a 
single point ak E T for its support ; hence 

(8) 

If F is now defined by (3), it follows from (7) and (8) that F satisfies (1) 
a� m  w 

Kakutani's Fixed Point Theorem 

Fixed point theorems play an important role in many parts of analysis and 
topology. The one we shall now prove will be used to establish the existence 
of a Haar measure on every compact group. Rather than state it for linear 
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maps, we shall state it in terms of affine maps. These are essentially linear 
maps followed by a translation (Exercise 17), but in the present context they 
need not be defined globally. The following definition makes this precise : 

If K is a convex set, Y is a vector space, and T:  K -+  Y satisfies 

T(( 1 - A.)x + A.y) = (1 - A.)Tx + A.Ty 
whenever x E K, y E K, 0 < A. < 1, then T is said to be affine. 

5.1 1  Theorem Suppose that 

(a) K is a nonempty compact convex set in a locally convex space X, and 
(b) G is an equicontinuous group of affine maps taking K into K. 

Then G has a commonfixed point in K. 

More explicitly, the conclusion is that there exists p E K such that 
Tp = p for very T E G. 

Part (b) of the hypothesis may need some explanation. To say that G 
is a group means that every T E G is a one-to-one map of K into K whose 
inverse T- 1 also belongs to G (so T maps K onto K !) and that T1 T2 E G 
whenever 7; E G for i =  1 ,  2. Here (T1 T2)x = T1(T2 x), of course ; note that 
the composition of two affine maps is affine. 

To say that G is equicontinuous (compare with Section 2.3) means 
now that to every neighborhood W of 0 in X corresponds a neighborhood 
V of 0 in X such that Tx - Ty E W whenever x E K, y E K, x - y E V, 
and T E G. 

Hypothesis (b) is satisfied, for instance, when G is a group of linear 
isometries on a normed space X. 

PROOF. Let n be the collection of all nonempty compact convex sets 
H c K such that T(H) c H for every T E G. Partially order n by set 
inclusion. Note that n # 0, since K E n. By Hausdorffs maximality 
theorem, n contains a maximal totally ordered subcollection no . The 
intersection Q of all members of n0 is a minimal member of n. The 
theorem will be proved by showing that Q contains only one point. 

Assume, to the contrary, that there exist x E Q, y E Q, x # y. 
Then there is a neighborhood W of 0 in X such that x - y � W. Let 
V be associated to W as in the preceding definition of equicontinuity. 
If Tx - Ty were in V, for some T E G, then 

x - y = T- 1(Tx) - T- 1(Ty) 

would be in W, a contradiction. We conclude : 

For no T E G is Tx - Ty in V. 
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Put z = !(x + y). Then z E Q. Define G(z) = { Tz : T E G}. This 
" G-brbit of z "  is G-invariant (i.e., every T E G maps it into itself), 
hence so is its closure K0 = G(z), and therefore co(K0) is a nonempty 
G-invariant compact convex subset of Q. The minimality of Q implies 
that co(K0) = Q. 

Let p be an extreme point of Q. (It exists, by the Krein-Milman 
theorem.) Since Q is compact and Q = co(K0), Theorem 3.25 shows 
that p lies ih the closure K0 of G(z). 

Define a set 

E = {(Tz, Tx, Ty) : T E G} c Q x Q x Q. 

Since p E G(z) and Q x Q is compact, the lemma that is stated below 
shows that there exists a point (x*, y*) E Q x Q so that (p, x*, y*) lies 
in the closure of E. Since 2Tz = Tx + Ty for every T E G, it follows 
that 2p = x* + y*, and this implies that x* = y* because p is an 
extreme point of Q. 

But Tx - Ty � V, for every T E G;  hence x* - y* � V ;  hence 
x* # y*, and we have our contradiction. 1111 

Lemma Suppose that A and B are topological spaces, B is compact, n is 
the natural projection of A x B onto A, and E c A x B. 

If p E A lies in the closure of n(E), then (p, q) lies in the closure of E for 
some q E B. 

PROOF . If the conclusion fails, then every q E B has a neighborhood 
� c B so that (� x �) n E = 0 for some neighborhood � of p in 
A. The compactness of B implies that B c �1 u · · · u �. for some 
finite set {q 1 ,  . . .  , q.}. Then �1 n · · · n �. is a neighborhood of p 
which does not intersect n(E), contrary to the assumption that p lies in 
the closure of n(E). I I I I 

Haar Measure on Compact Groups 

5.12  Definitions A topological group is a group G in which a topology 
is defined that makes the group operations continuous. The most concise 
way to express this requirement is to postulate the continuity of the 
mapping 4> :  G x G -+ G defined by 

<f>(x, y) = xy- 1 . 

For each a E G, the mappings x -+  ax and x -+  xa are homeomor
phisms of G onto G ;  so is x -+ x - 1

. The topology of G is therefore com
pletely determined by any local base at the identity element e. 

If we require (as we shall from now on) that every point of G is a closed 
set, then the analogues of Theorems 1 . 10 to 1 . 1 2  hold (with exactly the same 
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proofs, except for changes in notation); in particular, the Hausdorff separa
tion axiom holds. 

Iff is any function with domain G, its left translates Ls f and its right 
translates Rsf are defined, for every s E G, by 

(LJ)(x) = f(sx), (RJ)(x) = f(xs) (x E G). 

A complex function f on G is said to be uniformly continuous if to 
every s > 0 corresponds a neighborhood V of e in G such that 

I f(t) -f(s) I < e 

whenever s E G, t E G, and s- 1 t E V. 
A topological group G whose topology is compact is called a compact 

group; in this case, C( G) is, as usual, the Banach space of all complex con
tinuous functions on G, with the supremum norm. 

5.13 Theorem Let G be a compact group, suppose f E C(G), and define 
HL(f) to be the convex hull of the set of all left translates off Then 

(a) s -+  Ls f is a continuous map from G into C( G), and 
(b) the closure of H L(f) is compact in C( G). 

PROOF . Fix e > 0. Since f is continuous, there corresponds to each 
a E G a neighborhood Jv, of e such that I f(x) - f(a) I < s if xa - 1 E 

Jv, .  The continuity of the group operations gives neighborhoods V,. of 
e which satisfy v; 1 V,. c Jv, .  Since G is compact, there is a finite set 
A c G such that 

(1) G = U V,. · a. 
a E A  

Put 

(2) v = n v.. . 
a e A  

Choose x, y E G so that yx - 1 E V, and choose a E A so that ya - 1 E 

V,. .  Then l f(y) -f(a) l < s, and since xa - 1 = (xy - 1)(ya- 1) E v- 1 V,. c 
Jv, ,  we also have I f(x) - f(a) I < s. 

Thus I f(x) - f(y) I < 2s whenever yx - 1 E V. 
For any s E G, (ys)(xs) - 1 = yx - 1 • Hence yx- 1 E V implies that 

I f(xs) - f(ys) I < 2s. This is just another way of saying that 

(3) 

whenever y lies in the neighborhood Vx of x. This proves (a). 
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As a consequence of (a), {Lx f: x E G} is compact in the Banach 
space C( G). Hence (b) follows from part (c) of Theorem 3.20. I I I I 

5.14 Theorem On every compact group G exists a unique regular Borel 
probability measure m which is lift-invariant, in the sense that 

(1) Lf dm = L (LJ) dm [s E G, f E C(G)] . 

This m is also right-invariant : 

(2) Lf dm = L (RJ) dm [s E G, f E C(G)] 

and it satisfies the relation 

(3) L f(x) dm(x) = L f(x - 1) dm(x) [f E C(G)]. 

This m is called the Haar measure of G. 

PROOF. The operators L. satisfy L. L, = L,. , because 

(L. L, f)(x) = (Lr f)(sx) = f(tsx) = (L,J)(x). 

Since each L. is an isometry of C(G) onto itself, {L. : s E G} is an equi
continuous group of linear operators on C(G). If f E C(G), let Kf be 
the closure of H L(f). By Theorem 5.13 ,  K f is compact. It is obvious 
that L.(K f) = K f for every s E G. The fixed point theorem 5. 1 1  now 
implies that K f contains a function 4> such that L. 4> = 4> for every 
s E G. In particular, <f>(s) = <f>(e), so that 4> is constant. By the defini
tion of K f ,  this constant can· be uniformly approximated by functions 
in HL(f). 

So far we have proved that to eachf E C(G) corresponds at least 
one constant c which can be uniformly approximated on G by convex 
combinations of left translates of f Likewise, there is a constant c' 
which bears the same relation to the right translates of f We claim 
that c' = c. 

To prove this, pick e > 0. There exist finite sets { ai} and { b J in 
G, and there exist numbers rxi > 0, f3i > 0, with L rx = 1 = L f3i , such 
that 

(4) c - L rxJ(ai x) < e 
i 

(x E G) 
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and 

(5) c' 
- L f3d(xb) < s (x E G). 

j 
Put x = bi in (4) ; multiply (4) by f3i , and add with respect to j. 

The result is 

(6) 
i, j 

Put x = ai in (5), multiply (5) by rxi , and add with respect to i, to 
obtain 

(7) 
i, j 

Now (6) and (7) imply that c = c'. 
It follows that to each f E C(G) corresponds a unique number, 

which we shall write Mf, which can be uniformly approximated by 
convex combinations of left translates of f; the same Mf is also the 
unique number that can be uniformly approximated by convex com
binations of right translates of f The following properties of M are 
obvious : 

(8) Mf > O  

(9) M1 = 1 .  

iff >  0. 

( 10) M(rxf) = rxMf if rx is a scalar. 

(1 1) M(LJ) = Mf = M(RJ) for every s E G. 
We now prove that 

( 12) M(f + g) =  Mf + Mg. 
Pick s > 0. Then 

( 13) (x E G) 
i 

for some finite set {aJ c G and for some numbers rxi > 0 with 
L rxi = 1 .  Define 
(14) h(x) = L rxi g(ai x). 

i 

Then h E Kg, hence Kh c Kg , and since each of these sets contains a 
unique constant function, we have Mh = Mg. Hence there is a finite 
set {hi} c G, and there are numbers f3i > 0 with L f3i = 1 ,  such that 

(1 5) Mg - L f3i h(bi x) < s 
j 

(x E G) ; 
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by (14), this gives 

( 16) (x E G). i,j 
Replace x by bi x in (1 3), multiply (13) by f3i , and add with respect toj, 
to obtain 

(17) 

Thus 

(1 8) 

Mf- L r:x1 /3J(ai bi x) < e i, j 

i, j 
Since L cx1 f3i = 1 ,  ( 18) implies ( 12). 

(x E G). 

(x E G). 

The Riesz representation theorem, combined with (8), (9), ( 10), 
and ( 12), yields a regular Borel probability measure m that satisfies 

(19) Mf= Lfdm (f E C(G)) ; 

properties (1) and (2) follow now from (1 1). 
To prove uniqueness, let 11 be a regular Borel probability 

measure on G which is left-invariant. Since m is right-invariant, we 
have, for every f E C(G), 

J/ d11 = l dm(y) Lf(yx) d11(x) 
= L d11(x) Lf(yx) dm(y) = L f dm. 

Hence 11 = m. 
The proof of (3) is similar. Put g(x) = f(x - 1 ). Then 

l dm(y) L g(xy- 1) dm(x) = l dm(x) Lf(yx - 1) dm(y). 
The two inner integrals are independent of y and x, respectively. 
Hence S g dm = S f dm. /Ill 

Uncomplemented Subspaces 

Complemented subspaces of a topological vector space were defined in 
Section 4.20 ; Lemma 4.21 furnished some examples. It is also very easy to 
see that every closed subspace of a Hilbert space is complemented 
(Theorem 12.4). We will now show that some very familiar closed subspaces 
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of certain other Banach spaces are, in fact, not complemented. These exam
ples will be derived from a rather general theorem about compact groups of 
operators that have an invariant subspace ; its proof uses vector-valued 
integration with respect to Haar measure. 

We begin by looking at some relations that exist between com
plemented subspaces on the one hand and projections on the other. 

5.15 Projections Let X be a vector space. A linear mapping P: X -+ X 
is called a projection in X if 

p2 = P, 

i.e., if P(Px) = Px for every x E X. 
Suppose P is a projection in X, with null space fi(P) and range fl(P). 

The following facts are almost obvious : 

(a) fl(P) = fi(l - P) = {x E X : Px = x}. 
(b) fi(P) = fl(I - P). 
(c) fl(P) n fi(P) = {0} and X = fl(P) + fi(P). 
(d) If A and B are subspaces of X such that A n B = {0} and X =  A +  B, 

then there is a unique projection P in X with A = fl(P) and B = fi(P). 

Since (I - P)P = 0, Pl(P) c %(/ - P). If x E %(/ - P), then 
x - Px = 0, and so x = Px E fl(P). This gives (a) ; (b) follows by applying 
(a) to I - P. If x E fl(P) n fi(P), then x = Px = 0 ;  if x E X, then 
x = Px + (x - Px), and x - Px E fi(P). This proves (c). If A and B satisfy 
(d), every x E X has a unique decomposition x = x' + x", with x' E A, 
x" E B. Define Px = x'. Trivial verifications then prove (d). 

5.16  Theorem 

(a) If P is a continuous projection in a topological vector space X, then 
X = fl(P) EB fi(P). 

(b) Conversely, if X is an F-space and if X = A EB B, then the projection P 
with range A and null space B is continuous. 

Recall that we use the notation X = A EB B  only when A and B are 
closed subspaces of X such that A n B = {0} and A +  B = X. 

PROOF . Statement (a) is contained in (c) of Section 5. 1 5, except for the 
assertion that fl(P) is closed. To see the latter, note that 
fl(P) = .AI(/ - P) and that I - P is continuous. 
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Next, suppose P is the projection with range A and null space B, 
as in (b). To prove that P is continuous we verify that P satisfies the 
hypotheses of the closed graph theorem : Suppose x. -+ x and Px. -+ y. 
Since Px. E A and A is closed, we have y E A, hence y = Py. Since x. - Px. E B and B is closed, we have x - y E B, hence Py = Px. It 
follows that y = Px. Hence P is continuous. I I I I 

Corollary. A closed subspace of an F-space X is complemented in X if and only if it is the range of some continuous projection in X. 

5.17 Groups of linear operators Suppose that a topological vector 
space X and a topological group G are related in the following manner : To 
every s E G corresponds a continuous linear operator 7'. :  X -+  X such that 

T. = I , (s E G, t E G) ; 
also, the mapping (s, x) -+ T. x of G x X into X is continuous. 

Under these conditions, G is said to act as a group of continuous 
linear operators on X. 

5.18  Theorem Suppose 
(a) X is a Frt?chet space, 
(b) Y is a complemented subspace of X, 
(c) G is a compact group which acts as a group of continuous linear operators on X, and 
(d) J'.(Y) c Y for every s E G. 

Then there is a continuous projection Q of X onto Y which commutes with every T. . 
PROOF . For simplicity, write sx in place of T. x. By (b) and Theorem 
5. 16, there is a continuous projection P of X onto Y. The desired 
projection Q is to satisfy s- 1Qs = Q for all s E G. The idea of the 
proof is to obtain Q by averaging the operators s- 1 Ps with respect to 
the Haar measure m of G :  define 

(1) Qx = 1 s- 1 Psx dm(s) (x E X). 

To show that this integral exists, in accordance with Definition 
3.26, put 

(2) (s E G). 
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By Theorem 3.27, it suffices to show thatfx: G --+  X is continuous. Fix 
s0 E G ;  let U be a neighborhood ofjx(s0) in X. Put y = Ps0 x, so that 

(3) 
Since (s, z) --+ sz is assumed to be continuous, s0 has a neighborhood 
V1 and y has a neighborhood W such that 

(4) 
Also, s0 has a neighborhood V2 such that 

(5) Psx E W 

The continuity of p was used here. If s E v1 n v2 '  it follows from (2), 
(4), and (5) thatfx(s) E U. Thusfx is continuous. 

Since G is compact, each fx has compact range in X. The 
Banach-Steinhaus theorem 2.6 implies therefore that {s- 1Ps : s E G} is 
an equicontinuous collection of linear operators on X. To every 
convex neighborhood U 1 of 0 in X corresponds therefore a neighbor
hood U2 of O such that s - 1Ps(U2) c U1 • It now follows from (1) and 
the convexity of U 1 that Q(U 2) c U 1 • (See Theorem 3.27.) Hence Q is 
continuous. The linearity of Q is obvious. 

If x E X, then Psx E Y, hence s- 1Psx E Y by (d), for every s E G. 
Since Y is closed, Qx E Y. 

If x E Y, then sx E Y, Psx = sx, and so s- 1 Psx = x, for every 
s E G. Hence Qx = x. 

These two statements prove that Q is a projection of X onto Y. 
To complete the proof, we have to show that 

(6) Qso = so Q for every s0 E G. 
Note that s- 1 Pss0 = s0(ss0) - 1 P(ss0). It now follows from (1) and 

(2) that 

Qs0 x = L s - 1 Pss0 x dm(s) 

= L s0fx{ss0) dm(s) 

= L s0fx(s) dm(s) 

= So L fx(s) dm(s) = s0 Qx. 

The third equality is due to the translation-invariance of m ;  for 
the fourth (moving s0 across the integral sign), see Exercise 24 of 
Chapter 3. //// 
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5.19 Examples In our first example, we take X =  Ll, Y = H1 • Here L1 
is the space of all integrable functions on the unit circle, and H1 consists of 
those f E L1 that satisfy j(n) = 0 for all n < 0. Recall that ](n) denotes the 
nth Fourier coefficient off: 

(1) j(n) = __!_ f" f(8)e- tno d8 2n _ ,  
(n = 0, + 1 , + 2, . . .  ). 

Note that we writef(8) in place ofj(e18), for simplicity. 
For G we take the unit circle, i.e., the multiplicative group of all 

complex numbers of absolute value 1 ,  and we associate to each e1s E G the 
translation operators rs defined by 

(2) (rJ)(8) = f(s + 8). 

It is a simple matter to verify that G then acts on I! as described in Section 
5. 1 7  and that 

(3) (rs f) " (n) = e1•sj(n). 
Hence t5(H1) = H1 for every real s. (See Exercise 1 2.) 

If H 1 were complemented in I!, Theorem 5. 18 would imply that there 
is a continuous projection Q of L1 onto H1 such that 

(4) for all s. 

Let us see what such a Q would have to be. 

(5) 
Put e (8) = e1"8 Then r e = e1"5e and n • s n " '  

since Q is linear. The first equality in 

(6) eiks(Qe.) " (k) = (r5 Qe.) " (k) = e1"5(Qe.) " (k) 
follows from (3), the second from (5). Hence (Qe.) " (k) = 0 when k # n. Since 
!!-functions are determined by their Fourier coefficients, it follows that 
there are constants c. such that 

(7) Qe. = c. e. (n = 0, ± 1 ,  + 2, . . .  ). 
So far we have just used (4). Since Qe. E H1 for all n, c. = 0 when 

n < 0. Since Qf = Jfor every f E  H1 , c. = 1 when n > 0. Thus Q (if it exists 
at all) is the " natural " projection of I! onto H 1 , the one that replaces ](n) 
by 0 when n < 0. In terms of Fourier series, 

(8) 

To get our contradiction, consider the functions 
00 

(9) f,.(8) = L rl•lei•O (0 < r < 1). 
- oo  
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These are the well-known Poisson kernels. Explicit summation of the series 
(9) shows that f,. > 0. Hence 

(10) 
for all r. But 

( 1 1) (Qf,)(8) = � r•ei•8 = 1 . fJ 1 - rel8 
Fatou's lemma implies that I I Q/,. 11 1 ---. oo as r ---. 1 ,  smce S 1 1 - e18 l - 1 d(} 
= oo .  By ( 10), this contradicts the continuity of Q. 

Hence H 1 is not complemented in I! .  
The same analysis can be applied to A and C, where C is the space of 

all continuous functions on the unit circle, and A consists of those f E C 
that have j(n) = 0 for all n < 0. If A were complemented in C, the operator 
Q described by (8) would be a continuous projection from C onto A. Appli
cation of Q to real-valued f E C shows that there is a constant M < oo that 
satisfies 

( 12) sup I f(8) I < M · sup I Re f(8) I 8 8 
for every f E A. To see that no such M can exist, consider conformal map
pings of the closed unit disc onto tall thin ellipses. 

Hence A is not complemented in C. 
However, the projection (8) is continuous as an operator in IJ', if 

1 < p < oo .  Hence HP is then a complemented subspace of IJ'. This is a 
theorem of M. Riesz (Th. 17.26 of [23]). 

We conclude with an analogue of (b) of Theorem 5. 1 6 ;  it will be used 
in the proof of Theorem 1 1 . 3 1 .  

5.20 Theorem Suppose X is a Banach space, A and B are closed subspaces of X, and X = A + B. Then there exists a constant y < oo such that every x E X has a representation x = a + b, where a E A, b E B, and ll a l l + l l b l l < Y l l x ll . 
This differs from (b) of Theorem 5. 1 6  inasmuch as it is not assumed 

that A n B = {0}. 

PROOF. Let Y be the vector space of all ordered pairs (a, b), with a E A, b E  B, and componentwise addition and scalar multiplication, 
normed by 

l l (a, b) ll = ll a l l + l l b l l · 
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Since A and B are complete, Y is a Banach space. The mappmg 
A : Y --+ X defined by 

A(a, b) = a +  b 
is continuous, since l l a + b l l < l l (a, b) ll , and maps Y onto X. By the 
open mapping theorem, there exists y < oo such that each x E X  is A(a, b) for some (a, b) with ll (a, b) II < Y l l x ll . //// 

Sums of Poisson Kernels 

Let U and T be the open unit disc and the unit circle in q;. Let I! = I!(T) 
be as in Theorem 5.19, with norm 

1 J" l l f ll 1 = 2n _ , l f(ei8) 1 d8. 
Associate to each z E U the Poisson kernel P. E I!(T): 

io _ 1 - I z 1 2 

p .(e ) - I io 12
. e - z 

It is easy to check that I I P. I I 1 = 1 for every z E U. 
Call a set E c U nontangentially dense on T if to every e18 E T and to 

every s > 0 there is a point z E E such that 

I z - e18 l < min (e, 2(1 - I z 1 )). 
There are such sets which have no limit point in U. To construct one, let 
0 < r1 < r2 < · · · ,  lim r. = 1 ,  and place m. equally spaced points on the 
circle r. T, taking m. > 2/(1  - r.). 

It is a rather surprising fact that every f E I!(T) can be represented as 
the sum of a convergent series of multiples of Poisson kernels. This was 
proved by F. F. Bonsall as an application of the closed range theorem. Here 
is his more precise statement : 

5.21 Theorem If { z 1 , z2 , z3 , . . •  } c U is nontangentially dense on T, then to every f E L1(T) and every e > 0 correspond scalars c. such that 
L I c. l < l l f l l 1 + e and 

f= L c. P •• . 1 
This turns out to be a special case of the following abstract result : 

5.22 Theorem Let {x.} be a sequence in a Banach space X, with l l x. l l < 
1 for all n, and suppose that there is a {J > 0 such that 

sup I (x. , x*) I >  b l l x* ll 
n 
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for every x* E X*. If e > 0, every x E X can then be represented in the form 

with b L� I c. l < l l x l l + e. 

00 X =  L c. x. , 
n = l  

00 

PROOF. Define T : t1 --+ X by Tc =I c. x. , for c = {c1 , c2 , c3 , . . .  } E 11 • 1 
Then, for every x* E X*, 

so that 

(c, T*x*) = (Tc, x*) = L c.(x. ,  x*) 1 

L c.<x. , x*) < I I T*x* ll 1 
if ll c l l 1 < 1. The supremum of the left side, over all such c, is 
sup. I (x. , x*) I, which is > <> ll x* l l by assumption. Theorem 4. 13 
asserts therefore that T maps the set of all c with L I c. I < 1/b onto a 
set that contains the open unit ball of X. 

This proves Theorem 5.22. Let us apply it with x. = P  •• , where {z,.} is nontangentially dense on g E L00(T) = L1(T)* has a harmonic extension 

1 J" ·o ·o 

G(z) = 2 P.(e' )g(e' ) d() = (P. , g) . n - " 

X =  I!(T), 
T. Every 

Since {z.} is nontangentially dense on T, Fatou's theorem concerning 
nontangential limits of bounded harmonic functions implies that 

sup I <P •• , g) I = sup I G(z.) I = II g i l oo .  
n n 

Therefore Theorem 5.21 is a consequence of Theorem 5.22, with {J = 1 .  
/Ill 

Two More Fixed Point Theorems 

It is a well-known consequence of the axiom of choice that there is no 
measure on the real line R which is finite on compact sets, not identically 
zero, translation-invariant, and defined on the a-algebra of all subsets of R. 
The usual proof that nonmeasurable sets exist shows this. However, if countable additivity-a property that, by definition, measures have-is 
weakened to finite additivity, i.e., to the requirement that 
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for all finite unions of pairwise disjoint sets E1 , then there do exist such 
" finitely additive " measures Jl which have all the other above-mentioned 
properties. Moreover, one can have 0 < JJ.(E) < 1 for every E c R. 

Theorem 5.25 will prove this, with any abelian group G in place of R, 
as an application of an " invariant " version of the Hahn-Banach theorem. 
The latter will be derived from the surprisingly elementary fixed point 
theorem 5.23, due to Markov and Kakutani : 

5.23 Theorem If K is a nonempty compact convex set in a topological 
vector space X and .'F is a commuting family of continuous affine maps taking 
K into K, then there exists a point p E K such that Tp = p for every T E .'F. 

PROOF. For T E .'F, put T1 = T, rn + l  = T 0 rn, for n = 1 ,  2, 3, . . . .  
The fact that the averages 

(1) 
1 

T, = - (I +  T + T2 + · · · + rn - 1) n 

are also affine maps of K into K leads to the conclusion that any two 
of them (with possibly different T's and different n's) commute with 
each other. 

Let .'F* be the semigroup generated by the maps (1). Thus .'F* is 
the collection of all compositions of finitely many averages (1). If j; 
g E .'F*, and h = f a  g = g o J, then h E .'F*. Since f(g(K)) c f(K) and 
g(f(K)) c g(K), we see that 

(2) f(K) n g(K) => h(K). 
Induction shows therefore that the collection {J(K) : f E  .'F*} has the 
finite intersection property. Since each f(K) is compact, there is a 
point p E K which lies inf(K) for every f E .'F*. 

Now fix T E .'F and let V be a neighborhood of 0 in X. For 
every n > 1 ,  p E T,(K), since T, E .'F*. This means that there exist 
points xn E K such that 

(3) 

But then 

(4) 

and K - K c n V for all sufficiently large n, because K - K is 
compact and therefore bounded. Thus p - Tp E V, for every neigh
borhood V of 0. This forces p - Tp to be 0. /Ill 
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5.24 An invariant Hahn-Banach theorem Suppose that Y is a sub
space of a normed linear space X,J E Y*, r c BI(X), and that 

(a) T( Y) c Yand ST = TSfor all S, T E r, 

(b) f o T = f, for every T E r. 

Then there exists F E X* such that F =! on Y, I I F ii = l i f l l , and 
F o T = F for every T E r. 

Briefly, the given r-invariant f has a r-invariant Hahn-Banach exten
sion F. 

PROOF. Assume that 1 1 ! 1 1 = 1 ,  without loss of generality. Define 

(1 )  K = {A E X* :  I I A II < 1 ,  A = J on Y}. 
It is clear that K is convex. The Hahn-Banach theorem implies that K 
is not empty. Since K is weak*-closed, the Banach-Alaoglu theorem 
shows that K is a weak*-compact subset of X*. For every T e r, the 
map 

(2) 
is an affine map of K into K which is weak*-continuous (as we will 
see in a moment). Theorem 5.23 shows therefore that some F E K 
satisfies F o T = F for every T e r. 

To finish, we show that (2) is a weak*-continuous map of X* into 
X* ,for every T e BI(X). Fix A1 E X*, let 

(3) V = {L E X* :  I Lx1 - (A1 T)x1 1 < e, 1 S: i S:  n} 
be a typical weak*-neighborhood of A1 T, determined by x1 0 . • .  , 
xn E X and e > 0. Then 

(4) W = {A E X* : I A(TX;) - A1(Tx;) l < e, 1 < i < n} 
is a weak*-neighborhood of A1 , and if A e W, it is clear that AT e V. 

Ill/ 

5.25 Theorem If G is an abelian group (with + as group operation) and 
.it is the collection of all subsets of G (the "power set " of G), then there is a 
function Ji : .it --+ [0, 1] such that 

(a) !i(E 1 u E2) = !i(E1) + !i(E2) if E1 n E2 = 0, 
(b) Ji(E + a) = Ji(E)for all E E A, a e G, and 
(c) Ji(G) = 1 .  
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PROOF. This is trivial if G is finite. So assume G is infinite, and let 
t""(G) be the Banach space of all bounded complex functions on G, 
with the supremum norm. 

Let Y be the space of all f E  t""(G) which have a limit, call it AJ, 
at oo. This means that, if f E Y and e > 0, then there is a finite set 
E c G so that I Af -J(x) I < e for all x outside E. Note that A E Y* 
and that I I A II = 1 .  

by 

(1) 

Let r be the set of all translation operators !a ' for a E G, defined 

(ra f)(x) = f(x - a). 

Since G is abelian, any two members of r commute ; each ra is a linear 
isometry of t""(G) ; and it is clear that ra{Y) c Y and that Ara = A 
on Y. 

The hypotheses of Theorem 5.24 are thus satisfied, with 
X = t""(G). We conclude that there exists an extension L of A, a linear 
functional of norm 1 on t""(G), which satisfies 

(2) Lf = Af for every f E Y 
and 

(3) Lra f = Lf for every f E /""(G). 

If we now define J.L(E) = LxE (where XE is the characteristic 
function of E c G), then (a) holds because XEt + XE2 = XEt uE2 if 
E1 n E2 = 0, and L is linear, and (b) holds because 

(4) 
It remains to be shown that 0 < J.L(E) < 1 for every E c G. This 

is done by the following lemma, since A (hence also L) preserves con
stants : Ifj(x) = c for all x E G, thenjE Y and Af = c. //// 

5.26 Lemma Suppose that X is a normed linear space of bounded func
tions, with the supremum norm, and that L is a linear functional on X, such 
that 

I l L II = L(1) = 1 .  

Then 0 < Lf < 1 iff E X and 0 < f < 1 .  

PROOF. Put Lf = IX + if3. For every real t, 

L(f - 1 + it) = IX - 1 + i(f3 + t). 
Since I I f - H < 1,  it follows that 

(IX - })2 + (/3 + t)2 < I I ! - i + it l l 2 < i + t2, 
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so that r:t.2 - ct. + f32 + 2f3t < 0 for every real t . This forces f3 = 0, 
hence r:t.2 < ct., hence 0 < ct. < 1 .  I I I I 

5.27 Example Commutativity cannot be dropped from the hypotheses 
of the preceding three theorems. To see this, let G be the free group on two 
generators, a and b. Except for the identity element, G is the union of four 
<;lisjoint sets, say I, II, III, IV, consisting of those reduced words that start 
with a, a - \  b, b - 1, respectively. If /1- is a finitely additive measure on the 
power set of G, -with 0 < Ji s; 1 and Ji(aE) = Ji(E) = Ji(bE) for all E c G, 
then we see that Ji(l u III u IV) = Ji(l) and Ji(l u II u III) = Ji(III). The 
first of these shows that Ji(III) = Ji(IV) = 0, the second that Ji(l) = Ji(II) = 0. 
Since singletons must have measure 0, /1- = 0. Thus Theorem 5.25 fails for 
this group. 

We conclude this chapter with the Schauder-Tychonoff fixed point 
theorem. This is an infinite-dimensional version of Brouwer's theorem con
cerning the fixed point property of closed balls in Rn. It is nonlinear, and its 
proof is therefore not really an application of any of the preceding material, 
except that it will involve a Minkowski functional. 

5.28 Theorem If K is a nonempty compact convex set in a locally convex 
space X, andf: K -+ K is continuous, thenf(p) = pfor some p E K. 

PROOF. Assumejfixes no point of K. Its graph 

(1)  G = {(x, f(x)) E X  x X :  x E K }  
is then disjoint from the diagonal A of X x X and is compact. Hence 
there is a convex balanced neighborhood V of 0 in X such that 
G + ( V  x V) misses A. In particular, 

(2) f(x) � x + V (x E K). 
Let /1- be the Minkowski functional of V. Theorem 1 .36 shows 

that /1- is continuous on X and that /i(x) < 1 if and only if x E V. 
Define 

(3) r:t.(x) = max {0, 1 - Ji(x)} (x E X). 
Choose Xu . . .  , xn E K so that the sets xi + V (1 < i < n) cover K, put 
r:t.i(x) = r:t.(x - xi), and define 

(4) f3 �x) = r:t.lx) 
1 r:t.1(x) + · · · + r:t.n(x) (x E K, 1 < i < n), 

noting that the denominator in (4) is positive for every x E K. 
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Let H = co{ x 1 , . • •  , x.}. Then g, defined by 

n 

(5) g(x) = L f3lx)xi (x E K), 
1 

is a continuous map from K into the compact finite-dimensional 
simplex H c K. The same is true of g o f  Brouwer's fixed point 
theorem asserts therefore that there is an x* E H such that 

(6) g(f(x*)) = x*. 

Since f3lx) = 0 outside xi + V, we see that 

n 

(7) x - g(x) = L f3lx)(x - XJ (x E K) 

is a convex combination of vectors x - xi E V. Thus x - g(x) E V, for 
every x E K. In particular, this is true for x = f(x*). We conclude that 

(8) f(x*) E g(f(x*)) + V = x* + V, 

contrary to (2). Ill/ 

Exercises 

1. Define measures /.lp J.lz on the unit circle by 

dJ.I1 = cos B dB, dJ.12 = sin B dB 

and find the range of the measure J.l = (J.I1 , J.lz). 
2. Construct two functions f and g on [0, 1] with the following property : If 

dJ.I1 = f(x) dx, dJ.I2 = g(x) dx, 

then the range of J.l is the square with vertices at (1, 0), (0, 1 ), (- 1 ,  0), (0, - 1 ). 
3. Suppose that the hypotheses of Theorem 5.9 are satisfied, that ¢ E C(S), ¢ > 0, 

g E C(K), and I g I < ¢ I K .  Prove that there exists f E Y such that fiK = g and 
I f I < ¢ on S. Hint: Apply Theorem 5.9 to the space of all functions f 1¢, with 
jE  Y. 

4. Supply the details of the proof that every extreme point of P has its support at a 
single point. (This refers to the end of proof of Theorem 5. 10.) 

5. Prove the analogues of Theorems 1 . 10 to 1 . 12 that are alluded to in Section 
5. 12. (Do not assume that G is commutative.) 

6. Suppose G is a topological group and H is the largest connected subset of G 
that contains the identity element e. Prove that H is a normal subgroup of G, 
that is, a subgroup that satisfies x- 1Hx = H for every x E G. Hint : If A and B 
are connected subsets of G, so are AB and A - I . 

7. Prove that every open subgroup of a topological group is closed. (The converse 
is obviously false.) 

8. Suppose m is the Haar measure of a compact group G, and V is a nonempty 
open set in G. Prove that m(V) > 0. 
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9. Put e.( B) = e
1"8• Let J3 refer to the Haar measure of the unit circle. Let A be the 

smallest closed subspace of J3 that contains e. for n = 0, 1 , 2, . . .  , let B be the 
smallest closed subspace of !3 that contains e - n  + ne. for n = 1, 2, 3, . . . .  Prove 
the following : 
(a) A n B = {0}. 
(b) If X =  A + B then X is dense in !3, but X #  !3.  
(c) Although X = A ®  B, the projection in  X with range A and null space B is 

not continuous. (The topology of X is, of course, the one that X inherits 
from !3. Compare with Theorem 5.1 6.) 

10. Suppose X is a Banach space, P E §l(X), Q E §l(X), and P and Q are projec
tions. 
(a) Show that the adjoint P* of P is a projection in X*. 
(b) Show that liP - Qll > 1 if PQ = QP and P # Q. 

11. Suppose P and Q are projections in a vector space X. 
(a) Prove that P + Q is a projection if and only if PQ = QP = 0. In that case, 

.AI(P + Q) = .AI(P) n %(Q), 
9t(P + Q) = 9t(P) + 9£(Q), 

9t(P) n 9£(Q) = {0}. 

(b) If PQ = QP, prove that PQ is a projection and that 

(c) What do the matrices 

show about part (b)? 

.AI(PQ) = .K(P) + %(Q), 
9t(PQ) = 9t(P) n 9£(Q). 

and 

12. Prove that the translation operators '• used in Example 5 .19 satisfy the conti
nuity property described in Section 5 .17. Explicitly, prove that 

if r -> s and g ->fin L1• 
13. Use the following example to show that the compactness of G cannot be 

omitted from the hypotheses of Theorem 5 . 18. Take X =  L1 on the real line R, 
relative to Lebesgue measure ;! E Y if and only if JR f = 0 ;  G = R with the usual 
topology ; G acts on IJ by translation : (rs f)(x) = f(s + x). The joint continuity 
property is satisfied (see Exercise 12), T s Y = Y for every s, and Y is com
plemented in X. Yet there is no projection of X onto Y (continuous or not) that 
commutes with every '• . 

14. Suppose S and T are continuous linear operators in a topological vector space, 
and 

T = TST. 

Prove that T has closed range. (See Theorem 5. 16 for the case S = J.) 
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15. Suppose A is a closed subspace of C(S), where S is a compact Hausdorff space; 
suppose J.l is an extreme point of the unit ball of Aj_;  and suppose f E C(S) is a 
real function such that 

i gf dJ.l = 0 

for every g E A. Prove that f is then constant on the support of J.l· (Compare 
with Theorem 5.7.) Show, by an example, that the conclusion is false if the word 
" real " is omitted from the hypotheses. 

16. Suppose X is a vector space, E c X, T:  co(E) -> X is affine, and T(E) c E. 
Prove that T(co(E)) c co(E). (This was tacitly used in the proof of Theorem 
5.1 1 .) 

17. If X and Y are vector spaces and T :  X -> Y is affine, prove that T - T(O) is 
linear. 

18. Suppose K is a compact set in a Frechet space X and f: X -> K is continuous. 
Prove that/fixes some point of K. 

Do the same if 0 is a convex open set in X, 0 => K, and f: 0 ->  K is 
continuous. 

19. Prove the existence of a continuous function f on I = [0, 1 ]  which satisfies the 
equation 

f(x) = f sin (x + jl(t)) dt 

for all x E J. Hint : Denoting the right side by (Tf)(x), show that the set 
{Tf: f E C(I)} is uniformly bounded and equicontinuous and that its closure is 
therefore compact in C(I). Apply Schauder's fixed point theorem (via Exercise 
18). 
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6.1 The theory of distributions frees differential calculus from certain diffi
culties that arise because nondifferentiable functions exist. This is done 
by extending it to a class of objects (called distributions or generalized 
functions) which is much larger than the class of differentiable functions to 
which calculus applies in its original form. 

Here are some features that any such extension ought to have in order 
to be useful ; our setting is some open subset of R" : 

(a) Every continuous function should be a distribution. 

(b) Every distribution should have partial derivatives which are again dis
tributions. For differentiable functions, the new motion of derivative 
should coincide with the old one. (Every distribution should therefore 
be infinitely differentiable.) 

(c) The usual formal rules of calculus should hold. 

149 
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(d) There should be a supply of convergence theorems that is adequate for 
handling the usual limit processes. 

To motivate the definitions to come, let us temporarily restrict our 
attention to the case n = 1 .  The integrals that follow are taken with respect 
to Lebesgue measure, and they extend over the whole line R, unless the 
contrary is indicated. 

A complex function f is said to be locally integrable iff is measurable 
and SK 1! 1  < oo for every compact K c R. The idea is to reinterpret f as 
being something that assigns the number S f<P to every suitably chosen 
" test function " </>, rather than as being something that assigns the number 
f(x) to each x E R. (This point of view is particularly appropriate for func
tions that arise in physics, since measured quantities are almost always 
averages. In fact, distributions were used by physicists long before their 
mathematical theory was constructed.) Of course, a well-chosen class of test 
functions must be specified. 

We let � = �(R) be the vector space of all 4> E C00(R) whose support 
is compact. Then S f<P exists for every locally integrable f and for every 
4> E �- Moreover, � is sufficiently large to assure that f is determined (a.e.) 
by the integrals S f<f>. (To see this, note that the uniform closure of � con
tains every continuous function with compact support.) Iff happens to be 
continuously differentiable, then 

(I) 

IfjE C00(R), then 

(2) f J<kl¢ = ( - It f J<t><kl 

(</> E �). 

( </> E �, k = I , 2, 3, . . .  ). 

The compactness of the support of 4> was used in these integrations by 
parts. 

Observe that the integrals on the right sides of ( I) and (2) make sense 
whether f is differentiable or not and that they define linear funct ionals on �

We can therefore assign a " kth derivative " to every f that is locally 
integrable : J<kl is the linear functional on � that sends 4> to ( - It S J<t><kl. 
Note thatfitself corresponds to the functional 4> --+  S f<f>. 

The distributions will be those linear functionals on � that are contin
uous with respeCt to a certain topology. (See Definition 6.7.) The preceding 
discussion suggests that we associate to each distribution A its " derivative " 
A' by the formula 

(3) A'(¢) = -A(¢') (</> E �). 
It turns out that this definition (when extended to n variables) has all 

the desirable properties that were listed earlier. One of the most important 
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features of the resulting theory is that it makes it possible to apply Fourier 
transform techniques to many problems in partial differential equations 
where this cannot be done by more classical methods. 

Test Function Spaces 

6.2 The space .@(!l) Consider a nonempty open set n c R". For each 
compact K c n, the Frechet space � K was described in Section 1 .46. The 
union of the spaces � K ,  as K ranges over all compact subsets of n, is the 
test function space �(!l). It is clear that �(!l) is a vector space, with respect 
to the usual definitions of addition and scalar multiplication of complex 
functions. Explicitly, 4> E �(!l) if and only if 4> E C00(!l) and the support of 
4> is a compact subset of n. 

Let us introduce the norms 

(1) 
for 4> E �(!l) and N = 0, 1, 2, . . . ; see Section 1 .46 for the notations Da 
and I � j .  

The restrictions of these norms to any fixed �K c �(!l) induce the same 
topology on �K as do the seminorms PN of Section 1 .46. To see this, note that 
to each K corresponds an integer N 0 such that K c KN for all N > N 0 .  

For these N, I I <I> l i N = p�<J>) if 4> E �K · Since 

(2) 1 1 </> II N < 1 1 </> I I N + I and PN(¢) < PN+ I(¢), 
the topologies induced by either sequence of seminorms are unchanged if 
we let N start at N 0 rather than at 1 .  These two topologies of � K coincide 
therefore ; a local base is formed by the sets 

(3) VN = {<t> E �K : l i </> I I N < �} ( N = 1 ,  2, 3, . . . ). 

The same norms (1) can be used to define a locally convex metrizable 
topology on �(!l) ; see Theorem 1 .37 an� (b) of Section 1 .38. However, this 
topology has the disadvantage of not being complete. For example, take 
n = 1 ,  n = R, pick 4> E �(R) with support in [0, 1] , 4> > 0 in (0, 1), and 
define 

1 1 t/lm(x) = <J>(x - 1) + 
2 

<J>(x - 2) + · · · + m <J>(x - m). 

Then { t/lm} is a Cauchy sequence in the suggested topology of �(R), but 
lim t/lm does not have compact support, hence is not in �(R). 

We shall now define another locally convex topology r on �(!l) in 
which Cauchy sequences do converge. The fact that this r is not metrizable 
is only a minor inconvenience, as we shall see. 



152 PART H: D!STR!BUT!ONS AND FOUR!ER TRANSFORMS 

6.3 Definitions Let n be a nonempty open set in W. 

(a) For every compact K c n, rK denotes the Frechet space topology of 
� K ,  as described in Sections 1 .46 and 6.2. 

(b) f3 is the collection of all convex balanced sets W c �(!l) such that 
�K n W E  rK for every compact K c n. 

(c) r is the collection of all unions of sets of the form 4> + W, with 
4> E �(!l) and W E fJ. 

Throughout this chapter, K will a ways denote a compact subset of n. 
The following two theorems establish the basic properties of the 

topology r, which is quite different from the one discussed in Section 6.2. 
For example, if {xm} is a sequence in n, without limit point in n, and if {em} 
is a sequence of positive numbers, then the set 

{q> E �(!l) : I q>(x m) l < em for m =  1 ,  2, 3, . . .  } 
belongs to /3, i.e., is a r-neighborhood of 0 in �(!l). It is this fact (see 
Theorem 6.5) which forces r-bounded sets (and hence r-Cauchy sequences) 
to be concentrated on a common compact set K c n, and therefore 
r-Cauchy sequences converge. 

6.4 Theorem 

(a) r is a topology in �(!l), and f3 is a local base for r. 

(b) r makes �(!l) into a locally convex topological vector space. 

PROOF. Suppose Vr E r, v2 E r, 4> E vl n v2 . To prove (a), it is clearly 
enough to show that 

(1) 
for some W E fJ. 

The definition of r shows that there exist </>; E �(!l) and W; E f3 
such tha:t 

(2) (i = 1 ' 2). 
Choose K so that �K contains </>1 , ¢2 , and ¢. Since �K n W; is open 
in �K , we have 

(3) 

for some b; > 0. The convexity of W; implies therefore that 

(4) A. - A.. + b. w, c ( 1  - b.)W, + b. w, = w, '+' '+'r 1 t 1 t l t t '  
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so that 

(5) (i = 1 ' 2). 

Hence (1 )  holds with W = (b r W1) n (<52 W2), and (a) is proved. 
Suppose next that 4> 1 and ¢2 are distinct elements of !?&(!l), and 

put 

(6) 
where II <P I I  0 is as in ( 1 )  in Section 6.2. Then W E f3 and 4> r is not in 
¢2 + W. It follows that the singleton { 4> r } is a closed set, relative to r. 

Addition is r-continuous, since the convexity of every W E f3 
implies that 

(7) 

for any t/1 r E !?&(!l), t/12 E !?&(!l). 
To deal with scalar multiplication, pick a scalar IXo and a ¢0 E 

!?&(!l). Then 

(8) 

If W E /3, there exists <5 > 0 such that <5¢0 E i W. Choose c so that 
2c( I 1Xo I + b) = 1 .  Since W is convex and balanced, it follows that 

(9) IX</> - IXo </>0 E W 

whenever I IX  - IX0 I < <5 and </> - <Po E cW. 
This completes the proof. Ill/ 

Note : From now on, the symbol !?&(!l) will denote the topological 
vector space (!?&(!l), r) that has just been described. All topological concepts 
related to !?&(!l) will refer to this topology r. 

6.5 Theorem 

(a) A convex balanced subset V of !?&(!l) is open if and only if V E f3. 

(b) The topology rK of any !?&K c !?&(!l) coincides with the subspace topology 
that !?& K inherits from !?&(!l). 

(c) If E is a bounded subset of !?&(!l), then E c !?&K for some K c n, and 
there are numbers M N < oo such that every 4> E E satisfies the inequal
ities 

(d) !?&(!l) has the Heine-Bore[ property. 
( N = 0, 1 ,  2, . . . ). 
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(e) If { 4>;} is a Cauchy sequence in !?&(!l), then { ¢1} c !?& K for some compact 
K c n, and 

( N = 0, 1 ,  2, . . .  ). 
1, }-+ oo 

(f) If 4>1 --+ 0 in the topology of !?&(!l), then there is a compact K c n which 
contains the support of every 4>1 , and Da¢1 --+ 0 uniformly, as i --+  oo, for 
every multi-index IX. 

(g) In !?&(!l), every Cauchy sequence converges. 

Remark. In view of (b), the necessary conditions expressed by (c), (e), 
and (f) are also sufficient. For example, if E c !?&K and 1 1 4> 1 1 N < MN < 

oo for every 4> E E, then E is a bounded subset of !?& K (Section 1 .46), 
and now (b) implies that E is also bounded in !?&(!l). 

PROOF. Suppose first that V E r. Pick 4> E !?&K n V. By Theorem 6.4, 
4> + W c V for some W E fJ. Hence 

4> + (!?&K n W) c !?&K n V. 

Since !?&K n W is open in !?&K , we have proved that 

(1) if V E r and K c n. 

Statement (a) is an immediate consequence of (1), smce it is 
obvious that f3 c r. 

One half of (b) is proved by (1). For the other half, suppose 
E E rK . We have to show that E = !?&K n V for some V E r. The 
definition of rK implies that to every 4> E E correspond N and {J > 0 
such that 

(2) 
Put w</> = { t/1 E !?&(!l) : II !/I l l N < b}. Then w</> E fJ, and 

(3) !?&K n (4> + W<P) = 4> + (!?&K n W<P) c E. 
If V is the union of these sets 4> + W<P , one for each 4> E E, then V has 
the desired property. 

For (c), consider a set E c !?&(!l) which lies in no !?&K . Then there 
are functions 4>m E E and there are distinct points Xm E n, without 
limit point in n, such that <J>m(xm) # 0 (m = 1 ,  2, 3, . . .  ). Let W be the 
set of all 4> E !?&(!l) that satisfy 

(4) (m = 1, 2, 3 ,  . . .  ). 
Since each K contains only finitely many xm , it is easy to see that 
!?&K n W E  rK . Thus W E  fJ. Since <Pm � mW, no multiple of W con
tains E. This shows that E is not bounded. 
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It follows that every bounded subset E of !?&(!l) lies in some !?& K .  
By (b), E is then a bounded subset of !?&K . Consequently (see Section 
1 .46) 

(5) sup { II <J> IIN : <J> E E} < oo (N = 0, 1 ,  2, . . .  ). 
This completes the proof of (c). 

Statement (d) follows from (c), since !?&K has the Heine-Bore! 
property. 

Since Cauchy sequences are bounded (Section 1 .29), (c) implies 
that every Cauchy sequence {4>;} in !?&(!l) lies in some !?&K . By (b), {4>i} 
is then also a Cauchy sequence relative to r K .  This proves (e). 

Statement (f) is just a restatement of (e). 
Finally, (g) follows from (b), (e), and the completeness of !?& K .  

(Recall that !?& K is a Frechet space.) /II/ 

6.6 Theorem Suppose A is a linear mapping of !?&(!l) into a locally 
convex space Y. Then each ofthefollowingfour properties implies the others : 

(a) A is continuous. 
(b) A is bounded. 
(c) If 4>; --+ 0 in !?&(!l) then A¢; --+ 0 in Y. 
(d) The restrictions of A to every !?& K c !?&(!l) are continuous. 

PROOF. The implication (a) --+ (b) is contained in Theorem 1 .32. 
Assume A is bounded and <Pi --+ 0 in !?&(!l). By Theorem 6.5, 

¢; --+ 0 in some !?& K ,  and the restriction of A to this !?& K is bounded. 
Theorem 1 .32, applied to A :  !?& K --+  Y, shows that A<J>i --+ 0 in Y. Thus 
(b) implies (c). 

Assume (c) holds, {4>;} c !?&K , and <J>i --+ 0  in !?&K . By (b) of 
Theorem 6.5, <Pi --+ 0 in !?&(!l). Hence (c) implies that A¢; --+ 0 in Y, as 
i --+  oo .  Since !?&K is metrizable, (d) follows. 

To prove that (d) implies (a), let U be a convex balanced neigh
borhood of 0 in Y, and put V = A- 1(U). Then V is convex and bal
anced. By (a) of Theorem 6.5, V is open in !?&(!l) if and only if !?& K n V 
is open in !?&K , for every !?&K c !?&(!l). This proves the equivalence of (a) 
a� �. W 
Corollary. Every differential operator Da is a continuous mapping of 
!?&(!l) into !?&(!l). 

PROOF. Since I I Da<J> I I N < 1 1 4> 1 1 N+ Ial for N = 0, 1 ,  2, . . . , Da is continuous 
oo �� !?&K . W 
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6.7 Definition A linear functional on !?&(!l) which is continuous (with 
respect to the topology r described in Definition 6.3) is called a distribution 
in n. 

The space of all distributions in n is denoted by !?&'(!l). 
Note that Theorem 6.6 applies to linear functionals on !?&(!l). It leads 

to the following useful characterization of distributions. 

6.8 Theorem If A is a linear functional on !?&(!l), the following two condi
tions are equivalent: 

(a) A E !?&'(!l). 

(b) To every compact K c n corresponds a nonnegative integer N and a 
constant C < oo such that the inequality 

holds for every </> E !?& K .  

PROOF. This is precisely the equivalence of (a) and (d) in Theorem 6.6, 
combined with the description of the topology of !?& K by means of the 
seminorms 1 1 </> I I N given in Section 6.2. /Ill 

Note: If A is such that one N will do for all K (but not necessarily 
with the same C), then the smallest such N is called the order of A. If no N 
will do for all K, then A is said to have infinite order. 

6.9 Remark Each X E n determines a linear functional <\ on !?&(!l), by 
the formula 

Theorem 6.8 shows that <\ is a distribution, of order 0. 
If x = 0, the origin of W, the functional {J = {)0 is frequently called the 

Dirac measure on R". 
Since !?& K '  for K c n, is the intersection of the null spaces of these {Jx ' 

as x ranges over the complement of K, it follows that each !?& K is a closed 
subspace of !?&(!l). [This follows also from Theorem 1 .27 and part (b) of 
Theorem 6.5, since each !?&K is complete.] It is obvious that each !?&K has 
empty interior, relative to !?&(!l). Since there is a countable collection of sets 
Ki c n such that !?&(!l) = U !?& K" !?&(!l) is of the first category in itself. Since 
Cauchy sequences converge in !?&(!l) (Theorem 6.5), Baire's theorem implies 
that !?&(!l) is not metrizable. 
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Calculus with Distributions 

6.10 Notations As before, n will denote a nonempty open set in R". If 
IX =  (1X r , . . .  , IX.) and f3 = (/J r , . . .  , f3.) are multi-indices (see Section 1 .46) then 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

a 
where Di = -a , 

X ·  J 

f3 < IX means f3 i < !Xi for 1 < i < n, 

If x E R" and y E R", then 

x · y = x y + " · + x y l l n n '  

The fact that the absolute value sign has different meanings in (1) and 
in (6) should cause no confusion. 

If x E R" and IX is a multi-index, the monomial xa is defined by 

(7) 

6.1 1 Functions and measures as distributions Suppose f is a locally 
integrable complex function in n. This means thatfis Lebesgue measurable 
and SK lf(x) I dx < oo for every compact K c n;  dx denotes Lebesgue 
measure. Define 

( 1 )  [<J> E �(!l)]. 

Since 

(2) 

Theorem 6.8 shows that A1 E �'(!l). 
It is customary to identify the distribution A 1 with the function f and 

to say that such distributions " are " functions. 
Similarly, if /1- is a complex Borel measure on n, or if /1- is a positive 

measure on n with Ji(K) < oo for every compact K c n, the equation 

(3) [<J> E �(!l)] 

defines a distribution Ap. in n, which is usually identified with li· 
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6.12 Differentiation of distributions If IX Is a multi-index and 
A E �'(!l), the formula 

(1) (DaA)(<J>) = ( - 1) 1aiA(Da<J>) [</> E �(Q)J 
(motivated in Section 6. 1) defines a linear functional DaA on �(!l). If 
(2) 
for all 4> E � K ,  then 

(3) 
Theorem 6.8 shows therefore that DaA E �'(!l). 

Note that the formula 

(4) 
holds for every distribution A and for all multi-indices IX and f3, simply 
because the operators Da and DP commute on C00(!l) : 

(DaDPA)(<J>) = ( - 1 )1ai(DPA)(Da<J>) 
= ( - 1)1ai + IP IA(DPDa</>) 
= (- 1) 1a+PIA(Da+ P<J>) 
= (Da+PA)(<J>). 

6.13  Distribution derivatives of functions The IXth distribution deriv
ative of a locally integrable functionfin n is, by definition, the distribution 
DaAJ . 

If D) also exists in the classical sense and is locally integrable, then 
D) is also a distribution in the sense of Section 6. 1 1 . The obvious consis
tency problem is whether the equation 

(1) 
always holds under these conditions. 

More explicitly, the question is whether 

(2) ( - 1)1al Lf(x)(Da<J>)(x) dx = L (Daf)(x)<J>(x) dx 

for every 4> E �(!l). 
If f has continuous partial derivatives of all orders up to N, integra

tions by part give (2) without difficulty, if I IX  I < N. 
In general, (1) may be false. The following example illustrates this, in 

the case n = 1 .  

6.14 Example Suppose n is a segment in R, and f is a left-continuous 
function of bounded variation in n. If D = d/dx, it is well known that 
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(Df)(x) exists a.e. and that DfE I!.  We claim that 

(1) 
where /1- is the measure defined in n by 

(2) /1-([a, b)) = f(b) -J(a). 
Thus DA1 = Av1 if and only iff is absolutely continuous. 
To prove ( 1), we have to show that 

(A�')(<J>) = (DA1)(<J>) = - Aj(D<J>) 
for every 4> E !?&(!l), that is, that 

(3) L 4> dJi = -L <J>'(x)f(x) dx. 

But (3) is a simple consequence of Fubini's theorem, since each side of (3) is 
equal to the integral of <J>'(x) over the set 

(4) {(x, y) : X E !l, y E !l, X <  y} 
with respect to the product measure of dx and dJi. The fact that 4> has 
compact support in n is used in this computation. 

6.15 Multiplication by functions Suppose A E !?&'(!l) and f E C00(!l). 
The right side of the equation 

(1) (JA)(<J>) = A(f<J>) [<J> E .@(!l)] 

makes sense because f4> E !?&(!l) when 4> E !?&(!l). Thus ( 1 )  defines a linear 
functional fA on 9tl(!l). We shall see that fA is, in fact, a distribution in n. 

Observe that the notation must be handled with care :  Iff E !?&(!l), then 
Afis a number, whereas fA is a distribution. 

The proof that fA E .@'(!l) depends on the Leibniz formula 

(2) 

valid for all f and g in C00(!l) and all multi-indices IX, which is obtained by 
iteration of the familiar formula 

(3) (uv)' = u'v + uv'. 
The numbers cap are positive integers whose exact value is easily computed 
but is irrelevant to our present needs. 

To each compact K c n correspond C and N such that I A¢ I < 

C I I 4> 1 1 N for all 4> E !?&K . By (2), there is a constant C', depending onf, K, and 
N, such that I I !4> II N < C' 11 4> I I  N for 4> E !?& K .  Hence 

(4) I (fA)(¢) I < CC' II <t> I I N (4> E !?&K). 

By Theorem 6.8,/A E !?&'(!l). 
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Now we want to show that the Leibniz formula (2) holds with A in 
place of g, so that 

(5) 
' 

The proof is a purely formal calculation. Associate to each u E Rn the func-
tion h. defined by 

h.(x) = exp (u · x). 
Then Dah" = uah" . If (2) is applied to h. and hv in place of f and g, the 
identity 

(6) (u + v)a = L Cap ua- PvP 
P:5 a 

is obtained. In particular, 

ua = [v + ( - v  + una 

= L Cap va-p L Cpy( - 1) 1P- rlvP - ruY 
P :5 a Y :5P 

= L ( - l)IYi va- yuy L ( - 1)1Picap Cpy · 
y :5a y:5 P:5 a 

Hence 

(7) 
if '}' = IX, 

otherwise. 

Apply (2) to DP(<J>Da-Pf), and use (7), to obtain the identity 

(8) L ( - 1) 1Picap DP(<J>Da-Pj) = ( _ 1)1a!JDa<J>. 
P:5 a 

The point of all this is that (8) gives (5). For if 4> E !?&(!l), then 

Da(JA)(<J>) = (- 1)1ai(JA)(Da<J>) = ( - l)laiA(jDa<J>) 
= L ( - 1)1Picap A(DP(<J>Da-Pj)) 

P:5a 

= L Cap[(Da- Pj)(DP A)](<J>). 
P:5 a 

6.16  Sequences of distributions Since !?&'(!l) is the space of all contin
uous linear functions on !?&(!l), the general considerations made in Section 
3. 14 provide a topology for !?&'(!l)-its weak*-topology induced by !?&(!l)
which makes !?&'(!l) into a locally convex space. If {A;} is a sequence of 
distributions in n, the statement 

(1) A; --+ A in !?&'(!l) 
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refers to this weak*-topology and means, explicitly, that 

(2) [<J> E �(!l)]. 
i-+ 00 

In particular, if {};} is a sequence of locally integrable functions in n, 
the statements "}; --+ A  in �'(!l) " or " {;;} converges to A in the distribution 
sense " mean that 

(3) 
;
l�U:, L<J>(x)};(x) dx = A<J> 

for every 4> E �(!l). 
The simplicity of the next theorem, concerning termwise differentia

tion of a sequence, is rather striking. 

6.1 7  Theorem Suppose A; E �'(!l) for i = 1, 2, 3, . . .  , and 
(1) A<J> = lim A; 4> 

i-+ 00 

exists (as a complex number) for every 4> E �(!l). Then A E �'(!l), and 

(2) 

for every multi-index IX. 

PROOF. Let K be an arbitrary compact subset of n. Since (1) holds for 
every 4> E � K , and since � K is a Frechet space, the Banach-Steinhaus 
theorem 2.8 implies that the restriction of A to � K is continuous. It 
follows from Theorem 6.6 that A is continuous on �(!l) ; in other 
words, A E �'(!l). Consequently ( 1) implies that 

(DaA)(<J>) = ( - 1) iaiA(Da<J>) 
= ( - 1)1al lim A;(Da<J>) = lim (DaA;)(<J>). //// 

i-+ 00 i-+ cJ) 

6.18 Theorem If A; --+ A in �'(!l) and g; --+ g in C"'(!l), then g; A; --+ gA in 
�'(!l). 

Note : The statement " g; --+ g in C"'(!l) " refers to the Frechet space 
topology of C"'(!l) described in Section 1.46. 

PROOF. Fix 4> E �(!l). Define a bilinear functional B on C00(!l) X �'(!l) 
by 

B(g, A) = (gA)(<J>) = A(g<J>). 
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Then B is separately continuous, and Theorem 2. 17 implies that 

as i --+  oo. 

Hence 

Localization 

II II 

6.19 Local equality Suppose A1 E !?&(!l) (i = 1, 2) and w IS an open 
subset of n. The statement 

( 1) 
means, by definition, that A1 4> = A2 4> for every </> E !?&(w). 

For example, if f is a locally integrable function and Ji is a measure, 
then A1 = 0 in w if and only iff(x) = 0 for almost every x E w, and AP. = 0 
in w if and only if f.l(E) = 0 for every Borel set E c w. 

This definition makes it possible to discuss distributions locally. On 
the other hand, it is also possible to describe a distribution globally if its 
local behavior is known. This is stated precisely in Theorem 6.2 1 .  The proof 
uses partitions of unity, which we now construct. 

6.20 Theorem If r is a collection of open sets in Rn whose union is n, 
then there exists a sequence { t/1 1} c !?&(!l), with t/1 1 > 0, such that 

(a) each t/11 has its support in some member ofr, 
00 

(b) L t/11(x) = 1 for every x E n, 
i = 1 

(c) to every compact K c n correspond an integer m and an open set 
W :::::> K such that 

(1) 

for all x E W. 

Such a collection { t/1;} is called a locally finite partition of unity in n, 
subordinate to the open cover r of n. Note that it follows from (b) and (c) 
that every point of n has a neighborhood which intersects the supports of 
only finitely many t/1 1 .  This is the reason for calling { t/1;} locally finite. 

PROOF. Let S be a countable dense subset of n. Let {B1, B2 , B3 , . . .  } 
be a sequence that contains every closed ball B1 whose center p1 lies in 
S, whose radius r1 is rational, and which lies in some member of r. Let 
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V; be the open ball with center Pi and radius r;/2. It is easy to see that 
n = U V; .  

The construction described in Section 1 .46 shows that there are 
functions </>; E !?&(!l) such that 0 < 4> < 1, </>; = 1 in V; ,  </>; = 0 off B; . 
Define t/11 = </>1 > and, inductively, 

(2) (i > 1). 

Obviously, t/1; = 0 outside B; . This gives (a). The relation 

(3) 

is trivial when i = 1 .  If (3) holds for some i, addition of (2) and (3) 
yields (3) with i + 1 in place of i. Hence (3) holds for every i. Since 
</>; = 1 in V; ,  it follows that 

(4) if X E � U · · · U Vm . 

This gives (b). Moreover, if K is compact, then K c � u · · · u Vm for 
some m, and (c) follows. //// 

6.21 Theorem Suppose r is an open cover of an open set n c Rn, and 
suppose that to each w E r corresponds a distribution Am E !?&'(w) such that 

( 1) A A . ' " w' = m" ln w n w 
whenever w' n w" i= 0. 

Then there exists a unique A E !?&'(!l) such that 
(2) 
for every W E r. 

PROOF. Let { t/1;} be a locally finite partition of unity, subordinate to r, 
as in Theorem 6.20, and associate to each i a set w; E r such that w; 
contains the support of t/1; .  

If 4> E !?&(!l), then 4> = L t/1; ¢. Only finitely many terms in this 
sum are different from 0, since 4> has compact support. Define 

00 

(3) A</> = L Aw.(t/li </>). 
i= 1 

It is clear that A is a linear functional on !?&(!l). 
To show that A is continuous, suppose <Pi --+ 0 in !?&(!l). There is 

a compact K c n which contains the support of every <Pi · If m is 
chosen as in part (c) of Theorem 6.20, then 

m 
(4) A</>j = L Aw.(t/li </>) u = 1 ,  2, 3, . . .  ). 

i = 1 
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Since t/1; <Pi --+ 0 in !?&(w;), as j --+  oo ,  it follows from (4) that A<f>i --+ 0. By 
Theorem 6.6, A E !?&'(!l). 

To prove (2), pick 4> E !?&(w). Then 

(5) (i = 1, 2, 3, . . .  ) 
so that ( 1) implies Aw,(t/li </>) = Aw(t/1; </>). Hence 

(6) A</> = L Aw(t/1; </>) = Aw(L t/1; </>) = Aw <f>, 
which proves (2). 

This gives the existence of A. The uniqueness is trivial since (2) 
(with W; in place of w) implies that A must satisfy (3). /Ill 

Supports of Distributions 

6.22 Definition Suppose A E !?&'(!l). If w is an open subset of n and if 
A¢ = 0 for every 4> E !?&(w), we say that A vanishes in w. Let W be the union 
of all open w c n in which A vanishes. The complement of W (relative to 
!l) is the support of A. 

6.23 Theorem If W is as above, then A vanishes in W. 

PROOF. W is the union of open sets w in which A vanishes. Let r be 
the collection of these w's, and let {t/IJ be a locally finite partition of 
unity in W, subordinate to r, as in Theorem 6.20. If 4> E !?&(W), then 
4> = L t/1; <f>. Only finitely many terms of this sum are different from 0. 
Hence 

since each t/1; has its support in some w E r. Ill/ 

The most significant part of the next theorem is (d). Exercise 20 com
plements it. 

6.24 Theorem Suppose A E !?&'(!l) and SA is the support of A. 

(a) If the support of some 4> E !?&(!l) does not intersect SA , then A¢ = 0. 
(b) If SA is empty, then A =  0. 
(c) If t/1 E C00(!l) and t/1 = 1 in some open set V containing SA , then 

t/IA = A. 
(d) If SA is a compact subset of n, then A has finite order ; in fact, there is a 

constant C < oo and a nonnegative integer N such that 
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for every 4> E !?&(!l). Furthermore, A extends in a unique way to a contin
uous linear functional on C00(!l). 

PROOF. Parts (a) and (b) are obvious. If t/1 is as in (c) and if 4> E !?&(!l), 
then the support of 4> - 1/14> does not intersect SA . Thus A¢ = 
A(t/1</>) = (!/lA)(¢), by (a). 

If SA is compact, it follows from Theorem 6.20 that there exists 
t/1 E !?&(!l) that satisfies (c). Fix such a t/1;  call its support K. By 
Theorem 6.8, there exist c1 and N such that I A¢ I < c1 1 1 4> 11 N for all 
4> E !?& K . The Leibniz formula shows that there is a constant c2 such 
that 11 1/1</> II N < c2 1 1 4> 11 N for every </> E !?&(!l). Hence 

l A</> I =  I A(t/1</>) 1 < cl ll t/1</> II N < clc2 II </> II N 
for every 4> E !?&(!l). 

Since A¢ = A(t/1</>) for all 4> E !?&(!l), the formula 

( 1) Af = A(t/lf) 
defines an extension of A. This extension is continuous, for if/; -+ 0 in 
C00(!l), then each derivative of /; tends to 0, uniformly on compact 
subsets of n;  the Leibniz formula shows therefore that t/1/; -+ 0 in 
!?&(!l) ; since A E !?&'(!l), it follows that A/; -+ 0. 

If f E C00(!l) and if Ko is any compact subset of n, there exists 
</> E !?&(!l) such that 4> = f on K0 . It follows that !?&(!l) is dense in 
C00(!l). Each A E !?&'(!l) has therefore at most one continuous exten
sion to coo(n). !Ill 

Note : In (a) it is assumed that 4> vanishes in some open set contain
ing SA , not merely that 4> vanishes on SA . 

In view of (b), the next simplest case is the one in which SA consists of 
a single point. These distributions will now be completely described. 

6.25 Theorem Suppose A E !?&'(!l), p E n, {p} is the support of A, and A 
has order N. Then there are constants ca such that 
( 1) A =  L ca Dabp , 

lal :5N 
where bP is the evaluation functional defined by 
(2) 

Conversely, every distribution of the form ( 1) has {p} for its support 
(unless ca = 0 for all !X). 

PROOF. It is clear that the support of DabP is {p}, for every multi-index 
IX. This proves the converse. 
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To prove the nontrivial half of the theorem, assume that p = 0 
(the origin of Rn), and consider a 4> E !0(!1) that satisfies 

(3) for all IX with I IX I < N. 
Our first objective is to prove that (3) implies A</> = 0. 

If 11 > 0, there is a compact ball K c n, with center at 0, such 
that 

(4) if I IX I = N. 
We claim that 

(5) (x E K, I IX I < N). 

When I IX  I = N, this is (4). Suppose 1 < i < N, assume (5) is 
proved for all IX with I IX I = i, and suppose I /3 1  = i - 1 .  The gradient of 
DP 4> is the vector 

(6) 
Our induction hypothesis implies that 

(7) (x E K), 

and since (DP</>)(0) = 0 the mean value theorem now shows that (5) 
holds with f3 in place of IX. Thus (5) is proved. 

Choose an auxiliary function t/1 E !0(Rn), which is 1 in some 
neighborhood of 0 and whose support is in the unit ball B of Rn. 
Define 

(8) 

If r is small enough, the support of t/1, lies in rB c K. By Leibniz' 

formula 

It now follows from (5) that 

( 10) 

as soon as r is small enough ; here C depends on n and N. 
Since A has order N, there is a constant C 1 such that I At/1 1 < 

C1 l l t/I I I N for all t/1 E !0K . Since t/1, = 1 in a neighborhood of the support 
of A, it now follows from ( 10) and (c) of Theorem 6.24 that 

I A<J> I = I A( t/1 r </>) I < C 1 l l t/1 r </> II N < 1JC C 1 II !/I ll N • 
Since 11 was arbitrary, we have proved that A</> = 0 whenever (3) 
holds. 
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In other words, A vanishes on the intersection of the li ull spaces 
of the functionals v�Jo ( I ct I < N), since 

( 1 1) (D�J0)<f> = ( - 1) 1�1J0(D�<f>) = ( - 1) 1�1(D�<f>)(O). 
The representation ( 1) follows now from Lemma 3.9. Ill/ 

Distributions as Derivatives 

It was pointed out in the introduction to this chapter that one of the aims 
of the theory of distributions is to enlarge the concept of function in such a 
way that partial differentiations can be carried out unrestrictedly. The dis
tributions do satisfy this requirement. Conversely-as we shall now see
every distribution is (at least locally) D) for some continuous function! and 
some multi-index ct. If every continuous function is to have partial deriv
at!.ves of all orders, no proper subclass of the distributions can therefore be 
adequate. In this sense, the distribution extension of the function concept is 
as economical as it possibly can be. 

6.26 Theorem Suppose A E !?&'(!l), and K is a compact subset of!l. Then 
there is a continuous function f in n and there is a multi-index ct such that 

(1) A¢ = ( - 1)1�1 Lf(x)(D�<f>)(x) dx 

for every </> E !?& K • 

PROOF. Assume, without loss of generality, that K c Q, where Q is the 
unit cube in Rn, consisting of all x = (x1, . . .  , xn) with 0 < xi < 1 for 
i = 1 ,  . . .  , n. The mean value theorem shows that 

(2) I I/I I <  max I (D i !/l)(x) l x e Q  
for i =  1 ,  . . .  , n. Put T =  D1D2 · · · Dn . For y E Q, let Q(y) denote the 
subset of Q in which xi < Yi (1 < i < n). Then 

(3) 1/J(y) = l (TI/J)(x) dx 
JQ(y) 

If N is a nonnegative integer and if (2) is applied to successive deriv
atives of 1/1, (3) leads to the inequality 

(4) 1 1 1/J II N < max I (TN!/J)(x) l < r I (TN+ l l/l)(x) l dx, 
x e Q  JQ 

for every 1/J E !?& Q • 
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Since A E !?&'(!l), there exist N and C such that 

(5) 
Hence (4) shows that 

(6) I A<J> I  < l i (TN+ 1<j>)(x) l dx 

By (3), T is one-to-one on !?& Q , hence on !?& K .  Consequently, 
TN+ 1 : !?&K --+ !?&K is one-to-one. A functional A1 can therefore be 
defined on the range Y of TN+ 1 by setting 

(7) 

and (6) shows that 

(8) I A1 t/1 I < c l1 t/J(x) I dx (t/J E Y). 

The Hahn-Banach theorem therefore extends A1 to a bounded linear 
functional on L1(K). In other words, there is a bounded Borel function 
g on K such that 

(9) A<J> = A1 TN+ 14> = Lg(x)(TN+ 1<J>)(x) dx 

Define g(x) = 0 outside K and put 

(10) f(y) = f�· · · J:�g(x) dxn · · · dx 1 

Thenfis continuous, and n integrations by parts show that (9) gives 

( 1 1) 

This is ( 1 ), with IX = (N + 2, . . .  , N + 2), except for a possible change 
. . 
m s1gn. /Ill 

When A has compact support, the local result just proved can be 
turned into a global one : 

6.27 Theorem Suppose K is compact, V and n are open in Rn, and 
K c V c n. Suppose also that A E !?&'(!l), that K is the support of A, and that 
A has order N. Then there exist finitely many continuous functions fp in n 
(one for each multi-index f3 with {3; < N + 2 for i = 1, . . . , n) with supports in 
V, such that 
( 1) A = l: DPjp . p 
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These derivatives are, of course, to be understood in the distribution 
sense : ( 1) means that 

(2) A<J> = L ( - 1)1P I i fp(x)(DP<j>)(x) dx [4> E �(!l)J. 
P n 

PROOF. Choose an open set W with compact closure W, such that 
K c W and W c V. Apply Theorem 6.26 with W in place of K. Put 
IX = (N + 2, . . .  , N + 2). The proof of Theorem 6.26 shows that there 
is a continuous functionfin n such that 

(3) A<J> = ( - 1)1al Lf(x)(Da<J>)(x) dx [<J> E �(W)]. 

We may multiply f by a continuous function which is 1 on W and 
whose support lies in V, without disturbing (3). 

Fix t/1 E �(!l), with support in W, such that t/1 = 1 on some open 
set containing K. Then (3) implies, for every 4> E �(!l), that 

A<J> = A(t/I<J>) = ( - 1)ial Lf . Da(t/I<J>) 

= ( - 1)1al i f L Cap Da-pt/IDP<j>. 
n P:5 a 

This is (2), with 

fp = ( - 1)ia - Picap f · Da-pt/1 (/3 < IX). /Ill 

Our next theorem describes the global structure of distributions. 

6.28 Theorem Suppose A E �'(!l). There exist continuous functions ga in 
n, one for each multi-index IX, such that 

(a) each compact K c n intersects the supports of only finitely many ga , and 
(b) A =  L Daga . 

If A has finite order, then the functions ga can be chosen so that only 
finitely many are different from 0. 

PROOF. There are compact cubes Q; and open sets V; (i = 1 ,  2, 3, . . .  ) 
such that Q; c V; c n, n is the union of the Q; ' and no compact 
subset of n intersects infinitely many V; .  There exist ¢; E �(V;) such 
that <Pi = 1 on Qi . Use this sequence { ¢;} to construct a partition of 
unity {t/IJ, as in Theorem 6.20 ; each t/1; has its support in V; .  
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Theorem 6.27 applies to each t/1; A. It shows that there are 
finitely many continuous functions fi. a with supports in V; ,  such that 

(1) 

Define 
00 

(2) ga = L h, a · 
i = 1 

These sums are locally finite, in the sense that each compact 
K c n intersects the supports of only finitely many/;, a . It follows that 
each ga is continuous in n and that (a) holds. 

Since 4> = '[. t/1; </>, for every 4> E !?&(!l), we have A = '[.  1/!; A, and 
therefore (1) and (2) give (b). 

The final assertion follows from Theorem 6.27. Ill I 

Convolutions 

Starting from convolutions of two functions, we shall now define the con
volution of a distribution and a test function and then (under certain 
conditions) the convolution of two distributions. These are important in the 
applications of Fourier transforms to differential equations. A characteristic 
property of convolutions is that they commute with translations and with 
differentiations (Theorems 6.30, 6.33, 6.37). Also, differentiations may be 
regarded as convolutions with derivatives of the Dirac measure (Theorem 
6.37). 

It will be convenient to make a small change in notation and to use 
the letters u, v, . . .  for distributions as well as for functions. 

6.29 Definitions In the rest of this chapter, we shall write !?& and !?&' in 
place of !?&(R") and !?&'(R"). If u is a function in R", and x E R", rx u and u are 
the functions defined by 

(1) (rx u)(y) = u(y - x), U(y) = u( -y) 
Note that 

(2) (rx u)(y) = u(y - x) = u(x - y). 
If u and v are complex functions in R", their convolution u * v IS 

defined by 

(3) (u * v)(x) = i u(y)v(x - y) dy, 
R• 
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provided that the integral exists for all (or at least for almost all) x E R", in 
the Lebesgue sense. Because of (2), 

(4) (u * v)(x) = r u(y)(rx v)(y) dy. 
JR• 

This makes it natural to define 

(5) (u * </>)(x) = u(rx </J) 
for if u is a locally integrable function, (5) agrees with (4). Note that u * <P is 
a function. 

The relation S (rx u) · v = S u · (r _ x v), valid for functions u and v, 
makes it natural to define the translate rx u of u E �' by 

(6) (rx u)(<f>) = u(r - x </>) 
Then, for each x E R", rx u E �'; we leave the verification of the appropriate 
continuity requirement as an exercise. 

6.30 Theorem Suppose u E �', <P E �, t/1 E �. Then 

(a) rx(u * </>) = (rx u) * </> = u * (rx </>)for all x E R"; 
(b) u * </> E coo and 

for every multi-index IX;  
(c) u * (</> * t/1) = (u * </>) * t/1. 

PROOF. For any y E R", 
(rx(u * </>))(y) = (u * <f>)(y - x) = u(ry- x </J), 
((rx u) * <f>)(y) = (rx u)(ty </J) = u(ry - x </J), 

(u * (rx </>))(y) = u(ry(rx <f>)Y) = u(ry- x </J), 
which gives (a) ; the relations 

and 

were used. In the sequel, purely formal calculations such as the pre
ceding ones will sometimes be omitted. 

If u is applied to both sides of the identity 

( 1) 
one obtains part of (b), namely, 
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To prove the rest of (b), let e be a unit vector in Rn, and put 

(2) (r > 0). 

Then (a) gives 

(3) 1JlU * </>) = U * (1'/, </>). 

As r --+ 0, 11, </> --+ De </>  in �, where De denotes the directional derivative 
in the direction e. Hence 

for each x E Rn, so that 

(4) lim (u * (1J, </>))(x) = (u * (De </>))(x). 
r -+ 0  

By (3) and (4) we have 

(5) D.(u * </>) = U * (De </>), 

and iteration of (5) gives (b). 
To prove (c), we begin with the identity 

(6) (</> * t/I)Y(t) = r �(s)(rs cp)(t) ds. 
JR• 

Let K 1 and K2 be the supports of cp and � - Put K = K 1 + K2 . Then 

s --+  �(s)rs cP 

is a continuous mapping of Rn into � K , which is 0 outside K2 • There
fore (6) may be written as a �  rvalued integral, namely, 

(7) (</> * !/It = r �(shs cP ds, 
JK2 

and now Theorem 3.27 shows that 

or 

(8) 

(u * (</> * t/1))(0) = u((</> * !/In 

= r �(s)u(rs �) ds = r t/1( - s)(u * </>)(s) ds, 
JK2 JR• 

(u * (</> * t/1))(0) = ((u * </>) * t/1(0). 

To obtain (8) with x in place of 0, apply (8) to r - x  t/1 in place of 
t/1, and appeal to (a). This proves (c). /Ill 
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6.31 Definition The term approximate identity on Rn will denote a 
sequence of functions hi of the form 

(j = 1, 2, 3, . . .  ), 

where h E !?&(Rn), h > 0, and SR• h(x) dx = 1 .  

6.32 Theorem Suppose {hi} is an approximate identity on Rn, 4> E !?&, and 
u E !?&'. Then 

(a) lim 4> * hi = 4> in !?&, 
j-+ 00 

(b) lim u * hi = u in !?&'. 
j-+ 00 

Note that (b) implies that every distribution is a limit, in the topology 
of !?&', of a sequence of infinitely differentiable functions. 

PROOF. It is a trivial exercise to check that f * hi --+ f uniformly on 
compact sets, iff is any continuous function on Rn. Applying this to 
Da</> in place of J, we see that Da(</> * h) --+ Da<f> uniformly. Also, the 
supports of all 4> * hi lie in some compact set, since the supports of 
the hi shrink to {0}. This gives (a). 

Next, (a) and statement (c) of Theorem 6.30 give (b), because 

6.33 Theorem 

(a) If u E !?&' and 
( 1) 

u(cp) = (u * ¢)(0) = lim (u * (hi * ¢))(0) 

= lim ((u * h) * ¢)(0) = lim (u * hi)(cp). 

then L is a continuous linear mapping of!?& into coo which satisfies 
(2) 

/Ill 

(b) Conversely, if L is a continuous linear mapping of !?& into C(Rn), and if L 
satisfies (2), then there is a unique u E !?&' such that ( 1) holds 

Note that (b) implies that the range of L actually lies in coo. 

PROOF. (a) Since rx(u * </>) = u * (rx </>), ( 1) implies (2). To prove that L 
is continuous, we have to show that the restriction of L to each !?&K is 
a continuous mapping into coo. Since these are Frechet spaces, the 
closed graph theorem can be applied. Suppose that <Pi --+ 4> in �K and 
that u * <Pi --+ fin coo ; we have to prove thatf = u * </>. 
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Fix X E Rn. Then Lx cPi --+ rx cP in �' so that 

f(x) = lim (u * <f>Jx) = lim u(rx cPi) = u(rx cP) = (u * </>)(x). 

(b) Define u(<f>) = (Lc/Y)(O). Since <P --+  c/Y is a continuous operator 
on �, and since evaluation at 0 is a continuous linear functional on C, 
u is continuous on �- Thus u E .'2J' .  Since L satisfies (2), 

(L<f>)(x) = (r _ x L<f>)(O) = (Lr _ x <f>)(O) 

= u((r _ x <f>t) = u(rx cP) = (u * <f>)(x). 

The uniqueness of u is obvious, for if u E �' and u * <P = 0 for 
every <P E �' then 

u(cP) = (u * </>)(0) = 0 

for every <P E � ;  hence u = 0. Ill/ 

6.34 Definition Suppose now that u E !!iJ' and that u has compact 
support. By Theorem 6.24, u extends then in a unique fashion to a contin
uous linear functional on coo. One can therefore define the convolution of u 
and any <f> E coo by the same formula as before, namely, 

6.35 Theorem Suppose u E �' has compact support, and </> E coo.  Then 

(a) rx(u * </>) = (rx u) * </> = U * (rx <f>) ifx E Rn, 

(b) u * </> E coo and 
Da(u * </>) = (Dau) * </> = U * (Da<J>). 

If, in addition, t/1 E �' then 
(c) u * t/1 E �' and 
(d) u * ( <P * t/1) = ( u * <P) * t/1 = ( u * t/1) * <J>. 

PROOF. The proofs of (a) and (b) are so similar to those given in 
Theorem 6.30 that they need not be repeated. To prove (c), let K and 
H be the supports of u and t/1, respectively. The support of rx t/t is 
x - H. Therefore 

(u * t/l)(x) = u(rx t/t) = 0 

unless K intersects x - H, that is, unless x E K + H. The support of 
u * t/1 thus lies in the compact set K + H. 

To prove (d), let W be a bounded open set that contains K,  and 
choose </>0 E � so that �0 = � in W + H. Then (</> * t/l) v = (</>0 * t/1) 
in W, so that 

( ! )  (u * (</> * t/1))(0) = (u * (</>0 * t/1))(0). 
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If - s  E H, then rs cP = rs cPo in W; hence u * </> = u * </>0 in -H. 
This gives 

(2) ((u * </>) * t/1)(0) = ((u * </>0) * t/1)(0). 

Since the support of u * t/1 lies in K + H, 

(3) ((u * t/1) * </>)(0) = ((u * t/1) * </>0(0). 

The right sides of ( l )  to (3) are equal, by Theorem 6.30 ;  hence so 
are their left sides. This proves that the three convolutions in (d) are 
equal at the origin. The general case follows by translation, as at the 
end of the proof of Theorem 6.30. /Ill 

6.36 Definition If u E �', v E �', and at least one of these two distribu
tions has compact support, define 
( 1) L<f> = u * (v * </>) (</> E �). 

Note that this is well defined. For if v has compact support, then 
v * <P E �, and L<f> E coo ; if u has compact support, then again L<f> E coo, 
since v * </> E coo. Also, rx L = Lrx , for all x E Rn. These assertions follow 
from Theorems 6.30 and 6.35. 

The functional </> --+  (Lcp)(O) is in fact a distribution. To see this, 
suppose </>; --+ 0 in �- By (a) of Theorem 6.33, v * cP; --+  0 in coo ; if, in addi
tion, v has compact support then v * cP; --+ 0 in �- It follows, in either case, 
that (Lcp;)(O) --+ 0. 

The proof of (b) of Theorem 6.33 now shows that this distribution, 
which we shall denote by u * v, is related to L by the formula 

(2) L<f> = ( u * v) * </> (</> E �). 

In other words, u * v E �' is characterized by 

(3) (u * v) * </> = u * (v * <f>) (</> E �). 

6.37 Theorem Suppose u E �', v E �', w E �'. 

(a) If at least one of u, v has compact support, then u * v = v * u. 
(b) If s. and Sv are the supports of u and v, and if at least one of these is 

compact, then 

(c) If at least two of the supports s. , Sv , Sw are compact, then 
(u * v) * w = u * (v * w). 

(d) If {J is the Dirac measure and IX is a multi-index, then 

In particular, u = {J * u. 
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(e) If at least one of the sets s. , Sv is compact, then 

Da(u * v) = (Dau) * v = u * (Dav) 
for every multi-index IX. 

Note : The associative law (c) depends strongly on the stated hypoth
eses ; see Exercise 24. 

PROOF. (a) Pick 4> E �' t/1 E �. Since convolution of functions is com
mutative, (c) of Theorem 6.30 implies that 

(u * v) * (</> * t/1) = u * (v * (</> * t/1)) 
= u * ((v * <b) * t/1) = u * (t/1 * (v * </>)). 

If Sv is compact, apply (c) of Theorem 6.30 once more; if s. IS 
compact, apply {d) of Theorem 6.35 ;  in either case 

(1) (u * v) * ( 4> * t/1) = (u * t/1) * ( v * 4> ). 

Since 4> * t/1 = t/1 * <f>, the same computation gives 

(2) (v * u) * (</> * t/1) = (v * </>) * (u * t/1). 

The two right members of (1) and (2) are convolutions of func
tions (one in �' one in coo); hence they are equal. Thus 

(3) ((u * v) * </>) * t/1 = ((v * u) * </>) * t/1. 

Two applications of the uniqueness argument used at the end of the 
proof of Theorem 6.33 now give u * v = v * u. 

(4) 

(b) If 4> E �, a simple computation gives 

(u * v)(</>) = u((v * cp)Y). 
By (a) we may assume, without loss of generality, that Sv is compact. 
The proof of (c) of Theorem 6.35 shows that the support of v * cp lies 
in S" - Sq, . By (4), (u * v)(</>) = 0 unless s. intersects Sq, - Sv , that is, 
unless Sq, intersects s. + Sv . 

(c) We conclude from (b) that both 

(u * v) * w and u * (v * w) 
are defined if at most one of the sets s. , Sv , Sw fails to be compact. If 
4> E �, it follows directly from Definition 6.36 that 

(5) (u * (v * w)) * 4> = u * ((v * w) * </>) = u * (v * (w * </>)). 

If Sw is compact, then 

(6) ((u * v) * w) * 4> = (u * v) * (w * </>) = u * (v * (w * </>)) 
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because w * 4> E �. by (c) of Theorem 6.35. Comparison of (5) and (6) 
gives (c) whenever Sw is compact. 

If Sw is not compact, then Su is compact, and the preceding case, 
combined with the commutative law (a), gives 

u * (v * w) = u * (w * v) = (w * v) * u 
= W * � * � = W * � * 0 = (U * 0 * W. 

(d) If 4> E �. then b * 4> = <f>, because 

(b * <f>)(x) = {J(r> p) = (r> p)(O) = cp( -x) = <f>(x). 

Hence (c) above and (b) of Theorem 6.30 give 

(Dau) * </> = U * Da</> = U * Da(b * </>) = U * (Dab) * </>. 
Finally, (e) follows from (d), (c), and (a) : 

Da(u * v) = (Dab) * (u * v) = ((Dab) * u) * v = (Dau) * v 

and 

Exercises 

1. Suppose f is a complex continuous function in Rn, with compact support. Prove 
that I/IP1 -> f uniformly on R", for some 1/1 E f0 and for some sequence {P1} of 
polynomials. 

2. Show that the metrizable topology for f0(!l) that was rejected in Section 6.2 is 
not complete for any n. 

3. If E is an arbitrary closed subset of Rn, show that there is an f E C00(Rn) such 
thatf(x) = 0 for every x E E andf(x) > 0 for every other x E R". 

4. Suppose A E f0'(!l) and A</J > 0 whenever 4> E f0(!l) and 4> > 0. Prove that A is 
then a positive measure in n (which is finite on compact sets). 

5. Prove that the numbers c.p in the Leibniz formula are 
n N .  I n � . .  

c.p = f3 ' (  - fl ) '  i = 1 i . (Xi i . 

6. (a) Suppose em = exp { -(m ! ) ! } ,  m = 0, 1 ,  2, . . . . Does the series 

converge for every 4> E C00(R)? 
(b) Let n be open in R", suppose Ai E f0'(!l), and suppose that all Ai have their 

supports in some fixed compact K c:: n. Prove that the sequence {A.} cannot 
converge in f0'(!l) unless the orders of the A1 are bounded. Hint : Use the 
Banach-Steinhaus theorem. 

(c) Can the assumption about the supports be dropped in (b)? 
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7. Let n = (0, co). Define 

[cj> E f0(fl)] . 

Prove that A is a distribution of infinite order in n. Prove that A cannot be 
extended to a distribution in R; that is, there exists no A0 E f0'(R) such that 
A0 = A  in (0, co). 

8. Characterize all distributions whose supports are finite sets. 
9. (a) Prove that a set E c f0(!l) is bounded if and only if 

sup { I A¢ I : ¢ E E} < co 

for every A E f0'(!l). 
(b) Suppose {¢i} is a sequence in f0(!l) such that {A¢i} is a bounded sequence 

of numbers, for every A E f0'(!l). Prove that some subsequence of {¢i} con
verges, in the topology of f0(!l). 

(c) Suppose {Ai} is a sequence in f0'(!l) such that {Ai ¢} is bounded, for every 
¢ E f0(!l). Prove that some subsequence of { Ai} converges in f0'(!l) and that 
the convergence is uniform on every bounded subset of f0(!l). Hint : By the 
Banach-Steinhaus theorem, the restrictions of the Ai to f0K are equi
continuous. Apply Ascoli's theorem. 

10. Suppose {};} is a sequence of locally integrable functions in n (an open set in 
R") and 

��� fy;(x) I dx = 0 

for every compact K c n. Prove that then D"[; -> 0 in f0'(!l), as i -> co, for every 
multi-index IX. 

11.  Suppose n is open in R2, and {/;} is a sequence of harmonic functions in n that 
converges in the distribution sense to some A E f0'(!l) ; explicitly, the assumption 
is that 

[cj> E f0(fl)]. 

Prove then that {/;} converges uniformly on every compact subset of n and that 
A is a harmonic function. Hint : Iff is harmonic, f(x) is the average of f over 
small circles centered at x. 

12. Recall that b (the Dirac measure) is the distribution defined by b(¢) = ¢(0), for 
¢ E f0(R). For which/ E C00(R) is it true thatf b' = 0?  Answer the same question 
for f b". Conclude that a function f E C00(R) may vanish on the support of a 
distribution A E f0'(R) although/A #- 0. 

13. If ¢ E f0(!l) and A E f0'(!l), does either of the statements 

¢A = 0, A¢ = 0  

imply the other ? 
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14. Suppose K is the closed unit ball in Rn, A E £&'(Rn) has its support in K, and 
f E Coo(R� vanishes on K. Prove that fA = 0. Find other sets K for which this is 
true. (Compare with Exercise 12.) 

15. Suppose K c V c n, K is compact, V and n are open in Rn, A E £&'(!l) has its 
support in K, and { </J1} c �(!l) satisfies 

(a) lim [sup I (D"</J1)(x) 1] = 0 
l-. oo x e V  

for every multi-index IX. Prove that then 

lim A(</J1) = 0. 

16. The preceding statement becomes false if V is replaced by K in the hypothesis 
(a). Show this by means of the following example, in which n = R. Choose 
c 1 > c2 > · · · > 0, such that L ci < co ;  define 

00 
A</J = L (</J(ci) - </J(O)) (</J E £&(R)) ; 

j =  1 

and consider functions </J1 E £&(R) such that </J�x) = 0 if x < c1+ 1 ,  </J1(x) = 1/i if 
c1 < x < c 1 .  Show also that this A is a distribution of order 1 .  

However, for certain K, V can be replaced by K in the hypothesis (a) of 
Exercise 15. Show that this is so when K is the closed unit ball of Rn. Find other 
sets K for which this is true. 

17. If A E £&'(R) has order N, show that A =  vN+zj, for some continuous function! 
If A =  b, what are the possibilities for f?. 

18. Express b E  £&'(R2) in the form given by Theorem 6.27, as explicitly as you can. 
19. Suppose A E £&'(!l), 4> E £&(!l), and (D"</J)(x) = 0 for every x in the support of A 

and for every multi-index IX. Prove that A</J = 0. Suggestion: Do it first for dis
tributions with compact support, by the method used in Theorem 6.25. 

20. Prove that every continuous linear functional on C00(!l) is of the form f-> Af, 
where A is a distribution with compact support in n;  this is a converse to (d) of 
Theorem 6.24. 

21. Let C00(T) be the space of all infinitely differentiable complex functions on the 
unit circle T in (/:. One may regard C00(T) as the subspace of C00(R) consisting of 
those functions that have period 2n. Suppose 

00 

converges in the open unit disc U in r;;. Prove that each of the following three 
properties off implies the other two : 
(a) There exist p < co and y < co such that 

(n = 1 ,  2, 3, . . .  ). 

(b) There exist p < co and y < co such that 

l f(z) l < Y · (1 - l z l ) - p (z E U). 

(c) lim,� 1 f':.n f(re18)</J(e18) dB exists (as a complex number) for every 4> E C00(T). 
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22. For u e £&'(R), show that 

U - T U 
__ .:;e

x
_ -> Du in £&'(R), 

X 

as x ->  0. (The derivative of u may thus still be regarded as a limit of quotients.) 
23. Suppose {J;} is a sequence of locally integrable functions in Rn, such that 

lim (J; * 4> )(x) 

exists, for each 4> e £&(Rn) and each x e Rn. Prove that then {D"(J; * </J)} con
verges uniformly on compact sets, for each multi-index IX. 

24. Let H be the Heavisidefunction on R, defined by 

H(x) = g 
and let b be the Dirac measure. 

if X >  0, 
if X <  0, 

(a) Show that (H * </J)(x) = Jx_ oo </J(s) ds, if 4> e £&(R). 
(b) Show that b' * H = b. 
(c) Show that 1 * b' = 0. (Here 1 denotes the locally integrable function whose 

value is 1 at every point and which is thought of as a distribution.) 
(d) It follows that the associative law fails : 

1 * (15' * H) = 1 * b = 1, 

but 

( 1  * b') * H = 0 * H = 0. 

25. Here is another characterization of convolutions analogous to Theorem 6.33. 
Suppose L is a continuous linear mapping of £& into coo which commutes with 
every D", that is, 

(a) LD"</J = D"L</J (</J E £&). 

Then there is a u e £&' such that 

L</J = u * <j:J. 

Suggestion: Fix 4> e £&, put 

(x E R�, 

let De be the directional derivative used in the proof of Theorem 6.30, and show 
that 

(De h)(x) = (De Lrx</J)(x) - (Lrx De </J)(x), 

which is 0 if (a) holds. Thus h(x) = h(O), which implies that 'x L = Lrx . 
Can the assumption that the range of L is in coo be weakened? 

26. Iff e L1 ((- oo, - b) u (b, oo)) for every b > 0, define its principal value integral to 
be 

PV foo f(x) dx = lim (f-" + l oo)f(x) dx, 
- 00 t) -. Q  - 00  J) 
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if the limit exists. For 4> E £&(R), put 

Show that 

A</J = f_0000 </J(x) log I X I dx. 

foo dx 
A'</J = PV </J(x) - , 

- oo X 

A" </J = -PV f_0000 </J(x) ;z </J(O) 
dx. 

27. Find all distributions u E £&'(R") that satisfy at least one of the following two 
conditions : 
(a) 'x u = u for every x E Rn, 
(b) D"u = 0 for every IX with I IX  I = 1 .  
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FOURIER 
TRANSFORMS 

Basic Properties 

7.1 Notations (a) The normalized Lebesgue measure on Rn IS the 
measure mn defined by 

dmn(x) = (2n)- nf2 dx. 
The factor (2n) - n12 simplifies the appearance of the inversion theorem 7.7 
and tpe Plancherel theorem 7.9. The usual Lebesgue spaces IJ', or ll(Rn), 
will be normed by means of mn: 

( 1  < p < w). 

It is also convenient to redefine the convolution of two functions on Rn by 

(f * g)(x) = i f(x - y)g(y) dmb) 
R• 

whenever the integral exists. 

182 

(b) For each t E Rn, the character e1 is the function defined by 

e1(x) = eit · x = exp { i(t 1x 1 + · · · + tnxn)} (x E Rn). 



CHAPTER 7: FOUR!ER TRANSFORMS 183 

Each e1 satisfies the functional equation 

Thus e1 is a homomorphism of the additive group Rn into the multiplicative 
group of the complex numbers of absolute value 1 .  

(c) The Fourier transform of a function f E I!(Rn) is the function J 
defined by 

The term " Fourier transform " is often also used for the mapping that takes 
fto/ Note that 

/(t) = (f * e1)(0). 

(d) If IX is a multi-index, then 

Da = (i) - ia iDa = -:- - . . . -;- - . 
( 1 a )a1 ( 1 a )a" 

I axl I axn 
The use of Da in place of Da simplifies some of the formalism. Note that 

where, as before, ta = t�1 • • • t�". If P is a polynomial of n variables, with 
complex coefficients, say 

P(�) = L Ca �a = L Ca �� 1  • • • ��·, 

the differential operators P(D) and P( - D) are defined by 

It follows that 

P(D)e1 = P(t)e1 

(e) The translation operators rx are defined, as before, by 

(rx f)(y) = f(y - x) 

7.2 Theorem Suppose J, g E I!(Rn), x E Rn. Then 

(a) (rx f)A = e_x f ; 
(b) (ex f)A = rxf ; 
(c) U * g)A =Jg. 
(d) If A. >  0 and h(x) = f(xjA.), then h(t) = A.nj(A.t). 
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PROOF. It follows from the definitions that 

and 

An application of Fubini's theorem gives (c) ; (d) is obtained by a 
linear change of variables in the definition ofj /Ill 

7.3 Rapidly decreasing functions This name is sometimes giVen to 
those f E C00(Rn) for which 

(1) sup sup (1 + I x l 2t I (Daf)(x) I < oo 
lal sN x e R• 

for N = 0, 1 ,  2, . . . . (Recall that I x 1 2 = L xf.) In other words, the require
ment is that P · D a f is a bounded function on Rn, for every polynomial P 
and for every multi-index IX. Since this is true with (1 + I x l 2t P(x) in place 
of P(x), it follows that every P · Daf lies in I!(Rn). 

These functions form a vector space, denoted by !I' n , in which the 
countable collection of norms (1) defines a locally convex topology, as 
described in Theorem 1 .37. 

It is clear that !?&(Rn) c !I' n . 

7.4 Theorem 

(a) !l'n is a Frechet space. 
(b) If P is a polynomial, g E !I' n • and IX is a multi-index, then each of the 

three mappings 

f--+ Pf, f--+ gf, 
is a continuous linear mapping of !I' n into !I' n . 

(c) Iff E !I' n and P is a polynomial, then 

(P(D)f)" = Pj and (Pf)" = P( - D)j 

(d) The Fourier transform is a continuous linear mapping of !I' n into !I' n . 

[Part (d) will be strengthened in Theorem 7.7.] 

PROOF. (a) Suppose {};} is a Cauchy sequence in !l'n . For every pair of 
multi-indices IX and f3 the functions xPDa};(x) converge then (uniformly 
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on R") to a bounded function gap ,  as i --+ oo .  It follows that 

gap( X) = xP Dag00(x) 
and hence that/; --+ g00 in Y n .  Thus Y" is complete. 

(b) If fE Y. , it is obvious that Daf E  Y. , and the Leibniz 
formula implies that Pf and gf are also in Y n .  The continuity of the 
three mappings is now an easy consequence of the closed graph 
theorem. 

(c) Ifj E Y.,  so is P(D)f, by (b), and 

(P(D)f) * e1 = f * P(D)e1 = f * P(t)e1 = P(t)[f * e1]. 
Evaluation of these functions at the origin of R. gives the first 

part of (c), namely, 

(P(D)ft(t) = P(t) .f(t). 
If t = (t 1 , . . .  , tJ and t' = (t 1 + s, t2 , . . .  , t.), e i= 0, then 

.::____:__::___.:_..:....:. - f( ) e - ix . t d { ) .f(t') - J
A

(t) i - ix It - 1 
---- . - X1 x . e m,�.x . 

le R• IX 1 e 

The dominated convergence theorem can be applied, since x1 f E I!, 
and yields 

1 a 
A l . 

- -:- -a f(t) = x d(x)e - •x · 1 dm.(x). 
I t 1 R• 

This is the case P(x) = x 1 of the second part of (c) ; the general case 
follows by iteration. 

(d) Suppose f E Y. and g(x) = ( - 1)iaixaf(x). Then g E Y. ; now 
(c) implies that g = Da .f and P · DJ = P · g = (P(D)g)', which is a 
bounded function, since P(D)g E L1(R"). This proves that .f E Y" . If 
/; --+f in Y" , then /; --+  f in L1(R"). Therefore /.{t) --+ /(t) for all t E R". 

A 

That f--+ f is a continuous mapping of Y. into Y. follows now from 
the closed graph theorem. /Ill 

Here C0(R") is the supremum-normed Banach space of all complex 
continuous functions on R" that vanish at infinity. 

PROOF. Since I e1(x) I = 1 ,  it is clear that 

(1) 1 /(t) l < 11 !11 1 (f E Ll , t E R"). 
Since !?&(R") c Y. , Y. is dense in L1(R"). To each fE L1(R") corre
spond functions /; E Y. such that 11 /- /;11 1 --+ 0. Since /; E Y. c 
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C0(R") and since (1) implies that h -->  J uniformly on R", the proof is 
complete. /Ill 

The following lemma will be used in the proof of the inversion 
theorem. It depends on the particular normalization that was chosen 
for m • .  

7.6 Lemma If <P. is defined on R" by 

(1) <P.(x) = exp { - � I x 1 2} 
A 

then 4>. E Y" , <P. = <P. , and 

(2) 4>.(0) = r ¢. dm • .  

JR• 

PROOF. It is clear that <P. E Y" . Since ¢1 satisfies the differential equa
tion 

(3) y' + xy = 0, 

a short computation, or an appeal to (c) of Theorem 7.4, shows that 
$1 also satisfies (3). Hence ¢d<P1 is a constant. Since ¢1(0) = 1 and 

¢ 1(0) = r 4>1 dm 1 = (2n) - 112 foo exp { - �x2} dx = 1 ,  
JR - oo 

we conclude that $ 1 = </> 1. Next, 

(4) (x E R") 

so that 

(5) (t E R"). 

It follows that ¢. = <P. for all n. Since ¢.(0) = J 4>. dm. , by definition, 
and since ¢. = <P. , we obtain (2). /Ill 

7.7 The inversion theorem 

(a) Ifg E Y. , then 

(1) (x E R"). 

(b) The Fourier transform is a continuous, linear, one-to-one mapping of Y. 
onto Y" , of period 4, whose inverse is also continuous. 
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(c) Iff E L1(R"),j E L1(R"), and 

(2) fo(x) = r lex dm. 
JR• 

(x E R"), 

thenf(x) = f0(x)for almost every x E R". 

PROOF. Iff and g are in L1(R"), Fubini's theorem can be applied to the 
double integral 

r r f(x)g(y)e - ix · y dm.(x) dm.(y) 
JRn JR• 

to yield the identity 

(3) r Jg dm. = r fg dm • .  

JRn JRn 
To prove part (a), take g E Y. , </> E Y. , f(x) = </>(xj).), where 

). > 0. By (d) of Theorem 7.2, (3) becomes 

or 

(4) 

r g(t))."$().t) dm.(t) = r <t>(y)g(y) dm.(y), 
JR• JR• ). 

L gG)¢(t) dm.(t) = l. <�>G)g(y) dm.(y). 

As ). --> oo, g(tj).) --> g(O) and </>(yj).) --> ¢(0), boundedly, so that the 
dominated convergence theorem can be applied to the two integrals in 
(4). The result is 

(5) g(O) l ¢ dm. = </>(0) ( g dm. 
JRn JRn 

(g, </> E [fl.). 

If we specialize </> to be the function 4>. of Lemma 7 .6, (5) gives the 
case x = 0 of the inversion formula (1). The general case follows from 
this, since (a) of Theorem 7.2 yields 

g(x) = (r _x g)(O) = ( (r _ x g) " dm. = ( gex dm • .  

JRn JRn 
This completes part (a). 

To prove part (b), we introduce the temporary notation <l>g = g. 
The inversion formula (1) shows that <I> is one-to-one on Y. , since 
g = 0 obviously implies g = 0. It also shows that 

(6) 
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where, we recall, g(x) = g( - x), and hence that <l>4g = g. It follows that 
<I> maps !/" onto !/" . The continuity of <I> has already been proved in 
Theorem 7.4. To prove the continuity of <1>- \ one can now either refer 
to the open mapping theorem or to the fact that <I>- 1 = <1>3. 

To prove (c), we return to the identity (3), with g E !/" . Insert 
the inversion formula (1)  into (3) and use Fubini's theorem, to obtain 

(7) i fo {} dm. = i f {} dm. 
Rn Rn 

(g E Y.). 

By (b), the functions {j cover all of Y • .  Since !?&(R") c Y. , (7) implies 
that 

(8) i (f0 -f)</> dm. = 0 
R• 

for every <P E !?&(R"), hence (by a uniform approximation described in 
Exercise 1 of Chapter 6) for every continuous <P with compact 
support. It follows that fo - f = 0 a. e. I I I I 

7.8 Theorem Iff E Y. and g E Y. , then 

(a) f * g E Y. , and 
(b) (fg)" = l * {j. 

PROOF. By (c) of Theorem 7.2, (f * g) " = J {}, or 

(1) <l>(f * g) = <I>f . <l>g, 
in the notation used in the proof of (b) of Theorem 7.7. With/ and {j in 
place off and g, (1) becomes 

(2) <l>(j * {}) = <1>2f ·  <1>2g =Jg = (Jgt = <1>2(/g). 

Now apply <1>- 1 to both sides of (2) to obtain (b). Note that fg E Y. ; 
hence (b) implies that / * {j E Y. , and this gives (a), since the Fourier 
transform maps Y. onto Y. . /Ill 

7.9 The Plancherel theorem There is a linear isometry 'I' of I3(R") onto 
I3(R") which is uniquely determined by the requirement that 

'l'f = J for every f E Y • .  

Observe that the equality 'l'f = J extends from Y. to L1 n /3, since Y. 
is dense in I3 as well as in L1 • This gives consistency : The domain of 'I' is /3, 
J was defined in Section 7. 1 for all f E L\ and 'l'f = J whenever both defini
tions are applicable. Thus 'I' extends the Fourier transform from L1 n I3 to 
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!3. This extension 'I' is still called the Fourier transform (sometimes the 
Fourier-Plancherel transform), and the notation/will continue to be used in 
place of 'l'f, for any f E I3(R"). 

PROOF. Iff and g are in Y" , the inversion theorem yields 

r fg dm. = r g(x) dm.(x) r /(t)eix . t dm.(t) 
JRn JRn JRn 

= r /(t) dm.(t) r g(x)eix . t dm.(x). 
JRn JRn 

The last inner integral is the complex conjugate of g(t). We thus get 
the Parseval formula 

(1) r f g dm. = r 1 g dm. 
JRn JRn 

(f, g E Y.). 

If g = f, ( 1) specializes to 

(2) 11 ! 11 2 = 1 1 ] 11 2 (f E Y.). 
Note that Y. is dense in I3(R"), for the same reason that Y. is 

dense in L1(R"). Thus (2) shows that f--> J is an isometry (relative to 
the !3-metric) of the dense subspace Y. of I3(R") onto Y • .  (The map
ping is onto by the inversion theorem.) It follows, by elementary 

' 

metric space arguments, that f--> f has a unique continuous extension 
'I' :  I3(R") --> I3(R") and that this 'I' is a linear isometry onto I3(R"). 
Some details of this are given in Exercise 1 3. /Ill 

It should be noted that the Parseval formula (1) remains true for arbi
trary Jand g in I3(R"). 

That the Fourier transform is an /3-isometry is one of the most 
important features of the whole subject. 

Tempered Distributions 

Before we define these, we establish the following relation between Y. and 
�(R"). 

7.10 Theorem 

(a) �(R") is dense in Y • .  

(b) The identity mapping of�(R") into Y. is continuous. 

These statements refer, of course, to the usual topologies of �(R") and 
Y" , as defined in Sections 6.3 and 7 .3. 
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PROOF. (a) Choose f E Y" , t/1 E !?&(R") so that t/1 = 1 on the unit ball of 
R", and put 

(1) f,.(x) = f(x)t/l(rx) (x E R", r > 0). 

Then f.. E !?&(R"). If P is a polynomial and IX is a multi-index, then 

P(x)Da(f-f,)(x) = P(x) L Cap(Da-Pf)(x)r1PIDP[1 - t/l](rx). 

Our choice of t/1 shows that DP[1 - t/1 ](rx) = 0 for every multi-index f3 
when l x l -� 1jr. Since f E Y. , we have P · Da - Pf E C0(R") for all 
f3 < IX. It follows that the above sum tends to 0, uniformly on R", when 
r --+ 0. Thus f.. --+f in Y" , and (a) is proved. 

(b) If K is a compact set in R", the topology induced on !?&K by 
Y" is clearly the same as its usual one (as defined in Section 1 .46), 
since each ( 1  + l x l 2t is bounded on K. The identity mapping of !?&K 
into Y. is therefore continuous (actually, a homeomorphism), and 
now (b) follows from Theorem 6.6. /Ill 

7.1 1 Definition If i :  !?&(R") --+ Y. is the identity mapping, if L is a con
tinuous linear functional on Y" , and if 

(1) 

then the continuity of i (Theorem 7 . 10) shows that uL E !?&'(R"); the dense
ness of !?&(R") in Y. shows that two distinct L's cannot give rise to the same 
u. Thus (1) describes a vector space isomorphism between the dual space Y� 
of Y" , on the one hand, and a certain space of distribution on the other. 
The distributions that arise in this way are called tempered : 

The tempered distributions are precisely those u E !?&'(R") that have con
tinuous extensions to Y" . 

In view of the preceding remarks, it is customary and natural to iden
tify uL with L. The tempered distributions on R" are then precisely the 
members of Y� . 

The following examples will explain the use of the word " tempered " 
in this connection ; it indicates a growth restriction at infinity. (See also 
Exercise 3.) 

7.12 Examples (a) Every distribution with compact support is tempered. 
Suppose K is the compact support of some u E !?&'(R"), fix t/1 E !?&(R") so that 
t/1 = 1 in some open set containing K, and define 

( 1 )  it(f) = u( !/If) (f E Y.). 
If fi --+  0 in Y. , then all D); --+ 0 uniformly on R", hence all Da(t/lfi) --+  0 uni
formly on R", so that !/Iii --+ 0 in !?&(R"). It follows that it is continuous on 
Y" . Since it(</>) = u( </>) for 4> E !?&(R"), it is an extension of u. 
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(b) Suppose /1- is a positive Borel measure on R" such that 

� (1 + l x l 2) -k dJi(X) < 00 

JR• 
for some positive integer k. Then Ji is a tempered distribution. The assertion 
is, more explicitly, that the formula 

(3) Af = [ fd!i JR• 
defines a continuous linear functional on Y" . 

To see this, suppose/; --. 0 in Y" . Then 

(4) e; = sup (1 + I x l2t I /;(x) I --. 0. 
x e R" 

Since I A/; I is at most e; times the integral in (2), A/; --. 0. This proves the 
continuity of A. 

(c) Suppose 1 s p < oo, N > 0, and g is a measurable function on R" 
such that 

(5) r I ( 1  + I  X 1 2) -Ng(x) IP dm.(x) = c < 00 .  

JR• 
Then g is a tempered distribution. 

As in (b), define 

(6) Af= ( fg dm • .  

JR• 
Assume first that p > 1 ;  let q be the conjugate exponent. Then Holder's 
inequality gives 

(7) I Af I < Cl fp{l.l ( 1  + I X l 2tf(x) lq dm.(x) r fq 

< C11P B1 1q sup I (1 + I x I2)M f(x) I ,  
X e- Rn 

where M is taken so large that 

r ( 1  + I X I 2)<N-M)q dm.(x) = B < 00 .  

JR• 
The inequality (7) proves that A is continuous on Y • .  The case p = 1 is 
even easier. 

(d) It follows from (c) that every g E E'(R") (1 < p < oo) is a tempered 
distribution. So is every polynomial and, more generally, every measurable 
function whose absolute value is majorized by some polynomial. 
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7.13 Theorem If ct. is a multi-index, P is a polynomial, g E Y" , and u is a 
tempered distribution, then the distributions Dau, Pu, and gu are also tem
pered. 

PROOF. This follows directly from (b) of Theorem 7.4 and the defini
tions 

(Dau)(f) = ( - l) ia lu(Dj), 

(Pu)(f) = u(Pf), 
(gu)(f) = u(gf). 

7.14 Definition For u E Y� , define 

(1 )  u(<f>) = u(<$) (</> E [fl.). 

/Ill 

Since <P ->  <f, is a continuous linear mapping of Y. into Y" [(d) of Theorem 
7.4], and since u is continuous on Y" , it follows that u E Y� . 

We have thus associated with each tempered distribution u its Fourier 
transform u, which is again a tempered distribution. Our next theorem will 
show that the formal properties of Fourier transforms of rapidly decreasing 
functions are preserved in the larger setting of tempered distributions. 

But first there arises a consistency question that ought to be settled. If 
fE  L1(R"), thenfmay also be regarded as a tempered distribution, say u1 , so 
that two definitions of the Fourier transform are available, namely, (c) of 
Section 7.1 and Definition 7.14. The question is whether they agree, i.e., 
whether the distribution (u 1 )" corresponds to the function J The answer is 
affirmative, because 

for every <P E Y •. The third of these equalities is the identity (3) of Section 
7.7; the others are definitions. 

Since I3(R") c Y� , the · same question arises for the Fourier
Plancherel transform. The answer is again affirmative, by the same proof, 
since the identity J f <f, = J J<P persists for f E I3(R") and <P E Y" . 

7.15 Theorem 

(a) The Fourier transform is a continuous, linear, one-to-one mapping of Y� 
onto Y� , of period 4, whose inverse is also continuous. 

(b) Ifu E Y� and P is a polynomial, then 
(P(D)u)" = Pu and (Pu)" = P( - D)u. 
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Note that these are the analogues of (b) of Theorem 7.7 and (c) of 
Theorem 7.4. The topology to which (a) refers is the weak*-topology that 
Y" induces on Y� . Note also that the differential operators P(D) and 
P( - D) are defined in terms of D a , not Da; see (d) of Section 7 . 1 .  

PROOF. Let W be a neighborhood of 0 in Y� . Then there exist func
tions </>1, . . .  , <Pk E Y" such that 

(1) {u E Y� : I u(</>;) 1 < 1 for 1 < i < k} c W. 

Define 

(2) V = {u E Y� : I u($;) 1 < 1 for 1 < i < k}. 

Then V is a neighborhood of 0 in Y� , and since 

(3) u(</>) = u($) (</> E Y" , u E Y�), 
we see that u E W whenever u E V. This proves the continuity of <1>, 
where we write <I>u = ft. Since <I> has period 4 on Y" , (3) shows that <I> 
has period 4 on Y� , that is, that <l>4u = u for every u E Y� . Hence <I> is 
one-to-one and onto, and since <1>- 1 = <1>3, <1>- 1 is continuous. 

Statement (b) follows from (c) of Theorem 7.4 and from Theorem 
7. 13, by the computations 

(P(D)u)"(</>) = (P(D)u)($) = u(P( - D)c,b) 
= u((P<f>)") = u(P<f>) = (Pu)(</>) 

and 

(P( - D)u)(</>) = u(P(D)</>) = u((P(D)<f>)") 
= u(Pc,b) = (Pu)($) = (Pu)" (<f>), 

where 4> is an arbitrary function in Y" . Ill/ 

7.16 Examples We saw in (d) of Section 7. 1 2  that polynomials are tem
pered distributions. Their Fourier transforms are easily computed. We 
begin with the polynomial 1 ;  regarded as a distribution on R", 1 acts on test 
functions 4> by the formula 

(1) 

Hence 

(2) 

1(</>) = 1 1 4>  dm" = l 4> dm" . 
Rn Rn 

l(¢) = 1(<$) = I c,b dm" = ¢(0) = b(<f>), 
JR• 
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where {J is the Dirac measure on R". Likewise, 

(3) 1>{¢) = b($) = $(0) = i <P dm. = 1(¢). 
R• 

Thus (2) and (3) give the results 

(4) and 

If P is now an arbitrary polynomial on R", and if we apply (b) of 
Theorem 7. 1 5  with u = {J and with u = 1 ,  the results in (4) show that 

(5) (P(D){J)" = P and P = P( - D)b. 
The two formulas in (4) [as well as those in (5)] can also be derived 

from each other by the inversion theorem, which may be stated for tem
pered distributions in the following way : 

If u E 9'� , then ( u)" = u, where u is defined by 
(6) u(<f>) = u(cP) 

The proof is trivial, since ($)" = cP, by (a) of Theorem 7.7 : 

(u)" (<f>) = u($) = u(($)") = u(cP) = u(<f>). 

Note that J = b. 
If we combine (5) with Theorem 6.25, we find that a distribution is the 

Fourier transform of a polynomial if and only if its support is the origin (or 
the empty set). 

The following lemma will be used in the proof of Theorem 7. 1 9. Its 
analogue, with !?&( R") in place of 9'" , is much easier and was used without 
comment in the proof of Theorem 6.30. 

7.17 Lemma lfw = (1 , 0, . . .  , 0) E R", if</> E Y'. , and if 

(1) A-,(x) 
_

_ 

<f>(x + sw) - <f>(x) 
'I' (x E R", s > 0), e 

then </>, -> 8<f>jox1 in the topology of 9'" , as s -> 0. 

PROOF. The conclusion can be obtained by showing that the Fourier 
transform of </>, - 8<f>j8x1 tends to 0 in Y. , that is, by showing that 

(2) 

where 

(3) , ,, ) exp (isy d - 1 . .,.(y = - zy l e 

as e ->  0, 

(y E R", e > 0). 
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If P is a polynomial and IX is a multi-index, then 

p . Da(t/1, $) = L Cap p . (Da-P¢) . (DP!/1,). 
p ;; a 

A simple computation shows that 

(5) 
syf 

I DPI/I.(y) i < s l y1 l 
�-;IPI - 1 

if I /3 1  = o, 
if l /3 1  = 1 ,  

if l /3 1 > 1 . 

The left side of (4) tends therefore to 0, uniformly on R", as e ->  0. The 
definition of the topology of Y. (Section 7.3) shows now that (2) 
holds. //// 

7.18 Definition If u E Y� and 4> E Y" , then 

(u * </>)(x) = u(rx cp) (x E R"). 

Note that this is well defined, since rx cP E Y. for every x E R". 

7.19 Theorem Suppose 4> E Y. and u is a tempered distribution. Then 

(a) u * </> E C00(R"), and 
Da(u * </>) = (Dau) * </> = U * (Da</>) 

for every multi-index IX, 

(b) u * 4> has polynomial growth, hence is a tempered distribution, 
(c) (u * ¢) " = ¢u, 

(d) (u * </>) * t/1 = u * ( 4> * 1/!),for every t/1 E Y" , 

(e) u * ¢ = (<J>u)" .  

PROOF. The second equality in (a) is proved exactly as in Theorem 
6.30, since convolution obviously still commutes with translations. 
This also shows that 

( 1 )  (r - ew - !o) A-) (r - e w  - !o) (u * '�' = u * ¢. 
, e s 

Lemma 7. 1 7  now gives Da(u * ¢) = u * (Da¢) if IX =  ( 1 ,  0, . . .  , 0). Iter
ation of this special case gives (a). 

Let PN(f) denote the norm (1)  of Section 7.3, for f E Y" . The 
inequality 

(2) (x, y E R") 
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shows that 

(3) (x E R",j E  Y.). 

Since u is a continuous linear functional on Y" and since the norms 
PN determine the topology of Y" , there is an N and a C < oo such 
that 

(4) 

see Chapter 1 ,  Exercise 8 .  By (3) and (4), 

()) I (u * <J>)(x) I = I u(rx cP) I < 2N Cp� 4>)( 1 + I x l 2t, 
which proves (b). 

Thus u * 4> has a Fourier transform, in Y� . If t/1 E !?&(R"), with 
support K, then 

(u * <t>Y"(tfr) = (u * 4> )(�/!) = ( (u * <t>Xx)t/1( - x) dm.(x) 
JRn 

= J_Ku[t/1( - x)rx cPJ dm.(x) = u L/(-x)rx cP dm.(x) 

= u((<J> * !/In = u((<J> * t/1)") = u(<f>t/1) 
so that 

(6) (u * <J>)"(tfr) = (<!>u)(tfr). 
In the preceding calculation, Theorem 3.27 was applied to an 

Y .-valued integral, when u was moved across the integral sign. So far, 
(6) has been proved for t/1 E !?&(R"). Since !?&(R") is dense in Y" , the 
Fourier transforms of members of !?&(R") are also dense in Y. , by (b) 
of Theorem 7.7. Hence (6) holds for every t/1 E Y • .  The distributions 
(u * 4>)" and <f>u are therefore equal. This proves (c). 

In the computation that precedes (6), the two end terms are now 
seen to be equal for any t/1 E Y" . Hence 

(7) (u * 4>)(1/1) = u((<J> * !/It), 
which is the same as 

(8) ((u * 4>) * t/1)(0) = (u * (4> * t/1))(0). 
If we replace t/1 by r x t/1 in (8), we obtain (d). 

Finally, (ft * ¢)" = cPU = (<J>u)V, by (c) above and (6) of Section 
7. 1 6 ;  this gives (e), since (<J>ut = ((<J>u)")" . /Ill 

Paley-Wiener Theorems 

One of the classical theorems of Paley and Wiener characterizes the entire 
functions of exponential type (of one complex variable), whose restriction to 
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the real axis is in !3, as being exactly the Fourier transforms of !3-functions 
with compact support;  see, for instance, Theorem 19.3 of [23]. We shall 
give two analogues of this (in several variables), one for C00-functions with 
compact support and one for distributions with compact support. 

7.20 Definitions If n is an open set in (/;", and if f is a continuous 
complex function in n, then f is said to be holomorphic in n if it is holo
morphic in each variable separately. This means that if (a 1 , • • •  , a.) E n and 
if 

g�A) = f(a 1, · · · , a; - 1 , ai + A, at + 1 ' · . · , a.), 
each of the functions g1 , • • •  , g. is to be holomorphic in some neighborhood 
of 0 in q;. A function that is holomorphic in all of (/;" is said to be entire. 

Points of (/;" will be denoted by z = (z 1 , . . .  , z.), where zk E q;. If zk = 
xk + iyk , x = (x1, . . .  , x.), y = (y1 , . . .  , Y.), then we write z = x + iy. The 
vectors 

x = Re z and y = Im z 

are the real and imaginary parts of z, respectively ; R" will be thought of as 
the set of all z E (/;" with Im z = 0. The notations 

l z l = ( l z1 l 2 + · · ·  + l z. l 2) 112 

I Im z I = (yf + · · · + y;) 112 

z · t = z t + · · · + z  t 1 1 " " 
ez(t) = exp (iz · t) 

will be used for any multi-index IX and any t E R". 

7.21 Lemma Iff is an entire function zn (/;" that vanishes on R", then 
f =  0. 

PROOF. We consider the case n = 1 as known. Let Pk be the following 
property off :  If z E (/;" has at least k real coordinates, then f(z) = 0. 
P. is given ; P0 is to be proved. Assume 1 < i < n and P; is true. Take 
a1 , • • •  , a; real. The function gi considered in Section 7.20 is then 0 on 
the real axis, hence is 0 for all A E q;. It follows that P;_ 1  is true. //// 

In the following two theorems, 

r B = { x E R" : I x I < r} . 
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7.22 Theorem 

(a) If 4> E !?&(R") has its support in rB, and if 

f(z) = i <J>(t)e -iz · 1 dm.(t) 
Rn 

( 1 )  (z E (/;"), 

then f is entire, and there are constants YN < oo such that 
(2) (z E (/;", N = 0, 1 ,  2, . . .  ). 

(b) Conversely, if an entire function f satisfies the conditions (2), then there 
exists 4> E !?&(R"), with support in rB, such that ( 1 )  holds. 

PROOF. (a) If t E rB then 

l e- iz · tl = ey · t < eiy ll t i < erf[m zl . 
The integrand in (1 )  is therefore in I!(R"), for every z E (/;", and f is 
well defined on (/;". The continuity off is trivial, and an application of 
Morera's theorem, to each variable separately, shows that f is entire. 
Integrations by part give 

z"f(z) = i (Da </>Xt)e - iz · 1 dm.(t). 
R• 

Hence 

(3) 

and (2) follows from the inequalities (3). 
(b) Supposefis an entire function that satisfies (2), and define 

</>(t) = i f(x)eit · x dm.(x) 
R• 

(4) (t E R"). 

Note first that (1 + I x I  tf(x) is in L1(R") for every N, by (2). Hence 
4> E C00(R"), by the argument that proved (c) of Theorem 7.4. 

Next, we claim that the integral 

(5) f_00

00
f(� + i1J, z2 , • • •  , z.) exp { i[t 1(� + i1J) + t2 z2 + · ·  · + t . z.]} d� 

is independent of 1J, for arbitrary real t 1 , . . .  , t. and complex z2 , • • •  , z • .  

To see this, let r be a rectangular path in the ( � + i17)-plane, with one 
edge on the real axis, one on the line 11 = 171 , whose vertical edges 
move off to infinity. By Cauchy's theorem, the integral of the inte
grand (5) over r is 0. By (2), the contribution of the vertical edges to 
this integral tend to 0. It follows that (5) is the same for 11 = 0 as for 
1J = 1J 1 . This establishes our claim. 
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The same can be done for the other coordinates. Hence we con
clude from (4) that 

(6) </>(t) = i f(x + iy)eir · (x + iy) dm.(x) 
R• 

for every y E R". 
Given t E R", t -:/= 0, choose y = A.t/1 t I ,  where A. > 0. Then 

· 
t · y = A. ! t i , I Y I = A., 

and therefore 

(7) 

l f(x + iy)eit · (x + iy) l < YN(1 + l x i ) -Ne<r - lt i P·, 

I <f>(t) I < YN e<r - lti J.l. i ( 1  + I x 1) -N dm.(x), 
R• 

where N is chosen so large that the last integral is finite. Now let 
A. ->  oo. If I t I > r, (7) shows that <f>(t) = 0. Thus <P has its support in rB. 

Now (1)  follows, for real z, from (4) and the inversion theorem. 
Since both sides of (1) are entire functions, they coincide on ({.", by 
Lemma 7.2 1 .  This completes the proof. //// 

The following remarks will motivate the next theorem. 

Let u be a distribution in R", with compact support. Then u is defined, 
as a tempered distribution, by u(<f>) = u($). However, the definition /(x) = 
J fe _ x dm. , made for f E IJ(R"), suggests that u ought to be a function, 
namely, 

(x E R"), 
because e-X E C00(R") and u( <P) makes sense for every <P E C00(R"), as shown 
by (d) of Theorem 6.24. Moreover, e - z  E C00(R") for every z E ({.", and u(e - z) 
therefore looks like an entire function, whose restriction to R" is ft. 

That all this is correct is part of the content of the next theorem, 
which also characterizes the resulting entire functions by certain growth 
conditions. 

7.23 Theorem 

(a) If u E !?&'(R") has its support in rB, if u has order N, and if 
( 1 )  f(z) = u(e - z) (z E ({."), 
then f is entire, the restriction off to R" is the Fourier transform of u, and 
there is a constant y < oo such that 
(2) I f(z) I < y(1 + I Z lter l lm zl (z E ({."). 
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(b) Conversely, iff is an entire function in (/;" which satisfies (2) for some N 
and some y, then there exists u E �'(R"), with support in rB, such that (1) 
holds. 

Note : The notation u will sometimes be used to denote the extension 
to (/;" given by ( 1). Thus 

for z E (/;". This extension is sometimes called the Fourier-Laplace trans
form of u. 

PROOF. (a) Suppose u E �'(R") has its support in rB. Pick t/1 E �(R") 
so that t/1 = 1 on (r + 1 )B. Then u = t/lu, and (e) of Theorem 7. 1 9  
shows that 

(3) u = (t/lu)" = u * 1/1. 
Thus u E C00(R"). Pick </> E Y" so that <f> = t/1. Then 

(u * (/J)(x) = (u * cp)(x) = u(rx </>) = u((rx ¢)") 

= u(e -x <f>) = u(t/le _x) = u(e -x), 
so that (3) gives 

(4) u(x) = u(e -x) (x E R"). 

Our next aim is to show that the function f defined by (1 )  is 
entire. Choose a E (/;", b E (/;", and put 

(5) g(A.) = f(a + A.b) = u(e -a _ .<b) (A E (/;). 

The continuity off poses no problem : If w ->  z in (/;", then e - w -> e - z  

in C00(R"), and u is continuous on C00(R"). To prove thatfis entire it is 
therefore enough to show that each of the functions g defined by (5) is 
entire. 

Let r be a rectangular path in q;. Since A. -> e -a _ .<b is contin
uous, from q; to C00(R"), the C00(R")-valued integral 

(6) F = Le-a - .<b dA. 

is well defined. Evaluation at any t E R" is a continuous linear func
tional on C00(R"). It therefore commutes with the integral sign. Hence 

F(t) = fre-a - .<b(t) dA. = Le- ia · •e - i(b · r ).< dA. = 0. 
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Thus F = 0, and (6) gives 

0 = u(F) = L u(e - a - .<b) d). = Lg().) d).. 

By Morera's theorem, g is entire. 
The proof of part (a) will be completed by proving (2). Choose 

an auxiliary function h on the real line, infinitely differentiable, such 
that h(s) = 1 when s < 1 and h(s) = 0 when s > 2, and associate with 
each z E (/;" (z #- O) the function 

(7) (t E R"). 

Then <f>z E �(R"). Since the support of u is m rB and 
h( l t l l z l - r l z l )  = 1 if l t l < l z l - 1 + r, comparison of ( 1 )  and (7) 
shows that 

(8) f(z) = u( <f>z). 

Since u has order N, there is a Yo < oo such that I u(<f>) I < Yo ii </> II N 
for all 4> E �(R"), where 11 </> II N is as in ( 1 )  of Section 6.2 ;  see (d) of 
Theorem 6.24. Hence (8) gives 

(9) l f(z) l < Yo ll <f>z ii N ·  
On the support of <f>z , I t I < r + 2/ l z I ,  so that 

( 10) 

If we now apply the Leibniz formula to the product (7) and use 
( 10), (9) implies (2). 

This completes the proof of part (a). 
(b) Sincefnow satisfies (2), we have 

( 1 1 )  l f(x) l < y( 1 + l x l t  (x E R"). 

The restriction off to R" is therefore in Y� and is the Fourier trans
form of some tempered distribution u. 

Pick a function h E �(R"), with support in B, such that S h = 1 ,  
define h.(t) = s- "h(tjs), for s > 0, and put 

( 1 2) J.(z) = f(z)h.(z) (z E (/;"), 

where h, now denotes the entire function whose restriction to R" is the 
Fourier transform of h, . Statement (a) of Theorem 7.22, applied to h, , 
leads to the conclusion that f. satisfies (2) of Theorem 7.22 with r + s 
in place of r. Therefore (b) of Theorem 7.22 implies that f. = ¢, for 
some </>, E �(R") whose support lies in (r + s)B. 

• A 

Constder some t/1 E Y. such that the support of t/1 does not 
intersect rB. Then t/1¢, = 0 for all sufficiently small s > 0. Since 
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ft/1 E IJ(R") and h,(x) = h(sx) --> 1 boundedly on R", we conclude that 

u(ffr) = u(t/1) = IN dm. = lim f!, t/1 dm. 
t-+0 

= lim f ¢, t/1 dm. = lim f tfr<P, dm. = 0. 
e�o e�o 

Hence u has its support in rB. 
Now we see that z -->  u(e - z) is an entire function, and since ( 1 )  

holds for z E R" (by the choice of u), Lemma 7.21 completes the proof 
� (�. w 

Sobolev's Lemma 

If Q is a proper open subset of R", no Fourier transform has been defined 
for functions whose domain is !l or for distributions in !l. Nevertheless, 
Fourier transform techniques can sometimes be used to attack local prob
lems. Theorem 7.25, known as Sobolev's lemma, is an example of this. 

7.24 Definitions A complex measurable function J, defined in an open 
set !l c R", is said to be locally I3 in !l if SK I f 1 2 dm. < oo for every 
compact K c !l. 

Similarly, a distribution u E !?&'(!l) is locally I3 if there is a function g, 
locally I3 in n, such that u(</>) = Sn g<f> dm. for every <P E !?&(!l). To say that 
a function f has a distribution derivative D) which is locally I3 refers to the 
distribution D) and means, explicitly, that there is a function g, locally !3, 
such that 

fng<J> dm. = ( - l)ial fnjDa<J> dm. 

for every <P E !?&(!l). A priori, this says nothing about the existence of D) in 
the classical sense, in terms of limits of quotients. 

On the other hand, the class c<Pl(Q) consists, for each nonnegative 
integer p, of those complex functions f in Q whose derivatives D) exist in 
the classical sense, for each multi-index IX with I IX  I < p, and are continuous 
functions in n. 

We shall write D� for the differential operator (8j8xf 

7.25 Theorem Suppose n, p, r are integers, n > 0, p > 0, and 

(1) 
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Suppose f is a function in an open set n c R" whose distribution derivatives 
Dffare locally I3 in n, for 1 < i < n, 0 < k < r. 

Then there is a function fo E c<Pl(n) such that f0(x) = f(x) for almost 
every X E n. 

Note that the hypothesis involves no mixed derivatives, i.e., no terms 
like D1D2 f The conclusion is that f can be " corrected " so as to be in 
c<Pl(n), by redefining it on a set of measure 0. 

Note also, as a corollary, that if all distribution derivatives off are 
locally J3 in n, thenf0 E C00(n). 

PROOF. By hypothesis, there are functions 9ik , locally J3 in n, that 
satisfy 

(2) Lgik 4> dm,. = ( - 1 )k l JD74> dm,. 

for 1 s i < n, 0 s k < r. 

[<J> E £&(n)], 

Let w be an open set whose closure K is a compact subset of n. 
Choose t/1 E !?&(n) so that t/1 = 1 on K, and define F on R" by 

F(x) = {ot/l(x)f(
x) if x E n, 

if x rt n. 
Then F E  (!3 n IJ )(R"). 

In n, the Leibniz formula gives 

(3) D{ F = i: (r)(vr -'t/I)(JY;f) = i: (r\D'i-'t/1)9; . .  
s= O  S s = O  sf 

In the complement n0 of the support of t/1, D{ F = 0. These two dis
tributions coincide in n n no . Hence D{ F, originally defined as a 
distribution in R", is actually in I!(R"), for 1 < i s n, because the func
tions (D{-'t/l)gis are in I!(n). [Having compact support, D'i F is there
fore also in L1(R").] 

The Plancherel theorem, applied to F and to IY;_ F, . . .  , D� F, 
shows now that 

(4) 

and 

(5) ( 1  < i < n). 
Since 

(6) ( 1  + l y l )2' < (2n + 2)'( 1 + yf' + · · ·  + y;'), 
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where I y I = (yf + · · · + y;) 1 12, (4) and (5) imply 

(7) 
( (l + I y I )2' I F(y) 1 2 dm.(y) < oo .  
JR• 

If J denotes the integral (7), and if a. is the (n - I)-dimensional 
volume of the unit sphere in R", the Schwarz inequality gives 

{{y + I Y IY I F(y) l dm.(y)f < 1 {y + l y l fp- 2' dm.(y) 

= Ja. LXl(l + t)2p- 2rt• - 1 dt < 00, 

since 2p - 2r + n - 1 < - 1 . We have thus proved that 

(8) 

Define 

(9) 

( (l + I Y I Y I F(y) l dm.(y) < oo .  
JR• 

F w(x) = 
( 

F(y)eix · Y dm.(y) 
JR• 

(x E R"). 

By (c) of the inversion theorem 7.7, F w = F a.e. on R". Moreover, (8) 
implies that ya F(y) is in IJ whenever I IX I < p. Iteration of the proof of 
(c) of Theorem 7.4 leads therefore to the conclusion 

( 10) F w E c<Pl(R"). 
Our given function f coincides with F in w. Hence f = F w a. e. 

m w. 
If w' is another set like w, the preceding proof gives a function 

F w ' E c<P)(R"), which coincides with f a.e. in w'. Hence F w ' = F w in 
w' n w. The desired function fo can therefore be defined in n by 
settingf0(x) = F w(x) if x E w. //// 

Exercises 

1. Suppose A is an invertible linear operator on R", f e V(R"), and g(x) = f(Ax). 
Express g in terms of J This generalizes (d) of Theorem 7.2. 

2. Is the topology of !/" induced by some invariant metric which turns the Fourier 
transform into an isometry of !/" onto !/"? 

3. Suppose f(x) = ex, g(x) = ex cos (e1, on the real line. Show that g is a tempered 
distribution but that f is not. 

4_ By Exercise 3 there exist distributions in R" which are not tempered. Such dis
tributions are continuous linear functionals on !0(R") which have no continuous 



CHAPTER 7 :  FOURrER TRANSFORMS 205 

linear extension to !/" . Explain why this does not contradict the Hahn-Banach 
theorem. 

5. (a) Construct a sequence in �(R") which converges to 0 in the topology of !/" 
but not in that of �(R"). 

(b) Construct a sequence of polynomials which converges in the topology of 
�'(R1) but not in that of YJ.. 

6. Prove that the operations listed in Theorem 7. 13 are continuous mappings of !/� 
· rP' mto J • •  

7. If u e !/� , prove that 

(rx ut = e_xu 
for every x e R". 

and 

8. Suppose f e L1(R"), f #- 0, A. is a complex number, and J = A.f What can you say 
about A.? 

9. Prove (a) of Theorem 7.8 directly (without using Fourier transforms). 
10. The Fourier transform of a complex Borel measure Jl on R" is customarily 

defined to be the function fJ. given by 

{J.(x) = r e-ix . t dJl(t) JR• (x E R"). 

Of course, Jl is also a tempered distribution, and as such its Fourier transform 
was defined in Section 7.14. Show that these two definitions are consistent. 
Prove that each fJ. is bounded and uniformly continuous. 

11.  Suppose A : !/" -> C(R") is continuous, linear, and rx A = Arx for every x e R". 
Does it follow that there exists u e !/� such that 

A</J = u * </J 

for every 4> e !/"? 
12. If { h1} is an approximate identity, as in Definition 6.3 1, and u e !/� , does it 

follow that u * hi -+ u asj -+ oo, in the weak*-topology of !/�? 
13. Suppose X and Y are complete metric spaces, A is dense in X, f :  A -+ Y is 

uniformly continuous. 
(a) Prove thatfhas a unique continuous extension F :  X -+ Y. 
(b) Iff is an isometry, prove that the same is true of F, and prove that F(X) is 

closed in Y. 
(This was used in the proof of the Plancherel theorem ; see also Exercise 19, 
Chapter 1 .) 

14. Suppose F is an entire function in ft", and suppose that to each e > 0 there 
correspond an integer N(e) and a constant y(e) < oo such that 

I F(z) I < y(e)(1 + I z t<•>e•llm zl (x e (/:"). 
Prove that F is a polynomial. 

15. Suppose/is an entire function in {/:", N is a positive integer, r > 0, and 

l f(z) l < ( 1  + l z l terllm zl 
l f(x) l ::;; 1 

for all z e (/:", 
for all x e R". 
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Prove that then 

I f(z) I < e•llm •I for all z E (/:". 

Suggestion : Fix z = x + iy E (/:" ; define 

g.(.A.) = (1 _ isA)-N - teirlyllj(x + .A.y) 

for A E (/:, s > 0, and apply the maximum modulus theorem to a large semi
circular region in the upper half-plane to deduce that I g8(i) I < 1 .  Let s -->  0. 

16. In (b) of Theorem 7.23 it is not asserted that u has order N. The following 
example shows that this is not always true. 

Let J1 be the Borel probability measure on R3 which is concentrated on 
the unit sphere S2 and which is invariant under all rotations of S2• Compute (by 
using spherical coordinates) that 

Put u = D 1J1. Then 

sin I x I  
fl(x) = 

I x I  

Deduce from Exercise 15 that 

although u is not a distribution of order 0. (Its order is 1 .) Find an explicit 
formula for the entire function u(e _ ,), z E (/:3 . 

17. Suppose u is a distribution in R", with compact support K, whose Fourier trans
form fi is a bounded function on R". 
(a) Assume n = 1 or n = 2, and prove that 1/Ju = 0 for every 1/1 E C"'(R") that 

vanishes on K. 
(b) Assume n = 2, and assume that there is a real polynomial P, in two vari

ables, that vanishes on K. Prove that Pu = 0 and that fi therefore satisfies 
the partial differential equation P( - D)fi = 0. For example, when K is the 
unit circle, then 

u + M = 0, 

where � = [Jl /oxi + o2 ;ax� is the Laplacian. 
(c) Show, with the aid of Exercise 16 and the polynomial 1 - xi - x� - xL 

that (b), hence also (a), becomes false with n = 3 in place of n = 2. 
(d) Assume n = 1, f E L1(R), J = 0 on K, and J satisfies a Lipschitz condition of 

order t, that is, I /(t) - /(s) I < C I t  - s 1 1 12• Prove that. then 

I: f(x)fi(x) dx = 0. 

Suggestion : For any n, let H, be the set of all points outside K whose 
distance from K is less than e > 0. Let {h,} be an apprcximate identity, as in the 
proof of (b) of Theorem 7.23, use the Plancherel theorem to obtain 

l lu * h, l l 2 < ll fi l l oo e- n/2 l l h t ll 2 , 
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l u(cf>l l  < ll u l l oo l lh 1 11 2 li��nf {e - •  L l cf> l2 dm.r2 

for any 4> E �(R") that vanishes on K. 
This yields (a). A slight modification yields (d); (b) follows from (a). 

18. Was it necessary to introduce the function 1/J into the proof of Theorem 7.25?  
Could the proof have been simplified by setting F(x) = f(x) on K, F(x) = 0 off 
K ?  

19. Show that the hypotheses of Theorem 7.25 imply that D"f is locally I3 for every 
multi-index ex with I ex I < r. 

20. Letf E I3(R2) be the continuous function whose Fourier transform is 

/(y) = ( 1  + l y l ) - 4{log (2 + I Y I W 1 

Since I y 13f(y) is in I3(R2), Theorem 7.25 implies that / E c<1 l(R2). Show that the 
stronger conclusion/ E C(2)(R2) is false, by proving that 

f(h, 0) + f( - h, 0) - 2f(O, 0) 
h2 --> - oo as h --> 0. 

This shows that > cannot be replaced by > in ( 1 )  of Theorem 7.25. 
21. Suppose u is a distribution in R" whose first derivatives D 1 u, . . .  , D. u are func

tions in L2(R"). Prove that u is also a function and that u is locally I3. (Show that 
" locally " cannot be omitted in the conclusion.) Hint : u is in fact the sum of an 
!3-function and an entire function. 

When n = 1 , show that u is actually a continuous function. Show that this 
stronger conclusion is false when n = 2. For example, the gradient of the func
tion 

u(rei8) = log log ( 2 + �) 
Is m I3(R2). See Exercise 1 1 , Chapter 8, for the same result under weaker 
hypotheses. 

22. Periodic distributions, or distributions on a torus T", have Fourier series whose 
theory is somewhat simpler than that of Fourier transforms. This is mainly due 
to the compactness of T" : Every distribution on T" has compact support. In 
particular, tempered distributions are nothing special. 

Prove the various assertions made in the following basic outline : 

T" = {(e ix
', . . .  , eix

") : xj real}. 

Functions 4> on T" can be identified with functions (i> on R" that are 2n-periodic 
in each variable, by setting 

,T,( ) _ d..( ix1 ix,) '+' X 1 , . . .  , Xn - '+' e , . . .  , e . 

Z" is the set (or additive group) of n-tuples k = (k1 , • • •  , k.) of integers kj . For 
k E Z", the function ek is defined on T" by 

( ix1 ix,) ik · x { "(k + k )} ek e , . . .  , e = e = exp 1 1 x 1 · · · + n x. . 
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u. is the Haar measure of T". If cf> E L1(u.), the Fourier coefficients of cf> are 

(k E Z"). 

£C(T") is the space of all functions cf> on T" such that 4> E C"'(R"). If cf> E £C(T") 
then 

{ } 1 /2 
I ( 1  + k . k)N i ci)(k) l 2 < 00 

k E Z" 
for N = 0, 1 ,  2, . . . .  These norms define a Frechet space topology on £C(T"), 
which coincides with the one given by the norms 

max sup I (Da(fi)(x) I (N = 0, 1 , 2, . . .  ). 
lal s N  x ER" 

£C'(T") is the space of all continuous linear functionals on £C(T") ;  its members 
are the distributions on T". The Fourier coefficients of any u E £C'(T") are defined 
by 

u(k) = u(e - k) (k E Z"). 

To each u E £C'(T") correspond an N and a C such that 

l u(k) l < C(1 + l k i )N (k E Z"). 

Conversely, if g is a complex function on zn that satisfies I g(k) I < C( 1 + I k I )N 
for some C and N, then g = u for some u E £C'(T"). 

There is thus a linear one-to-one correspondence between distributions 
on T", on one hand, and functions of polynomial growth on Z", on the other. 

If E1 c E2 c E3 c · · · are finite sets whose union is Z", and if u E £C'(T"), 
the " partial sums " 

converge to u as j --> oo, in the weak*-topology of £C'(T"). 
The convolution u * v of u E £&'(T") and v E £C'(T") is most easily defined 

as having Fourier coefficients u(k)v(k). The analogues of Theorems 6.30 and 6.37 
are true; the proofs are much simpler. 

23. Modify the proof of Theorem 7.25 so that Fourier series are used in place of 
Fourier transforms, by replacing F by a suitable periodic function. 

24. Put c = (2/n)1 12 . For j = 1, 2, 3, . . .  , define g1 on the real line by 

{c/t 
g(t) = 

0 
if 1 /j < I t I < j 
otherwise. 

Prove that {g1} is a uniformly bounded sequence of functions which converges 
pointwise, as j --> oo. If f E I3(R1), it follows that f * g1 converges, in the I3-
metric, to a function Hf E I3. This is the Hilbert transform off; formally, 

(Hf)(x) = � I: :�) 
t 

dt. 
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(The integral exists, in the principal value sense, for almost every x, but this is 
not so easy to prove; iff satisfies a Lipschitz condition of order 1, for instance, 
the proof is trivial.) Prove that 

I IH! II 2 = ll f l l 2 and H(Hf) = -f, 

for every f E L2(R 1 ). Thus H is an 13-isometry, of period 4. 
Is it true that Hf E .'1' 1 iff E .'1' 1 ? 



CHAPTER 

APPLICATIONS TO 
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EQUATIONS 

Fundamental Solutions 

8.1 Introduction We shall be concerned with linear partial differential 
equations with constant coefficients. These are equations of the form 

(1 )  P(D)u = v 

where P is a nonconstant polynomial in n variables (with complex 
coefficients), P(D) is the corresponding differential operator (see Section 7. 1), 
v is a given function or distribution, and the function (or distribution) u is a 
solution of ( 1 ). 

A distribution E E !?C'(W) is said to be a fundamental solution of the 
operator P(D) if it satisfies ( 1 )  with.v = b, the Dirac measure : 

(2} P(D)E = b. 
The basic result (Theorem 8.5, due to Malgrange and Ehrenpreis) that will 
be proved here is that such fundamental solutions always exist. 

Suppose we have an E that satisfies (2), suppose v has compact 
support, and put 

(3) u = E * v. 

210 
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Then u is a solution of ( 1 ), because 

(4) P(D)(E * v) = (P(D)E) * v = {J * v = v, 
by Theorems 6.35 and 6.37. 

The existence of a fundamental solution thus leads to a general exis
tence theorem for the equation ( 1 ) ;  note also that every solution of ( 1 )  
differs from E * v by a solution of the homogeneous equation P(D)u = 0. 
Moreover, (3) gives some additional information about u. For instance, if 
v E !?C(R"), then u E C00(R"). 

It may of course happen that the convolution E * v exists for certain v 
whose support is not compact. This raises the problem of finding E so that 
its behavior at infinity is well under control. The best possible result would 
of course be to find an E with compact support. But this can never be done. 
If it could, E would be an entire function, and (2) would imply PE = 1 .  But 
the product of an entire function and a polynomial cannot be 1 unless both 
are constant. 

However, the equation PE = 1 can sometimes be used to find E, 
namely, when 1/P is a tempered distribution ; in this case, the Fourier trans
form of 1 /P furnishes a fundamental solution which is a tempered distribu
tion. For examples of this, see Exercises 5 to 9. 

Another related question concerns the existence of solutions of ( 1 )  
with compact support if the support of v is compact. The answer (given in 
Theorem 8.4) shows very clearly that it is not enough to study P on R" in 
problems of this sort but that the behavior of P in the complex space (/;" is 
highly significant. 

8.2 Notations T" is the torus that consists of all points 

(1) w = (e;rh , . . .  , ei9n) 
in {/;", where (}1 , • • •  , fJn are real ; u. is the Haar measure of T", that is, 
Lebesgue measure divided by (2nt. 

A polynomial in (/;", of degree N, is a function 

(2) P(z) = I, c(a)z� (z E (/;"), 
Ia! ,; N  

where IX ranges over multi-indices and c(a) E t;;. If (2) holds and if c(a) # 0 
for at least one IX with I a  I = N, P is said to have exact degree N. 

8.3 Lemma If P is a polynomial in (/;", of exact degree N, then there is a 
constant A < oo ,  depending only on P, such that 

( 1 )  l f(z) l < Ar-N i l (fP)(z + rw) l du.(w) 
Tn 

for every entirefunctionfin ({",for every z E (/;", and for every r > 0. 
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PROOF. Assume first that F is an entire function of one complex vari
able and that 

N 
(2) Q(A.) = c fl (A. + ai) (A E (/;). 

i = I  

Put Qo(A.) = c TI (1 + ai A.). Then cF(O) = (FQo)(O). Since I Qo I = I Q I 
on the unit circle, it follows that 

(3) 
1 J" I cF(O) I < 

2n _ , 1 (FQ)(ei9) I d8. 

The given polynomial P can be written in the form P = 
P0 + P1 + · · · + PN , where each Pi is a homogeneous polynomial of 
degree j. Define A by 

(4) 

This integral is positive, since P has exact degree N. [See part (b) of 
Exercise 1 .] If z E (/;" and w E T", define 

(5) F(A.) = f(z + rA.w), Q(A.) = P(z + rA.w) (A E (/;). 

The leading coefficient of Q is rNP�w). Hence (3) implies 

(6) 
1 J" rN I P �w) I I  f(z) I < 

2n _ " I (JP)(z + rei9w) I d(). 

If we integrate ( 6) with respect to (J" , we get 

(7) 
1 J" i . l f(z) l < Ar -N · - d() I (JP)(z + re'9w) l d(J.(w). 

2n - n  Tn 

The measure (J" is invariant under the change of variables 
w--+  ei9w. The inner integral in (7) is therefore independent of 8. This 
gives ( 1 ). /Ill 

8.4 Theorem Suppose P is a polynomial in n variables, v E !?C'(R"), and v 
has compact support. Then the equation 
( 1 )  P(D)u = v 
has a solution with compact support if and only if there is an entire function g 
in ft" such that 
(2) Pg = v. 

When this condition is satisfied, ( 1 )  has a unique solution u with compact 
support ; the support of this u lies in the convex hull of the support of v. 
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PROOF. If ( 1 )  has a solution u with compact support, (a) of Theorem 
7.23 shows that (2) holds with g = u. 

Conversely, suppose (2) holds for some entire g. Choose r > 0 so 
that v has its support in rB = {x E R" : I x I < r}. By Lemma 8.3, (2) 
implies 

(3) l g(z) l < A l l v(z + w) l da.(w) Jr. 
(z E (/;"). 

By (a) of Theorem 7.23, there exist N and y such that 

(4) I v(z + w) I < y( 1 + I z + w I t  exp {r I Im (z + w) I } . 

There are constants c1 and c2 that satisfy 

(5) 

and 

(6) I Im (z + w) I < c2 + I Im z I 

for all z E (/;" and all w E T". It follows from these inequalities that 

(7) I g(z) I < B( 1 + I z I t  exp {r I Im z I }  (z E (/;"), 

where B is another constant (depending on y, A, N, c 1 , c2 , and r). By 
(7) and (b) of Theorem 7.23, g = ft for some distribution u with 
support in rB. Hence (2) becomes Pft = v, which is equivalent to (1 ). 

The uniqueness of u is obvious, since there is at most one entire 
function ft that satisfies Pft = v. 

The preceding argument showed that the support Su of u lies in 
every closed ball centered at the origin that contains the support Sv of 
v. Since ( 1 )  implies 

(8) (x E R"), 

the same statement is true of x + Su and x + Sv . Consequently, Su lies 
in the intersection of all closed balls (centered anywhere in R") that 
contain Sv . Since this intersection is the convex hull of Sv , the proof is 
complete. //// 

8.5 Theorem If P is a polynomial in (/;, of exact degree N, and if r > 0, 
then the differential operator P(D) has a fundamental solution E that satisfies 

( 1 )  I E(t/1) 1 < Ar - N L
.
da.(w) l

.
l �(t + rw) l dm.(t) 

for every t/1 E !?C(R"). 
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Here A is the constant that appears in Lemma 8.3. The main point of 
the theorem is the existence of a fundamental solution, rather than the esti
mate ( 1 )  which arises from the proof. 

PROOF. Fix r > 0, and define 

(2) l l t/1 11 = r da.(w) i l l{J(t + rw) l dm.(t). 
JTn Rn 

In preparation for the main part of the proof, let us first show that 

(3) if t/Ji -+ 0 in �(R"). 

Note that l{J(t + w) = (e - w t/J) '(t) if t E R" and w E (/;". Hence 

(4) l l t/1 11 = f da.(w) i I (e - rw t/IY I dm • .  JTn Rn 

If tjJ i -+ 0 in �(R"), all tjJ i have their supports in some compact set K. 
The functions e,w (w E T") are uniformly bounded on K. It follows 
from the Leibniz formula that 

(5) IIDa(e - rw t/1)11 00 < C(K, ct) max I IDPt/lj ll 00 •  p,;, a 
The right side of (5) tends to 0, for every a. Hence, given 8 > 0, there 
exists j0 such that 

(6) (j > j 0 ' w E T"), 

where A = Df + · · · + v; is the Laplacian. By the Plancherel 
theorem, ( 6) is the same as 

i I ( 1  + I t  l 2)"l{Jit + rw) 1 2 dm.(t) < 82, 
R• 

(7) 

from which it follows, by the Schwarz inequality and (2), that 
li t/Ji ll < C8 for all j > j0 , where 

(8) C2 = i ( 1  + l t l 2) - 2" dm.(t) < 00 . 
R• 

This proves (3). 
Suppose now that ¢ E �(R") and that 

(9) t/1 = P(D)¢. 

Then l(J = P$, $ and l{J are entire, hence tjJ determines ¢. In particular, 
¢(0) is a linear functional of t/J, defined on the range of P(D). The crux 
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of the proof consists in showing that this functional is continuous, i.e., 
that there is a distribution u E fi.&'(R") that satisfies 

( 10) u(P(D)¢) = ¢(0) (¢ E fi.&(R")), 
because then the distribution E = u satisfies 

(P(D)E)(¢) = E(P( - D)¢) = u((P( - D)¢)V) 
= u(P(D)({J) = ({J(O) = ¢(0) = b(¢), 

so that P(D)E = {>, as desired. 
• A 

Lemma 8.3, applied to P¢ = t/1, yields 

(1 1) I cj;(t) l < Ar- N l I �(t + rw) I da.(w) 
Jr. 

(t E R"). 

By the inversion theorem, ¢(0) = fR• ¢ dmn . Thus (1 1), (2), and (9) give 

( 12) I ¢(0) I < Ar -N II P(D)¢ 11 (¢ E fi.&(R")). 
Let Y be the subspace of fi.&(R") that consists of the functions 

P(D)¢, ¢ E fi.&(R"). By ( 12), the Hahn-Banach theorem 3.3 shows that 
the linear functional that is defined on Y by P(D)¢ -+ ¢(0) extends to a 
linear functional u on E!&(R") that satisfies ( 10) as well as 

( 13) (t/1 E fi.&(R")). 
By (3), u E fi.&'(R"). This completes the proof. Ill/ 

Elliptic Equations 

8.6 Introduction If u is a twice continuously differentiable function in 
some open set n c R2 that satisfies the Laplace equation 

(1) 
82u 82u 
ax2 + 8y2 = 0, 

then it is very well known that u is actually in C00(Q), simply because every 
real harmonic function in n is (locally) the real part of a holomorphic func
tion. Any theorem of this type--one which asserts that every solution of a 
certain differential equation has stronger smoothness properties than is a 
priori evident-is called a regularity theorem. 

We shall give a proof of a rather general regularity theorem for elliptic 
partial differential equations. The term " elliptic " will be defined presently. 
It may be of interest to see, first of all, that the equation 

82u 
(2) 

ax ay = 0 

behaves quite differently from (1), since it is satisfied by every function u of 
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the form u(x, y) = f(y), where f is any differentiable function. In fact, if (2) is 
interpreted to mean 

(3) 
j_ (au)

= 0 
ay ax , 

then/ can be a perfectly arbitrary function. 

8.7 Definitions Suppose n is open in R", N is a positive integer, 
fa E C00(!l) for every multi-index a. with I a. I < N, and at least one fa with 
I a. I = N is not identically 0. These data determine a linear differential oper
ator 

( 1 )  

which acts on distributions u E .@'(Q) by 

(2) Lu = L fa Da u. 
Ia I ,;; N 

The order of L is N. The operator 

(3) L faDa lai = N  
is the principal part of L. The characteristic polynomial of L is 

(4) p(x, y) = L fa(x)ya (x E Q, y E R"). 
l ai = N  

This is a homogeneous polynomial of degree N in the variables y = 

(y l , . . .  , y.), with coefficients in C00(Q). 
The operator L is said to be elliptic if p(x, y) # 0 for every x E n and 

for every y E R", except, of course, for y = 0. Note that ellipticity is defined 
in terms of the principal part of L;  the lower-order terms that appear in ( 1 )  
play no role. 

For example, the characteristic polynomial of the Laplacian 

(5) 

is p(x, y) = - (yf + · · · + y;), so that A is elliptic. 
On the other hand, if L = a2jax1 ax2 , then p(x, y) = - y1y2 , and L is 

not elliptic. 
The main result that we are aiming at (Theorem 8 . 12) involves some 

special spaces of tempered distributions, which we now describe. 

8.8 Sobolev spaces Associate to each real number s a positive measure 
f.ls on R" by setting 

( 1 )  df.15(y) = ( 1  + I y 1 2)5 dm.(y). 
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If f E I3(J.1.), that is, if f I f  1 2 df.ls < oo ,  then f is a tempered distribution 
[Example (c) of Section 7 . 12] ; hence f is the Fourier transform of a tem
pered distribution u. The vector space of all u so obtained will be denoted 
by Hs ; equipped with the norm 

(2) ll u ll . = (l.l 
u 1 2 df.1.y 12 

Hs is clearly isometrically isomorphic to I3(J.1.). 
These spaces Hs are called Sobolev spaces. The dimension n will be 

fixed throughout, and no reference to it will be made in the notation. 
By the Plancherel theorem, H0 = !3. 
It is obvious that H• c H1 if t < s. The union X of all spaces H• is 

therefore a vector space. A linear operator A :  X -+ X is said to have order t 
if the restriction of A to each Hs is a continuous mapping of H• into H• - t ; 
note that t need not be an integer and that every operator of order t also 
has order t' if t' > t. 

Here are the properties of the Sobolev spaces that will be needed. 

8.9 Theorem 

(a) Every distribution with compact support lies in some H•. 

(b) If - oo < t < oo ,  the mapping u -+  v given by 
(y E R") 

is a linear isometry of H• onto Hs - t and is therefore an operator of order 
t whose inverse has order - t. 

(c) If b E L00(R"), the mapping u -+  v given by v = bu is an operator of 
order 0. 

(d) For every multi-index a, D a is an operator of order I a  1 . 
(e) Iff E [/ n ,  then u -+ fu is an operator of order 0. 

PROOF. If u E !0'(R") has compact support, (a) of Theorem 7.23 shows 
that 

(1) (y E R"), 
for some constants C and N. Hence u E H• if s < - N - n/2. This 
proves part (a) ; (b) and (c) are obvious. The relation 

implies 

(2) 

I (Da u) '(y) I = I ya I I  u(y) I < ( 1  + I y l 2) 1a112 1 u(y) I 

so that (d) holds. 
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The proof of (e) depends on the inequality 
(3) ( l  + I X + Y 1 2)' < 2151(1 + I X 1 2)5( 1  + I Y l 2)l•l, 
valid for x E R", y E R", - oo < s < oo .  The case s = 1 of (3) is 
obvious. From it the case s = - 1 is obtained by replacing x by x - y 
and then y by - y. The general case of (3) is obtained from these two 
by raising everything to the power J s ] .  It follows from (3) that 

(4) [ I h(x - y) 12 df.l.(X) < 21•1(1 + I y 1 2)151 r I h 1 2 df.ls JRn JRn 
for every measurable function h on R". 

Now suppose u E H', fe  !7. , t > l s i + n/2. Since je !7. , 
ll f ll r < oo. Put y = f.1Js l - r(R"). Then y < oo. Define F = j u j * J ] ] . By 
Theorem 7. 19, 

(5) l (fu) ' l  = l u * 1 1 < l u i * I l l = F. 
By the Schwarz inequality, 

(6) I F(x) l 2 < i
.
I J(y) l 2 df.11(y) 1.J U(x - y) J2 df.1 - 1(y) 

for every x E R". Integrate (6) over R", with respect to f.ls . By (4), the 
result is 

(7) 

It follows from (5) and (7) that 

(8) ll fu li s < (21•1y) 112 ll f ll r l l u ll s ·  
This proves (e). /Ill 

8.10 Definition Let Q be open in R". A distribution u e .@'(Q) is said to 
be locally H• if there corresponds to each point x e n a distribution v e H• 
such that u = v in some neighborhood w of x. (See Section 6. 19.) 

8.1 1  Theorem If u E .@'(Q) and - oo < s < oo, the following two state
ments are equivalent : 

(a) u is locally H'. 
(b) t/Ju E H' for every t/1 E .@(Q). 

Moreover, if s is a nonnegative integer, (a) and (b) are equivalent to 
(c) D a u is locally I3 for every a. with I a. I < s. 
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Statement (b) may need some clarification, since u acts only on test 
functions whose supports lie in !1. However, tjJu is the functional that 
assigns to each ¢ E !?C(R") the number 

(t/Ju)(¢) = u(tjJ¢). 
Note that tjJ¢ E f!C(Q), so that u(tjJ¢) is defined. 

PROOF. Assume u is locally H'. Let K be the support of some 
tjJ E f!C(Q). Since K is compact, there are finitely many open sets w; c 

n, whose union covers K,  and in which u coincides with some v; E H•. 
There exist functions t/J; E !?C(w;) such that L t/J; = 1 on K. If 
¢ E !?C(R") it follows that 

u(tjJ¢) = L u(t/J; t/1¢) = L V;(l/l; t/1</J), 
since t/J; t/1¢ E !?C(w;). Thus tjJu = L t/J; t/IV; . By (e) of Theorem 8.9, 
t/J; t/IV; E H' for each i. Thus 1/Ju E H', and (a) implies (b). 

If (b) holds, if x E n, and if tjJ E !?C(Q) is 1 in a neighborhood w of 
x, then u = tjJu in w, and tjJu E Hs by assumption. Thus (b) implies (a). 

Assume again that (b) holds. If tjJ E f!C(Q), then 1/Ju E H', hence 
D,.(t/Ju) E w- lal , by (d) of Theorem 8.9 . If I a. J  < s, then 

H' - Ia! c H0 
= J3(R"). 

Thus D"(t/Ju) E I3(R"). Taking tjJ = 1 in some neighborhood of a point 
x E Q shows that D,. u is locally J3 in !1. Thus (b) implies (c). 

Finally, assume D,. u is locally I3 for every a. with ] a. ]  < s. Fix 
tjJ E f!C(Q). The Leibniz formula shows that D"(t/Ju) E I3(R") if I a. ] < s. 
Hence 

(1) ( I a. ] < s). 

If s is a nonnegative integer, (1 ) holds with the monomials y� , . . .  , y� in 
place of y". It follows, as in the proof of Theorem 7.25, that 

i (1 + I y ] 2)5 I (t/Ju) '(y) ]2 dmn(y) < 00 .  
Rn 

(2) 

Thus tjJu E H•, (c) implies (b), and the proof is complete. 

8.12 Theorem Assume n is an open set in R", and 

Ill/ 

(a) L = L f,. D,. is a linear elliptic differential operator in n, of order N > 1 ,  
with coefficients fa E C00(Q), 

(b) for each a. with I a. ] = N,fa. is a constant, 
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(c) u and v are distributions in n that satiify 

(1) Lu = v ' 

and v is locally H•. 

Then u is locally Hs +N. 

Corollary. If L satisfies (a) and (b) and if v E C00(!l), then every solution 
u of (1) belongs to C00(!l). In particular, every solution of the homoge
neous equation Lu = 0 is in C00(Q). 

For if v E C00(Q), then t/Jv E !?C(R") for every t/J E !?C(Q) ; hence V is 
locally H• for every s, and the theorem implies that u is locally H• for every 
s ;  it follows from Theorems 8. 1 1  and 7.25 that u E C00(Q). 

Assumption (b) can be dropped from the theorem, but its presence 
makes the proof considerably easier. 

PROOF. Fix a point X E n, let Bo c n be a closed ball with center at X, 
and let ¢0 E f!C(Q) be 1 on some open set containing B0 • By (a) of 
Theorem 8.9, ¢0 u E H1 for some t. Since H1 becomes larger as t 
decreases, we may assume that t = s + N - k, where k is a positive 
integer. Choose closed balls 

each centered at x, and each properly contained in the preceding one. 
Choose ¢1 , . . .  , ¢k E f!C(Q) so that ¢i = 1 on some open set containing 
Bi , and ¢i = 0 off Bi- I · Since ¢0 u E H1, the following " bootstrap " 
proposition implies that 

¢ 1u E H1 + 1 , . . .  , ¢k u E H1 +k. 

It therefore leads to the conclusion that u is 
t + k = s + N and ¢k = 1 on Bk . 

locally Hs+N, because 
Ill/ 

Proposition. If, in addition to the hypotheses of Theorem 8 .12, tjlu E H1 

for some t < s + N - 1 and for some t/1 E f!C(Q) which is 1 on an open 
set containing the support of a function ¢ E f!C(Q), then ¢u E H1 + 1 • 

PROOF. We begin by showing that 

(2) L(¢u) E Ht -N+ I . 

Consider the distribution 

(3) A = L(¢u) - ¢Lu = L(¢u) - ¢v. 
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Since its support lies in the support of ¢, u can be replaced by t/Ju in 
(3), without changing A :  

(4) A =  L(¢tjlu) - ¢L(tjlu) = L fa · [Da(¢tjlu) - ¢Da(t/Ju)] . 
lal ,;; N 

If the Leibniz formula is applied to Da(¢ · tjlu), one sees that the deriv
atives of order N of tjlu cancel in (4). Therefore A is a linear com
bination [with coefficients in .@(R")J of derivatives of tjlu, of orders at 
most N - 1 .  Since tjlu E H1, parts (d) and (e) of Theorem 8.9 imply that 
A E Ht- N+ I . By Theorem 8. 1 1 ,  ¢v E H', and since t - N + 1 < s, we 
have ¢v E H1 - N + 1 . Now (2) follows from (3). 

Since L is elliptic, its characteristic polynomial 

(5) p(y) = L faYa (y E R") 
la i = N 

has no zero in R", except at y = 0. Define functions 

(6) r(y) = (1 + I y IN)q(y), 

for y E R", y # 0, and define operators Q, R, S on the union of the 
Sobolev spaces by 

(7) (QwY = qw, (RwY = rw 

and 

(8) 

Since p is a homogeneous polynomial of degree N, q(A.y) = q(y) if 
A. > 0, and since p vanishes only at the origin, the compactness of the 
unit sphere in R" implies that both q and 1/q are bounded functions. 
It follows from (c) of Theorem 8.9 that both Q and Q - I  are operators 
of order 0. 

Since both (1 + l y i 2) - N12(1 + I  Y IN) and its reciprocal are 
bounded functions on R", it follows from the preceding paragraph, 
combined with (b) and (c) of Theorem 8.9, that R is an operator of 
order N whose inverse R - 1 has order -N. 

Since t/lfa E .@(R") it follows from (d) and (e) of Theorem 8.9 that 
S is an operator of order N - 1 .  

Since p = r - q, and since p is assumed to have constant coeffi
cients fa , we have 

(9) ( L fa Da w)A = pw = (r - q)w = (Rw - QwY 
la i = N 

if w lies in some Sobolev space. Hence 

(10) (R - Q + S)(¢u) = L(¢u). 
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By (2), L(¢u) E Ht - N+ I . 
Since tjJu E H1 and ¢tjJ = ¢, (e) of Theorem 8.9 implies that 

¢u = ¢tjJu E H1• Hence 

( 1 1) (Q - S)(¢u) E H1 -N+ 1 , 
because Q has order 0 and S has order N - 1 > 0. It now follows 
from (1 0) that 

( 12) 
and since R - 1 has order - N, we finally conclude that ¢u E H1 + 1 • //// 

8.13 Example Suppose L is an elliptic differential operator in R", with 
constant coefficients, and E is a fundamental solution of L. In the com
plement of the origin, the equation LE = b reduces to LE = 0. Theorem 
8. 1 2  implies therefore that, except at the origin, E is an infinitely differentia
ble function. The nature of the singularity of E at the origin depends, of 
course, on L. 

8.14 Example The ongm in R2 is the only zero of the polynomial 
p(y) = y 1 + iy2 • If n is open in R2 , and if u E .@'(Q) is a distribution solu
tion of the Cauchy-Riemann equation 

(_!___ + i _j_)u = 0, ox ! ox2 
Theorem 8.12 implies that U E C00(Q). It follows that U is a holomorphic 
function of z = x 1 + ix2 in n. In other words, every holomorphic distribution 
is a holomorphic function. 

Exercises 

1 .  The following simple properties of holomorphic functions of several variables 
were tacitly used in this chapter. Prove them. 
(a) Iff is entire in fj:", if w E (/:", and if c/>(A) = [(Aw), then cf> is an entire function 

of one complex variable. 
(b) If P is a polynomial in (/:" and if 

j i P i dcr. = O  JT• 
then p is identically 0. Hint :  Compute J To I p 1 2 dcr n .  

(c) If P is a polynomial (not identically 0) and g is an entire function in (/:", then 
there is at most one entire function/that satisfies Pf = g. 

Find generalizations of these three properties. 
2. Prove the statement about convex hulls made in the last sentence of the proof of 

Theorem 8.4. 
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3. Find a fundamental solution for the operator iP/ox 1 ox2 in R2• (There is one 
that is the characteristic function of a certain subset of R2 .) 

4. Show that the equation 

is satisfied (in the distribution sense) by every locally integrable function u of the 
form 

or u(x1 , x2) = f(x 1 - x2) 

and that even classical solutions (i.e., twice continuously differentiable functions) 
need not be in C"'. Note the contrast between this and the Laplace equation. 

5. For x E R3, define f(x) = (1 + I x 1 2) - 1 • Show that f E I3(R3) and that! is a fun
damental solution of the operator I - � in R3. Find j, by direct computation 
and also by the following reasoning : 
(a) Since f is a radial function (i.e., one that depends only on the distance from 

the origin) the same is true of j; see Exercise 1 of Chapter 7. 
(b) Away from the origin, (I - �)j = 0, andj E C"". 
(c) If F( I y I ) =  J(y), (b) implies that F satisfies an ordinary differential equation 

in (0, oo) that can easily be solved explicitly. 
Ans.f(y) = (n/2)112 1 y l - 1 exp ( - I  y I ). 
Do the same with Rn in place of R3 ; you will meet Bessel functions. 

6. For 0 < A <  n and x E Rn, define 

Show that 

(a) 
where 

Suggestion: If n < 2A < 2n, K;. is the sum of an I!-function and an 
!3-function. For these A, Equation (a) can be deduced from the homogeneity 
condition 

(x E Rn, t > 0). 

The case 0 < 2A < n follows from the inversion theorem (for tempered 
distributions). A passage to the limit gives the case 2A = n. The constants c(n, A) 
can be computed from J jl{> = J fcp, with </>(x) = exp ( - 1  x 12/2). 

7. Take n > 3 and A = 2 in Exercise 6, and deduce that -c(n, 2)Kn- 2 is a funda
mental solution of the Laplacian � in Rn. For example, if v has compact support 
in R3, show that a solution of �u = v is given by 

u(x) = - 41 i l x - y l- 1 v(y) dy. 
1! R3 
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8. Identify R2 and (/; (so that z = x1 + ix2) ; put 

Show that the Fourier transform of 1/z (regarded as a tempered distribution) is 
- i/z. Show that this result is equivalent to the Cauchy formula 

cp(z) = r (iicp)(w) 
dm2(w) 

JR2 W - Z 

Since a log I w I = 1/w and � = a a, deduce that 

cp(z) = I (�c/>)(w) log I w - z I dm2(w) JR2 
Thus log I z I is a fundamental solution of the Laplacian in R2• 

9. Use Exercise 6 to compute that 

lim [e- 1 - b - K2 _,(y)] = log I Y I 

where b is a certain constant. Show that this leads to another proof of the last 
statement in Exercise 8. 

10. Suppose P(D) = D2 + aD + bl. (We are now in the case n = 1 .) Let f and g be 
solutions of P(D)u = 0 which satisfy 

Define 

and put 

f(O) = g(O) and 

G(x) = {f(x) 
g(x) 

f'(O) - g'(O) = 1 .  

if X <  0, 
if X >  0, 

Acp = -I: cp(x)G(x) dx 

Prove that A is a fundamental solution of P(D). 

[cp E �(R)]. 

1 1 .  Suppose u is a distribution in Rn whose first derivatives D1 u, . . .  , Dn u are locally 
!3. Prove that u is then locally !3. Hint : If ljJ E �(Rn) is 1 in a neighborhood of 
the origin and if �E = b, then �(!/JE) - b E �(Rn). Hence 

n 
u - I (D; u) * D;(I/JE) 

r �  1 

is in C"'(Rn). Each D;(!/JE) is an L1-function with compact support. 
12. Suppose u is a distribution in Rn whose Laplacian �u is a continuous function. 

Prove that u is then a continuous function. Hint : As in Exercise 1 1, 

U - (!/JE) * (�u) E C"'(Rn). 

13. Prove analogues of Exercises 1 1  and 1 2, with Rn replaced by an arbitrary open 
set n. 
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14. Show, under the hypotheses of Exercise 1 2, that 
(a) a2ujaxi is locally !3, but 
(b) a2ujaxi need not be a continuous function. 

Outline of (b) for periodic distributions in R2 (Exercise 22, Chapter 7) : If 
g E C(T2) has Fourier coefficients g(m, n) and iff is defined by 

/(m, n) = (1 + m2 + n2)- 1g(m, n), 

thenf E C(T2) and l'.f = f- g E C(T2), since I I /(m, n) I < oo .  The Fourier coef
ficients of a2flaxi are - m2/(m, n). If a2flaxi were continuous for every 
g E C(T2), then (a2flaxi)(O, 0) would be a continuous linear functional of g. 
Hence there would be a complex Borel measure J1 on T2 , with Fourier coeffi
cients 

m2 
jl(m, n) = 2 2 • 1 + m + n 

The next exercise shows that no such measure exists. 
15. If J1 is a complex Borel measure on T2, and if 

prove that 

1 A B 
y(A, B) = 

(2A + 1)(2B + 1) n
=�A mJ.._Bfl(m, n), 

lim [ lim y(A, B)] = lim [ lim y(A, B)] . 
A-+oo B-+oo B-+oo A-+ oo  

Suggestion : If D A(t) = (2A + 1) - I  I� A eint, then D A(x) = 1 if x = 0, 
D A(x) ---> 0 otherwise, and 

y(A, B) = r D A(x)DJy) dJl(x, y). JT2 
Conclude that each of the two iterated limits exists and that both are equal to 
Jl({O, 0}). 

If J1 were as in Exercise 14, one of the iterated limits would be 1 ,  the 
other 0. 

16. Suppose L is an elliptic linear operator in some open set n c Rn, and suppose 
that the order of L is odd. 
(a) Prove that then n = 1 or n = 2 . 
(b) If n = 2, prove that the coefficients of the characteristic polynomial of L 

cannot all be real. 
In view of (a), the Cauchy-Riemann operator is not a very typical example 

of an elliptic operator. 



CHAPTER 

TAUBERIAN 
THEORY 

Wiener's Theorem 

9.1 Introduction A tauberian theorem is one in which the asymptotic 
behavior of a sequence or of a function is deduced from the behavior of 
some of its averages. Tauberian theorems are often converses of fairly 
obvious results, but usually these converses depend on some additional 
assumption, called a tauberian condition. To see an example of this, consider 
the following three properties of a sequence of complex numbers 
sn = ao + . . . + an . 

(a) lim sn = s. 
n � oo 

00 

(b) If f(r) = L an r", 0 < r < 1 ,  then lim f(r) = s. 
0 r � l  

(c) lim nan = 0. 

Sincef(r) = (1 - r) L S11 r" and (1 - r) L r" = 1 ,/(r) is, for each r E (0, 1 ), an 
average of the sequence {s11}. It is extremely easy to prove that (a) implies 
(b). The converse is not true, but (b) and (c) together imply (a); this is also 
quite easy and was proved by Tauber. The tauberian condition (c) can be 

226 



CHAPTER 9 :  TAUBERIAN THEORY 227 

replaced by the weaker assumption that {nan} is bounded (Littlewood). It is 

remarkable how much more difficult this weakening of (c) makes the proof. 
Wiener's tauberian theorem deals with bounded measurable functions, 

originally on the real line. If ¢ E L00(R) and if ¢(x) -+ 0 as x -+  + oo, then it 
is almost trivial that (K * ¢)(x) -+ 0 as x -+  + oo for every K E I!(R). The 
convolutions K * ¢ may be regarded as averages of ¢, at least when 
J K = 1 .  Wiener's converse [(a) of Theorem 9.7] states that if (K * ¢)(x) -+ 0 
for one K E I!(R) and if the Fourier transform of this K vanishes at no 
point of R, then (f * ¢)(x) -+ 0 for every f E I!(R) ;  the stronger conclusion 
that ¢(x) .-+ 0 need not hold under these hypotheses, but it does hold if a 
slight additional condition (slow oscillation) is imposed on ¢ [(b) of 
Theorem 9. 7]. 

The unexpected tauberian condition-the nonvanishing of R--enters 
the proof in the following manner : If (K * ¢)(x) -+ 0, the same is true if K is 
replaced by any of its translates, hence also if K is replaced by any finite 
linear combination g of translates of K. When K has no zero, it turns out 
that the set of these functions g is dense in I! (Theorem 9.5). One is thus led 
to the study of translation-invariant subs paces of I!. 

9.2 Lemma Suppose f E L1(W), t E W, and e > 0. Then there exists 
h E  I!(W), with ll h l l 1 < t:, such that 

(1) h(s) = /(t) -/(s) 

for all s in some neighborhood of t. 

The lemma states thatfis approximated, in the !!-norm, by a function 
f + h whose Fourier transform is constant in a neighborhood of the point t. 

PROOF. Choose g E I!(Rn) so that g = 1 in some neighborhood of the 
origin. For A >  0, put 

(2) (x E W) 
and define 

(3) 

Since g..(s) = 1 in some neighborhood V;. of t, (3) shows that (1) holds 
for s E V;. , with h;. in place of h. Next, 

(4) h..(x) = i f(y)[e- it · yg..(x) - g;.(X - y)] dmn(y). 
R• 

(5) 

The absolute value of the expression in brackets is 

j A -ng(A - lx) - A - ng(A - l (x - y)) I . 
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It follows that 

(6) ll h;. l l 1 < l. I f(y) I dmn(Y) l. I g(�) - g(� - r 1Y) I dmnW, 

by the change of variables x = A�. The inner integral in (6) is at most 
2 1 1g l l 1 , and it tends to 0 for every y E W, as A -+  oo.  Hence l l h;. l l 1 -+ 0, 
as A -+  oo, by the dominated convergence theorem. //II 

9.3 Theorem If¢ E L00(W), Y is a subspace of I!(W), and 
(1) f * ¢ = 0for everyjE Y, 

then the set 

(2) Z(Y) = n {s E W: j(s) = 0} 
f e Y  

contains the support of the tempered distribution ¢. 

PROOF. Fix a point t in the complement of Z(Y). Then ](t) = 1 for a 
certain/ E Y. Lemma 9.2 furnishes h E  I!(W), with l l h l l 1 < 1 ,  such that 
h(s) = 1 -](s) in some neighborhood V of t. 

To prove the theorem, it suffices to show that ¢ = 0 in V, or, 
• •  

equivalently, that ¢(t/l) = 0 for every t/1 E g n whose Fourier transform 
t/1 has its support in V. Since 

(3) (/J(t/1) = ¢(i{J) = (¢ * t/1)(0), 
it suffices to show that ¢ * t/1 = 0. 

Fix such a t/1. Put g0 = t/1, gm = h * gm _ 1 for m > 1 .  Then 
l l gm l l 1 < l l h l l '{' l l t/1 1 1 1 , and since ll h l l 1 < 1 ,  the function G = L gm is in 
I!(W). Since h(s) = 1 - J(s) on the support of t/J, we have 

(4) (1 - h(s))t/J(s) = t/l(s)](s) (s E W), 
or 

00 
(5) t/1 = .L fimt/JJ = aJ 

m= O  

Thus t/1 = G * f, and (1) implies 

(6) t/1 * ¢ = G * f * ¢ = 0. /Ill 

9.4 Wiener's theorem If Y is a closed translation-invariant subspace of 
I!(W) and if Z(Y) is empty, then Y = L1(W). 

PROOF. To say that Y is translation-invariant means that rx f E Y if 
f E Y and x E Rn. If ¢ E L00(W) is such that J f({J = 0 for every f E Y, 
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the translation-invariance of Y implies that f * ¢ = 0 for every f E Y. 
By Theorem 9.3, the support of the distribution $ is therefore empty, 
hence $ = 0 (Theorem 6.24), and since the Fourier transform maps 
9'� to 9'� in a one-to-one fashion (Theorem 7. 1 5), it follows that ¢ = 0 
as a distribution. Hence ¢ is the zero element of L00(Rn). 

Thus y1. = {0}. By the Hahn-Banach theorem, this implies that 
Y = I!(W). !Ill 

9.5 Theorem Suppose K E I!(W) and Y is the smallest closed trans
lation-invariant subspace of I!(W) that contains K. Then Y = I!(W) if and 

A 
only if K(t) =/:. 0 for every t E Rn. 

PROOF. Note that Z( Y) = {t E W :  K(t) = 0}. The theorem thus asserts 
that Y = L1(W) if and only if Z(Y) is empty. One-half of this is 
Theorem 9.4; the other half is trivial. //// 

9.6 Definition A function ¢ E L00(Rn) is said to be slowly oscillating if to 
every 8 > 0 correspond an A < oo and a b > 0 such that 

(1)  I ¢(x) - ¢(y) I < 8 if I X I > A, I y I > A, I X - y I < b. 

If n = 1 ,  one can also define what it means for ¢ to be slowly oscil
lating at + oo :  the requirement (1)  is replaced by 

(2) I ¢(x) - ¢(y) l < 8 if X >  A, y > A, I X - y I < b. 
The same definition can of course be made at - oo.  

Note that every uniformly continuous bounded function is slowly 
oscillating but that some slowly oscillating functions are not continuous. 

We now come to Wiener's tauberian theorem ; part (b) was added by 
Pitt. 

9.7 Theorem 

(a) Suppose ¢ E L00(W), K E I!(W), K(t) =/:. Ofor every t E Rn, and 

( 1 )  lim (K * ¢)(x) = aK(O). 
lxl-+ oo 

Then 
(2) lim (f * ¢)(x) = a](O), 

lxl � oo  

for every f E L1(W). 
(b) If, in addition, ¢ is slowly oscillating, then 

(3) lim ¢(x) = a. 
lxl � oo  
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PROOF. Put t/J(x) = ¢(x) - a. Let Y be the set of all f E I!(W) for 
which 

(4) lim (f * t/J)(x) = 0. 
lxl--+ oo 

It is clear that Y is a vector space. Also, Y is closed. To see this, 
suppose/;. E Y, 1 1/ -/;.1 1 1 -+ 0. Since 

(5) 

/;. * t/1 -+  f * t/1 uniformly on W; hence (4) holds. Since 

(6) ((r:J) * t/l)(x) = (r:y(f * t/l))(x) = (f * t/J)(x - y), 

Y is translation-invariant. Finally, K E Y, by ( 1 ), since K * a = aK(O). 
Theorem 9.5 now applies and shows that Y = I!(W). Thus every 

f E L1(W) satisfies (4), which is the same as (2). This proves part (a). 
If ¢ is slowly oscillating and if e > 0, choose A and {J as in Defi

nition 9.6, and choose j E  I!(W) so that/ >  0, /(0) = 1 ,  and f(x) = 0 if 
I X I > b. By (2), 
(7) lim (f * o'J)(x) = a. 

lxl --+ oo  

Also, 

(8) ¢(x) - (f * ¢)(x) = i [¢(x) - ¢(x - y)]f(y) dmn(y). 
IYI < �  

If I x I  > A + b,  our choice of A, b ,  and/ shows that 

(9) I ¢(x) - (f * ¢)(x) I < B. 
Now (3) follows from (7) and (9). 

This completes the proof. /Ill 

9.8 Remark If n = 1 ,  Theorem 9.7 can be modified in an obvious 
fashion, by writing x -+ + oo in place of I x I  -+ oo wherever the latter occurs 
and by assuming in (b) that ¢ is slowly oscillating at + oo. The proof 
remains unchanged. 

The Prime Number Theorem 

9.9 Introduction For any positive number x, n(x) denotes the number 
of primes p that satisfy p < x. The prime number theorem is the statement 
that 

(l)  I . n(x) log x 
1m = 1 .  

x --+ oo  X 
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We shall prove this by means of a tauberian theorem due to Ingham, based 
on that of Wiener. The idea is to replace the rather irregular function n by a 
function F whose asymptotic behavior is very easily established and to use 
the tauberian theorem to draw a conclusion about n from knowledge of F. 

9.10  Preparation The letter p will now always denote a prime ; m and n 
will be positive integers ; x will be a positive number ; [x] is the integer that 
satisfies x - 1 < [x] < x; the symbol d I n means that d and n/d are positive 
integers. Define 

(1)  

(2) 

(3) 

(4) 

A(n) = {�g p 

t/J(x) = L A(n), 
n � x  

.
f 2 3 1 n = p, p , p , . . .  , 

otherwise, 

The following properties of t/1 and F will be used : 

t/J(x) n(x) log x 1 t/J(x) log x -'-'-....;.. < < + _.:....o......:..._--':0..�-
x x log x x log (xjlog2 x) 

if x > e, and 

(5) F(x) = X log X - X + b(x) log X, 

where b(x) remains bounded as x -+  oo. 
By (4), the prime number theorem is a consequence of the relation 

(6) lim 
t/J(x) = 1 ' 

x-+ co X 

which will be proved from (3) and (5) by a tauberian theorem. 

PROOF OF (4). [log xjlog p] is the number of powers of p that do not 
exceed x. Hence 

tjl(x) = L [log :X] log p < L log x = n(x) log x. 
p ,; x  log p p ,; x  

This gives the first inequality in (4). If 1 < y < x, then 

log p t/J(x) 
n(x) - n(y) = L 1 s L s . 

y < p ,; x  y < p ,; x  log y log y 

Hence n(x) < y + t/J(x)jlog y. With y = xjlog2 x, this gives the second 
�lf of �. W 
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PROOF OF (5). If n > 1 ,  then 

The mth summand is 0 except when n/m is an integer, in which case it 
is A(n/m). Hence 

F(n) - F(n - 1 )  = ,LA(!:) = L A(d) = log n. 
min m din 

The last equality depends on the factorization of n into a product of 
powers of distinct primes. Since F(1) = 0, we have computed that 

(7) 
n 

F(n) = L log m = log (n !) 
m =  1 

(n = 1 ,  2, 3, . . . ), 

which suggests comparison of F(x) with the integral 

(8) J(x) = flog t dt = x log x - x + 1 .  

If n < x < n + 1 then 

(9) J(n) < F(n) < F(x) < F(n + 1 )  < J(n + 2) 

so that 

( 1 0) I F(x) - J(x) I < 2 log (x + 2). 
Now (5) follows from (8) and ( 10). Ill/ 

9.1 1 The Riemann zeta function As is the custom in analytic number 
theory, complex variables will now be written in the form s = (J + it. In the 
half-plane (J • > 1 ,  the zeta function is defined by the series 

00 

(1)  ((s) = _L n -s 
n = l 

Since I n - s I = n -", the series converges uniformly on every compact subset 
of this half-plane, and ( is holomorphic there. 

A simple computation gives 

When (J > 1 ,  N(N + 1) -s -+ 0 as N -+  oo .  Hence 

(2) ((s) = s ioo [x]x - l -s dx ((J > 1). 



(3) 
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If b(x) = [x] - x, it follows from (2) that 

S ioo ((s) = + s  b(x)x - 1 -• dx s - 1 1 
(a > 1) . 

Since b is bounded, the last integral defines a holomorphic function in the 
half-plane a > 0. Thus (3) furnishes an analytic continuation of ( to a > 0, 
which is holomorphic except for a simple pole at s = 1 ,  with residue 1 .  The 
most important property we shall need is that ( has no zeros on the line 
a =  1 :  

(4) 

(5) 

w + it) # 0 ( - 00 < t < 00 ). 

The proof of (4) depends on the identity 

((s) = fl ( 1  - P-s) - 1 
p 

(a > 1). 

Since ( 1 - p-s)- 1 = 1 + p-s + p- 2s + · · · , the fact that the product (5) 
equals the series (1)  is an immediate consequence of the fact that every 
positive integer has a unique factorization into a product of powers of 
primes. Since L p-a < oo if a >  1 ,  (5) shows that ((s) # 0 if a >  1 and that 

(6) 
00 

log ((s) = _L L m - 1 P-ms 
p m=  1 (a > 1). 

Fix a real t # 0. If a > 1 ,  (6) implies that 

(7) log I C(a)(4(a + it)(( a + 2it) I 
= L m - 1p-ma Re { 3  + 4p - imt + p-2 imt} > 0, 

p, m  
because Re (6 + 8ei8 + 2e2;� = (ei812 + e- i812)4 > 0 for all real 8. Hence 

(8) I (a - 1)((a) 1 3 
((a + it) 4

1 ((a + 2it) I > 
1 

a - 1  a - 1 

If W + it) were 0, the left side of (8) would converge to a limit, 
namely, I ('( 1 + it) 1 4 1 W + 2it) I ,  as a decreases to 1 .  Since the right side of 
(8) tends to infinity, this is impossible, and (4) is proved. 

9.12 Ingham's tauberian theorem Suppose g is a real nondecreasing 
function on (0, oo ), g(x) = 0 if x < 1 ,  

( 1 )  

and 
(2) 

G(x) = n�1 g(:) (O < x < oo), 

G(x) = ax log x + bx + xe(x), 
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where a, b are constants and e(x) -+ 0 as x -+ oo. Then 

(3) 
x-+ oo 

If g is the function t/J defined in Section 9. 10, Ingham's theorem 
implies, in view of Equations (3) and (5) of Section 9. 1 0, that (6) of Section 
9. 1 0  holds, and this, as we saw there, gives the prime number theorem. 

PROOF. We first show that x- 1g(x) is bounded. Since g is nonde
creasmg, 

g(x) - g(x) < f ( - 1)" + 1g(x) = G(x) - 2G(x) 2 n = I  n 2 

= x{ a log 2 + e(x) - s(�)} < Ax, 

where A is some constant. Since 

it follows that 

(4) g(x) < A( x + � + : + · · -) = 2Ax. 

We now make a change of variables that will enable us to use 
Fourier transforms in a familiar setting. For - oo < x < oo, define 

00 

(5) H(x) = I, h(x - log n). 
n = l 

Then h{x) = 0 if x < 0, H(x) = G(e"); hence (2) becomes 

(6) H(x} = e"(ax + b + e1(x)) 
where e1(x) -+ 0 as x -+ oo .  If 

(7) ( - 0CJ < X < 00 ), 

then ¢ is bounded, by (4). We have to prove that 

(8) lim ¢(x) = a. 
x -+ oo 

Put k(x) = [e"]e -x, let A. be a positive irrational number, and 
define 

i9) ,- K(x) = 2k(x) - k(x - 1) -- k(x - A.) ( - oo < x < oo). 
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Then K E I!(- oo, oo) ; in fact, exK(x) is bounded. (See Exercise 8.) If 
s = a + it, a > 0, then formula (2) of Section 9.1 1  shows that Joo ioo foo ((1 + s) k(x)e-xs dx = [e'1e -x(s + l) dx = [y]y _ 2 _' dy = . - oo o 1 l + s  

Repeat this with k(x - 1) and k(x - A) in place of k(x), use (9), and 
then let a -+ 0. The result is Joo K(x)e - irx dx = (2 - e- it - e- u.') W +

.
it)

. 
- 00 1 + zt 

Since W + it) =I= 0 and since A is irrational, K(t) =I= 0 if t '# 0. Since ( 
has a pole with residue 1 at s = 1 ,  the right side of (10) tends to 1 + A 
as t -+ 0. Thus K(O) =1= 0. 

To apply Wiener's theorem, we have to estimate K * ¢. To 
do this, put u(x) = [ex], let v be the characteristic function of [0, oo ), 
and let J.1 be the measure that assigns mass 1 to each point of the set 
{log n :. n = 1 ,  2, 3, . . .  } and whose support is this set. By (5}, 
H = h * f.l· Also, u = v * J.l. Hence 

( 1 1 )  (h * u}(x) = (h * v * J.l)(x) = (H * v}(x) = l" H(y) dy. 

(Note that we now take convolutions with respect to Lebesgue 
measure, not with respect to the normalized measure md Since 

(¢ * k}(x) = J_
00

00 
ey-xh(x - y)[eY)e-y dy = e -"(h * u)(x), 

(6) and (1 1 )  imply that 

( 1 2) (¢ * k}(x) = e -x Lx 
H(y) dy = ax +  b - a +  e2(x), 

where e2(x) -+ 0 as x -+ oo. By ( 12) and (9), 

(1 3) ;�� (K * ¢}(x) = ( 1  + l)a = a J_
00

00 
K(y) dy. 

Therefore Wiener's theorem 9.7 (see also Remark 9.8) implies that 

(14) : .... � (f * ¢}(x) = a  J_
00

00 
f(y) dy 

for every f E I!(- oo, oo ). 
Let /1 and /2 be nonnegative functions whose integral is 1 and 

whose supports lie in [0, e) and [-e, 0], respectively. By (7), ex¢(x) is 
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nondecreasing. Thus ¢(y) < e'¢(x) if x - B < y < x, and ¢(y) > 

e-'¢(x) if x < y < x + B. Consequently, 

( 1 5) 

It follows from (14) and ( 1 5) that the upper and lower limits of ¢(x), as 
x ...... oo ,  lie between ae - e and ae'. Since B > 0 was arbitrary, (8) holds, 
and the proof is complete. /Ill 

The Renewal Equation 

As another application of Wiener's tauberian theorem we shall now give a 
brief discussion of the behavior of bounded solutions ¢ of the integral equa
tion 

¢(x) - J_
00

00 
¢(x - t) df.J,(t) = f(x) 

which occurs in probability theory. Here f.1 is a given Borel probability 
measure, f is a given function, and ¢ is assumed to be a bounded Borel 
function, so that the integral exists for every x E R. The equation can be 
written in the form 

¢ - ¢ * J.1 =f, 
for brevity. 

We begin with a uniqueness theorem. 

9.13  Theorem If f.1 is a Borel probability measure on R whose support 
does not lie in any cyclic subgroup of R, and if ¢ is a bounded Borel function 
that satisfies the homogeneous equation 
( 1 )  ¢(x) - ( ¢ * J.l}(x) = 0 
for every x E R, then there is a constant A such that ¢(x) = A except possibly 
in a set of Lebesgue measure 0. 

PROOF. Since f.1 is a probability measure, jl(O) = 1 .  Suppose that jl(t) = 
1 for some t # 0. Since 

(2) jl(t) = J_
oo

oo 
e- ixt df.J,(x), 

it follows that f.1 must be concentrated on the set of all x at which 
e - ixr = 1 ,  that is, on the set of all integral multiples of 2njt. But this is 
ruled out by the hypothesis of the theorem. 

If a = b - f.l, where b is the Dirac measure, then & = 1 - jl. 
Hence &(t) = 0 if and only if t = 0, and ( 1 )  can be written in the form 

(3) ¢ * () = 0. 
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Put g(x) = exp ( - x2) ;  put K = g * (J. Then K E L\ K(t) = 0 
only if t = 0, and (3) shows that K * ¢ = 0. By Theorem 9.3 (with the 
one-dimensional space generated by K in place of Y) the distribution 
¢ has its support in {0} . Hence ¢ is a finite linear combination of {J 
and its derivatives (Theorem 6.25), so that ¢ is a polynomial, in the 
distribution sense. Since nonconstant polynomials are not bounded 
on R, and since ¢ is assumed to be bounded, we have reached the 
desired conclusion. //// 

9.14 Convolutions of measures If J.l. and A. are complex Borel measures 
on Rn, then 

(1) f--+ L Lf(x + y) dJ.L(x) dA.(y) 

is a bounded linear functional on C0(Rn), the space of all continuous func
tions on Rn that vanish at infinity. By the Riesz representation theorem, 
there is a unique Borel measure J.l. * A. on Rn that satisfies 

(2) LJ d(J.L * A.) = L Lf(x + y) dJ.L(x) dA.(y) 

A standard approximation argument shows that (2) then holds also for 
every bounded Borel function! In particular, we see that 

(3) 

Two other consequences of (2) will be used in the next theorem. One 
is the almost obvious inequality 

(4) I I J.L * A. l l  < I IJ.L I I II A. I I , 

where the norm denotes total variation. The other is the fact that J.l. * A. is 
absolutely continuous (relative to Lebesgue measure mn) if this is true of J.l. ;  
for in that case, 

(5) i f(x + y) dJ.L(x) = 0 
R• 

for every y E Rn, if f is the characteristic function of a Borel set E with 
mn(E) = 0, and (2) shows that (J.I. * A.)(E) = 0. 

Recall that every complex Borel measure J.l. has a unique Lebesgue 
decomposition 

(6) J.l. = J.l. a + J.l. s ' 
where f.l.a is absolutely continuous relative to mn and J.l.s is singular. 

The next theorem is due to Karlin. 
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9.15 Theorem Suppose J.1 is a Borel probability measure on R, such that 
(1) f.la =f- 0, 

(2) tcoco I X I df.l(X) < 00, 

(3) M = f_coco X df.l(X) =f. 0. 

Suppose that f E L1 (R), that f(x) --+ 0 as x --+ + oo, and that ¢ 1s a 
bounded function that satisfies 
(4) ¢(x) - (¢ * f.l)(x) = f(x) ( - oo  < x < oo). 
Then the limits 

(5) ¢( oo) = lim ¢( x ), ¢( - oo) = lim ¢(x) 
x - - co 

exist, and 

(6) 
1 J

co 
¢(oo) - ¢( - oo) = - f(y) dy. 

M - co 
PROOF. Put (J = b - J.1, as in the proof of Theorem 9 . 13 .  Define 

(7) K(x) = (J(( - oo, x)) = { -J.l(( - 00' x)) 
J.l((x, oo)) 

ifx < 0, 

if X >  0. 

The assumption (2) guarantees that K E L1(R). A straightforward com
putation, whose details we omit, shows that 

(8) 

and that 

fco K(x)e - ixt dx = 
{&(t)jit -co M 

(9) f f(x) dx = (K * ¢)(s) - (K * ¢)(r) 

since/ + ¢ * (J. 

if t =l- 0 

if t = 0 

( - oo < r < s < oo), 

By (1), J.1 is not singular. The argument used at the beginning of 
the proof of Theorem 9. 13  shows therefore that &(t) =1- 0 if t =1- 0. 

A 

Hence (8) and (3) imply that K has no zero in R. 
Since f E L1(R), (9) implies that K * ¢ has limits at + oo, whose 

difference is s� co f 
We shall show that ¢ is slowly oscillating. Once this is done, (5) 

and (6) follow from the properties of K and K * ¢ that we just 
proved, by Pitt's theorem (b) of 9. 7. 
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Repeated substitution of ¢ = f + ¢ * J.1 into its right-hand side 
gtves 

( 10) ¢ = f + f * J.1 + . 
0 0  + f * J.l" - 1  + ¢ * J.l" 

=f. + g. + h. (n = 2, 3, 4, . . .  ), 

where J.11 
= J.l, J.l" = J.1 * J.l" - 1

,/. = ! + · · ·  +f * J.l" -
1

, and 

( 1 1 )  

For each n, f,(x) ---+ 0 as x ---+ + oo ,  and g. is uniformly contin
uous. Hence f. + g. is slowly oscillating. Since the total variations 
satisfy 

( 12) 

we have 

( 1 3) I h.(x) I < II ¢ II · l lf.l. l i" ( - 00 < X < 00 ), 

where 1 1 ¢ 1 1 is the supremum of I ¢ I on R. By (1), I I J.l. l l  < 1 .  Hence 
h. ---+ 0, uniformly on R. Consequently, ¢ is the uniform limit of the 
slowly oscillating functions f, + g • . This implies that ¢ is slowly oscil
lating, and completes the proof. /Ill 

Exercises 

I .  Prove the theorem of Tauber stated in Section 9.1. 
2. Suppose cf> E L"'(R") and the support of the distribution 1{> consists of k distinct 

points s " . . .  , sk . Construct suitable functions ljJ 1 ,  . . .  , 1/Jk such that (c/> * 1/JjY has 
the singleton (sJ as support, and conclude that cf> is a trigonometric polynomial, 
namely, 

(The case k = 1 is done in the proof of Theorem 9.1 3.) 
3. Suppose Y is a closed translation-invariant subspace of L1(R") such that Z(Y) 

consists of k distinct points. (The notation is as in Theorem 9.3.) Use Exercise 2 
to prove that Y has codimension k in L'(R"), and conclude from this that Y 
consists of exactly those/ E L'(R") whose Fourier transforms are 0 at every point 
of Z(Y). 

4. Prove the following analogue of (a) of Theorem 9.7 : If cf> E L"'(R"), and if 
to every t E R" corresponds a function K, E L'(R") such that K,(t) # 0 and 
(K, * c/>)(x) --+ 0 as I x 1 --+  w ,  then (f * cf>)(x) --+ 0 as I x 1 --+  w ,  for every f E L1(R"). 

5. Assume K E I!(R") and K has at least one zero in R". Show that then there 
exists 4> E L00(R") such that (K * c/>)(x) = 0 for every x E R", although cf> does not 
satisfy the conclusion of (a) of Theorem 9. 7. 

6. If cf>(x) = sin (x2), - cJJ < x < cJJ , show that 

lim (f * cf>)(x) = 0 
lx!---i' oo 
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for every f E IJ(R), although the conclusion of (b) of Theorem 9.7 does not hold. 
7. For ct > 0, let f. be the characteristic function of the interval [0, ct]. Define /p in 

the same way ; put g = f.  + /p . Prove that the set of all finite linear com
binations of translates of g is dense in L1(R) if and only if {3/ct is irrational. 

8. If ct > 0 and ctx = 1 , prove that 

1 - ct < ct[x] < 1 ,  

and deduce from this that e-'K(x) is bounded, as asserted in the proof of 
Theorem 9. 12. 

9. Let Q denote the set of all rational numbers. Let J1 be a probability measure on 
R that is concentrated on Q, and let cf> be the characteristic function of Q. Show 
that cf>(x) = (cf> * Jl)(x) for every x E R, although cp is not constant. (Compare 
with Theorem 9. 1 3.) What other sets could be used in place of Q to achieve the 
same effect ? 

10. Special cases of the following facts were used in Theorem 9. 1 5. Prove them. 
(a) If cf> E L"'(R") and k E IJ(R"), then k * cf> is uniformly continuous. 
(b) If { cf> J is a sequence of slowly oscillating functions on R" that converges 

uniformly to a function cp, then cf> is slowly oscillating. 
(c) If J1 and A are complex Borel measures on R", then 

1 1 (11 • .A.), II < l lll, I I II .A., I I -

11. Put lj!(x) = cos ( I  x 1 1 13) and define 

f(x) = lj!(x) - ! f 1 lj!(x - y) dy 
2 - 1 

(- 00 < X < 00 ). 

Prove that f E (L1 n C0)(R) but that no bounded solution of the equation 

1 f 1 
cf>(x) - - cp(x - y) dy = f(x) 

2 - 1 
has limits at + oo or at - oo .  (This illustrates the relevance of the condition 
M '# 0 in Theorem 9. 15.) 

12. Let J1 be a probability measure concentrated on the integers. Prove that every 
function cf> on R which is periodic with period 1 satisfies cf> - cf> * J1 = 0. (This is 
relevant to Theorems 9. 1 3  and 9.15.) 

13. Assume cf> E L"'(O, oo ), 

and 

i"' dx 
I K(x) I - < oo, 

0 X 
i"' . dx 

K(x)x- •' - '# 0 
0 X 

i"' dx 
I H(x) l - < oo, 

0 X 
for - oo < t < oo,  

i"' (X) du 
lim K - cf>(u) - = 0. 

x - oo  0 U U 
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i"' (X) du 
lim H - cf>(u) - = 0. 

X-i' 00 Q U U 

This is an analogue of (a) of Theorem 9.7. How would " slowly 
oscillating " have to be defined to obtain the corresponding analog of (b) of 
Theorem 9.7 ? 

14. Complete the details in the following outline of Wiener's proof of Littlewood's 
theorem. Assume I na" I < 1 ,  /(r) = Lg' a" r", and f(r) -> 0 as r ->  1 .  If 
s. = a0 + · · · + a. , it is to be proved that s. -> 0 as n -> oo. 
(a) I s. - /(1 - 1/n) I < 2. Hence {s.} is bounded. 
(b) If cf>(x) = s" on [n, n + 1) and 0 < x < y, then 

y + 1 - x  
l cf>(y) - cf>(x) I ::5: . X 

(c) 1"' xe-x'c/>(t) dt = f(e-x) ->  0 as x ->  0. Hence 

if 

i"' (X) du 
lim K - cf>(u) - = 0 

X ---i- 00 Q U U 

( i"' ., dx . d) K(x)x - • - = r(1 + it) # 0 If t is real. 
0 X 

(e) Put H(x) = 1/(ex) if (1 + e) - t  < x < 1 , H(x) = 0 otherwise. Conclude that 

1 f(l + E)X 
lim - cf>(y) dy = 0. 
x-i' oo ex x 

(f) By (b) and (e), lim cf>(x) = 0. 

Nate: If na. -> 0 is assumed to hold, then a modification of step (a) is all that is 
needed for the proof. 

15. Let Y be a closed subspace of I!(R"). Prove that Y is translation-invariant if and 
only iff * g E Y whenever f E Y and g E I!(R"). 

The closed translation invariant subspaces of I!(R") are thus exactly the 
same as the closed ideals in the convolution algebra I!(R"). 
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10.1 Definition A complex algebra is a vector space A over the complex 
field ft in which a multiplication is defined that satisfies 

(1) 
(2) 

and 

(3) 

x(yz) = (xy)z, 
(x + y)z = xz + yz, x(y + z) = xy + xz, 

a(xy) = (ax)y = x(ay) 
for all x, y, and z in A and for all scalars a. 

If, in addition, A is a Banach space with respect to a norm that 
satisfies the multiplicative inequality 
(4) l l xy ll < l l x i i i i Y I I (x E A, y E A) 

and if A contains a unit element e such that 

(5) xe = ex =  x (x E A) 
and 

(6) l l e ll = 1 ,  
then A is called a Banach algebra. 

Note that we have not required that A be commutative, 1.e., that 

245 
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xy = yx for all x and y in A, and we shall not do so except when explicitly 
stated. 

It is clear that there is at most one e E A that satisfies (5), for if e' also 
satisfies (5), then e' = e'e = e. 

The presence of a unit is very often omitted from the definition of a 
Banach algebra. However, when there is a unit it makes sense to talk about 
inverses, so that the spectrum of an element of A can be defined in a more 
natural way than is otherwise possible. This leads to a more intuitive devel
opment of the basic theory. Moreover, the resulting loss of generality is 
small, because many naturally occurring Banach algebras have a unit, and 
because the others can be supplied with one in the following canonical 
fashion. 

Suppose A satisfies conditions (1)  to (4), but A has no unit element. 
Let A 1 consist of all ordered pairs (x, a), where x E A and a E ft. Define the 
vector space operations in A1 componentwise, define multiplication in A 1 
by 

(7) (x, a)(y, p) = (xy + ay + f3x, a/3), 
and define 

(8) l l (x, a) II = l l x l l  + I a I , e = (0, 1 ). 

Then A 1 satisfies properties ( 1 )  to (6), and the mapping x -+  (x, 0) is an 
isometric isomorphism of A onto a subspace of A 1 (in fact, onto a closed 
two-sided ideal of A 1) whose codimension is 1 .  If x is identified with (x, 0), 
then A 1 is simply A plus the one-dimensional vector space generated by e. 
See Examples 10.3(d) and 1 1 . 1 3(e). 

The inequality (4) makes multiplication a continuous operation in A. 
This means that if x. -+ x and Yn -+ y then x. Yn -+ xy, which follows from 
the identity 

(9) x. Yn - xy = (x. - x)y. + x(y. - y). 
In particular, multiplication is left-continuous and right-continuous : 
( 1 0) x. y -+ xy and xy. -+ xy 
if x. -+ x and Yn -+ y. 

It is interesting that (4) can be replaced by the (apparently) weaker 
requirement ( 10) and that (6) can be dropped without enlarging the class of 
algebras under consideration. 

10.2 Theorem Assume that A is a Banach space as well as a complex 
algebra with unit element e # 0, in which multiplication is left-continuous and 
right-continuous. Then there is a norm on A which induces the same topology 
as the given one and which makes A into a Banach algebra. 

(The assumption e -1=- 0 rules out the uninteresting case A = {0}.) 
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PROOF. Assign to each x E A the left-multiplication operator Mx 
defined by 

(1)  Mx(z) = XZ (z E A). 

Let A be the set of all M x .  Since right multiplication is assumed to be 
continuous, A c �(A), the Banach space of all bounded linear oper
ators on A. 

It is clear that x --+ M x is linear. The associative law implies that 
Mxy = Mx·My . If X E A, then 

(2) 

These facts can be summarized by saying that x --+ M x is an iso
morphism of A onto the algebra A, whose inverse is continuous. Since 

(3) and I IM. I I  = I I l i i  = 1 ,  

A is a Banach algebra, provided it is complete, i.e., provided it is a 
closed subspace of �(A), relative to the topology given by the operator 
norm. (See Theorem 4. 1 .) Once this is done, the open mapping 
theorem implies that x --+ Mx is also continuous. Hence l lx l l  and I IMx ll 
are equivalent norms on A. 

Suppose T E �(A), 11 E A, and 11 --+  T in the topology of �(A). 
If 11 is left multiplication by x1 E A, then 

(4) Tiy) = X; y = (x; e)y = 11(e)y. 
As i --+  oo, the first term in (4) tends to T(y), and 11(e) --+ T(e). Since 
multiplication is assumed to be left-continuous in A, it follows that 
the last term of (4) tends to T(e)y. Put x = T(e). Then 

(5) T(y) = T(e)y = xy = M x(Y) 
so that T = M x E A, and A is closed. 

(y E A), 

/Ill 

The theorem says, in particular, that, in the presence of completeness, 
left continuity plus right continuity implies "joint " continuity. Exercise 6 
shows that this may fail in normed linear algebras that are. not complete. 

10.3 Examples (a) Let C(K) be the Banach space of all complex contin
uous functions on a nonempty compact Hausdorff space K, with the 
supremum norm. Define multiplication in the usual way : (fg)(p) = f(p)g(p). 
This makes C(K) into a commutative Banach algebra ; the constant function 
1 is the unit element. 

If K is a finite set, consisting of, say, n points, then C(K) is simply {/;", 
with coordinatewise multiplication. 
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In particular, when n = 1 ,  we obtain the simplest Banach algebra, 
namely (/;, with the absolute value as norm. 

(b) Let X be a Banach space. Then �(X), the algebra of all bounded 
linear operators on X, is a Banach algebra, with respect to the usual oper
ator norm. The identity operator I is its unit element. If dim X = n < oo, 
then �(X) is (isomorphic to) the algebra of all complex n-by-n matrices. If 
dim X >  1 ,  then �(X) is not commutative. (The trivial space X =  {0} must 
be excluded.) 

Every closed subalgebra of �(X) that contains I is also a Banach 
algebra. The proof of Theorem 10.2 shows, in fact, that every Banach 
algebra is isomorphic to one of these. 

(c) If K is a nonempty compact subset of (/;, or of (/;", and if A is the 
subalgebra of C(K) that consists of those f E C(K) that are holomorphic in 
the interior of K, then A is complete (relative to the supremum norm) and is 
therefore a Banach algebra. 

When K is the closed unit disc in (/;, then A is called the disc algebra. 
(d) I!(R"), with convolution as multiplication, satisfies all requirements 

of Definition 10. 1 ,  except that it lacks a unit. One can adjoin one by the 
abstract procedure outlined in Section 10. 1  or one can do it more con
cretely by enlarging I!(R") to the algebra of all complex Borel measures J.1 
on R" of the form 

df.l = f dm. + A db 

where/ E I!(R"), b is the Dirac measure on R", and A is a scalar. 

(e) Let M(R") be the algebra of all complex Borel measures on R", with 
convolution as multiplication, normed by the total variation. This is a com
mutative Banach algebra, with unit b, which contains (d) as a closed sub
algebra. 

10.4 Remarks There are several reasons for restricting our attention to 
Banach algebras over the complex field, although real Banach algebras 
(whose definition should be obvious) have also been studied. 

One reason is that certain elementary facts about holomorphic : !lnc
tions play an important role in the foundations of the subject. This ,nay be 
observed in Theorems 10.9 and 10. 1 3  and becomes even more obvious in 
the symbolic calculus. 

Another reason-one whose implications are not quite so obvious-is 
that ft has a natural nontrivial involution (see Definition 1 1 . 14), namely, 
conjugation, and that many of the deeper properties of certain types of 
Banach algebras depend on the presence of an involution. (For the same 
reason, the theory of complex Hilbert spaces is richer than that of real 
ones.) 
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At one point (Theorem 1 0.34) a topological difference between (/; and 
R will even play a role. 

Among the important mappings from one Banach algebra into 
another are the homomorphisms. These are linear mappings h that are also 
multiplicative : 

h(xy) = h(x)h(y). 
Of particular interest is the case in which the range is the simplest of all 
Banach algebras, namely, (/; itself. Many of the significant features of the 
commutative theory depend crucially on a sufficient supply of homo
morphisms onto ft. 

Complex Homomorphisms 

10.5 Definition Suppose A is a complex algebra and ¢ is a linear func
tional on A which is not identically 0. If 

(1) ¢(xy) = ¢(x)¢(y) 
for all x E A and y E A, then ¢ is called a complex homomorphism on A. 

(The exclusion of ¢ = 0 is, of course, just a matter of convenience.) 
An element x E A is said to be invertible if it has an inverse in A, that 

is, if there exists an element x - 1 E A such that 

(2) 
where e is the unit element of A.  

Note that no x E A has more than one inverse, for if yx = e = xz then 

y = ye = y(xz) = (yx)z = ez = z. 

10.6 Proposition If ¢ is a complex homomorphism on a complex algebra 
A with unit e, then ¢(e) = 1 ,  and ¢(x) # Ofor every invertible x E A. 

PROOF. For some y E A, ¢(y) -1=- 0. Since 

¢(y) = ¢(ye) = ¢(y)¢(e), 
it follows that ¢(e) = 1 .  If x is invertible, then 

¢(x)¢(x- 1) = ¢(xx- 1) = ¢(e) = 1 ,  
so that ¢(x) # 0. /Ill 

Parts (a) and (c) of the following theorem are perhaps the most widely 
used facts in the theory of Banach algebras; in particular, (c) implies that all 
complex homomorphisms of Banach algebras are continuous. 

10.7 Theorem Suppose A is a Banach algebra, x E A, 1\ x \\ < 1 .  Then 
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(a) e - x is invertible, 

(b) 

(c) 

_ 1 l l x l l 2 ll (e - x) - e - x l l < 
1 _ l l x ll

, 

I ¢(x) I < 1 for every complex homomorphism ¢ on A. 

PROOF. Since ll x" l l < ll x l l " and ll x l l  < 1, the elements 

(1) s = e + x + x2 + . . .  + x" " 
form a Cauchy sequence in A. Since A is complete, there exists s E A 
such that s. ---+ s. Since x" ---+ 0 and 

(2) s. · (e - x) = e - x"+ 1 = (e - x) · s. , 
the continuity of multiplication implies that s is the inverse of e - x. 
Next, (1)  shows that 

oo l lx l l 2 
l i s - e - x l l = ll x2 + X3 + · · · I I < 

.�}x ll " = 
1 _ l l x l l ' 

Finally, suppose A. E {/;, I A. 1 > 1 .  By (a), e - A.- 1 x is invertible. By 
Proposition 1 0.6, 

1 - A. - 1¢(x) = ¢(e - r 1x) ,= 0. 

Hence ¢(x) ,= A.. This completes the proof. /Ill 

We now interrupt the main line of development and insert a theorem 
which shows, for Banach algebras, that Proposition 1 0.6 actually character
izes the complex homomorphisms among the linear functionals. This strik
ing result has apparently found no interesting applications as yet. 

10.8 Lemma Suppose f is an entire function of one complex variable, 
f(O) = 1 ,/'(0) = 0, and 

( 1 )  0 < I f(A.) I < eP· I (A. E n 
Then f(A.) = 1 for all A. E {/;. 

PROOF. Since f has no zero, there is an entire function g such that 
f = exp {g } ,  g(O) = g'(O) = 0, and Re [g(A.)] < I A. I . This inequality 
implies 

(2) I g(A.) I < I 2r - g(A.) I ( I A. I < r). 
The function 

(3) 
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is holomorphic in {A : I A I < 2r}, and I h,(A) I < 1 if I A I = r. By the 
maximum modulus theorem, 

(4) I h,(A) I < 1 ( I  A I < r). 
Fix A and let r --+  oo. Then (3) and (4) imply that g(A) = 0. //II 

10.9 Theorem (Gleason, Kahane, Zelazko) If ¢ is a linear functional 
on a Banach algebra A, such that ¢(e) = 1 and ¢(x) # 0 for every invertible 
x E A, then 

(1)  ¢(xy) = ¢(x)¢(y) (x E A, y E A). 

Note that the continuity of ¢ is not part of the hypothesis. 

PROOF. Let N be the null space of ¢. If x E A and y E A, the assump
tion ¢(e) = 1 shows that 

(2) x = a + ¢(x)e, y + b + ¢(y)e, 
where a E N, b E N. If ¢ is applied to the product of the equations (2), 
one obtains 

(3) ¢(xy) = ¢(ab) + ¢(x)¢(y). 
The desired conclusion ( 1 )  is therefore equivalent to the assertion that 

(4) ab E N if a E N and b E N. 

Suppose we had proved a special case of (4), namely, 

(5) if a E N. 

Then (3), with x = y, implies 

(6) (x E A). 
Replacement of x by x + y in (6) results in 

(7) ¢(xy + yx) = 2¢(x)¢(y) (x E A, y E A). 
Hence 

(8) xy + yx E N  if X E N, y E A. 
Consider the identity 

(9) (xy - yxf + (xy + yx)2 = 2[x(yxy) + (yxy)x]. 
If x E N, the right side of (9) is in N, by (8), and so is (xy + yxf, by (8) 
and (6). Hence (xy - yx)2 is in N, and another application of (6) yields 

( 10) xy - yz E N if x E N, y E A. 
Addition of (8) and ( 10) gives (4), hence ( 1). 
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Thus (5) implies ( 1 ), for purely algebraic reasons. The proof of (5) 
uses analytic methods. 

By hypothesis, N contains no invertible element of A. Thus 
l i e - x ll > 1 for every x E N, by (a) of Theorem 10.7. Hence 

( 1 1 )  I I A.e - x l l > I A. I = I ¢(A.e - x) I (x E N, A. E ft). 

We conclude that ¢ is a continuous linear functional on A, of norm 1 .  
To prove (5), fix a E N, assume l l a l l  = 1 without loss of gener

ality, and define 

( 1 2) J(A.) = f ¢(�") A." 
n = O  n · 

(A_ E ft). 

Since I ¢(a") I < I I  a" II < I I  a l l " = 1 ,  f is entire and satisfies I f(A.) I < 
exp I A. I for all A. E ft. Also,J(O) = ¢(e) = 1 ,  andf'(O) = ¢(a) = 0. 

If we can prove that f(A.) # 0 for every A. E ft, Lemma 1 0.8 will 
imply thatf"(O) = 0 ;  hence ¢(a2) = 0, which proves (5). 

The series 

( 1 3) 
00 A." E(A.) = L - a" 

n = O  n ! 
converges in the norm of A, for every A. E ft. The continuity of ¢ 
shows that 

( 14) f(A.) = c/J(E(A.)) (A. E ft). 

The functional equation E(A. + J.l) = E(A.)E(J.1) follows from ( 1 3) exactly 
as in the scalar case. In particular, 

(1 5) E(A.)E( - A.) = E(O) = e (A. E n 
Hence E(A.) is an invertible element of A, for every A. E ft. This implies, 
by hypothesis, that ¢(E(A.)) # 0, and therefore f(A.) # 0, by ( 14). This 
completes the proof. /Ill 

Basic Properties of Spectra 

10.10 Definitions Let A be a Banach algebra ; let G = G(A) be the set 
of all invertible elements of A.  If x E G and y E G, then y- 1 x is the inverse 
of x- 1y ;  thus x- 1y E G, and G is a group. 

If x E A, the spectrum u(x) of x is the set of all complex numbers A. 
such that A.e - x is not invertible. The complement of u(x) is the resolvent 
set of x ;  it consists of all A. E ft for which (A.e - x)- 1 exists. 

The spectral radius of x is the number 

(1)  p(x) = sup { I A. I : A. E u(x)}. 
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It is the radius of the smallest closed circular disc in {/;, with center at 0, 
which contains a(x). Of course, (1)  makes no sense if a(x) is empty. But this 
never happens, as we shall see. 

10.11 Theorem Suppose A is a Banach algebra, x E G(A), h E A, and 
ll h l l  < i l lx - 1 1 1 - 1 - Then x + h E  G(A), and 

(1) 

PROOF. Since x + h = x(e + x- 1h) and l l x - 1h ll < � .  Theorem 10.7 
implies that x + h E G(A) and that the norm of the right member of 
the identity 

(x + h) - 1 - x- 1 + x - 1hx - 1 = [(e + x - 1h) - 1 - e + x- 1h]x- 1 

is at most 2 1 1 x- 1h l l 2 l l x - 1 1 1 - //// 

10.12 Theorem If A is a Banach algebra, then G(A) is an open subset of 
A, and the mapping x --+  x - 1 is a homeomorphism of G(A) onto G(A). 

PROOF. That G(A) is open and that x --+  x- 1 is continuous follows 
from Theorem 1 0. 1 1 .  Since x --+  x - 1 maps G(A) onto G(A) and since it 
is its own inverse, it is a homeomorphism. /II/ 

10.13 Theorem If A is a Banach algebra and x E A, then 

(a) the spectrum a(x) of x is compact and nonempty, and 
(b) the spectral radius p(x) of x satisfies 
(1) p(x) = lim l l x" l l 1 1" = inf l l x" l l 1 1" . 

n-+ co  n?; 1 

Note that the existence of the limit in (1)  is part of the conclusion and 
that the inequality 

(2) p(x) < l l x l l 
is contained in the spectral radius formula (1 ). 

PROOF. If I A. I > ll x l l  then e - A.  - Ix lies in G(A), by Theorem 10.7, and 
so does A.e - x. Thus A. i a(x). This proves (2). In particular, a(x) is a 
bounded set. 

To prove that a(x) is closed, define g :  (/; --+ A  by g(A.) = A.e - x. 
Then g is continuous, and the complement n of a(x) is g- 1(G(A)), 
which is open, by Theorem 1 0. 12. Thus a(x) is compact. 

Now define/ : n --+  G(A) by 

(3) f(A.) = (A.e - x)- 1 (A. E Q). 
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Replace x by A.e - x and h by (J.l - A.)e in Theorem 1 0.1 1 .  If A. E n and 
J.1 is sufficiently close to A., the result of this substitution is 

so that 

(5) lim 
f(J.l) -f(A.) 

= -f2(A.) 
�' .... '- f.1 

-
A. (A E Q). 

Thusf is a strongly holomorphic A-valued function in n. 
If I A. I > l l x l l , the argument used in Theorem 1 0.7 shows that 

00 

(6) f(A.) = .L r · - 1x" = r 1e + r 2x + . . . . 
n = O  

This series converges uniformly on every circle r, with center at 0 and 
radius r > l l x ll . By Theorem 3 .29, term-by-term integration is there
fore legitimate. Hence 

(7) x" = _
2

1 . i A.'f(A.) dA. 
7!:1 r, 

(r > l l x ll , n = 0, 1 ,  2, . . .  ). 

If a(x) were empty, n would be (/;, and the Cauchy theorem 3.31 
would imply that all integrals in (7) are 0. But when n = 0, the left
hand side of (7) is e # 0. This contradiction shows that a(x) is not 
empty. 

Since n contains all A. with I A. I > p(x), an application of (3) of 
the Cauchy theorem 3 .31  shows that the condition r > l l x l l  can be 
replaced in (7) by r > p(x). If 

(8) M(r) = max l l f(re;8) 1 1  (r > p(x)), 
8 

the continuity of/implies that M(r) < oo .  Since (7) now gives 

(9) l l x" l l  < r" + 1M(r), 

we obtain 

( 10) lim sup I I  x" 1 1 1 1" < r (r > p(x)) 
n --+ oo  

so that 

( 1 1 )  lim sup l l x" l l 1 1" < p(x). 
n--+ oo 

( 12) 

On the other hand, if A. E a(x), the factorization 

A."e - x" = (A.e - x)(A." - 1 e + · · · + x" - 1) 
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shows that A."e - x" is not invertible. Thus A." E a(x"). By (2), 
I A." I < l l x" l l for n = 1 ,  2, 3, . . . . Hence 

( 1 3) p(x) < inf II x" 1 1 1 1", 
n � l  

and ( 1 )  is an immediate consequence of ( 1 1 ) and ( 1 3). Ill/ 

The nonemptiness of a(x) leads to an easy characterization of those 
Banach algebras that are division algebras. 

10.14 Theorem (Gelfand-Mazur) If A is a Banach algebra in which 
every nonzero element is invertible, then A is (isometrically isomorphic to) the 
complex field. 

PROOF. If x E A and A. 1 # A.2 , then at most one of the elements 
A.1 e - x and A.2 e - x is 0 ;  hence at least one of them is invertible. 
Since a(x) is not empty, it follows that a(x) consists of exactly one 
point, say A.(x), for each x E A. Since A.(x)e - x is not invertible, it is 0. 
Hence x = A.(x)e. The mapping x --+  A.(x) is therefore an isomorphism 
of A onto (/;, which is also an isometry, since l A.(x) l = I I A.(x)e ll = ll x ll 
for every x E A. //// 

Theorems 10. 1 3  and 1 0. 14 are among the key results of this chapter. 
Much of the content of Chapters 1 1  to 1 3  is independent of the remainder 
of Chapter 10. 

10.15 Remarks (a) Whether an 'element of A is or is not invertible in A 
is a purely algebraic property. The spectrum and the spectral radius of an 
x E A are thus defined in terms of the algebraic structure of A, regardless of 
any metric (or topological) considerations. On the other hand, lim II x" 11 1 1" 
depends obviously on metric properties of A. This is one of the remarkable 
features of the spectral radius formula : It asserts the equality of certain 
quantities which arise in entirely different ways. 

(b) Our algebra A may be a subalgebra of a larger Banach algebra B, 
and it may then very well happen that some x E A is not invertible in A but 
is invertible in B. The spectrum of x depends therefore on the algebra. The 
inclusion a A(x) :::J a a(x) holds (the notation is self-explanatory) ; the two 
spectra can be different. The spectral radius is, however, unaffected by the 
passage from A to B, since the spectral radius formula expresses it in terms 
of metric properties of powers of x, and these are independent of anything 
that happens outside A. 

Theorem 1 0. 1 8  will describe the relation between a A(x) and a8(x) in 
greater detail. 
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10.16 Lemma Suppose V and W are open sets in some topological space 
X, V c W, and W contains no boundary point of V. Then V is a union of 
components of W. 

Recall that a component of W is, by definition, a maximal connected 
subset of W. 

PROOF. Let n be a component of w that intersects v .  Let u be the 
complement of V. Since W contains no boundary point of V, n is the 
union of the two disjoint open sets n n V and n n U. Since n is 
connected, n n U is empty. Thus n c V. /Ill 

10.17 Lemma Suppose A is a Banach algebra, x. E G(A) for n = 1 ,  2, 3 ,  
. . .  , x is a boundary point of G(A), and x. --+ x as n --+  oo. 

Then ll x; 1 1 1 --+ oo as n --+  oo.  

PROOF. If the conclusion is false, there exists M < oo such that 
ll x,;- 1 1 1 < M for infinitely many n. For one of these, l l x. - x l l < 1/M. 
For this n, 

l i e - x; 1x l l  = l l x; 1(x. - x) l l < 1 ,  

so that x; 1 x E G(A). Since x = x.(x; 1 x) and G(A) is a group, it follows 
that x E G(A). This contradicts the hypothesis, since G(A) is open. !II/ 

10.18 Theorem 

(a) If A is a closed subalgebra of a Banach algebra B, and if A contains the 
unit element of B, then G(A) is a union of components of A n G(B). 

(b) Under these conditions, if x E A, then a A(x) is the union of aa(x) and a 
(possibly empty) collection of bounded components of the complement of 
a a(x). In particular, the boundary of a A(x) lies in a a(x). 

PROOF. (a) Every member of A that has an inverse in A has the same 
inverse in B. Thus G(A) c G(B). Both G(A) and A n G(B) are open 
subsets of A. By Lemma 10. 1 6, it is sufficient to prove that G(B) con
tains no boundary point y of G(A). 

Any such y is the limit of a sequence {x.} in G(A). By Lemma 
10. 1 7, I I  x; 1 1 1  --+ oo.  If y were in G(B), the continuity of inversion in 
G(B) (Theorem 10. 1 2) would force x; 1 to converge to y- 1. In particu
lar { II x; 1 1 1 } would be bounded. Hence y ¢ G(B), and (a) is proved. 

(b) Let nA and nB be the complements of 0" A(x) and of aa(x), 
relative to ft. The inclusion nA c nB is obvious, since A E nA if and 
only if A.e - X E G(A). Let Ao be a boundary point of nA . Then 
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Ao e - x is a boundary point of G(A). By (a), Ao e - x fj G(B). Hence 
Ao fj nB 0 Lemma 10. 1 6  implies now that nA is the union of certain 
components of nB 0 The other components of nB are therefore subsets 
of (J A(x). This proves (b). //II 

Corollaries. Suppose x E A c B. 

(a) If (J8(x) does not separate (/;, i.e., if its complement !l8 is connected, 
then (J A(x) = (J 8(x). 

(b) If (J A(x) is larger than (J8(x), then (J A(x) is obtained from (JJx) by 
"filling in some holes " in (JJx). 

(c) If (J A(x) has empty interior, then (J A(x) = (JJx). 

The most important application of this corollary occurs when 
(J8(x) contains only real numbers. 

As another application of Lemma 10. 1 7  we now prove a theorem 
whose conclusion is the same as that of the Gelfand-Mazur theorem, 
although its consequences are not nearly so important. 

10.19 Theorem If A is a Banach algebra and if there exists M < oo such 
that 
(1) l l x i i i i Y I I < M l l xy ll (x E A, y E A), 

then A is (isometrically isomorphic to) ft. 

PROOF. Let y be a boundary point of G(A). Then y = lim Yn for some 
sequence {y.} in G(A). By Lemma 10. 1 7, l l y; 1 1 1 ---+ oo .  By hypothesis, 

(2) I IY. I I I Iy; 1 1 1 < Mil e I I  (n = 1, 2, 3, . . .  ). 

Hence I IY. II ---+ 0 and therefore y = 0. 
If x E A, each boundary point A of (J(x) gives rise to a boundary 

point Ae - x of G(A ). Thus x = Ae. In other words, A = {Ae : A E {/;). 

/Ill 

It is natural to ask whether the spectra of two elements x and y of A 
are close together, in some suitably defined sense, if x and y are close to 
each other. The next theorem gives a very simple answer. 

10.20 Theorem Suppose A is a Banach algebra, X E A, n is an open set 
in (/;, and (J(X) c n. Then there exists b > 0 such that (J(X + y) c n for every 
Y E A  with I I Y I I < b. 
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PROOF. Since I I (A.e - x)- 1 1 1 is a continuous function of A. in the com
plement of a(x), and since this norm tends to 0 as A. -+  oo, there is a 
number M < oo such that 

I I (A.e - x)- 1 1 1 < M 

for all A outside n. If y E A, I I Y I I < 1/M, and A fj n, it follows that 

A.e - (x + y) = (A.e - x)[e - (A.e - x) - 1y] 

is invertible in A, since I I (A.e - x) - 1y ll < 1 ;  hence A. fj a(x + y). This 
gives the desired conclusion, with b = 1/M. Ill! 

Symbolic Calculus 

10.21 Introduction If x is an element of a Banach algebra A and if 
f(A.) = a0 + · · · + a. A." is a polynomial with complex coefficients IX; , there 
can be no doubt about the meaning of the symbolf(x); it obviously denotes 
the element of A defined by 

f(x) = a0 e + a1 x + · · · + a. x". 

The question arises whether f(x) can be defined in a meaningful way for 
other functions f We have already encountered some examples of this. For 
instance, during the proof of Theorem 1 0.9 we came very close to defining 
the exponential function in A. In fact, ifj(A.) = L ak A_k is any entire function 
in {/;, it is natural to define f(x) E A by f(x) = L ilk xk ; this series always 
converges. Another example is given by the meromorphic functions 

1 
f(A.) = l 0 IX - 11.  

In this case, the natural definition off(x) is 

f(x) = (ae - x) - 1 

which makes sense for all x whose spectrum does not contain a. 
One is thus led to the conjecture that f(x) should be definable, within 

A, whenever f is holomorphic in an open set that contains a(x). This turns 
out to be correct and can be accomplished by a version of the Cauchy 
formula that converts complex functions defined in open subsets of (/; to 
A-valued ones defined in certain open subsets of A. (Just as in classical 
analysis, the Cauchy formula is a much more adaptable tool than the power 
series representation.) Moreover, the entities f(x) so defined (see Definition 
10.26) turn out to have interesting properties. The most important of these 
are summarized in Theorems 1 0.27 to 1 0.29. 

In certain algebras one can go further. For instance, if x is a bounded 
normal operator on a Hilbert space H, the symbol f(x) can be interpreted 
as a bounded normal operator on H when f is any continuous complex 
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function on a(x), and even when f is any complex bounded Borel function 
on a(x). In Chapter 1 2  we shall see how this leads to an efficient proof of a 
very general form of the spectral theorem. 

10.22 Integration of A-valued functions If A is a Banach algebra and 
f is a continuous A-valued function on some compact Hausdorff space Q on 
which a complex Borel measure J.1 is defined, then J f df.l exists and has all 
the properties that were discussed in Chapter 3, simply because A is a 
Banach space. However, an additional property can be added to these and 
will be used in the sequel, namely : If x E A, then 

(1) x if df.l = i xf(p) df.l(p) 
and 
(2) 

To prove ( 1 ), let Mx be left multiplication by x, as in the proof of 
Theorem 10.2, and let A be a bounded linear functional on A. Then AM x is 
a bounded linear functional. Definition 3.26 implies therefore that 

AMx if df.l = i (AMxf) dj1 = A i (Mxf) dj1, 
for every A, so that 

Mx Lfdf.l = L(Mxf) dj1, 
which is just another way of writing ( 1 ). To prove (2), interpret Mx to be 
right multiplication by x. 

10.23 Contours Suppose K is a compact subset of an open n c {/;, and 
r is a collection of finitely many oriented line intervals y 1 , . . . , Yn in n, none 
of which intersects K. In this situation, integration over r is defined by 

( 1 )  

(2) 

L ¢(A.) dA. = Jl {¢(A.) dA.. 
It is well known that r can be so chosen that 

1 r dA. {1 lndr (() = 
2ni Jr A. - ( = 0 

if ( E K 
if ' f$ n 
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and that the Cauchy formula 

(3) J(() = _
2

1 
. I (.A. - () - 1/(.A.) d). 

m Jr 
then holds for every holomorphic function f in n and for every ( E K. See, 
for instance, Theorem 1 3.5 of [23]. 

We shall describe the situation (2) briefly by saying that the contour r 
surrounds K in Q. 

Note that neither K nor n nor the union of the intervals l'i has been 
assumed to be connected. 

10.24 Lemma Suppose A is a Banach algebra, X E A, a. E {/;, a. fj a(x), n 
is the complement of a. in {/;, and r surrounds a(x) in n. Then 

(1)  -
2

1
. 

l(a. - .A.)"(.A.e - x) - 1 d). = (a.e - x)" 
m Jr 

(n = 0, + 1 ,  + 2, . . .  ). 

PROOF. Denote the integral by Yn . When ). fj a(x), then 

(.A.e - x) - 1 = (a.e - x)- 1 + (a. - .A.)(a.e - x)- 1(.A.e - x) - 1 . 
By Section 1 0.22, Yn is therefore the sum of 

(2) (a.e - x) - 1 · -
2

1
. 

l (a. - .A.)" d). = 0, 
m Jr 

since Indr (a.) = 0, and 

(3) (a.e - x) - 1 · � l (a. - .A.)" + 1 (.A.e - x) - 1 d.A.. 
2m Jr 

Hence 

(4) (a.e - x)y. = Yn + 1  (n = 0, + 1 ,  + 2, . . .  ). 
This recursion formula shows that ( 1 )  follows from the case 

n = 0. We thus have to prove that 

(5) -
2
1

. I (.A.e - x) - 1 d). = e. 
m Jr 

Let r, be a positively oriented circle, centered at 0, with radius 
r > I I  x I I - On r" (.A.e - x) - 1 = L .A.- " - 1 x". Term wise integration of this 
series gives (5), with r, in place of r. Since the integrand in (5) is a 
holomorphic A-valued function in the complement of a(x) (see the 
proof of Theorem 1 0. 1 3), and since 

(6) Indr, (() = 1 = Indr (() 
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for every ( E a(x), the Cauchy theorem 3.3 1 shows that the integral (5) 
is unaffected if r is replaced by r, . This completes the proof. //// 

10.25 Theorem Suppose 

(1) R(.A.) = P(.A.) + L em, k(A - ctm)-k 
m, k 

is a rational function with poles at the points ctm . [P is a polynomial, and the 
sum in (1)  has only finitely many terms.] If x E A and if a(x) contains no pole 
of R, define 

(2) R(x) = P(x) + L em, k(x - C(m e) -k. 
m, k 

JfO. is an open set in (/; that contains a(x) and in which R is holomorphic, and 
ijr surrounds a(x) in 0., then 

(3) R(x) = � i R(.A.)(.A.e - x)- 1 d.A.. 
2m r 

PROOF. Apply Lemma 1 0.24. /Ill 

Note that (2) is certainly the most natural definition of a rational func
tion of x E A. The conclusion (3) shows that the Cauchy formula achieves 
the same result. This motivates the following definition. 

10.26 Definition Suppose A is a Banach algebra, 0. is an open set in {/;, 
and H(O.) is the algebra of all complex holomorphic functions in 0.. By 
Theorem 1 0.20, 

(1)  An = {x E A :  a(x) c 0.} 

is an open subset of A. 
We define H(An) to be the set of all A-valued functions!. with domain 

An, that arise from anf E H(O.) by the formula 

(2) - 1 i f(x) = -
2 . f(.A.)(.A.e - x) - I d.A., 

m r 

where r is any contour that surrounds a(x) in 0.. 
This definition calls for some comments. 
(a) Since r stays away from a(x) and since inversion is continuous in 

A, the integrand is continuous in (2), so that the integral exists and defines 
](x) as an element of A. 

(b) The integrand is actually a holomorphic A-valued function in the 
complement of a(x). (This was observed in the proof of Theorem 1 0. 1 3 .  See 
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Exercise 3.) The Cauchy theorem 3.3 1 implies therefore that ](x) is indepen
dent of the choice ofr, provided only that r surrounds a(x) in n. 

(c) If X = a.e and <1. E Q, (2) becomes 

(3) ](a.e) = f(a.)e. 
Note that a.e E An if and only if a. E n. If we identity A E (/; with Ae E A, 
every f E H(Q) may be regarded as mapping a certain subset of An (namely, 
the intersection of An with the one-dimensional subspace of A generated by 
e) into A, and then (3) shows that] may be regarded as an extension off 

In most treatments of this topic, f(x) is written in place of our ](x). 
The notation]is used here because it avoids certain ambiguities that might 
cause misunderstandings. 

(d) If S is any set and A is any algebra, the collection of all A-valued 
functions on S is an algebra, if scalar multiplication, addition, and multipli
cation are defined pointwise. For instance, if u and v map S into A, then 

(uv)(s) = u(s)v(s) (s E S). 
This will be applied to A-valued functions defined in An . 

10.27 Theorem Suppose A, H(Q), and H(An) are as in Definition 10.26. 
Then H(An) is a complex algebra. The mapping f--+ J is an algebra iso
morphism of H(Q) onto H(An) which is continuous in the following sense : 

Iff, E H(Q) (n = 1, 2, 3, . . .  ) and f. --+ f uniformly on compact subsets of 
n, then 

(1) ](x) = lim l,(x) (x E An). 
n-+ oo  

If u(A) = A and v(A) = 1 in n, then u(x) = x and V(x) = e for every 
x E An . 

PROOF. The last sentence follows from Theorem 10.25. The integral 
representation (2) in Section 10.26 makes it obvious thatf--+ ]is linear. 
If]= 0, then 

(2) f(a.)e = ](a.e) = 0 (a. E Q), 
so thatf = 0. Thusf--+ ]is one-to-one. 

The asserted continuity follows directly from the integral (2) in 
Section 10.26, since I I (Ae - x)- 1 1 1 is bounded on r. (Use the same r 
for all f. , and apply Theorem 3.29.) 

It remains to be proved that f--+ J is multiplicative. Explicitly, if 
f E H(Q), g E H(Q), and h(A) = f(A)g(A) for all A E n, it has to be shown 
that 

(3) h(x) = ](x)g(x) (x E An). 
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Iff and g are rational functions without poles in n, and if h = fg, 
then h(x) = f(x)g(x), and since Theorem 10.25 asserts that R(x) = R(x), 
(3) holds. In the general case, Runge's · theorem (Th. 13.9 of [23]) 
allows us to approximate f and g by rational functions f. and g. , 
uniformly on compact subsets of n. Then !, g. converges to h in the 
same manner, and (3) follows from the continuity of the mapping 
f-l M 
Since H(Q) is obviously a commutative algebra, Theorem 10.27 

implies that H(An) is also commutative. This may be surprising, because 
j(x) and ](y) need not commute. However,j(x) and g(x) do commute in A, 
for every x E An . Hencejg = g], by Definition 10.26 (d). 

10.28 Theorem Suppose x E An and f E H(Q). 

(a) ](x) is invertible in A if and only iff().) =/:. 0 for every ). E a(x). 
(b) a(](x)) = f(a(x)). 

Part (b) is called the spectral mapping theorem. 

PROOF. (a) Iff has no zero on a(x), then g = 1/f is holomorphic in an 
open set Q1 such that a(x) c !l1 c n. Since fg = 1 in nl> Theorem 
10.27 (with !l1 in place of Q) shows that ](x)g(x) = e, and thus ](x) is 
invertible. Conversely, if f(rx) = 0 for some rx E a(x) then there exists 
h E H(Q) such that 

(1) (). - rx)h().) = f().) (). E Q), 

which implies 

(2) (x - rxe)h(x) = ](x) = h(x)(x - rxe), 
by Theorem 10.27. Since x - rxe is not invertible in A, neither is ](x), 
by (2). 

(b) Fix f3 E {/;. By definition, f3 E a(](x)) if and only if ](x) - f3e is 
not invertible in A. By (a), applied to f - f3 is place off, this happens if 
and only iff - f3 has a zero in a(x), that is, if and only if f3 E f(a(x)). 

/Ill 

The spectral mapping theorem makes it possible to include composi
tion of functions among the operations of the symbolic calculus. 

10.29 Theorem Suppose x E An , f E H(Q), !l 1 is an open set containing 
f(a(x)), g E H(!l1), and h().) = g(f().)) in Q0 , the set of all ). E n with 
f().) E n1 . 
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Thenj(x) E An, and h(x) = g(j(x)). 

Briefly, fi = g o jif h = g o f 

PROOF. By (b) of Theorem 10.28, a(j(x)) c Q11 and therefore g(j(x)) is 
defined. 

Fix a contour r 1 that surrounds f(a(x)) in !l1. There is an open 
set W, with a(x) c W c Q0 , so small that 

(1) Indr, (f(.A.)) = 1 (.A. E W). 

Fix a contour r 0 that surrounds a(x) in W. If ( E r H then 1/(( -f) E 
H(W). Hence Theorem 10.27, with W in place of n, shows that 

- 1 i (2) [(e -f(x)] - 1 = -2 . [( -f(.A.)] - 1(.A.e - x) - 1 d.A. 
1!:1 ro 

Since r 1 surrounds a{j(x)) in nl>  (1) and (2) imply 

g(j(x)) = � i g(()[(e - j(x)] - 1 d( 2m r, 

= _2
1

. i _2
1

. i g(()[( - f(.A.)r 1 d((.A.e - x)- 1 d). 
nl ro 1!: 1 r, 

1 i 1 i -
= -2 . g(f(.A.))(.A.e - x) - 1 d). = -2 . h(.A.)(.A.e - x) - 1 d). = h(x). 

n l  ro nl ro 

Ill/ 

We shall now give some applications of this symbolic calculus. The 
first one deals with the existence of roots and logarithms. To say that an 
element x E A has an nth root in A means that x = y" for some y E A. If 
x = exp (y) for some y E A, then y is a logarithm of x. 

Note that exp (y) = L� y"jn ! but that the exponential function can 
also be defined by contour integration, as in Definition 10.26. The contin
uity assertion of Theorem 10.27 shows that these definitions coincide (as 
they do for every entire function). 

10.30 Theorem Suppose A is a Banach algebra, x E A, and the spectrum 
a(x) of x does not separate Ofrom oo. Then 

(a) x has roots of all orders in A, 
(b) x has a logarithm in A, and 
(c) ife > 0, there is a polynomial P such that l l x - 1 - P(x) ll < e. 
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Moreover, if a(x) lies in the positive real axis, the roots in (a) can be 
chosen so as to satisfy the same condition. 

PROOF. By hypothesis, 0 lies in the unbounded component of the com
plement of a(x). Hence there is a function J, holomorphic in a simply 
connected open set n :::J a(x), which satisfies 

exp (f(.A.)) = .A.. 
It follows from Theorem 10.29 that 

exp (f(x)) = x, 
so that y = j(x) is a logarithm of x. If 0 < .A. < oo for every .A. E a(x),f 
can be chosen so as to be real on a(x), so that a(y) lies in the real axis, 
by the spectral mapping theorem. If z = exp (yjn), then z" = x, and 
another application of the spectral mapping theorem shows that 
a(z) c (0, oo ) if a(y) c ( - oo, oo). This proves (a) and (b) ; of course (a) 
could have been proved directly, without passing through (b). 

To prove (c), note that lj.A. can be approximated by polynomials, 
uniformly on some open set containing a(x) (Runge's theorem), and 
use the continuity assertion of Theorem 10.27. /Ill 

These results are not quite trivial even when A is a finite-dimensional 
algebra. For example, it is a special case of (b) that a complex n-by-n matrix 
M is the exponential of some matrix if and only if 0 is not an eigenvalue of 
M, that is, if and only if M is invertible. To deduce this from (b), let A be the 
algebra of all complex n-by-n matrices (or the algebra of all bounded linear 
operators on {/;"). 

If some x E A satisfies a polynomial identity, i.e., if P(x) = 0 for some 
polynomial P, then ](x) can always be calculated as a polynomial in x, 
without using the Cauchy integral as in Definition 10.26. If A is finite
dimensional, then this remark applies to every x E A. Here are the details : 

10.31 Theorem Let P(.A.) = (.A. - a 1 )m 1 • • • (.A. - a.)m' be a polynomial of 
degree n = m 1  + · · · + m. and let n be an open set in (/; which contains the 
zeros a � >  . . .  , a. of P. 

If A is a Banach algebra, x E A, and P(x) = 0, then 

(a) a(x) c {a 1 ,  • • •  , a.} and 
(b) to every f E H(Q) corresponds a polynomial Q, of degree < n, and a func

tion g E H(Q), so that 
(1) f(.A.) - Q(.A.) = P(.A.)g(.A.) (A E Q) 
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and 

(2) ](x) = Q(x). 

PROOF. By the spectral mapping theorem, 

(3) P(a(x)) = a(P(x)) = a(O) = {0} .  
This proves (a). 

If all multiplicities m; are 1, Q can be obtained with the aid of 
the Lagrange interpolation formula 

(4) Q(.A.) = I _J(rx;)P(.A.) 
. 

i= i P (rx;)(.A. - rx;) 
This gives Q(rx;) = f(rx;) (1 < i < n) ; hence (f - Q)/ P is holomorphic 
in n. 

In the general case, the Laurent series of f1 P about the points 
rx1 , • • •  , rx. give constants C;k so that 

(5) g(.A.) = f(.A.) - I I cik 
k P(.A.) i = i  k = i (.A. - a.;) 

is holomorphic in n. 
This proves (1), and now (2) is a consequence of Theorem 10.27, 

because (1) implies 

(6) ](x) = Q(x) + P(x)g(x), 
and P(x) = 0. /Ill 

10.32 Definition Let &I(X) be the Banach algebra of all bounded linear 
operators on the Banach space X. The point spectrum a p(T) of an operator 
T E &I( X) is the set of all eigenvalues of T. Thus ). E a p(T) if and only if the 
null space JV(T - U) of T - ).I has positive dimension. 

When A = &I(X), the spectral mapping theorem can be refined in the 
following way. 

10.33 Theorem Suppose T E &I(X), n IS open In (/;, a(T) c n, and 
fE  H(Q). 

(a) Ifx E X, a E n, and Tx = rxx, then](T)x = f(rx)x. 
(b) f(a p(T)) c a p(](T)). 
(c) If rx E a p(](T)) and f - rx does not vanish identically in any component of 

n, then rx E f(a p(T)). 
(d) Jffis not constant in any component of!l, thenf(ap(T)) = ap(j(T)). 
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Part (a) states that every eigenvector of T, with eigenvalue a, is also 
an eigenvector of](T), with eigenvaluef(a). 

PROOF. (a) If x = 0 there is nothing to be proved. Assume x # 0 and 
Tx = ax. Then IX E a(T), and there exists g E H(O.) such that 

(1) f().) -f(a) = g().)(). - a). 

By Theorem 10.27, (1) implies 

(2) ](T) -f(a)I = g(T)(T - a/). 

Since (T - al)x = 0, (2) proves (a). 
Thusf(a) is an eigenvalue of](T) whenever a is an eigenvalue of 

T. It follows that (a) implies (b). 
Under the hypotheses of (c), 

(3) IX E (J p(](T)) c a(](T)) = f((J(T)), 

so that 

(4) 

Moreover, the set (4) is finite, because (J(T) is a compact subset of n 
and f - a does not vanish identically in any component of n. Let 
( 1 , . . .  , (" be the zeros of f- a in (J( T), counted according to their 
multiplicities. Then 

(5) j(A) - IX =  g(A)(A - ( 1 ) . . .  (A - (.), 
where g E H(O.) and g has no zero on (J(T), so that 

(6) ](T) - a/ = g(T)(T - ( 1/) . .  • (T - (. I). 
By (a) of Theorem 1 0.28, g(T) is invertible in &I( X). Since a is an eigen
value of](T), ](T) - a/ is not one-to-one on X. Hence (6) implies that 
at least one of the operators T - (J must fail to be one-to-one. The 
corresponding (; is in (Jp(T), and since f((;) = a  the proof of (c) is 
complete. 

Finally, (d) is an immediate consequence of (b) and (c). /Ill 

The Group of Invertible Elements 

We shall now take a closer look at the structure of G = G(A), the multipli
cative group of all invertible elements of a Banach algebra A. 

G1 will denote the component of G that contains e, the identity 
element of G. Sometimes G1 is called the principal component of G. By the 
definition of component, G1 is the union of all connected subsets of G that 
contain e. 
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The group G contains the set 

exp (A) = {exp (x) : x E A}, 

the range of the exponential function in A, simply because exp ( - x) is the 
inverse of exp (x). In fact, the power series definition of exp (x) yields the 
functional equation 

exp (x + y) = exp (x) exp (y), 

provided that xy = yx ; also, exp (0) = e. 
Note also that G is a topological group (see Section 5. 12) since multi

plication and inversion are continuous in G. 

10.34 Theorem 

(a) 
(b) 
(c) 

G1 is an open normal subgroup of G. 
G1 is the group generated by exp (A). 
If A is commutative, then G1 = exp (A). 

(d) If A is commutative, the quotient group G/G1 contains no element of 
finite order (except for the identity). 

PROOF. (a) Theorem 10. 1 1  shows that every x E G1 is the center of an 
open ball U c G. Since U intersects G1 and U is connected, U c G1 . 
Therefore G1 is open. 

If x E G1 then x- 1G 1 is a connected subset of G which contains 
x- 1x = e. Hence x- 1 G1 c GI > for every x E G1 . This proves that G1 is 
a subgroup of G. Also, y - i G1y is homeomorphic to GI> hence con
nected, for every y E G, and contains e. Thus y- 1 G1y c G1 . By defini
tion, this says that G1 is a normal subgroup of G. 

(b) Let r be the group generated by exp (A). For n = 1 ,  2, 3, . . .  , 
let En be the set of all products of n members of exp (A). Since 
y- 1 E exp (A) whenever y E exp (A), r is the union of the sets En . 
Since the product of any two connected sets is connected, induction 
shows that each En is connected. Each En contains e, and so En c G1 • 
Hence r is a subgroup of G1 • 

Next, exp (A) has nonempty interior, relative to G (see Theorem 
10.30) ; hence so has r. Since r is a group and since multiplication by 
any x E G is a homeomorphism of G onto G, r is open. 

Each coset of r in G1 is therefore open, and so is any union of 
these cosets. Since r is the complement of a union of its cosets, r is 
closed, relative to G1 • 

Thus r is an open and closed subset of G1 . Since G1 is con
nected, r = G1 • 
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(c) If A is commutative, the functional equation satisfied by exp 
shows that exp (A) is a group. Hence (b) implies (c). 

(d) We have to prove the following proposition : 

If A is commutative, if x E G, and if xn E G1 for some positive integer n, 
then x E G1 • 

Under these conditions, xn = exp (a) for some a E A, by (c). Put 
y = exp (n- 1a) and z :::; xy- 1 . Since y E G 1 , it suffices to prove that 
z E Gl .  

The commutativity of A shows that 

zn = xny-n = exp (a) exp (-a) = e. 

Therefore a(z) does not separate 0 from oo (it consists of at most n 
points, lying on the unit circle), and this implies, by Theorem 10.30, 
that z = exp (w) for some w E A. Put 

f(A.) = exp (A.w). 
Then f :  (/; -+  G is continuous, f(O) = e E GI> hence f( (/;) c G1 . In par
ticular, z =f(1)  E G1 . //// 

Theorem 12.38 will show that exp (A) is not always a group. 

Lomonosov's Invariant Subspace Theorem 

An invariant subspace of an operatpr T E BI(X) is, by definition, a closed 
subspace M of X such that M # {0}, M # X, and Tx E M  for every x E M ; 
or, briefly, T(M) c M. 

The question arises (and was asked more than half a century ago) 
whether it is true, for every complex Banach space X, that every T E &I(X) 
has an invariant subspace. In recent years some counterexamples have been 
constructed in some nonreftexive spaces, and even in t1 • (References are 
given in Appendix B.) Positive results have been found for certain classes of 
operators on a Hilbert space (in particular, for normal operators ; see 
Chapter 12), but even there the general question is still open. 

Lomonosov's proof of the following striking theorem used Schauder's 
fixed point theorem to produce an eigenvalue (namely, 1). T. M. Hilden 
observed that this could also be done by an appeal to the spectral radius 
formula ; the resulting proof is a slight simplification of the original one. 

10.35 Theorem Suppose that X is an infinite-dimensional complex 
Banach space and that T E BI(X) is compact, T # 0. 
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Then there is a closed subspace M of X such that M # {0} , M # X, 
and 

(1) S(M) c M 
for every S E &I(X) that commutes with T. 

Observe, as a corollary, that every S E &I(X) which commutes with 
some nonzero compact operator has an invariant subspace ! 

PROOF. Let us introduce the notations 

(2) r = {S E BI(X) : ST = TS} 

and, for each y E X, 
(3) r(y) = {Sy : S E r}. 

It is easy to see that r is a closed subalgebra of &I(X) and that r(y) is 
therefore a closed subspace of X which contains y. Thus r(y) # {0} if 
y # 0. Moreover, 

(4) S(r(y)) c r(y) 

for all y E X and S E r, simply because r is closed under multiplica
tion. Thus (1) holds for every r(y). 

If the conclusion of the theorem is false, it follows that r(y) = X 
for every y # 0. 

Let us assume this. 
Pick x0 E X  so that Tx0 # 0. Then x0 # 0, and the continuity of 

T shows that there is an open ball B, centered at x0 , so small that 

(5) I I Tx ll > 1 1 1 Txo l l and 

for every x E B. Our assumption about r(y) implies that every y # 0 
has a neighborhood W which is mapped into the open set B by some S E r. Since T is a compact operator, K = T(B) is a compact set. By 
(5), 0 fj K. Therefore there are open sets W1 , • • •  , W, ,  whose union 
covers K, such that S;('IV;) c B for some Si E r, 1 < i < n. Put 

(6) J.1 = max { I I s 1 1 1 , . . . , I I s. II } .  
Starting with Xo ' Txo lies in K, hence in some W;!, and si l Txo E 

B. Therefore TSi 1 Tx0 lies in K, hence in some l¥;2 , and Si2TSi J TXo is 
back in B. Continuing this ping-pong game, we obtain vectors 

(7) 

in B. Hence 

(8) ( N = 1 ,  2, 3, . . .  ), 
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and this gives information about the spectral radius of T, namely, 

(9) p(T) = lim II TN I I 1 1N > .!_ > 0. 
N -+oo /1 

We now invoke Theorem 4.25. Since p(T) > 0, T has an eigen
value A # 0. The corresponding eigenspace 

( 10) M A. = {X E X :  T X = AX} 

is finite-dimensional ; hence M A. # X. If s E r and X E M A. '  then 

(1 1 )  T(Sx) = S(Tx) = S(Ax) = ASx, 

so that Sx E M '- .  This says that S(M ;.) c M '- .  
Thus M '- satisfies the conclusion of the theorem, even though we 

assumed that this conclusion failed. //// 

Exercises 

Throughout this set of exercises, A denotes a Banach algebra and x, y, . . .  denote 
elements of A, unless the contrary is stated. 

1. Use the identity (xyr = x(yx)"- 1 y to prove that xy and yx always have the same 
spectral radius. 

2. (a) If x and xy are invertible in A, prove that y is invertible. 
(b) If xy and yx are invertible in A, prove that x and y are invertible. (The 

commutative case of this was tacitly used in the proofs of Theorems 10. 13  
and 10.28.) 

(c) Show that it is possible to have xy = e but yx # e. For example, consider the 
right and left shifts S R and S L ,  defined on some Banach space of functions f 
on the nonnegative integers by 

(SR J)(n) = f(n - 1) 

(SR f)(O) = 0, 

(SL J)(n) =f(n + 1) 

if n > 1 , 

for all n > 0. 

(d) If xy = e and yx = z # e ,  show that z is a nontrivial idempotent. (This 
means that z2 = z, z # 0, z # e.) 

3. Prove that every finite-dimensional A is isomorphic to an algebra of matrices. 
Hint : The proof of Theorem 10.2 shows that every A is isomorphic to a sub
algebra of �(A). Conclude that xy = e implies yx = e if dim A < oo. 

4. (a) Prove that e - yx is invertible in A if e - xy is invertible. Suggestion : Put 
z = (e - xy)- 1 , write z as a geometric series (assume l lx II < 1 ,  I IY I I < 1), and 
use the identity stated in Exercise 1 to obtain a finite formula for (e - yx)- 1 
in terms of x, y, z. Then show that this formula works without any 
restrictions on II x II or II y 11 . 

(b) If A E (/:, A # 0, and A E cr(xy), prove that A E cr(yx). Thus cr(xy) u {0} = 
cr(yx) u {0}. Show, however, that cr(xy) is not always equal to cr(yx). 
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5. Let A0 and A1 be the algebras of all complex 2-by-2 matrices of the form 

Prove that every two-dimensional complex algebra A with unit e is isomorphic 
to one of these and that A0 is not isomorphic to A 1• Hint : Show that A has a 
basis { e, a} in which a2 = A.e for some A. E ft. Distinguish between the cases 
A. = 0, A. # 0. Show that there exists a three-dimensional noncommutative 
Banach algebra. 

6. Let A be the algebra of all complex functions f on { 1 ,  2, 3, . . . } which are 0 
except at finitely many points, with pointwise addition and multiplication and 
norm 

11 1 11 = I k- 2 1 /(k) l . 
k � l  

Show that multiplication is left-continuous (hence also right-continuous, since A 
is commutative) but not jointly continuous. (Adjunction of a unit element, as 
suggested in Section 10. 1 ,  would make no difference.) Show, in fact, that there is 
a sequence {J,} in A so that 1 1 /. 11 ---> 0 but 11 /� 1 1 ---> oo, as n ---> oo. 

7. Let C2 = C2([0, 1]) be the space of all complex functions on [0, 1] whose 
second derivative is continuous. Choose a > 0, b > 0, and define 

11 / 11 = 1 1 / ll oo + a ll f' l l oo + b ll!" ll oo . 

Show that this makes C2 into a Banach space, for every choice of a, b, but that 
the Banach algebra axioms hold if and only if 2b < a2• (For necessity, consider x 
and x2.) 

8. What happens if the process of adjoining a unit (described in Section 10. 1 )  is 
applied to an algebra A which already has a unit? Clearly, the result cannot be 
an algebra A1 with two units. Explain. 

9. Suppose that n is open in (/: and that f: n ---> A and cp :  n ---> (/: are holomorphic. 
Prove that cpf : n ---> A is holomorphic. [This was used in the proof of Theorem 
10. 13, with cp(A.) = A.".] 

10. Another proof that cr(x) # 0 can be based on Liouville's theorem 3.32 and the 
fact that (A.e - x) - l  ---> 0 as A. ---> oo. Complete the details. 

11 .  Call x E A a topological divisor of zero if there is a sequence {y.} in A, with 
I IY. II = 1, such that 

lim xy. = O =  lim y. x. 

(a) Prove that every boundary point x of the set of all invertible elements of A is 
a topological divisor of zero. Hint : Take Yn = x.- ' / l lx; ' II ,  where x. ---> x. 

(b) In which Banach algebras is 0 the only topological divisor of 0? 
12. Find the spectrum of the operator T E .?4(t'2) given by 

T(x 1 , x2 ,  x3 ,  x4 ,  . . .  ) = ( -x2 ,  x 1, -x4 ,  x3 ,  . . .  ). 

13. Suppose K = {A. E (/:: 1 < 1 A. I < 2}. Put f(A.) = A.. Let A be the smallest closed 
subalgebra of C(K) that contains 1 and f Let B be the smallest closed sub
algebra of C(K) that contains/ and 1/f Describe the spectra cr A(f) and cr8(f). 
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14. (a) Fubini's theorem was applied to vector-valued integrals in the proof of 
Theorem 10.29. Justify this. 

(b) Construct a proof of Theorem 10.29 that uses no contour integrals, as 
follows: Prove the theorem first for polynomials g, then for rational func
tions g with no poles in 01, and obtain the general case from Runge's 
theorem. 

15. Suppose X is a Banach space, T E �(X) is compact, and I I T" II > 1 for all n > 1 .  
Prove that the point spectrum of T is not empty. 

16. Let X = C([O, 1]) and define T E �(X) by 

(Tx)(s) = f x(u) du (0 < s < 1). 

Show that crp(T) = 0. Hence f(crp(T)) = 0 for every f, but iff = 0, then j(T) = 
0 ;  hence 

crp(/(T)) = crp(O) = {0} # 0. 
The extra hypotheses in (c) and (d) of Theorem 10.33 are thus needed. 

17. Suppose that the spectrum of some x E A is not connected. Prove that A con
tains a nontrivial idempotent z. (This is defined in Exercise 2.) 

Prove also that A =  A0 EB A1, where 

A0 = {x : zx = 0}, A I = {X:  ZX = X}. 

18. Suppose n is open in (/:, et: is an isolated boundary point of n, f: n ---> X is a 
holomorphic X -valued function (where X is some complex Banach space), and 
there is a smallest nonnegative integer n such that 

I A - et: 1" 1 1/(A) II 

is bounded as A ---> et:. If n > 0, then/ is said to have a pole of order n at et:. 
(a) Suppose x E A and (Ae - x)- 1 has a pole at every point of cr(x). [Note that 

this can happen only when cr(x) is a finite set.] Prove that there is a non
trivial polynomial P such that P(x) = 0. 

(b) As a special case of (a), assume cr(x) = {0} and (Ae - x)- 1  has a pole of order 
n at 0. Prove that x" = 0. 

19. Let S R be the right shift, acting on t2, as in Exercise 2. Let {c.} be a sequence of 
complex numbers such that c. # 0 but c. ---> 0 as n ---> oo. Define M E �(t2) by 

(Mf)(n) = c.f(n) 

and define T E �(t2) by T = MS R .  

(a) Compute I I Tml l , for m =  1 ,  2, 3, . . . . 
(b) Show that cr(T) = {0}. 

(n > 0), 

(c) Show that T has no eigenvalue. (Its point spectrum 1s therefore empty, 
although its spectrum consists of a single point !) 

(d) Show that (AI - T)- 1 does not have a pole at 0. 
(e) Show that T is a compact operator. 

20. Suppose x E A, x. E A, and lim x. = x. Suppose n is an open set in (/: that 
contains a component of cr(x). Prove that cr(x.) intersects n for all sufficiently 



274 PART Ill: BANACH ALGEBRAS AND SPECTRAL THEORY 

large n. (This strengthens Theorem 10.20.) Hint: If cr(x) c n u n0 , where n0 is 
an open set disjoint from n, consider the functionfthat is I in n, 0 in no . 

21. Let C R be the algebra of all real continuous functions on [0, 1 ], with the 
supremum norm. This satisfies all requirements of a Banach algebra, except that 
the scalars are now real. 
(a) If cf>(f) = J6 f(t) dt, then cp(1) = 1 ,  and cf>(f) # 0 iff is invertible in CR , but cf> 

is not multiplicative. 
(b) If G and G1 are defined in CR as, in Theorem 10.34, show that G/G 1 is a 

group of order 2. 
The analogues of Theorem 10.9 and (d) of Theorem 10.34 are thus false 

for real scalars. Exactly where would the proof of (d) of Theorem 10.34 break 
down? 

22. Suppose A = C(T), the algebra of all continuous complex functions on the unit 
circle T, with the supremum norm. Show that two invertible members of C(T) 
are in the same coset of G 1 if and only if they are homotopic mappings of T into 
the set of all nonzero complex numbers. Deduce from this that G/G1 is iso
morphic to the additive group of the integers. (The notation is as in Theorem 
10.34.) 

23. Suppose A = M(R), the convolution algebra of all complex Borel measures on 
the real line; see (e) of Example 10.3. Supply the details in the following proof 
that G/G1 is uncountable : If et: E R, let b. be the unit mass concentrated at et:. 
Assume b. E G1• Then b. = exp (fl.) for some fl. E M(R); hence, for 
- 00  < t < 00, 

- iet:t = fi.(t) + 2kni, 

where k is an integer. Since fi. is a bounded function, et: = 0. Thus b0 is the only 
b. in G1• No coset of G1 in G contains therefore more than one b • .  

24. (a) Prove that A is commutative if there is a constant M < oo such that 
l lxyl l  < Mllyx ll for all x and y in A. Hint: l lw- 1yw ll < M IIYI I  if w is invertible 
in A. Replace w by exp (Ax), where x E A and A E ft. Continue as m 
Theorem 12. 16. 

(b) Prove that A is commutative if II x2 l l = II x 11 2 for every x E A. Hint: Show 
that l lx l l = p(x). Use Exercise 1 to deduce that l lw- 1 yw ll = I IY I I . Continue as in 
(a). 

25. As regards the invariant subspace problem, described in the introduction to 
Theorem 10.35, explain why the problem is 
(a) trivial in (/:", 
(b) different in R", 
(c) uninteresting if X is not separable. 
How should Lomonosov's theorem be reformulated when X = (/:"? 

26. Let S R be the right shift on t2 , as in Exercise 2. Prove that 0 is the only compact 
T E .?4(t2) that commutes with SR . Hint : If T # 0 then 

I I T(S� x) - T(S�x) ll 

does not tend to 0 when N - M ---> oo. 
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COMMUTATIVE 
BANACH 

ALGEBRAS 

This chapter deals primarily with the Gelfand theory of commutative 
Banach algebras, although some of the results of this theory will be applied 
to noncommutative situations. The terminology of the preceding chapter 
will be used without change. In particular, Banach algebras will not be 
assumed to be commutative unless this is explicitly stated, but the presence 
of a unit will be assumed without special mention, as will the fact that the 
scalar field is ft. 

Ideals and Homomorphisms 

11 .1 Definition A subset J of a commutative complex algebra A is said 
to be an ideal if 
(a) J is a subspace of A (in the vector space sense), and 
(b) xy E J whenever x E A and y E J. 

If J # A, J is a proper ideal. Maximal ideals are proper ideals which 
are not contained in any larger proper ideal. 

11.2 Proposition 

(a) No proper ideal of A contains any invertible element of A. 
(b) If J is an ideal in a commutative Banach algebra A, then its closure J is 

also an ideal. 
The proofs are so simple that they are left as an exercise. 

275 
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11 .3 Theorem 

(a) If A is a commutative complex algebra with unit, then every proper ideal 
of A is contained in a maximal ideal of A. 

(b) If A is a commutative Banach algebra, then every maximal idea of A is 
closed. 

PROOF. (a) Let J be a proper ideal of A. Let & be the collection of all 
proper ideals of A that contain J. Partially order & by set inclusion, 
let !!2 be a maximal totally ordered subcollection of & (the existence of 
!!2 is assured by Hausdorff's maximality theorem), and let M be the 
union of all members of !!2. Being the union of a totally ordered collec
tion of ideals, M is an ideal. Obviously J c M, and M # A since no 
member of & contains the unit of A. The maximality of !!2 implies that 
M is a maximal ideal of A. 

(b) Suppose M is a maximal ideal in A. Since M contains no 
invertible element of A and since the set of all invertible elements is 
open, M contains no invertible element either. Thus M is a proper 
ideal of A, and the maximality of M shows therefore that M = M. //II 

11 .4 Homomorphisms and quotient algebras If A and B are commu
tative Banach algebras and ¢ is a homomorphism of A into B (see Section 
10.4) then the null space or kernel of ¢ is obviously an ideal in A, which is 
closed if ¢ is continuous. 

Conversely, suppose J is a proper closed ideal in A and n :  A --+ A/1 is 
the quotient map, as in Definition 1 .40. Then A!J is a Banach space, with 
respect to the quotient norm (Theorem 1 .41). We will show that A/1 is 
actually a Banach algebra and that n is a homomorphism. 

If x' - x E J and y' - y E J, the identity 

(1) x'y' - xy = (x' - x)y' + x(y' - y) 
shows that x'y' - xy E J ;  hence n(x'y') = n(xy). Multiplication can therefore 
be unambiguously defined in A!J by 

(2) n(x)n(y) = n(xy) (x E A, y E A). 

It is then easily verified that A/1 is a complex algebra and that n is a 
homomorphism. Since l l n(x) l l < l l x l l , by the definition of the quotient norm, 
n is continuous. 

Suppose xi E A (i = 1 ,  2) and b > 0. Then 

(3) (i = 1 ,  2) 
for some Yi E J, by the definition of the quotient norm. Since 
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we have 

(4) l l n(xlx2) 1 1 < ll (x i + Y1)(x2 + Y2) 1 1  < l l x1 + YJ I I I I x2 + Y2 ll . 

so that (3) implies the multiplicative inequality 

(5) 
Finally, if e is the unit element of A, then (2) shows that n(e) is the 

unit of A!J, and since n(e) =/:. 0, (5) shows that l l n(e) l l  > 1 = ll e l l . Since 
l ln(x) l l < ll x l l for every x E A, l l n(e) l l = 1 .  This completes the proof. 

Part (a) of the next theorem is one of the key facts of the whole theory. 
The set A that appears in it will later be given a compact Hausdorff topol
ogy (Theorem 1 1 .9). The study of commutative Banach algebras will then to 
a large extent be reduced to the study of more familiar (and more special) 
objects, namely, algebras of continuous complex functions on A, with point
wise addition and multiplication. However, Theorem 1 1 .5 has interesting 
concrete consequences even without the introduction of this topology. Sec
tions 1 1 .6 and 1 1 .7 illustrate this point. 

11.5 Theorem Let A be a commutative Banach algebra, and let A be the 
set of all complex homomorphisms of A. 

(a) Every maximal ideal of A is the kernel of some h E A. 
(b) If h E A, the kernel of h is a maximal ideal of A. 
(c) An element x E A is invertible in A if and only if h(x) =/:. 0 for every h E A. 
(d) An element x E A is invertible in A if and only if x lies in no proper ideal 

of A. 
(e) A. E a(x) if and only if h(x) = A. for some h E A. 

PROOF. (a) Let M be a maximal ideal of A. Then M is closed 
(Theorem 1 1 .3) and A/ M is therefore a Banach algebra. Choose x E A, 
x fj M, and put 

(1) J = {ax + y: a E A, y E M}. 

Then J is an ideal in A which is larger than M, since x E J. (Take 
a = e, y = 0.) Thus J = A, and ax + y = e for some a E A, y E M. If 
n :  A --+ A/ M is the quotient map, it follows that n(a)n(x) = n(e). Every 
nonzero element n(x) of the Banach algebra A/M is therefore invert
ible in A/ M. By the Gelfand-Mazur theorem, there is an isomorphism 
j of A/ M onto ft. Put h = j a n. Then h E A, and M is the null space 
of h. 
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(b) If h E A, then h - 1 (0) is an ideal in A which Is maximal 
because it has codimension 1 .  

(c) If x is invertible in A and h E A, then 
h(x)h(x - 1) = h(xx - 1 ) = h(e) = 1 ,  

so that h(x) # 0. If x is not invertible, then the set {ax : a E A} does 
not contain e, hence is a proper ideal which lies in a maximal one 
(Theorem 1 1 .3) and which is therefore annihilated by some h E A, 
because of (a). 

(d) No invertible element lies in any proper ideal. The converse 
was proved in the proof of (c). 

(e) Apply (c) to A.e - x in place of x. /II/ 

Our first application concerns functions on R" that are sums of absol
utely convergent trigonometric series. The notation is as in Exercise 22 of 
Chapter 7. 

1 1.6 Wiener's lemma Supposefis afunction on R", and 

(1) 

where both sums are extended over all m E Z". If f(x) # 0 for every x E R", 
then 

(2) 1 "\' . 
f(x) = L..., bm elm • X with L I bm I < 00. 

PROOF. Let A be the set of functions of the form (1), normed by 
l l f ll = L I am 1 . One checks easily that A is a commutative Banach 
algebra, with respect to pointwise multiplication. Its unit is the con
stant function 1 .  For each x, the evaluation f-+ f(x) is a complex 
homomorphism of A. The assumption about the given function f is 
that no evaluation annihilates it. If we can prove that A has no other 
complex homomorphisms, (c) of Theorem 1 1 .5 will imply that f is 
invertible in A, which is exactly the desired conclusion. 

For r = 1, . . .  , n, put g,(x) = exp (ix,), where x, is the rth coordi
nate of x. Then g, and 1/g, are in A and have norm 1 .  If h E A, it 
follows from (c) of Theorem 10. 7  that 

I h(g,) I < 1 and 
1 

h(g,) 

Hence there are real numbers y, such that 
(3) h(g,) = exp (iy,) = g,(y) ( 1  < r < n), 
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where y = (y1 , . • •  , y.). If P is a trigonometric polynomial (which 
means, by definition, that P is a finite linear combination of products 
of integral powers of the functions g, and 11g,), then (3) implies 

(4) h(P) = P(y), 
because h is linear and multiplicative. Since h is continuous on A 
(Theorem 10.7) and since the set of all trigonometric polynomials is 
dense in A (as is obvious from the definition of the norm), (4) implies 
that h(f) = f(y) for every f E A. Thus h is evaluation at y, and the 
proof is complete. I I I I 

This lemma was used (with n = 1) in the original proof of the tau
berian theorem 9.7. To see the connection, let us reinterpret the lemma. 
Regard Z" as being embedded in R" in the obvious way. The given coeffi
cients am define then a measure J.1 on R", concentrated on Z", which assigns 
mass am to each m E Z". Consider the problem of finding a complex 
measure (J, concentrated on Z", such that the convolution J.1 * (J is the Dirac 
measure b. Wiener's lemma states that this problem can be solved if (and 
trivially only if) the Fourier transform of J.1 has no zero on R" ; this is pre
cisely the tauberian hypothesis in Theorem 9.7. 

For our next application, let U" be the set of all points z = (z 1 , • • •  , z.) 
in (/;" such that I z; I < 1 for 1 < i < n. In other words, this polydisc U" is the 
cartesian product of n copies of the open unit disc U in ft. We define A(U") 
to be the set of all functions f that are holomorphic in U" (see Definition 
7.20) and that are continuous on its closure U". 

11 .7 Theorem Suppose /1 , . . .  , fk E A(U"), and suppose that to each 
z E a· there corresponds at least one i such that f.{z) # 0. Then there exist 
functions ¢ 1 , . . . , ¢k E A( U") such that 
(1) (z E U"). 

PROOF. A = A( U") is a commutative Banach algebra, with pointwise 
multiplication and the supremum norm. Let J be the set of all sums 
L /;, ¢; , with ¢; E A. Then J is an ideal. If the conclusion is false, then 
J # A ;  hence J lies in some maximal ideal of A (Theorem 1 1 .3), and 
some h E A annihilates J, by (a) of Theorem 1 1 . 5. 

For 1 < r < n, put g,(z) = z, . Then l l g, l l = 1 ;  hence h(g,) = w, , 
with I w, I < 1 .  Put w = (w1 , . . .  , w.). Then w E U", and h(g,) = g,(w). It 
follows that h(P) = P(w) for every polynomial P, since h is a homo
morphism. The polynomials are dense in A(U") (Exercise 4). Hence 
h(f) = f(w) for every f E A, by essentially the same argument that was 
used in the proof of Theorem 1 1 .6. 

Since h annihilates J,/;,(w) = 0 for 1 < i < k. This contradicts the 
hypothesis. 1111 
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Gelfand Transforms 

1 1 .8 Definitions Let A be the set of all complex homomorphisms of a 
commutative Banach algebra A. The formula 

(1) x(h) = h(x) (h E A) 
assigns to each x E A a function x :  A -+ (/;; we call x the Gelfand transform 
of x. 

Let A be the set of all x, for x E A. The Gelfand topology of A is the 
weak topology induced by A, that is, the weakest topology that makes 
every x continuous. Then obviously A c C(A), the algebra of all complex 
continuous functions on A. 

Since there is a one-to-one correspondence between the maximal 
ideals of A and the members of A (Theorem 1 1 .5), A, equipped with its 
Gelfand topology, is usually called the maximal ideal space of A. 

The term " Gelfand transform " is also applied to the mapping x -+ x of 
A onto A. 

The radical of A, denoted by rad A, is the intersection of all maximal 
ideals of A. If rad A = {0}, A is called semisimple. 

11 .9 Theorem Let A be the maximal ideal space of a commutative 
Banach algebra A. 

(a) A is a compact Hausdorff space. 
(b) The Gelfand transform is a homomorphism of A onto a subalgebra A of 

C(A), whose kernel is rad A. The Gelfand traniform is therefore on iso
morphism if and only if A is semisimple. 

(c) For each x E A, the range of x is the spectrum <T(x). Hence 

ll x ll oo = p(x) < ll x l l , 
where ll x l l  oo is the maximum of I x(h) I on A, and x E rad A if and only if 
p(x) = 0. 

PROOF. We first prove (b) and (c). Suppose x E A, y E A, a. E {/;, h E A. 
Then 

(a.x)A(h) = h(a.x) = a.h(x) = (a.x)(h), 
(x + YY(h) = h(x + y) = h(x) + h(y) = x(h) + y(h) = (x + y)(h), 

and 

(xy)A(h) = h(xy) = h(x)h(y) = x(h).Y(h) = (xy)(h). 
Thus x ...... x is a homomorphism. Its kernel consists of those x E A 
which satisfy h(x) = 0 for every h E A ;  by Theorem 1 1 .5, this is the 
intersection of all maximal ideals of A, that is, rad A. 
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To say that A is in the range of .X means that A = x(h) = h(x) for 
some h E  A. By (e) of Theorem 1 1 .5, this happens if and only if 
A E a(x). This proves (b) and (c). 

To prove (a), let A* be the dual space of A (regarded as a 
Banach space), and let K be the norm-closed unit ball of A*. By the 
Banach-Alaoglu theorem, K is weak*-compact. By (c) of Theorem 
10.7, A c K. The Gelfand topology of A is evidently the restriction to 
A of the weak*-topology of A*. It is therefore enough to show that A 
is a weak* -closed subset of A* . 

Let A0 be in the weak*-closure of A. We have to show that 

(1) (x E A, y E A) 
and 

(2) 
[Note that (2) is necessary; otherwise A0 would be the zero homo
morphism, which is not in A.] 

Fix x E A, y E A, 8 > 0. Put 

(3) W = {A E A* : I Az; - A0 z; l  < 8 for 1 < i < 4}, 
where z1 = e, z2 = x, z3 = y, z4 = xy. Then W is a weak*
neighborhood of A0 which therefore contains an h E A. For this h, 

(4) 
which gives (2), and 

A0(xy) - A0 xA0 y = [A0(xy) - h(xy)] + [h(x)h(y) - A0 xA0 y] 

= [A0(xy) - h(xy)] + [h(y) - A0 y]h(x) 

+ [h(x) - A0 x]A0 y, 

which gives 

(5) I A0(xy) - A0 xA0 Y l  < (1 + ll x ll + I  Ao Y l k 
Since (5) implies (1 ), the proof is complete. /Ill 

Semisimple algebras have an important property which was earlier 
proved for (/; :  

11 .10 Theorem If 1/1 :  A --+ B is a homomorphism of a Banach algebra A 
into a semisimple commutative Banach algebra B, then I{! is continuous. 

PROOF. Suppose x. --+ x in A and 1/J(x.) --+ y in B. By the closed graph 
theorem, it is enough to show that y = 1/J(x). 
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Pick some homomorphism h :  B -+  (/;. Then <p = h o 1/1 is a 
homomorphism of A into C. Theorem 10.7 shows that h and <p are 
continuous. Hence 

h(y) = lim h(!{!(x.)) = lim <p(x.) = <p(x) = h(l{!(x)), 

for every h E  A8 . Thus y - 1/J(x) E rad B. Since rad B = {0}, y = 1/J(x). 
Ill/ 

Corollary. Every isomorphism between two semisimple commutative 
Banach algebras is a homeomorphism. 

In particular, this is true of every automorphism of a semisimple 
commutative Banach algebra. The topology of such an algebra is therefore 
completely determined by its algebraic structure. 

In Theorem 1 1 .9, the algebra A may or may not be closed in C(A), 
with respect to the supremum norm. Which of these cases occurs can 
be decided by comparing l l x2 l l with ll x l l 2, for all x E A. Recall that 
l l x2 l l < l l x l l 2 is always true. 

1 1 .1 1 Lemma If A is a commutative Banach algebra and 

(1) . f I I x I I oo s = m  
l l x l l 

then s2 < r < s. 

PROOF. Since I I .X I I oo > s l l x l l , 
(2) 
for every x E A. Thus s2 < r. 

(x E A, X =/:. 0), 

Since l l x2 l l  > r l l x l l 2 for every x E A, induction on n shows that 

(3) (m = 2", n = 1 ,  2, 3, . . .  ). 
Take mth roots in (3) and let m -+ oo. By the spectral radius formula 
and (c) of Theorem 1 1 .9, 

(4) I I .X II oo = p(x) > r l l x l l (x E A). 
Hence r < s. 

11 .12 Theorem Suppose A is a commutative Banach algebra. 

!Ill 

(a) The Gelfand transform is an isometry (that is, l l x l l = II .X I I oo for every 
x E A) if and only if ll x2 l l = ll x l l 2 for every x E A. 

(b) A is semisimple and A is closed in C(A) if and only if there exists K < oo 

such that ll x l l 2 < K ll x2 ll for every x E A. 
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PROOF. (a) In the terminology of Lemma 1 1 . 1 1 , the Gelfand transform 
is an isometry if and only if s = 1 ,  which happens (by the lemma) if 
and only if r = 1 .  

(b) The existence of K is equivalent to r > 0, hence to s > 0, by 
the lemma. If s > 0, then x -+ x is one-to-one and has a continuous 
inverse, so that A is complete (hence closed) in C(A). Conversely, if 
x -+ x is one-to-one and if A is closed in C(A), the open mappmg 
theorem implies that s > 0. /Ill 

11 .13 Examples In some cases, the maximal ideal space of a given 
commutative Banach algebra can easily be described explicitly. In others, 
extreme pathologies occur. We shall now give some examples to illustrate 
this. 

(a) Let X be a compact Hausdorff space, put A = C(X), with the 
supremum norm. For each x E X,f-+ f(x) is a complex homomorphism hx . 
Since C(X) separates points on X (Urysohn's lemma), x # y implies 
hx # hy . Thus x -+ hx embeds X in A. 

We claim that each h E A is an hx . If this is false, there is a maximal 
ideal M in C(X) which contains, for each p E X, a function f withf(p) # 0. 
The compactness of X implies then that M contains finitely many functions 
f1 , • • •  ,f. such that at least one of them is i=-0 at each point of X. Put 

g = !Jl + . . .  +f. J, . 
Then g E M, since M is an ideal ; g > 0 at every point of X ;  hence g is 
invertible in C(X). But proper ideals contain no invertible elements. 

Thus x +-+ hx is one-to-one correspondence between X and A and can 
be used to identify A with X. This identification is also correct in terms of 
the two topologies that are involved : The Gelfand topology y of X is the 
weak topology induced by C(X) and is therefore weaker than r, the original 
one, but y is a Hausdorff topology ; hence y = r. [See (a) of Section 3.8.] 

Summing up, X " is "  the maximal ideal space of C(X), and the 
Gelfand transform is the identity mapping on C(X). 

(b) Let A be the algebra of all absolutely convergent trigonometric 
series, as in Section 1 1 .6. We found there that the complex homomorphisms 
are the evaluations at points of R". Since the members of A are 2n-periodic 
in each variable, A is the torus T" obtained from R" by the mapping 

( ) ( ix1 ix") X 1 ,  . . .  , Xn -+ e , . . .  ., e . 
This is an example in which A is dense in C(A), although A # C(A). 

(c) In the same way, the proof of Theorem 1 1 .7 contains the result 
that (]• is the maximal ideal space of A(U"). The argument used at the end 
of (a) shows that the natural topology of 0" is the same as the Gelfand 
topology induced by A(U") ; the same remark applies to (b). 
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(d) The preceding example has interesting generalizations. Let A now 
be a commutative Banach algebra with a .finite set of generators, say x1 , • • •  , 
x • .  This means that X; E A (1 < i < n) and that the set of all polynomials in 
x 1 , • • •  , x. is dense in A. Define 

(1) ¢(h) = (x1(h), . . .  , .x.(h)) (h E A). 
Then ¢ is a homeomorphism of A onto a compact set K c {/;". Indeed, ¢ is 
continuous since A c C(A). If ¢(h 1 ) = ¢(h2), then h 1(x;) = h2(x;) for all i ;  
hence h 1(x) = h2(x) whenever x is a polynomial in x1 , . . .  , x. , and since 
these polynomials are dense in A, h1 = h2 • Thus ¢ is one-to-one. 

We can now transfer A from A to K and may thus regard K as the 
maximal ideal space of A. To make this precise, define 

(2) (x E A). 

Then 1/1 is a homomorphism (an isomorphism if A is semisimple) of A onto 
a subalgebra I{!( A) of C(K). One verifies easily that 

(3) 1/J(x;)(z) = z ;  if z = ( z I '  . . .  ' z .) E K' 
and therefore 

(4) I/I(P(x 1 , • • •  , x.))(z) = P(z) (z E K) 

for every polynomial P in n variables. 
It follows that every member of I{!( A) is a uniform limit of polynomials, 

on K. 
The sets K c {/;" which arise in this fashion as maximal ideal spaces 

have a property known as polynomial convexity : 

If w E {/;" and w fj K, there exists a polynomial P such that I P(z) I < 1 
for every z E K, but I P(w) I > 1 .  

To prove this, assume there is no such polynomial. The norm
decreasing property of the Gelfand transform implies then that 

(5) I P(w) I < II P(x 1 , • • •  , x.) ll 
for every polynomial P; the norm is that of A. Since { x 1 , • • •  , x.} is a set of 
generators of A, it follows from (5) that there is an h E A such that ¢(h) = w. 
But then w E K, and we have a contradiction. 

The compact polynomially convex subsets of (/; are simply those 
whose complement is connected ; this is an easy consequence of Runge's 
theorem. In {/;", the structure of the polynomially convex sets is by no 
means fully understood. 

(e) Our next example shows that the Gelfand transform is a gener
alization of the Fourier transform, at least in the I!-context. 
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Let A be I!(R") with a unit attached, as described in (d) of Section 
10.3 .  The members of A are of the form! +  ctb, wheref E I!(R"), ct E {/;, and 
b is the Dirac measure on R" ; multiplication in A is convolution : 

(f + ctb) * (g + f3b) = (f * g + /3! + ctg) + ctf3b. 
For each t E R", the formula 

(6) hlf + ctb) = j(t) + C( 

defines a complex homomorphism of A ;  here]is the Fourier transform off 
In addition, 

(7) 
also defines a complex homomorphism. There are no others. (A proof will 
be sketched presently.) Thus L1, as a set, is R" u { oo } .  Give L1 the topology 
of the one-point compactification of R". Since](t) --+ 0 as I t I --+ oo, for every 
f E I!(R"), it follows from (6) and (7) that A c C(L1). Since A separates points 
on L1, the weak topology induced on L1 by A is the same as the one that we 
just chose. 

It remains to be proved that every h E L1 is of the form (6) or (7). If 
h(f) = 0 for every f E L1(R"), then h = h00 • Assume h(f) =/:. 0 for some 
f E I!(R"). Then h(f) = J f/3 dm. , for some f3 E L00(R"). Since 
h(f * g) = h(f)h(g), one can prove that f3 coincides almost everywhere with 
a continuous function b which satisfies 

(8) b(x + y) = b(x)b(y) (x, y E R"). 
Finally, every bounded solution of (8) is of the form 

(9) b(x) = e - ix · t (x E R") 
for some t E R". Thus h(f) = ](t), and h has the form (6). 

For n = 1 ,  the details that complete the preceding sketch may be 
found in Sec. 9.22 of [23]. The case n > 1 is quite similar. 

(f) Our final example is L00(m). Here m is Lebesgue measure on the 
unit interval [0, 1], and L00(m) is the usual Banach space of equivalence 
classes (modulo sets of measure 0) of complex bounded measurable func
tions on [0, 1], normed by the essential supremum. Under pointwise multi
plication, this is obviously a commutative Banach algebra. 

If f E L00(m) and G 1 is the union of all open sets G c ft with 
m(f - 1(G)) = 0, then the complement of G 1 (called the essential range off) is 
easily seen to coincide with the spectrum (J(f) off, hence with the range of 
its Gelfand transform J It follows that J is real iff is real. Hence L00(mt is 
closed under complex conjugation. By the Stone-Weierstrass theorem, 
Loo(m) A is therefore dense in C(L1), where L1 is the maximal ideal space of 
Loo(m). It also follows that f--+ j is an isometry, so that L00(m)A is closed in 
C(t1). 
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We conclude that f-+ J is an isometry of L00(m) onto C(A). 
Next, J-+ J f dm is a bounded linear functional on C(A). By the Riesz 

representation theorem, there is therefore a regular Borel probability 
measure J.1 on A that satisfies 

( 10) 

for every f E L00(m). This measure is related to the topology of A in the 
following way : 

(i) J.l( V) > 0 if V is open and nonempt y. 
(ii) To every bounded Borel function <p on A corresponds an / E C(A) such 

that J = <p a. e. [,u]. 
(iii) If V is open, so is V. 
(iv) If E is a  Borel set in A, then 

( 1 1 )  

If V is as in (i), Urysohn's lemma implies that there is an J E C(A), 
J >  0, such that /= 0 outside V and j(p) = 1 at some p E V. Hence f is not 
the zero element of L00(m), and the integrals (10) are positive. This gives (i). 

In (ii), assume I <p I  < 1 .  Since C(A) is dense in /3(J.1) (recall that J.1 is a 
regular Borel probability measure), there are functions f. E C(A) such that 
J If. - <p 1 2 df.l -+ 0, and which can be so adjusted that I J. I < 1 .  Then 
I I f. II oo < 1 ,  and ( 10) implies that {!.} is a Cauchy sequence in /3(m). Hence 
there is anf E L00(m) such that 

( 12) ll !. -! 1 2 df.l = rl f. -f 1 2 dm -+ 0 

as n -+ oo .  Thus <p = J a. e. [J.ll 
Next, let V be open and let W be the complement of V. By (ii) there is 

an/E C(A) such that/= 1 a.e. [J.l] off V. The set on which/is neither 1 nor 
0 is open and has J.l·measure 0, hence is empty, by (i). The same reasoning 
shows that the sets V n {! =1- 1 }  and W n {! =1- 0} are empty. Hence J = 1 
on V.J= 0 on W. 

This proves (iii), and shows also that J.1CP! = J.l(V). Taking com
plements, we see that J.1(K0) = J.l(K) for every compact K c A. 

If E is a Borel set in A, and e > 0, then there is a compact K and an 
open V such that K c E c V and J.l( V) < J.l(K) + e. Hence 

J.l(E) < J.1CPJ = J.l( V) < J.l(K) + B = J.1(K0) + B < J.1(E0) + e, 

and this proves (iv). 
It is an easy consequence of (iii) that disjoint open sets have disjoint 

closures. 
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If we define two bounded Borel functions <p and t/1 to be equivalent, 
provided tt{ <p =1- t/1} = 0, then (ii) asserts that every equivalence class con
tains one continuous function-and only one, by (i). Hence (with an 
obvious interpretation) L00(tt) = C(A). 

Property (iv) asserts, among other things, that of two disjoint Borel 
sets in A, at most one can be dense in A, even though no point of A is 
isolated (Exercise 1 8). 

We conclude with an application to measure theory. If E and F are 
measurable sets, let us say that F almost contains E if F contains E except 
for a set of measure 0, that is, if m(E - F) = 0. 

The union of an uncountable collection of measurable sets is not 
always measurable. However, the following is true : 

If {Ea} is an arbitrary collection of measurable sets in [0, 1], there is a 
measurable set E c [0, 1 ]  with the following two properties : 

(i) E almost contains every Ea . 
(ii) If F is measurable and F almost contains every Ea , then F almost 

contains E. 

Thus E is the least upper bound of {Ea} ·  The existence of E implies 
that the Boolean algebra of measurable sets (modulo sets of measure 0) is 
complete. 

With the machinery now at our disposal, the proof is very simple. 
Let fa be the characteristic function of Ea . Its Gelfand transform la is 

then the characteristic function of an open (and closed) set Qa c A. Let n be 
the union of all these na . Then n is open, so is its closure 0, and there 
exists f E L00(m) such that J is the characteristic function of n. The desired 
set E is the set of all x E [0, 1] at whichf(x) = 1 .  

Involutions 

1 1 .14 Definition A mapping x --+  x* of a complex (not necessarily 
commutative) algebra A into A is called an involution on A if it has the 
following four properties, for all x E A, y E A, and A. E (/;:  
(1)  (x + y)* = x* + y* . 
(2) (A.x)* = �x*. 
(3) (xy)* = y*x*. 
(4) x** = x. 

In other words, an involution is a conjugate-linear antiautomorphism 
of period 2. 
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Any x E A for which x* = x is called hermitian, or self-adjoint. 
For example, /--+ j is an involution on C(X). The one that we will be 

most concerned with later is the passage frotn an operator on a Hilbert 
space to its adjoint. 

11 .15 Theorem If A is a Banach algebra with an involution, and ifx E A, 
then 

(a) x + x*, i(x - x*), and xx* are hermitian, 
(b) x has a unique representation x = u + iv, with u E A, v E A, and both u 

and v hermitian, 
(c) the unit e is hermitian, 
(d) x is invertible in A if and only if x* IS invertible, m which case 

(x*) - 1 = (x - 1)*, and 
(e) A. E a(x) if and only if� E a(x*). 

PROOF. Statement (a) is obvious. If 2u = x + x*, 2v = i(x* - x), then 
x = u + iv is a representation as in (b). Suppose x = u' + iv' is another 
one. Put w = v' - v. Then both w and iw are hermitian, so that 

iw = (iw)* = - iw* = - iw. 
Hence w = 0, and the uniqueness follows. 

Since e* = ee*, (a) implies (c) ; (d) follows from (c) and (xy)* = 
y*x*. Finally, (e) follows if (d) is applied to A.e - x in place of x. /II/ 

11 .16 Theorem If the Banach algebra A is commutative and semisimple, 
then every involution on A is continuous. 

PROOF. Let h be a complex homomorphism of A, and define ¢(x) = 
h(x*). Properties (1) to (3) of Definition 1 1 . 1 4  show that ¢ is a complex 
homomorphism. Hence ¢ is continuous. Suppose x. -+ x and x: -+ y 
in A. Then 

h(x*) = ¢(x) = lim ¢(x.) = lim h(x:) = h(y). 
Since A is semisimple, y = x*. Hence x -+  x* is continuous, by the 
closed graph theorem. //// 

1 1 .17 Definition A Banach algebra A with an involution x -+  x* that 
satisfies 

(1) l l xx* l l = l l x l l 2 

for every x E A is called a B*-algebra. 



Thus 

(2) 
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Note that l l x l l 2 = l l xx* ll < l l x l l l l x* l l  implies l l x l l  < l l x* l l , hence also 

l l x* l l  < l l x** l l  = l l x l l . 

l l x* l l  = l l x l l  
in every B*-algebra. It also follows that 

(3) l l xx* l l  = l l x l l l l x* l l . 
Conversely, (2) and (3) obviously imply (1). 
The following theorem is the key to the proof of the spectral theorem 

that will be given in Chapter 1 2. 

11 .18 Theorem (Gelfand-Naimark) Suppose A is a commutative B*
algebra, with maximal ideal space A. The Gelfand transform is then an isomet
ric isomorphism of A onto C(A), which has the additional property that 

(1) h(x*) = h(x) (x E A, h E  A), 
or, equivalently, that 

(2) (x*Y = i (x E A). 

In particular, x is hermitian if and only ifx is a real-valued function. 

The interpretation of (2) is that the Gelfand transform carries the 
given involution on A to the natural involution on C(A), which is conjuga
tion. Isomorphisms that preserve involutions in this manner are often called 
*-isomorphisms. 

PROOF. Assume first that u E A, u = u*, h E A. We have to prove that 
h(u) is real. Put z = u + ite, for real t. If h(u) = a. + i/3, with a. and f3 
real, then 

h(z) = a. + i(/3 + t), 
so that 

or 

(3) ( - 00 < t < 00 ). 
By (3), f3 = 0 ;  hence h(u) is real. 

If x E A, then x = u + iv, with u = u*, v = v*. Hence x* = 

u - iv. Since it and v are real, (2) is proved. 
Thus A is closed under complex conjugation. By the Stone

Weierstrass theorem, A is therefore dense in C(A). 
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If x E A and y = xx*, then y = y* so that I IY2 I I  = I IY I I 2 . It 
follows, by induction on n, that I I Ym l l  = I IY I I m for m = 2". Hence 
1 15' 1 1  oo = I IY I I , by the spectral radius formula and (c) of Theorem 1 1 .9. 
Since y = xx*, (2) implies that y = I x 1 2. Hence 

l l x ll � = II .Y I I oo = I I Y I I = ll xx* ll = l lx l l 2, 

or II x II oo = II x 1 1 . Thus x -+ x is an isometry. Hence A is closed in C(A). 
Since A is also dense in C(A), we conclude that A =  C(A). This com
pletes the proof. //// 

The next theorem is a special case of the one just proved. We shall 
state it in a form that involves the inverse of the Gelfand transform, in order 
to make contact with the symbolic calculus. 

1 1 .19 Theorem If A is a commutative B*-algebra which contains an 
element x such that the polynomials in x and x* are dense in A, then the 
formula 
(1) 
defines an isometric isomorphism '¥ of C(a(x)} onto A which satisfies 
(2) '¥] = ('Pf)* 
for everyj E C(a(x)). Moreover, iff(J..) = ). on a(x), then 'Pf = x. 

PROOF. Let A be the maximal ideal space of A. Then x is a continuous 
function on A whose range is a(x). Suppose h1 E A, h2 E A, and 
x(h1) = x(h2), that is, h1 (x) = h2(x). Theorem 1 1 . 1 8  implies then that 
h1(x*) = h2(x*). If P is any polynomial in two variables, it follows that 

h1(P(x, x*)) = h2(P(x, x*)), 
since h 1 and h2 are homomorphisms. By hypothesis, elements of the 
form P(x, x*) are dense in A. The continuity of h 1 and h2 implies 
therefore that h1(y) = h2(y) for every y E A. Hence h1 = h2 . We have 
proved that x is one-to-one. Since A is compact, it follows that x is a 
homeomorphism of A onto a(x). 

The mapping /-+ f o x is therefore an isometric isomorphism of 
C(a(x)) onto C(A) which also preserves complex conjugation. 

Eachf o .X is thus (by Theorem 1 1 . 1 8) the Gelfand transform of a 
unique element of A which we denote by 'Pf and which satisfies 
II 'Pf I I  = I I  f II oo . Assertion (2) comes from (2) of Theorem 1 1 . 1 8. If 

f(J..) = A, thenf o x = x, so that (l) gives 'Pf = x. //// 

Remark. In the situation described by Theorem l l . l9, it makes per
fectly good sense to write f(x) for the element of A whose Gelfand 
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transform is f a  i. This notation is indeed frequently used. It extends 
the symbolic calculus (for these particular algebras) to arbitrary con
tinuous functions on the spectrum of x, whether they are holomorphic 
or not. 

The existence of square roots is often of special interest, and in alge
bras with involution one may ask under what conditions hermitian ele
ments have hermitian square roots. 

11 .20 Theorem Suppose A is a commutative Banach algebra with an 
involution, x E A, x = x*, and a(x) contains no real A with A < 0. Then there 
exists y E A with y = y* and y2 = x. 

Note that the given involution is not assumed to be continuous. This 
will give us an opportunity to use the radical of A. We shall see later, in 
Theorem 1 1 .26, that commutativity can be dropped from the hypotheses. 
This will be used in the proof of Theorem 1 1 . 3 1 .  

PROOF. Let n be the complement (in {/;) of the set of all nonpositive 
real numbers. There exists j E  H(Q) such that f2(A) = A, and f(1) = 1 .  
Since a(x) c n, we can define y E A by 

(1) y = ](x), 
as in Definition 10.26. Then y2 = x, by Theorem 10.27. We will prove 
that y* = y. 

Since n is simply connected, Runge's theorem furnishes poly
nomials P. that converge to f, uniformly on compact subsets of n. 
Define Q. by 

(2) 2Q.(A) = P.(A) + P.(A) . 

Since f(�) = j(A), the polynomials Q. converge to f in the same 
manner. Define 

(3) Yn = Q.(x) (n = 1 ,  2, 3, . . .  ). 
By (2), the polynomials Q. have real coefficients. Since x = x*, it 
follows that Y. = y:. By Theorem 10.27, 
(4) y = lim y. , 

since Q. --+ f, so that Q.(x) --+ ](x). If the involution were assumed to be 
continuous, the set of hermitian elements would be closed, and y* = y 
would follow directly from (4). 

Let R be the radical of A. Let n :  A --+  A/R be the quotient map. 
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If n(x) = n(y) and z = x - y, then z E R ;  hence z* E R because 
p(z*) = p(z) = 0 (see Theorem 1 1 . 1 5), and therefore n(x*) = n(y*). This 
shows that the formula 

(5) [n(a)] * = n(a*) (a E A) 

defines an involution in AjR. If a E A is hermitian, so is n(a). Since n is 
continuous, n(y.) -+ n(y). Since A/R is isomorphic to A (Theorem 
1 1 .9), A/R is semisimple, and therefore every involution in A/R is con
tinuous (Theorem 1 1 . 16). It follows that n(y) is hermitian. Hence 
n(y) = n(y*). 

We conclude that y* - y lies in the radical of A. 
By Theorem 1 1 . 1 5, y = u + iv, where u = u* and v = v* . We just 

proved that v E R. Since x = y2, we have 

(6) x = u2 - v2 + 2iuv. 
Let h be any complex homomorphism of A. Since v E R, h(v) = 0. 
Hence h(x) = [h(u)] 2• By hypothesis, 0 fj a(x). Thus h(x) #- 0; hence 
h(u) #- 0. By Theorem 1 1 .5, u is invertible in A. Since x = x*, (6) 
implies that uv = 0. Since v = u -

1(uv), we conclude that v = 0. This 
completes the proof. /Ill 

Remark. If a(x) c (0, oo ), then also a(y) c (0, oo ). This follows from 
(1) (the definition of y) and the spectral mapping theorem. 

Applications to Noncommutative Algebras 

Noncommutative algebras always contain commutative ones. Their pres
ence can sometimes be exploited to extend certain theorems from the com
mutative situation to the noncommutative one. On a trivial level, we have 
already done this : In the elementary discussion of spectra, our attention 
was usually fixed on one element x E A ;  the (closed) subalgebra A0 of A 
that x generates is commutative, and much of the discussion took place 
within A0 • One possible difficulty was that x might have different spectra 
with respect to A and A0 • There is a simple construction (Theorem 1 1 .22) 
that circumvents this. Another device (Theorem 1 1 .25) can be used when A 
has an involution. 

1 1.21 Centralizers If S is a subset of a Banach algebra A, the central
izer of S is the set 

r(S) = {x E A :  XS = SX for every S E S}. 
We say that S commutes if any two elements of S commute with each other. 
We shall use the following simple properties of centralizers. 
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(a) r(S) is a closed subalgebra of A. 
(b) S c r(r(S)). 
(c) If S commutes, then r(r(S)) commutes. 

Indeed, if x and y commute with every s E S, so do Ax, x + y, and xy ; 
since multiplication is continuous in A, r(S) is closed. This proves (a). Since 
every s � S commutes with every x E r(S), (b) holds. If S commutes, then 
S c r(S), hence r(S) :::J r(r(S)), which proves (c), since r(E) obviously com
mutes whenever r(E) c E. 

11 .22 Theorem Suppose A is a Banach algebra, S c A, S commutes, and 
B = r(r(S)). Then B is a commutative Banach algebra, S c B, and aa(x) = 
a A(x)for every x E B. 

PROOF. Since e E B, Section 1 1 .21  shows that B is a commutative 
Banach algebra that contains S. Suppose x E B and x is invertible 
in A. We have to show that x - 1 E B. Since x E B, xy = yx for 
every y E r(S) ; . hence y = x - 1yx, yx - 1 = x - 1y. This says that 
X - 1 E r(r(S)) = B. Ill/ 

11.23 Theorem Suppose A 1s a Banach algebra, x E A, y E A, and 
xy = yx. Then 

a(x + y) c a(x) + a(y) and a(xy) c a(x)a(y). 

PROOF. Put S =  {x, y} ; put B = r(r(S)). Then x + y E B, xy E B, and 
Theorem 1 1 .22 shows that we have to prove that 

O"B(x + y) c O"B(x) + O"B(y) and 

Since B is commutative, a 8(z) is the range of the Gelfand trans
form z, for every z E B. (The Gelfand transforms are now functions on 
the maximal ideal space of B.) Since 

(x + YY = .X +  Y 
we have the desired conclusion. 

and (xy)A = xy, 
/Ill 

1 1 .24 Definition Let A be an algebra with an involution. If x E A and 
xx* = x*x, then x is said to be normal. A set S c A is said to be normal if S 
commutes and if x* E S whenever x E S. 

1 1 .25 Theorem Suppose A is a Banach algebra with an involution, and B 
is a normal subset of A that is maximal with respect to being normal. Then 
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(a) B is a closed commutative subalgebra of A, and 
(b) a8(x) = aA(x)for every x E B. 

Note that the involution is not assumed to be continuous but that B 
nevertheless turns out to be closed. 

PROOF. We begin with a simple criterion for membership in B :  If 
x E A, ifxx* = x*x, and ifxy = yxfor every y E B, then x E B. 

For if x satisfies these conditions, we also have xy* = y*x for all 
y E B, since B is normal, and therefore x*y = yx* .  It follows that 
B u {x, x*} is normal. Hence x E B, since B is maximal. 

This criterion makes it clear that sums and products of members 
of B are in B. Thus B is a commutative algebra. 

Suppose x. E B and x. --+ x. Since x. y = yx. for all y E B, and 
multiplication is continuous, we have xy = yx and therefore also 

x*y = (y*x)* = (xy*)* = yx*. 
In particular, x*x. = x. x* for all n, which leads to x*x = xx*. Hence 
x E B, by the above criterion. This proves that B is closed and com
pletes (a). 

Note also that e E B. To prove (b), assume x E B, x - 1  E A. Since 
x is normal, so is x - I, and since x commutes with every y E B, so does 
x - 1 . Hence x - 1 E B. //// 

Our first application of this is a generalization of Theorem 1 1 .20 : 

11 .26 Theorem The word " commutative " may be dropped from the 
hypothesis of Theorem 1 1 .20. 

PROOF. By Hausdorff's maximality theorem, the given hermitian 
(hence normal) x E A lies in some maximal normal set B. By Theorem 
1 1 .25 we can apply Theorem 1 1 .20 with B in place of A. /Ill 

Our next application of Theorem 1 1 .25 will extend some conse
quences of Theorem 1 1 . 1 8  to arbitrary (not necessarily commutative) B*
algebras. 

1 1 .27 Definition In a Banach algebra with involution, the statement 
" x  > 0 "  means that x = x* and that a(x) c [0, oo ). 

1 1 .28 Theorem Every B*-algebra A has the following properties : 
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(a) Hermitian elements have real spectra. 
(b) Ifx E A is normal, then p(x) = ll x l l . 
(c) Ify E A, then p(yy*) = II Y I I 2 . 
(d) If u E A, v E A, u > 0, and v > 0, then u + v > 0. 
(e) If y E A, then yy* > 0. 
(f) If y E A, then e + yy* is invertible in A. 

PROOF. Every normal x E A lies in a maximal normal set B c A. By 
Theorems l l . l 8  and 1 1 .25, B is a commutative B*-algebra which is 
isometrically isomorphic to its Gelfand transform B = C(A) and which 
has the property that 

(1) a(z) = z(A) (z E B). 

Here a(z) is the spectrum of z relative to A, A is the maximal ideal 
space of B, and z(A) is the range of the Gelfand transform of z, regard
ed as an element of B. 

If x = x*, Theorem 1 1 . 1 8  shows that x is a real-valued function 
on A. Hence (1) implies (a). 

For any normal x, (1) implies p(x) = ll i l l oo ·  Also, ll i l l oo = l l x l l , 
since B and B are isometric. This proves (b). 

If y E A, then yy* is hermitian. Hence (c) follows from (b), since 
p(yy*) = II YY* II = II Y I I 2• 

Suppose now that u and v are as in (d). Put a. =  l l u ll , f3 = l l v l l , 
w = u + v, y = a. + f3. Then a(u) c [0, a.], so that 

(2) a(a.e - u) c [0, a.] 

and (b) implies therefore that l l a.e - u ll < a.. For the same reason, 
l l /3e - v i i  < /3. Hence 

(3) l l ye - w l l  < Y· 
Since w = w* , (a) implies that a(ye - w) is real. Thus 

(4) a(ye - w) c [ - y, y], 
because of (3). But (4) implies that a(w) c [0, 2y]. Thus w > 0, and (d) 
is proved. 

We turn to the proof of (e). Put x = yy*. Then x is hermitian, 
and if B is chosen as in the first paragraph of this proof, then x is a 
real-valued function on A. By (1), we have to show that x > 0 on A. 

Since B = C(A), there exists z E B such that 

(5) � I � I � Z = X - X  on A. 
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Then z = z*, because z is real (Theorem 1 1 . 1 8). Put 

(6) zy = w = u + iv, 
where u and v are hermitian elements of A. Then 

(7) ww* = zyy*z* = zxz = z2x 

and therefore 

(8) 
Since u = u*, a(u) is real, by (a), hence u2 > 0, by the spectral mapping 
theorem. Likewise v2 > 0. By (5), z2i < 0 on A. Since z2x E B, it 
follows from (1) that -z2x > 0. Now (8) and (d) imply that w*w > 0. 

But a(ww*) c a(w*w) u {0} (Exercise 4, Chapter 10). Hence 
ww* > 0. By (7), this means that z2i > 0 on A. By (5), this last 
inequality holds only when x = I x 1 . Thus x > 0, and (e) is proved. 

Finally, (f) is a corollary of (e). /Ill 

Equality of spectra can now be proved in yet another situation, in 
which commutativity plays no role. 

1 1 .29 Theorem Suppose A is a B*-algebra, B is a closed subalgebra of 
A, e E B, and x* E Bfor every x E B. Then aA(x) = a8(x)for every x E B. 

PROOF. Suppose x E B and x has an inverse in A. We have to show 
that x- 1 E B. Since x is invertible in A, so is x*, hence also xx*, and 
therefore 0 fj a A(xx*). By (a) of Theorem 1 1 .28, a A(xx*) c ( - oo, oo ), 
so that a A(xx*) has a connected complement in ft. Theorem 10. 18  
shows now that a 8(xx*) = a A(xx*). Hence (xx*) - 1 E B, and finally 
x - 1  = x*(xx*) - 1 E B. //// 

Positive Functionals 

1 1 .30 Definition A positive functional is a linear functional F on a 
Banach algebra A with an involution, that satisfies 

F(xx*) > 0 

for every x E A. Note that A is not assumed to be commutative and that 
continuity of F is not postulated. (The meaning of the term " positive " 
depends of course on the particular involution that is under consideration.) 

11 .31 Theorem Every positive functional F on a Banach algebra A with 
involution has the following properties : 
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(a) F(x*) = F(x). 
(b) I F(xy*) 1 2 < F(xx*)F(yy*). 
(c) I F(x) 1 2 < F(e)F(xx*) < F(efp(xx*). 
(d) I F(x) I < F(e)p(x)for every normal x E A. 
(e) F is a bounded linear functional on A. Moreover, I I F I I  = F(e) if A is 

commutative, and I IF II < /3 112F(e) if the involution sati�es ll x* ll < /3 1 1 x ll 
for every x E A. 

PROOF. If x E A and y E A, put 

(1) p = F(xx*), q = F(yy*), r = F(xy*), s = F(yx*). 
Since F[(x + 1XY)(x* + �y*)] > 0 for every IX E {/;, 

(2) 

With IX = 1 and IX = i, (2) shows that s = r and i(s - r) are real. Hence 
s = r. With y = e, this gives (a). 

If r = 0, (b) is obvious. If r #- 0, take IX = trj I r I in (2), where t is 
real. Then (2) becomes 

(3) p + 2 1 r I t + qt2 > 0 ( - oo < t < oo ), 

so that I r 1 2 < pq. This proves (b). 
Since ee* = e, the first half of (c) is a special case of (b). For the 

second half, pick t > p(xx*). Then a(te - xx*) lies in the open right 
half-plane. By Theorem 1 1 .26, there exists u E A, with u = u*, such 
that u2 = te - xx*. Hence 

(4) tF(e) - F(xx*) = F(u2) > 0. 

It follows that 

(5) F(xx*) < F(e)p(xx*). 
This completes part (c) . 

.If x is normal, i.e., if xx* = x*x, Theorem 1 1 .23 implies that 
a(xx*) c a(x)a(x*), so that 

(6) p(xx*) < p(x)p(x*) = p(xf. 
Clearly, (d) follows from (6) and (c). 

If A is commutative, then (d) holds for every x E A, so that 
I I F II = F(e). If l l x* ll < /3 11 x ll , (c) implies I F(x) I <  F(e)/3 112 ll x l l , since 
p(xx*) < ll x ll l l x* 1 1 . This disposes of the special cases of part (e). 

Before turning to the general case, we observe that F(e) > 0 and 
that F(x) = 0 for every x E A if F(e) = 0; this follows from (c). In the 
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remainder of this proof we shall therefore assume, without loss of gen
erality, that 

(7) F(e) = 1 .  
Let fi be the closure of H, the set of all hermitian elements of A. 

Note that H and iH are real vector spaces and that A = H + iH, by 
Theorem 1 1 . 1 5. By (d), the restriction of F to H is a real-linear func
tional of norm 1 ,  which therefore extends to a real-linear functional <l> 
on fi, also of norm 1 .  We claim that 

(8) <l>(y) = 0 if y E fi r1 ifi, 

for if y = lim u. = lim (iv.), where u. E H and v. E H, then u; --+ y2, 
v; --+ - y2, so that (c) and (d) imply 

(9) I F(u.) l 2 < F(u;) < F(u; + v;) < ll u; + v; l l --+ 0. 
Since <l>(y) = lim F(u.), (8) is proved. 

By Theorem 5.20, there ts a constant y < oo such that every 
x E A has a representation 

If x = u + iv, with u E H, v E H, then x 1 - u and x2 - v lie in 
fl n iH. Hence (8) yields 

( l l) F(x) = F(u) + iF(v) = <l>(x 1) + i<l>(x2), 

so that 

(12) I F(x) l < l <l>(x 1) 1 + l <l>(x2) 1 < ll x 1 l l  + l lx2 ll < Y l l x l l . 

This completes the proof. 

Exercise 1 3  contains further information about part (e). 

/Ill 

Examples of positive functionals-and a relation between them and 
positive measures-are furnished by the next theorem. It contains 
Bochner's classical theorem about positive-definite functions as a very 
special case. The identifications that lead from one to the other are indi
cated in Exercise 14. 

11 .32 Theorem Suppose A is a commutative Banach algebra, with 
maximal ideal space A, and with an involution that is symmetric in the sense 
that 

(1) h(x*) = h(x) (x E A, h E  A). 
Let K be the set of all positive functionals F on A that satiify F(e) < 1 .  
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Let M be the set of all positive regular Borel measures 11 on A that satisfy 
Jl(A) < 1 .  Then the formula 

(2) F(x) = l x d11 (x E A) 

establishes a one-to-one correspondence between the convex sets K and M, 
which carries extreme points to extreme points. 

Consequently, the multiplicative linear functionals on A are precisely the 
extreme points of K. 

PROOF. If 11 E M and F is defined by (2), then F is obviously linear, 
and F(xx*) = J I x 1 2 d11 > 0, because (1) implies that (xx*)A = I x 1 2• 
Since F(e) = Jl(A), F E K. 

If F E K, then F vanishes on the radical of A, by (d) of Theorem 
l l .3 l. Hence there is a functional P on A that satisfies F(x) = F(x) for 
all x E A. In fact, 

(3) I P(x) I = I F(x) I < F(e)p(x) = F(e) ll x l l oo (x E A). 

by (d) of Theorem 1 1 .3 1 .  It follows that P is a linear functional of 
norm F(e) on the subspace A of C(A). This extends to a functional on 
C(A), with the same norm, and now the Riesz representation theorem 
furnishes a regular Borel measure Jl, with 1 1 11 1 1  = F(e), that satisfies (2). 
Since 

(4) 11(A) = le d11 = F(e) = 1 1 11 1 1 , 

we see that 11 > 0. Thus 11 E M. 
By ( 1 ), A satisfies the hypotheses of the Stone-Weierstrass 

theorem and is therefore dense in C(A). This implies that 11 is uniquely 
determined by F. 

One extreme point of M is 0 ;  the others are unit masses concen
trated at points h E A. Since every complex homomorphism of A has 
the form x --+  x(h), for some h E  A, the proof is complete. //// 

We conclude by showing that the extreme points of K are multiplica
tive even if (1) is not satisfied. 

1 1 .33 Theorem Let K be the set of all positive functionals F on a com
mutative Banach algebra A with an involution that satisfy F(e) < l .  If F E K, 
then each of the following three properties implies the other two : 

(a) F(xy) = F(x)F(y)for all x and y E A. 
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(b) F(xx*) = F(x)F(x*)for every x E A. 
(c) F is an extreme point of K. 

PROOF. It is trivial that (a) implies (b). Suppose (b) holds. With x = e, 
(b) shows that F(e) = F(ef, and so F(e) = 0 or F(e) = l .  When 
F(e) = 0, then F = 0, by (c) of Theorem 1 1 .3 1, and so F is an extreme 
point of K. Assume F(e) = 1, and 2F = F1 + F2 , F1 E K, F2 E K. We 
have to show that F 1 = F. Clearly, F 1(e) = 1 = F(e). If x E A is such 
that F(x) = 0, then 

(1) I F 1(xW < F1(xx*) < 2F(xx*) = 2F(x)F(x*) = 0, 

by (b) and Theorem 1 1 .3 1 .  Thus F 1 coincides with F on the null space 
of F and at e. It follows that F 1 = F. Hence (b) implies (c). 

To show that (c) implies (a), let F be an extreme point of K. 
Either F(e) = 0, in which case there is nothing to prove, or F(e) = 1 .  
We shall first prove a special case of (a), namely, 

(2) F(xx* y) = F(xx*)F(y) (x E A, y E A). 

Choose x so that l l xx* I I < 1 .  By Theorem 1 1 .20, there exists z E A, 
z = z*, such that z2 = e - xx*. Define 

(3) <l>(y) = F(xx* y) (y E A). 

Then 

(4) <l>(yy*) = F(xx*yy*) = F[(xy)(xy)*] > 0, 

and also 

(5) (F - <l>)(yy*) = F[(e - xx*)yy*] = F(z2yy*) = F[(yz)(yz)*] > 0. 

Since 

(6) 0 < <l>(e) = F(xx*) < F(e) l l xx* l l  < 1 ,  

(4) and (5) show that both <l> and F - <l> are in K. If <l>(e) = 0, then 
<1> = 0. If <I>( e) > 0, (6) shows that 

<l> F - <l> (7) F = <I>( e) · <I>( e) + (F - <l>)(e) · F(e) _ <I>( e) , 

a convex combination of members of K. Since F is extreme, we con
clude that 

(8) <1> = <l>(e)F. 

Now (2) follows from (8) and (3). 
Finally, the passage from (2) to (a) is accomplished by any of the 

following identities, which are satisfied by every involution : 
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If n = 3, 4, 5, . . . , if w = exp (2nijn), if x E A, and if zP = 
e + w- Px, then 

(9) 

The proof of (9) is a straightforward computation which uses the 
fact that 

( 10) 

Exercises 

1 .  Prove Proposition 1 1 .2. 

n n 

L wP = L w2P = 0. 
p = 1 p =  1 

Ill/ 

2. State and prove an analogue of Wiener's lemma 1 1 .6 for power series that con
verge absolutely on the closed unit disc. 

3. If X is a compact Hausdorff space, show that there is a natural one-to-one 
correspondence between closed subsets of X and closed ideals of C(X). 

4. Prove that the polynomials are dense in the polydisc algebra A(U"). (See 
Theorem 1 1 .7.) Suggestion : Iff E A(U"), 0 < r < 1 , and f, is defined by /,(z) = 
f(rz), then f, is the sum of an absolutely (hence uniformly) convergent multiple 
power series on 0". 

5. Suppose A is a commutative Banach algebra, x E A, and f is holomorphic in 
some open set n c (/: that contains the range of x. Prove that there exists y E A 
such that y = f o x, that is, such that h(y) = f(h(x)) for every complex homo
morphism h of A. Prove that y is uniquely determined by x and f if A is semi
simple. 

6. Suppose A and B are commutative Banach algebras, B is semisimple, ljJ :  A --> B 
is a homomorphism whose range is dense in B, and IX :  �8 --> �A is defined by 

(1Xh)(x) = h(!/J(x)) (x E A, h E �8). 

Prove that IX is a homeomorphism of �8 onto a compact subset of �A . [The fact 
that !/J(A) is dense in B implies that IX is one-to-one and that the topology of �8 
is the weak topology induced by the Gelfand transforms of the elements !/J(x), 
for x E A.] 

Let A be the disc algebra, let B = C(K), where K is an arc in the unit disc, 
and let ljJ be the restriction mapping of A into B. This example shows that 1X(�8) 
may be a proper subset of �A , even if ljJ is one-to-one. 

Find an example in which !/J(A) = B but 1X(�8) # �A . 
7. In Example 1 1 . 13(b) it was asserted that A #  C(�). Find several proofs of this. 
8. Which properties of Lebesgue measure are used in Example 1 1 . 13(/)? Can 

Lebesgue measure be replaced by any positive measure, without changing any 
of the results? 

Supply the details for the last paragraph in Example 1 1 . 13(/). 
9. Let C' be the algebra of all continuously differentiable complex functions on the 

unit interval [0, 1], with pointwise multiplication, normed by 
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I I/ II = I I/ II oo + I I!' II oo . 

(a) Show that C' is a semisimple commutative Banach algebra. Find its 
maximal ideal space. 

(b) Fix p, 0 < p < 1 ;  let 1 be the set of allf E C' for whichf(p) = f'(p) = 0. Show 
that 1 is a closed ideal in C' and that C'/1 is a two-dimensional algebra 
which has a one-dimensional radical. (This gives an example of a semisimple 
algebra with a quotient algebra that is not semisimple.) To which of the two 
algebras described in Exercise 5 of Chapter 10 is C'/1 isomorphic? 

10. Let A be the disc algebra. Associate to each f E A a function f* E A by the 
formula 

/*(z) = f(z). 

Then/---> f* is an involution on A. 
(a) Does this involution turn A into a B*-algebra? 
(b) Does cr(.ff*) always lie in the real axis? 
(c) Which complex homomorphisms of A are positive functionals, with respect 

to this involution? 
(d) If J1 is a positive finite Borel measure on [ - 1 , 1], then 

f---> r, f(t) dJ1(t) 

is a positive functional on A. Are there any others ? 
11 .  Show that commuting idempotents have distance > 1 .  Explicitly, if x2 = x, 

y2 = y, xy = yx for some x and y in a Banach algebra, then either x = y or 
llx - y ll > I .  Show that this may fail if xy # yx. 

12. If xy = yx for some x and y in a Banach algebra, prove that 

p(xy) < p(x)p(y) and p(x + y) < p(x) + p(y). 

13. Let t be a large positive number, and define a norm on (/:2 by 

Let A be the algebra of all complex 2-by-2 matrices, with the corresponding 
operator norm : 

II Y II = max { ll y(w) ll : llw ll = I } (y E A). 

For y E A, let y* be the conjugate transpose of y. Consider a fixed x E A, 
namely, 

X =  G t�) . 

Prove the following statements. 
(a) ll x(w) ll = t llw ll ; hence l lxl l  = t. 
(b) cr(x) = { t, - t} = cr(x*). 
(c) cr(xx*) = ( I ,  t4} = cr(x*x). 
(d) cr(x + x*) = { I + t2, - I  - t2} .  
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(e) Therefore commutativity is required in Theorem 1 1 .23 and in Exercise 12. 
(f) If F(y) is the sum of the four entries in y, for y E A, then F is a positive 

functional on A. 
(g) The equality IIF II = F(e) [see (e) of Theorem 1 1 .31] does not hold, because 

F(e) = 2 and F(x) = 1 + t2, so that !I F II > t. 
(h) If K is the set of all positive functionals f on A that satisfy f(e) < 1 (as in 

Theorem 1 1 .33), then K has many extreme points, although 0 is the only 
multiplicative linear functional on A. Commutativity is therefore required in 
the implication (c) --> (a) of Theorem 1 1 .33. 

14. A complex function cp, defined on R", is said to be positive-definite if 
r 

" c. c . "'(x. - x ·) > 0 L, I ] l.f'  l ) -
i, j== 1 

for every choice of x 1 , . . •  , x,, in R" and for every choice of complex numbers 

(a) Show that l cf>(x) I < cf>(O) for every x E R". 
(b) Show that the Fourier transform of every finite positive Borel measure on R" 

is positive-definite. 
(c) Complete the following outline of the converse of (b) (Bochner's theorem) : If 

cf> is continuous and positive-definite, then cf> is the Fourier transform of a finite 
positive Borel measure. 

Let A be the convolution algebra L1(R"), with a unit attached, as 
described in (d) of Section 10.3 and (e) of Section 1 1 . 13. Define](x) = f( -x). 
Show that 

f + rxb --> J + lib 

is an involution on A and that 

f + rxb --> Lfcf> dmn + rxcf>(O) 

is a positive functional on A. By Theorem 1 1 .32 and (e) of Section 1 1 . 1 3, 
there is a positive measure J1 on the one-point compactification � of R", such 
that 

j f cp dm" + rxcf>(O) = j (j + rx) dfl. JRn J& 
If u is the restriction of f1 to R", it follows that 

r !4> dmn = r ! du JRn JRn 
for every f E L'(R"). Hence cf> = &. (Actually, J1 is already concentrated on R", 
so that u = fl.) 

(d) Let P be the set of all continuous positive-definite functions cp on R" that 
satisfy cf>(O) < 1 .  Find all extreme points of this convex set. 

15. Let � be the maximal ideal space of a commutative Banach algebra A. Call a 
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closed set p c � an A-boundary if the maximum of I x I  on � equals its 
maximum on p, for every x E A. (Trivially, � is an A-boundary.) 

Prove that the intersection a A of all A-boundaries is an A-boundary. 
a A is called the Shilov boundary of A.  The terminology is suggested by the 

maximum modulus property of holomorphic functions. For instance, when A is 
the disc algebra, then a A is the unit circle, Which is the topological boundary of 
�, the closed unit disc. 

Outline of proof: Show first that there is an A-boundary Po which is 
minimal in the sense that no proper subset of Po is an A-boundary. (Partially 
order the collection of A-boundaries by set inclusion, etc.) Then pick h0 E Po , 
pick X I ' . . .  ' xn E A with xlho) = 0, and put 

V = {h E � : l xAh) l < 1 for 1 < i < n} . 

Since Po is minimal, there exists x E A with ll x ll oo = 1 and l x(h) l < 1 on Po - V. 
If y = xm and m is sufficiently large, then I xi y I < 1 on Po ' for all i. Hence 
ll xi .Y I I oo  < 1 .  Conclude from this first that I .Y(h) l = I I.Y I I oo  only in V, hence that 
V intersects every A-boundary p, and finally that h0 E p. Thus Po c p, and 
Po = aA . 

16. Suppose A is a Banach algebra, m is an integer, m > 2, K < oo, and 

for every x E A. Show that there exist constants K" < oo, for n = 1 ,  2, 3, . . .  , 
such that 

l lx l l " < Kn l lx" ll (x E A). 

(This extends Theorem 1 1 . 12.) 
17. Suppose {ron} ( - oo < n < oo) are positive numbers such that w0 = 1 and 

for all integers m and n. Let A = A { wn} be the set of all complex functions f on 
the integers for which the norm 

00 

l l f l l = I l f(n) l wn 
- 00  

is finite. Define multiplication in A by 
00 

(f * g)(n) = I f(n - k)g(k). 
k """' - co 

(a) Show that each A{w.} is a commutative Banach algebra. 
(b) Show that R+ = limn� oo (wn)1 1" exists and is finite, by showing that R+ = 

· f ( ) I fn In n�O  Wn · (c) Show similarly that R_ = limn�oo (w_ .) - 11" exists and that R_ < R+ . 
(d) Put � = {A. E q; :  R_ < I .A.  I < R + } .  Show that � can be identified with the 

maximal ideal space of A{wn} and that the Gelfand transforms are abso
lutely convergent Laurent series on �. 
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(e) Consider the following choices for {ron} : 
(i) Wn = 1 .  

(ii) wn = 2". 
(ii1) w. = 2" if n > 0, wn = 1 if n < 0. 
(iv) wn = 1 + 2n2 • 
( v) wn = 1 + 2n2 if n > 0, w. = 1 if n < 0. 

For which of these is � a circle ? For which choices is A{wn} self-adjoint, in 
the sense that A is closed under complex conjugation? 

(f) Is A{wn} always semisimple? 
(g) Is there an A{wn}, with � the unit circle, such that A consists entirely of 

infinitely differentiable functions ? 
18. Let � be the maximal ideal space of L"'(m), as in Section 1 1 . 1 3. Show that 

(a) � has no isolated point, and 
(b) � contains no convergent sequence of distinct points. Hint : If Pt. p2 , p3 , • • •  , 

are distinct points in �, none of which is a limit point of the others, and if 
{ w1} is any bounded sequence of numbers, then there exist pairwise disjoint 
open sets v; in � such that p1 E v; , and there exists a function cp E C(�) such 
that cp = w1 on v; . 

19. Let L"'(m) be as above and prove : If/n E L"'(m) and [, --> 0 in the weak topology 
of L"'(m), then Jb I fn IP dm --> 0 for every p E (0, oo ). Show, by constructing an 
example, that the converse is false. 

20. Prove the following partial converse of Theorem 1 1 .3 1 :  If F is a bounded linear 
functional on a 8*-algebra A, and I IF II = F(O) = 1 ,  then F is positive. 

Suggestion : Choose x E A, l lx ll < 1, put F(xx*) = et: + {Ji, 

y, = xx* - (! + it)e, 

for - oo < t < oo. Use Theorem 1 1 .28 to show that cr(xx*) c [0, 1] and that 
therefore 

I F(y,) l  < I IY, I I  = p(y,) < I ! + it \ .  

Proceed as in Lemma 5.26. 
21. In (/;2, let K 1 consist of all points (e18, e - i8), and let K2 consist of the points 

(e18, e18), 0 < () < 2n. Of these circles, show that K1 is polynomially convex but 
K2 is not. How about K3 = {(cos O,sin 0) : 0 < () < n} ? 

22. Show that a 3-by-3 matrix M commutes with 

0 0 1 a x y 
0 0 0 if and only if M = 0 z w 
0 0 0 0 0 a 

Deduce from this that centralizers (see Section 1 1 .21) need not be commutative. 
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OPERATORS ON 
A HILBERT 
SPACE 

Basic Facts 

12.1 Definitions A complex vector space H is called an inner product 
space (or unitary space) if to each ordered pair of vectors x and y in H is 
associated a complex number (x, y), called the inner product or scalar 
product of x and y, such that the following rules hold : 

(a) (y, x) = (x, y). (The bar denotes complex conjugation.) 
(b) (x + y, z) = (x, z) + (y, z). 
(c) (ax, y) = a(x, y) if X E H, y E H, IX E (/;. 
(d) (x, x) > 0 for all x E H. 
(e) (x, x) = 0 only if x = 0. 

For fixed y, (x, y) is therefore a linear function of x. For fixed x, it is a 
conjugate-linear function of y. Such functions of two variables are some
times called sesquilinear. 

If (x, y) = 0, x is said to be orthogonal to y, and the notation x .1 y is 
sometimes used. Since (x, y) = 0 implies (y, x) = 0, the relation .1 is sym
metric. If E c H and F c H, the notation E .1 F means that x .1 y when-

306 
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ever x E E and y E F. Also, El_ is the set of all y E H that are orthogonal to 
every x E E. 

Every inner product space can be normed by defining 

ll x l l  = (x, x) 112. 

Theorem 12.2 implies this. If the resulting normed space is complete, it is 
called a Hilbert space. 

12.2 Theorem If x E H and y E H, where H is an inner product space, 
then 

(1) l (x, y) l < ll x ii i i Y I I 
and 

(2) l lx + Y ll < ll x ll + II Y I I . 
Moreover 

(3) I I Y I I  < II Ax + Y ll for every A E (/; 

if and only ifx .1 y. 

PROOF. Put r:x = (x, y). A simple computation gives 

(4) 0 < II Ax + Y l l 2 = I  A l2 l lx ll 2 + 2 Re (r:x.A) + II Y I I 2 • 
Hence (3) holds if r:x = 0. If x = 0, (1) and (3) are obvious. If x =1=- 0, take 
A =  -ti/ ll x ll 2• With this A, (4) becomes 

(5) 0 < I I Ax + Y ll 2 = II Y I I 2 - 1
1
1: 1

1
1
2
2 • 

This proves (1) and shows that (3) is false when r:x =1=- 0. By squaring 
both sides of (2), one sees that (2) is a consequence of (1). //// 

Note : Unless the contrary is explicitly stated, the letter H will from 
now on denote a Hilbert space. 

12.3 Theorem Every nonempty closed convex set E c H contains a 
unique x of minimal norm. 

PROOF. The parallelogram law 

( 1 )  (x E H, y E H) 
follows directly from tl].e definition l l x ll 2 = (x, x). Put 

(2) d = inf { ll x l l : x E E}. 
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Choose x. E E so that l l x. l l -+ d. Since i(x. + xm) E E, ll x. + xm l l 2 > 
4d2• If x and y are replaced by x. and xm in ( 1 ), the right side of ( l) 
tends to 4d2• Hence ( l )  implies that {x.} is a Cauchy sequence in H, 
which therefore converges to some x E E, with l l x ll = d. 

If y E E and I I Y I I = d, the sequence {x, y, x, y, . . .  } must converge, 
as we just saw. Hence y = x. /Ill 

12.4 Theorem If M is a closed subspace of H, then 
H = M EB Mj_. 

' 

The conclusion is, more explicitly, that M and Mj_ are closed subspaces of 
H whose intersection is {0} and whose sum is H. The space Mj_ is called the 
orthogonal complement of M. 

PROOF. If E c H, the linearity of (x, y) as a function of x shows that 
El_ is a subspace of H, and the Schwarz inequality (1)  of Theorem 12.2 
implies then that El_ is closed. 

If x E M  and x E Mj_, then (x, x) = 0 ;  hence x = 0. Thus 
M n Mj_ = {0}. 

If x E H,, apply Theorem 12.3 to the set x - M to conclude that 
there exists x1 E M  that minimizes l l x - x1 l l . Put x2 = x - x1 . Then 
l l x2 ll < ll x2 + y ll for all y E M. Hence x2 E Mj_, by Theorem 12.2. 
Since x = x1 + x2 , we have shown that M + Mj_ = H. //II 

Corollary. If M is a closed subspace of H, then 

(Mj_)j_ = M. 

PROOF. The inclusion M c (Mj_)j_ is obvious. Since 

M EB Mj_ = H = Mj_ EB (Mj_)j_, 

M cannot be a proper subspace of (Mj_)j_. 

We now describe the dual space H* of H. 

!Ill 

12.5 Theorem There is a conjugate-linear isometry y -+  A of H onto H*, 
given by 
(1 )  Ax = (x, y) (x E H). 

PROOF. If y E H and A is defined by ( l ), the Schwarz inequality ( 1 )  of 
Theorem 12.2 shows that A E H* and that II A ll < I I Y I I · Since 

(2) I IY I I 2 = (y, y) = Ay < I I A II II Y I I , 

it follows that II A l l = I I Y I I . 
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It remains to be shown that every A E H* has the form ( l). 
If A = 0, take y = 0. If A i= 0, let %(A) be the null space of A. 

By Theorem 12.4 there exists z E %(A)·L, z # 0. Since 

(3) (Ax)z - (Az)x E %(A) (x E H), 

it follows that (Ax)(z, z) - (Az)(x, z) = 0. Hence ( l ) holds with y = 
(z, z) - 1 (Az)z. //// 

12.6 Theorem If { xn} is a sequence of pairwise orthogonal vectors in H, 
then each of the following three statements implies the other two. 

00 

(a) L xn converges, in the norm topology of H. 
n = l 

00 

(b) L 1 1 xn l l 2 < 00. 
n = l 

00 

(c) L (xn , y) converges, Jor every y E H. 
n = 1 

Thus strong convergence (a) anq weak convergence (c) are equivalent 
for series of orthogonal vectors. 

PROOF. Since (x; , xi) = 0 if i # j, the equality 

( l) 
holds whenever n < m. Hence (b) implies that the partial sums of L xn 
form a Cauchy sequence in H. Since H is complete, (b) implies (a). The 
Schwarz inequality shows that (a) implies (c). Finally, assume that (c) 
holds. Define An E H* by 

n 
(2) An y =  L (y, X;) (y E H, n = l ,  2, 3, . . .  ). 

j = 1 
By (c), {An y} converges for every y E H; hence { 1 1 An 1 1 }  is bounded, by 
the Banach-Steinhaus theorem. But 

(3) I I An l l = l l x 1 + · · · + xn l l = { ll x l l l 2 + · · · + l l x n l l 2} 1 12 . 
Hence (c) implies (b). 

Bounded Operators 

/Ill 

In conformity with notations used earlier, :?J(H) will now denote the Banach 
algebra of all bounded linear operators T on a Hilbert space H # {0}, 
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normed by 

II T i l = sup { I I Tx l l : x E H, l l x ll < l } .  
We shall see that PA(H) has an involution which makes it into a B*-algebra. 

We begin with a simple but useful uniqueness theorem. 

12.7 Theorem If T E PA(H) and if (Tx, x) = 0 for every x E H, then 
T = 0. 

PROOF. Since" (T(x + y), x + y) = 0, we see that 

( l )  (Tx, y) + (Ty, x) = 0 (x E H, y E H). 
If y is replaced by iy in (l), the result is 

(2) - i(Tx, y) + i(Ty, x) = 0 (x E H, y E H). 

Multiply (2) by i and add to ( l ), to obtain 

(3) (Tx, y) = 0 (x E H, y E H). 
With y = Tx, (3) gives I I  Tx l l 2 = 0. Hence Tx = 0. 

Corollary. If S E &I( H), T E &I( H), and 

(Sx, x) = (Tx, x) 

for every x E H, then S = T. 

PROOF. Apply the theorem to S - T. 

/Ill 

/Ill 

Note that Theorem 12.7 would fail if the scalar field were R. To see 
this, consider rotations in R2. 

12.8 Theorem Iff: H x H --+ q; is sesquilinear and bounded, in the sense 
that 

( l )  M = sup { l f(x, Y) l :  l l x l l = I IY I I  = l }  < oo , 

then there exists a unique S E PA(H) that satisfies 
(2) f(x, y) = (x, Sy) (x E H, y E H). 
Moreover, I I S I I = M. 

PROOF. Since I f(x, y) I < M ll x i i i i Y I I , the mapping 

x --+  f(x, y) 
is, for each y E H, a bounded linear functional on H, of norm at most 
M I IY I I - It now follows from Theorem 1 2.5 that to each y E H corre-
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sponds a unique element Sy E H such that (2) holds ; also, 
I I Sy ll < M IIY I I - It is clear that S :  H -+ H is additive. If a E (/;, then 

(x, S(ay)) = f(x, ay) = fxj(x, y) = fx(x, Sy) = (x, aSy) 
for all x and y in H. It follows that S is linear. Hence S E PA(H), and 
I I S I I  < M. 

But we also have 
l f(x, y) l = l (x, Sy) l < l l x i i ii Sy ll < l l x i i i i S I I I IY I I , 

which gives the opposite inequality M < II S I I - Ill/ 

12.9 Adjoints If T E PA(H), then (Tx, y) is linear in x, conjugate-linear 
in y, and bounded. Theorem 12.8 shows therefore that there exists a unique 
T* E &I( H) for which 

(1) 
and also that 
(2) 

(Tx, y) = (x, T*y) (x E H, y E H) 

II T* II = II T il -
We claim that T ...... T* is an involution on PA(H), that is, that the 

following four properties hold : 

(3) 

(4) 
(5) 
(6) 

(T + S)* = T* + S*. 

(aT)* = fxT*. 
(ST)* = T*S*. 

T** = T. 
Of these, (3) is obvious. The computations 

(aTx, y) = a(Tx, y) = a(x, T*y) = (x, fxT*y), 

(STx, y) = (Tx, S*y) = (x, T*S*y), 

(Tx, y) = (T*y, x) = (y, T**x) = (T**x, y) 
give (4), (5), and (6). Since 

I I  Tx ll 2 = (Tx, Tx) = (T* Tx, x) < II T* T I I I I x l l 2 

for every x E H, we have II T ll 2 < II T* T II . On the other hand, (2) gives 

I I T* TI I < I I T* II I I T I I = I I T II 2 . 
Hence the equality 
(7) 

holds for every T E PA(H). 
I I T*T II = I I T II 2 

We have thus proved that &I( H) is a B*-algebra, relative to the involu
tion T -+  T* defined by ( 1 ). 
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Nate : In the preceding setting, T* is sometimes called the Hilbert 
space adjoint of T, to distinguish it from the Banach space adjoint that was 
discussed in Chapter 4. The only difference between the two is that in the 
Hilbert space setting T ...... T* is conjugate-linear instead of linear. This is 
due to the conjugate-linear nature of the isometry described in Theorem 
12.5 . If T* were regarded as an operator on H* rather than on H, we would 
be exactly in the situation of Chapter 4. 

12.10 Theorem If T E &I( H), then 

JV(T*) = f?l(T)l_ and JV(T) = f?l(T*)l_. 

We recall that JV(T) and f?l(T) denote the null space and range of T, 
respectively. 

PROOF. Each of the following four statements is clearly equivalent to 
the one that follows and/or precedes it. 

(1) 
(2) 
(3) 

(4) 

T*y = 0. 

(x, T* y) = 0 for every x E H. 
(Tx, y) = 0 for every x E H. 

y E f?l(T)l_. 
Thus JV(T*) = f?l( T)l_. Since T** = T, the second assertion 

follows from the first if T is replaced by T*. I I I I 

12.11  Definition An operator T E PA(H) is said to be 

(a) normal if TT* = T* T, 
(b) self-adjoint (or hermitian) if T* = T, 
(c) unitary if T* T = I = TT*, where I is the identity operator on H, 
(d) a projection if T2 = T. 

It is clear that self-adjoint operators and unitary operators are 
normal. Most of the theorems obtained in this chapter will be about normal 
operators. 

This algebraic requirement, namely, that T should commute with its 
adjoint, has remarkably strong analytic and geometric consequences. 

12.12 Theorem An operator T E &I( H) is normal if and only if 

(1)  I I Tx l l = I I T*x ll 
for every x E H. Normal operators T have the following properties : 
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(a) fi(T) = fi(T*). 
(b) fJl(T) is dense in H if and only if T is one-to-one. 
(c) T is invertible if and only if there exists b > 0 such that I I  Tx I I  > b I I  x I I  

for every x E H. 
(d) If Tx = a.xfor some X E H, a. E {/;, then T*x = ax. 
(e) If a. and f3 are distinct eigenvalues of T, then the corresponding eigen

spaces are orthogonal to each other. 

PROOF. The equalities 

1 1 Tx ll 2 = (Tx, Tx) = (T* Tx, x), 
I I T*x 1 1 2 = (T*x, T*x) = (TT*x, x), 

combined with the corollary to Theorem 12.7, prove the first state
ment, and (a) is an immediate consequence. Since f?l(T)l_ = fi(T*), (a) 
implies (b). If there is a b > 0 as in (c), then f?l(T) is closed, by 
Theorem 1 .26, and is dense, by (b) ; hence fJl(T) = H and T is invert
ible. The converse follows from the open mapping theorem. To obtain 
(d), apply (a) to T - a.I in place of T. Finally, if Tx = a.x and 
Ty = f3y, then (d) shows that 

a.(x, y) = (ax, y) = (Tx, y) = (x, T* y) = (x, /]y) = f3(x, y). 
Since a. # /3, we conclude that x .1 y. Ill/ 

12.13 Theorem If U E !JI(H), the following three statements are equiva
lent. 

(a) U is unitary. 
(b) fJl(U) = H and (Ux, Uy) = (x, y)for all x E H, y E H. 
(c) fJl(U) = H and II Ux ll = l l x ll for every x E H. 

PROOF. If U is unitary, then fJl(U) = H because UU* = I. Also, 
U*U = I, so that 

(Ux, Uy) = (x, U*Uy) = (x, y). 

Thus (a) implies (b). It is obvious that (b) implies (c). If (c) holds, then 

(U* Ux, x) = (Ux, Ux) = II Ux l l 2 = l l x l l 2 = (x, x) 

for every x E H, so that U* U = I. But (c) implies also that U is a 
linear isometry of H onto H, so that U is invertible in !Jl(H). Since 
U*U = I , u- 1 = U*, and therefore U is unitary. //// 
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Note : The equivalence of (a) and (b) shows that the unitary operators 
are precisely those linear isomorphisms of H that also preserve the inner 
product. They are therefore the Hilbert space automorphisms. 

The equivalence of (b) and (c) is also a corollary of Exercise 2. 
The preceding proof shows that an operator T E PA(H) is an isometry 

(i.e., satisfies I I Tx II = II x I I  for every x E H) if and only if T* T = I. This is 
one half of what is needed to be unitary, but it is not enough. For example, 
let T be the right shift S R on t2 (see Exercise 2, Chapter 10) whose adjoint is 
easily seen to be S L . 

12.14 Theorem Each of the following four properties of a projection 
P E &I( H) implies the other three : 

(a) P is self-adjoint. 
(b) P is normal. 
(c) 9l(P) = JV(P).L. 
(d) (Px, x) = I I Px ll 2 for every x E H. 

Moreover, two self-adjoint projections P and Q have 9l(P) .1 9l(Q) if 
and only if PQ = 0. 

Property (c) is usually expressed by saying that P is an orthogonal 
projection. 

PROOF. It is trivial that (a) implies (b). Statement (a) of Theorem 12. 12 
shows that JV(P) = 9l(P).L if P is normal ; since P is a projection, 
9l(P) = JV(I - P), so that 9l(P) is closed. It now follows from the 
corollary to Theorem 12.4 that (b) implies (c). 

If (c) holds, every x E H has the form x = y + z, with y .1 z, 
Py = 0, Pz = z. Hence Px = z, and (Px, x) = (z, z). This proves (d). 

Finally, assume (d) holds. Then 

I I Px \1 2 = (Px, x) = (x, P*x) = (P*x, x). 
The last equality holds because I I Px \1 2 is real and (x, P*x) = I I Px \1 2• 
Thus (Px, x) = (P*x, x), for every x E H, so that P = P*, by Theorem 
12.7. Hence (d) implies (a). 

The identity (Px, Qy) = (x, PQy) proves the last assertion. //// 

12.15 Theorem 
(a) If U is unitary and A E a(U), then I ). \  = 1 .  
(b) If S is self-adjoint and A E a(S), then A is a real number. 
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PROOF. (a) Theorem 12. 1 3  shows that I I U I I  = 1 ,  and therefore I A I < 1 
if A E a(U). On the other hand, if I A I < 1 ,  then 1 1 .-i.U* II < 1 ;  hence 

U - U = - U(I - AU*) 
is invertible in PA(H) (Theorem 10.7), and therefore A fj a(U). 

(b) Suppose S = S*, A =  a. +  i/3 E a(S). Put S;. = S - AI. A 
simple calculation gives 

I I S;. x l l 2 = II Sx - a.x l l 2 + /32 l l x ll 2, 
so that II S;. x I I  > I f3 1 1 1x  1 1 .  If f3 # 0, it follows that S;. is invertible [by (c) 
of Theorem 12. 12], and thus A fj a(S). //II 

A Commutativity Theorem 

Let x and y be commuting elements in some Banach algebra with an invo
lution. It is then obvious that x* and y* commute, simply because 
x*y* = (yx)*. Does it follow that x commutes with y* ? Of course, the 
answer is negative whenever x is not normal and y = x. But it can be nega
tive even when both x and y are normal (Exercise 28). It is therefore an 
interesting fact that the answer is affirmative (if x is normal) in PA(H), rela
tive to the involution furnished by the Hilbert space adjoint : 

If N E &I( H) is normal, if T E &I( H), and if NT = TN, then 
N* T = TN*. 

In fact, a more general result is true : 

12.16 Theorem (Fuglede-Putnam-Rosenblum) Assume that M, N, 
T E PA(H), M and N are normal, and 
(1) MT = TN. 
Then M*T = TN* . 

PROOF. Suppose first that S E PA(H). Put V = S - S*, and define 

(2) Q = exp (V) = Jo (:!)v". 
Then V* = - V, and therefore 

(3) Q* = exp (V*) = exp ( - V) = Q - 1 . 
Hence Q is unitary. The consequence we need is that 

(4) l l exp (S - S*) ll = 1 for every S E !Jl(H). 
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If (1) holds, then MkT = T Nk for k = 1 ,  2, 3, . . .  , by induction. 
Hence 

(5) exp (M)T = T exp (N), 

or 

(6) T = exp ( -M)T exp (N). 

Put U 1 = exp (M* - M), U 2 = exp (N - N*). Since M and N are 
normal, it follows from (6) that 

(7) exp (M*)T exp (- N*) = U 1 TU 2 • 

By (4), I I  u 1 1 1  = II u 2 1 1 = 1 ,  so that (7) implies 
(8) l l exp (M*)T exp ( - N*) I I  < II T il . 

We now define 

(9) f().) = exp ().M*)T exp ( - ).N*) (). E (/;). 

The hypotheses of the theorem hold with J.M and J.N in place of M 
and N. Therefore (8) implies that II f().)ll < II Ti l for every ). E {/;. Thus f 
is a bounded entire &�(H)-valued function. By Liouville's theorem 3.32, 
f().) = f(O) = T, for every ). E {/;. Hence (9) becomes 

( 10) exp ().M*)T = T exp ().N*) (). E {/;). 

If we equate the coefficients of ). in (1 0), we obtain M* T = TN*. /!// 

Remark. Inspection of this proof shows that it used no properties of 
BI(H) which are not shared by every B*-algebra. This observation 
does not lead to a generalization of the theorem, however, because of 
Theorem 12.41. 

Note that the hypotheses of Theorem 12. 1 6  do not imply that MT* = T* N, even when M and N are self-adjoint and T is normal : If 

M = [� -�J. N = [� �]. T = [ _ �  �]. 
then MT = TN but MT* # T*N. 

Resolutions of the Identity 

12.17 Definition Let 9Jl be a a-algebra in a set n, and let H be a 
Hilbert space. In this setting, a resolution of the identity (on 9Jl) is a mapping 

E :  9Jl -+ &I( H) 

with the following properties : 



CHAPTER 12: BOUNDED OPERATORS ON A HILBERT SPACE 317 

(a) E(0) = 0, E(O) = I. 
(b) 
(c) 
(d) 
(e) 

Each E(w) is a self-adjoint projection. 
E(w' n w") = E(w')E(w"). 
If w' n w" = 0, then E(w' u w") = E(w') + E(w"). 
For every x E H and y E H, the set function Ex, Y defined by 

Ex, y(w) = (E(w)x, y) 
is a complex measure on A. 
When 9Jl is the a-algebra of all Borel sets on a compact or locally 

compact Hausdorff space, it is customary to add another requirement to 
(e) : Each Ex, Y should be a regular Borel measure. (This is automatically 
satisfied on compact metric spaces, for instance. See [23].) 

(1) 

Here are some immediate consequences of these properties. 
Since each E(w) is a self-adjoint projection, we have 

Ex, x(w) = (E(w)x, x) = II E(w)x 1 1 2 (x E H) 

so that each Ex, x is a positive measure on 9Jl whose total variation is 

(2) 

By (c), any two of the projections E(w) commute with each other. 
If w' n w" = 0, (a) and (c) show that the ranges of E(w') and E(w") 

are orthogonal to each other (Theorem 12. 14). 
By (d), E is finitely additive. The question arises whether E is count

ably additive, i.e., whether the series 
OC! 

(3) L E(w.) 
n = I  

converges, in the norm topology of P4(H), to E(w), whenever w is the union of 
the disjoint sets w. E 9Jl. Since the norm of any projection is either 0 or at 
least 1 ,  the partial sums of the series (3) cannot form a Cauchy sequence, 
unless all but finitely many of the E(w.) are 0. Thus E is not countably 
additive, except in some trivial situations. 

However, let { w.} be as above, and fix x E H. Since E(w.)E(wm) = 0 
when n -=f. m, the vectors E(w.)x and E(wm)x are orthogonal to each other 
(Theorem 12. 1 4). By (e), 

OC! 

(4) L (E(w.)x, y) = (E(w)x, y) 
n = I  

for every y E H. It now follows from Theorem 12.6 that 
OC! 

(5) L E(w.)x = E(w)x. 
n = I  
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The series (5) converges in the norm topology of H. We summarize the 
result just proved : 

12.18 Proposition If E is a resolution of the identity, and if x E H, then 
w --+  E(w)x 

is a countably additive H-valued measure on 9Jl. 

Moreover, sets of measure zero can be handled in the usual way : 

12.19 Proposition Suppose E is a resolution of the identity. If w. E 9Jl 
and E(w.) = Ofor n = 1 ,  2, 3, . . . , and ifw = U:'= 1 w. , then E(w) = 0. 

PROOF. Since E(w.) = 0, Ex, x(w.) = 0 for every X E H. Since Ex, X is 
countably additive, it follows that Ex, x(w) = 0. But I IE(w)x 1 1 2 = 
Ex, x(w). Hence E(w) = 0. //// 

12.20 The algebra L 00(E) Let E be a resolution of the identity on 9Jl, 
as above. Let f be a complex 9Jl-measurable function on n. There is a 
countable collection {D;} of open discs which forms a base for the topology 
of ft. Let V be the union of those D; for which E(f - 1(D;)) = 0. By Proposi
tion 12. 19, E(f - 1 (V)) = 0. Also, V is the largest open subset of q; with this 
property. 

The essential range off is, by definition, the complement of V. It is the 
smallest closed subset of (/; that contains f(p) for almost all p E n, that is, 
for all p E n except those that lie in some set w E 9Jl with E(w) = 0. 

We say that f is essentially bounded if its essential range is bounded, 
hence compact. In that case, the largest value of I A I , as A runs through the 
essential range off, is called the essential supremum II f I I 00 off 

Let B be the algebra of all bounded complex 9Jl-measurable functions 
on n;  with the norm 

l l f ll = sup { l f(p) l : p E !l}, 
one sees easily that B is a Banach algebra and that 

N = {f E B:  i l f l l oo = 0} 
is an ideal of B which is closed, by Proposition 12. 1 9. Hence B/N IS a 
Banach algebra, which we denote (in the usual manner) by L""(E). 

The norm of any coset [!J = f + N of L""(E) is then equal to II f II oo ,  

and its spectrum a([f]) is the essential range of f As is usually done in 
measure theory, the distinction between f and its equivalence class [f] will 
be ignored. 
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Our next concern will be the integration of functions with respect to 
the projection-valued measures described above. The resulting integrals 
S f dE turn out to be not only linear (as all good integrals ought to be) but 
also multiplicative ! 

12.21 Theorem If E is a resolution of the identity, as above, then there 
exists an isometric*-isomorphism 'I' of the Banach algebra e'(E) onto a closed 
normal subalgebra A of !?/J(H), which is related to E by the formula. 

( 1) ('l'{f)x, y) = L f dEx. y (x, y E H, f E L""(E)). 

This justifies the notation 

(2) 

(3) 

'l'{f) = Lf dE. 

Moreover, 

I I'I'{f)x ll 2 = L l f l 2 dEx, x (x E H, f E L""(E)), 

and an operator Q E !?/J(H) commutes with every E(w) if and only if Q com
mutes with every 'l'(f). 

Recall that a normal subalgebra A of !?/J(H) is a commutative one 
which contains T* for every T E A. To say that 'I' is a *-isomorphism 
means that 'I' is one-to-one, linear, and multiplicative and that 

(4) '1'(]) = 'l'{f)* (f E L""(E)). 

PROOF. To begin with, let {WI , . . .  , w.} be a partition of 0, with 
w; E 9Jl, and let s be a simple function, such that s = IX; on w; . 
Define 'l'(s) E !?/J(H) by 

" 

(5) 'l'(s) = L IX; E(w;). 
i = I 

Since each E(w;) is self-adjoint, 
" 

(6) 'l'(s)* = L ii; E(w;) = 'l'(s). 
i = I 

If {w'I , . . .  , w�} is another partition of this kind, and if t = pi on 
wj , then 

'l'(s)'l'(t) = L rx; f3iE(w;)E(wj) = L IX; f3i E(w; n wj). 
i, j i, j 
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Since st is the simple function that equals rx; f3i on W; n wj , it follows 
that 

(7) 'l'(s)'l'(t) = 'l'(st). 

An entirely analogous argument shows that 

(8) 'l'(rxs + f3t) = rx'l'(s) + f3'1'(t). 

If x E H and y E H, (5) leads to 

(9) ('l'(s)x, y) =
it! rx�E(wi)x, y) =

it! rxi Ex, y(wi) = ls dEx, Y . 

By ( 6) and (7), 

(1 0) 'l'(s)*'l'(s) = 'l'(s)'l'(s) = 'l'(ss) = 'I'( I s 1 2). 

Hence (9) yields 

(1 1) I I  'l'(s)x 11 2 = ('l'(s)*'l'(s)x, x) = ('I'( I s l 2)x, x) = l 1 s 1 2 dEx, x , 

so that 

( 12) l l'l'(s)x l l  < l i s II oo l l x l l , 

by formula (2) of Section 1 2. 1 7. On the other hand, if x E �(E(wi)), 
then 

( 13) 

since the projections E(wi) have mutually orthogonal ranges. If j is 
chosen so that I rxi I = li s I I  oo , it follows from (12) and ( 13) that 

( 14) I I  'l'(s) I I  = II s II oo • 

Now suppose f E L00(E). There is a sequence of simple measur
able functions sk that converges to f in the norm of L00(E). By (14), the 
corresponding operators 'l'(sk) form a Cauchy sequence in !?/J(H) which 
is therefore norm-convergent to an operator that we call 'l'{f); it is 
easy to see that 'l'{f) does not depend on the particular choice of {sk}. 
Obviously ( 14) leads to 

( 15) II 'l'(f) I I  = II f I I oo 

Now ( 1 )  follows from (9) (with sk in place of s), since each Ex, Y is 
a finite measure ; (2) and (3) follow from (6) and (1 1 ) ;  and if bounded 
measurable functions f and g are approximated, in the norm of L00(E), 
by simple measurable functions s and t, we see that (7) and (8) hold 
with f and g in place of s and t. 
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Thus 'I' is an isometric isomorphism of e'(E) into !?/J(H). Since 
e'(E) is complete, its image A = 'I'(L00(E)) is closed in !?/J(H), because of 
( 15). 

Finally, if Q commutes with every E(w), then Q commutes with 
'l'(s) whenever s is simple, and therefore the approximation process 
used above shows that Q commutes with every member of A. /Ill 

It is perhaps worth mentioning that the equality 

( 16) l l f ll � = sup {l l f l 2 dEx, x : ll x ll < 1} 
holds for every f E L00(E), because of (3) and (1 5). 

The Spectral Theorem 

The principal assertion of the spectral theorem is that every bounded 
normal operator T on a Hilbert space induces (in a canonical way) a 
resolution E of the identity on the Borel subsets of its spectrum a(T) and 
that T can be reconstructed from E by an integral of the type discussed in 
Theorem 12.2 1 .  A large part of the theory of normal operators depends on 
this fact. 

It should perhaps be stated explicitly that the spectrum a(T) of an 
operator T E !?/J(H) will always refer to the full algebra !?/J(H). In other 
words, A E a(T) if and only if T - AI has no inverse in !?/J(H). Sometimes we 
shall also be concerned with closed subalgebras A of !?/J(H) which have the 
additional property that I E A and T* E A whenever T E A. (Such algebras 
are sometimes called *-algebras.) 

Let A be such an algebra, and suppose that T E A and T - I E !?/J(H). 
Since TT* is self-adjoint, a(TT*) is a compact subset of the real line 
(Theorem 12. 1 5), hence does not separate (/;, and therefore a A(TT*) = 
a(TT*), by the corollary to Theorem 10. 1 8 .  Since TT* is invertible in !?/J(H), 
this equality shows that (TT*)- I E A, and therefore T- I = T*(TT*)- I is 
also in A. 

Thus T has the same spectrum relative to all closed *-algebras in !?/J(H) 
that contain T. 

Theorem 12.23 will be obtained as a special case of the following 
result, which deals with normal algebras of operators rather than with indi
vidual ones. 

1 2.22 Theorem If A is a closed normal subalgebra of !?/J(H) which con
tains the identity operator I and if A is the maximal ideal space of A, then the 
following assertions are true : 
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(a) There exists a unique resolution E of the identity on the Borel subsets of 
A which satisfies 

( 1) 

for every T E A, where Tis the Gelfand transform of T. 
(b) The inverse of the Gelfand transform (i.e., the map that takes T back to 

T) extends to an isometric *-isomorphism <I> of the algebra e'(E) onto a 
closed subalgebra B of !?/J(H), B :::.J A, given by 

(c) 

(2) <l>f = lf dE (f E e'(E)). 

Explicitly, <I> is linear and multiplicative and satisfies 
(3) <I>j = (<I>f)*, II <I>f II = II f II oo 

B is the closure [in the norm topology of !?/J(H)] of the set of all finite 
linear combinations of the projections E(w). 

(d) If w c A is open and nonempty, then E(w) # 0. 
(e) An operator S E !?/J(H) commutes with every T E A if and only if S com

mutes with every projection E(w). 

PROOF. Recall that (1) is an abbreviation for 

(4) (Tx, y) = l TdEx, y (x, y E H, T E A). 

Since !?/J(H) is a B*-algebra (Section 12.9), our given algebra A is 
a commutative B*-algebra. The Gelfand-Naimark theorem 1 1 . 1 8  
asserts therefore that T -+ T is an isometric *-isomorphism of A onto 
C(A). 

This leads to an easy proof of the uniqueness of E. Suppose E 
satisfies (4). Since Tranges over all of C(A), the assumed regularity of 
the complex Borel measures Ex. Y shows that each Ex, Y is uniquely 
determined by (4); this follows from the uniqueness assertion that is 
part of the Riesz representation theorem ([23], Th. 6. 19). Since, by 
definition, (E(w)x, y) = Ex, y(w), each projection E(O:J) is also uniquely 
determined by (4). 

This uniqueness proof motivates the following proof of the exis
tence of E. If x E H and y E H, Theorem 1 1 . 1 8  shows that T-+ (Tx, y) 
is a bounded linear functional on C(A), of norm < l l x I I I I y ll , since 
1 1 111 oo = II T i l . The Riesz representation theorem supplies us therefore 
with unique regular complex Borel measures J.lx. Y on A such that 

(5) (Tx, y) = l T dJ.lx, y (x, y E H, T E A). 
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For fixed T, the left side of (5) is a bounded sesquilinear functional on 
H, hence so is the right side, and it remains so if the continuous func
tion T is replaced by an arbitrary bounded Borel function f To each 
such f corresponds therefore an operator <I>f E PAf(H) (see Theorem 
12.8) such that 

(6) ((<l>f)x, y) = lf dJ1x, y (x, y E H). 

Comparison of (5) and (6) shows that <l>T= T. Thus <I> is an 
extension of the inverse of the Gelfand transform. 

It is clear that <I> is linear. 
Part of the Gelfand-Naimark theorem states that T is self

adjoint if and only if Tis real-valued. For such T, 

l T df-lx. y = (Tx, y) = (x, Ty) = (Ty, x) = l T dJ1y, x , 

and this implies that Jly, x = Jlx. Y .  Hence 

((<I>j)x, y) = lj dJ1x. y = lf dJ1y, x = ((<l>f)y, x) = (x, (<I>f)y) 

for all x, y E H, so that 
(7) <I>j = (<l>f)*. 

Our next objective is the equality 

(8) <I>(fg) = (<I> f)( <I>g) 
for bounded Borel functions f, g on A. If S E A and T E A, then 
(ST)" = ST; hence 

l ST dJ1x. y = (STx, y) = l S dJ1Tx, y . 

This holds for every S E C(A) ; hence the two integrals are equal if S is 
replaced by any bounded Borel function! Thus 

frr dJ1x, Y = lf dJ1Tx, Y = ((<I>f)Tx, y) = (Tx, z) = l T dJ1x, z ,  

where we put z = (<l>f)* y. Again, the first and last integrals remain 
equal if Tis replaced by g. This gives 

(<l>(fg)x, y) = lfg dJ1x, y = lg dJ1x, z 

= ((<l>g)x, z) = ((<l>g)x, (<I>f)*y) = (<l>{f)<l>(g)x, y), 
and (8) is proved. 
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We are finally ready to define E: If w is a Borel subset of A, let 
Xw be its characteristic function, and put 

(9) 

By (8), E(w n w') = E(w)E(w'). With w' = w, this shows that 
each E(w) is a projection. Since <I>fis self-adjoint whenfis real, by (7), 
each E(w) is self-adjoint. It is clear that E(0) = <1>(0) = 0. That 
E(A) = I follows from (5) and (6). The finite additivity of E is a conse
quence of (6), and, for all x, y E H, 

Ex, y(w) = (E(w)x, y) = l Xw dJ1x, y = Jlx, y(w). 

Thus (6) becomes (2). That l l<l>f ll = l l f l l oo follows now from Theorem 
12.21 .  

This completes the proof of (a) and (b). 
Part (c) is now clear because every f E L""(E) is a uniform limit of 

simple functions (i.e., of functions with only finitely many values). 
Suppose next that w is open and E(w) = 0. If T E A and T has 

its support in w, (1) implies that T = 0 ;  hence T= 0. Since A =  C(A). 
Urysohn's lemma implies now that w = 0. This proves (d). 

To prove (e), choose S E PAf(H), x E H, y E H, and put z = S*y. 
For any T E A  and any Borel set w c A we then have 

( 10) 

( 1 1 ) 

( 12) 
( 1 3) 

(STx, y) = (Tx, z) = l T dEx, z , 

(TSx, y) = l T dEsx, y , 

(SE(w)x, y) = (E(w)x, z) = Ex, z(w), 

(E(w)Sx, y) = Esx, y(w). 

If ST = TS for every T E A, the measures in (10) and (1 1) are 
equal, so that SE(w) = E(w)S. The same argument establishes the con
verse. This completes the proof. II I I 

We now specialize this theorem to a single operator. 

1 2.23 Theorem If T E PAf(H) and T is normal, then there exists a unique 
resolution of the identity E on the Borel subsets of a(T) which satisfies 

(1)  T = i Jc dE(Jc). 
<7(T) 
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Furthermore, every projection E(w) commutes with every S E !?/J(H) 
which commutes with T. 

We shall refer to this E as the spectral decomposition of T. 
Sometimes it is convenient to think of E as being defined for all Borel 

sets in (/; ; to achieve this put E(w) = 0 if w n a(T) = 0. 

PROOF. Let A be the smallest closed subalgebra of !?/J(H) that contains 
I, T, and T*. Since T is normal, Theorem 12.22 applies to A. By 
Theorem 1 1 . 19, the maximal ideal space of A can be identified with 
a(T) in such a way that f(A) = A for every A E a(T). The existence of E 
follows now from Theorem 12.22. 

On the other hand, if E exists so that (1) holds, Theorem 12.21 
shows that 

(2) p(T, T*) = I p(A, �) dE(A), J.,.(T) 
where p is any polynomial in two variables (with complex coefficients). 
By the Stone-Weierstrass theorem, these polynomials are dense in 
C(a(T)). The projections E(w) are therefore uniquely determined by 
the integrals (2), hence by T, just as in the uniqueness proof in 
Theorem 12.22. 

If ST = TS, then also ST* = T*S, by Theorem 12. 16 ;  hence S 
commutes with every member of A. By (e) of Theorem 12.22, 
SE(w) = E(w)S for every Borel set w c a(T). //// 

12.24 The symbolic calculus for normal operators If E is the spectral 
decomposition of a normal operator T E !?/J(H), and iff is a bounded Borel 
function on a(T), it is customary to denote the operator 

( 1) 'P{f) = i f dE 
<7( T) 

by f(T). 
Using this notation, part of the content of Theorems 12.21 to 12.23 

can be summarized as follows : 

The mapping f-+ f(T) is a homomorphism of the algebra of all bounded 
Borel functions on a(T) into !?/J(H), which carries the function 1 to I, 
which carries the identity function on a(T) to T, and which satisfies 
(2) j(T) = f(T)* 
and 
(3) Hf(T) II < sup { l f(A) I :  A E a(T)}. 
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Iff E C(a(T)), then equality holds in (3), and therefore f--+ f(T) is an 
isomorphism on C(a(T)) which satisfies 

l l f(T)x ll 2 = i l f l 2 dEx, x · 
<7(T) 

Iff. --+ funiformly, then ll f.(T) -f(T) II --+ 0, as n --+  oo. 
If S E PAf(H) and ST = TS, then Sf(T) = f(T)S for every bounded 

Borel function f 
Since the identity function can be uniformly approximated, on 

a(T), by simple Borel functions, it follows that T is a limit, in the norm 
topology of P4(H), of finite linear combinations of projections E(w). 
The following proof contains our first application of this symbolic 

calculus. 

12.25 Theorem If T E PAf(H) is normal, then 

II T i l = sup { I (Tx, x) l : x E H, ll x ll < 1 } .  

PROOF. Choose 6 > 0. It is clearly enough to show that 

(1) 

for some x0 E H with l l x0 ll = 1 .  
Since II T i l  = I I  T il 00 = p(T) (Theorem 1 1 . 1 8), there exists A0 E 

a(T) such that I A0 I = I I  T il . Let w be the set of all A E a(T) for which 
I A - A0 I < 6. If E is the spectral decomposition of T, then (d) of 
Theorem 12.22 implies that E(w) #- 0. Therefore there exists x0 E H 
with l l x0 I I  = 1 and E(w)x0 = x0 . 

Define f(A) = A - A0 for A E w ;  put f(A) = 0 for all other 
A E a( T). Then 

f(T) = (T - A0 I)E(w), 
so that 

Hence 

I (Txo , Xo) - Ao I = I {f(T)xo , Xo) I < ll f(T) II < 6, 

since I f(A) I < 6 for all A E a(T). This implies (1), because I A0 I = II T i l 
//// 

To see that normality is needed here, let T be the linear operator on 
(/;2 (with basis {e1 , e2}) given by Te 1 = 0, Te2 = e1 . It has I I T il = 1 ,  but 
I (Tx, x) I < t if ll x l l  < 1 .  

Our next result contains a converse to Theorem 12. 15. 
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12.26 Theorem A normal T E !JH(H) is 

(a) self-adjoint if and only if a"(T) lies in the real axis, 
(b) unitary if and only if a(T) lies on the unit circle. 

PROOF. Choose A as in the proof of Theorem 12.23. Then T(Jc) = Jc 
and (T*)"(Jc) = X on a(T). Hence T = T* if and only if A =  X on a(T), 
and TT* = I if and only if .leX = 1 on a(T). /Ill 

12.27 Invariant subspaces As in Theorem 10.35, a closed subspace M 
of H is an invariant subspace of a set L c !JI(H) if every T E L maps M into 
M. For example, every eigenspace of T is an invariant subspace of T. When 
dim H < oo, the spectral theorem implies that the eigenspaces of every 
normal operator T span H. [Sketch of proof: The characteristic function of 
each point in a(T) corresponds to a projection in H. The sum of these 
projections is E(a(T)) = I.] If dim H = oo, it can happen that T has no 
eigenvalues (Exercise 20). But normal operators still have invariant sub
spaces that are nontrivial (that is, #- {0} and #H). 

In fact, let A be a normal algebra, as in Theorem 12.22, and let E be 
its resolution of the identity, on the Borel subsets of A. If A consists of a 
single point, then A consists of the scalar multiples of I, and every subspace 
of H is invariant under A.  Suppose that A = w u w', where w and w' are 
nonempty disjoint Borel sets. Let M and M' be the ranges of E(w) and 
E(w'). Then TE(w) = E(w)T for every T E A. If x E M, it follows that 

Tx = TE(w)x = E(w)Tx, 

so that Tx E M. The same holds for M'. 
Hence M and M' are invariant subspaces of A. 
Moreover, M' = M.L, and H = M EB M'. 
Decompositions of A into finitely many (or even countably many) dis

joint Borel sets induce, in the same manner, decompositions of H into pair
wise orthogonal invariant subspaces of A.  

It is an open problem whether every (nonnormal) T E �(H) has a 
nontrivial invariant subspace if H is an infinite-dimensional separable 
Hilbert space. 

Eigenvalues of Normal Operators 

If T E !JH(H) is normal, its eigenvalues bear a simple relation to its spectral 
decomposition (Theorem 12.29). This will be derived from the following 
application of the symbolic calculus : 
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12.28 Theorem Suppose T E PAf(H) is normal and E is its spectral decom
position. lff E C(a(T)) and ifw0 = f - 1(0), then 

(1) .K(f(T)) = 9l(E(w0)). 

PROOF. Put g(A) = 1 on w0 , g(A) = 0 at all other points of a(T). Then 
fg = 0, so thatf(T)g(T) = 0. Since g(T) = E(w0), it foll001s that 

(2) 9l(E(w0)) c .K(f(T)). 
For each positive integer n, let w. be the set of all A E a(T) where 
1/n < I f(A) I < 1/(n - 1). The complement w of w0 , relative to a(T), is 
then the union of the disjoint Borel sets w • .  Define 

(3) f,(A) = {�/!(A) on w. , 
elsewhere on a(T). 

Each/, is a bounded Borel function on a(T), and 

(4) f,(T)f(T) = E(w.) ( n = 1 ,  2, 3, . . .  ). 
If f(T)x = 0, it follows that E(w.)x = 0. The countable additivity 

of the mapping w -+  E(w)x (Proposition 12. 18) shows therefore that 
E(w)x = 0. But E(w) + E(w0) = I. Hence E(w0)x = x. We have now 
proved that 

(5) .K(f(T)) c 9l(E(w0)), 
and (1) follows from (2) and (5). /Ill 

12.29 Theorem Suppose E is the spectral decomposition of a normal 
T E PAf(H), A0 E a(T), and E0 = E({A0}). Then 

(a) .K(T - A0 I) = 9l(E0), 
(b) A0 is an eigenvalue of T if and only if E0 # 0, and 
(c) every isolated point of a(T) is an eigenvalue of T. 
(d) More over, if a(T) = {A 1 , A2 , A3 , . . .  } is a countable set, then every x E H 

has a unique expansion of the form 
OC! 

X =  L X; , 
i = I  

where Tx; = A; X; . Also, X; j_ xi whenever i # j. 

Statements (b) and (c) explain the term point spectrum of T for the set 
of all eigenvalues of T. 

PROOF. Part (a) is an immediate corollary of Theorem 12.28, with 
f(A) = A - Ao . It is clear that (b) follows from (a). If A0 is an isolated 
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point of a(T), then {Jc0} is a nonempty open subset of a(T); hence 
E0 =I 0, by (J) of Theorem 12.22. Therefore (c) follows from (b). 

To prove (J), put Ei = E({JcJ), i = 1 ,  2, 3, . . . .  At limit points .lei of 
a(T), Ei may or may not be 0. In any case, the projections E; have 
pairwise orthogonal ranges. The countable additivity of w --+  E(w)x 
(Proposition 12. 1 8) shows that 

OC! 

L Ei x = E(a(T))x = x (x E H). 
i =  I 

The series converges, in the norm of H. This gives the desired repre
sentation of x, if xi = E; x. The uniqueness follows from the orthog
onality of the vectors xi , and Txi = .lei X; follows from (a). //II 

12.30 Theorem A normal operator T E !?/J(H) is compact if and only if it 
satisfies the following two conditions : 

(a) a(T) has no limit point except possibly 0. 
(b) If Jc =I 0, then dim JV(T - AI) < oo .  

PROOF. For the necessity, see (d) of Theorem 4. 1 8, and Theorem 4.25. 
To prove the sufficiency, assume (a) and (b) hold, let {A;} be 

an enumeration of the nonzero points of a(T) such that I .lc1 1 > 
I A2 1 > · · · ,  define f.(Jc) = A if A = .lei and i < n, and put f,(.lc) = 0 at the 
other points of a(T). If Ei = E({Jc;}), as in Theorem 12.29, then 

f,(T) = .lc1E1 + · · · + Jc. E • .  

Since dim PA(Ei) = dim JV(T - A; /) < oo ,  each f,(T) is a compact 
operator. Since I A - f.(Jc) I < I Jc. I for all A E a(T), we have 

II T -f.(T) II < I .�c. I --+ 0 as n --+  oo .  

It now follows from (c) of Theorem 4. 18 that T is compact. //// 

We have tacitly assumed that a( T) is infinite. If a(T) contains only n 
points different from 0, thenf.(T) = T in the preceding proof, and Theorem 
4.1 8  is not needed. 

12.31 Theorem Suppose T E !?/J(H) is normal and compact. Then 

(a) T has an eigenvalue A with I A I = II T il , 
(b) f(T) is compact iff E C(a( T)) andf(O) = 0, but 
(c) f(T) is not compact iff E C(a(T)),f(O) =I 0, and dim H = oo .  
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PROOF. Since T is normal, Theorem 1 1 . 1 8  shows that there exists 
A E a(T) with I A I = II T il . If I I T il > 0, this A is an isolated point of a(T) 
(Theorem 12.30), hence an eigenvalue of T (Theorem 12.29). If 
II T II = 0, (a) is obvious. 

To prove (b), choose 6 > 0, then b > 0 so that I f(Jc) I < 6 if 
I )c I < b ;  let A1 , . • •  , AN be the points in a(T) for which I A; I > b ;  find 
polynomials Qk (1 < k < N) so that Qk()ck) = 1, Qk(A) = 0 for j # k, 
1 < j  < N; and define 

N 
P(Jc) = L f(Jck)(lc/ Jck)MQk(Jc), 

k = !  
where M is a positive integer, so large that I P(.lc) I < 6 if I Jc I < b. The 
polynomial P has Jc as a factor. Hence P(T) is a compact operator, by 
{f) of Theorem 4. 18 . Also, P(Jc) = f(Jc) for 1 < j < N. It follows that 
I P(.lc) -f(.lc) l < 26 for all A E a(T). Hence II P(T) - f{T) II < 26, and (c) 
of Theorem 4. 18 implies thatf(T) is compact. 

In the proof of (c), assume f(O) = 1, without loss of generality. 
Then (b), applied to 1 -f,  shows that the operator S = I -f(T) is 
compact. Let B be the unit ball of H. Then 

B c S(B) + f(T)(B). 

If f(T) were compact, it would follow that B lies in the sum of two 
compact sets ; hence H would be locally compact, hence finite
dimensional, contrary to our hypothesis. //// 

Positive Operators and Square Roots 

12.32 Theorem Suppose T E PAf(H). Then 

(a) (Tx, x) > 0 for every x E H if and only if 
(b) T = T* and a(T) c [0, w ). 

If T E PAf(H) satisfies (a), we call T a positive operator and write T > 0. 
The theorem asserts that this terminology agrees with Definition 1 1 .27. 

PROOF. In general, (Tx, x) and (x, Tx) are complex conjugates of each 
other. But if (a) holds, then (Tx, x) is real, so that 

(x, T*x) = (Tx, x) = (x, Tx) 
for every x E H. By Theorem 12.7, T = T*, and thus a(T) lies in the 
real axis (Theorem 12. 1 5). If A >  0, (a) implies that 

.lcl l x ll 2 = (.lex, x) < ((T + U)x, x) < I I (T + A.J)x l l l l x l l , 
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so that 

I I (T + U)x ll > A ll x ii -
By Theorem 12. 1 2(c), T + AI is invertible in PAf(H), and - A  is not in 
a{T). It follows that (a) implies (b). 

Assume now that (b) holds, and let E be the spectral decomposi
tion of T, so that 

(Tx, x) = i A dEx, x(A) 
<7( T) 

(x E H). 

Since each Ex. x is a positive measure, and since A > 0 on a(T), 
we have (Tx, x) > 0. Thus (b) implies (a). /II/ 

12.33 Theorem Every positive T E PAf(H) has a unique positive square 
root S E PAf(H). If T is invertible, so is S. 

PROOF. Let A be any closed normal subalgebra of PAf(H) that contains 
I and T, and let A be the maximal ideal space of A. By Theorem 
1 1 . 1 8, A = C(A). Since T satisfies condition (b) of Theorem 12.32, and 
since a(T) = f{A), we see that T> 0. Since every nonnegative contin
uous function has a unique nonnegative continuous square root, it 
follows that there is a unique S E A that satisfies S2 = T and S > 0 ;  
by Theorem 12.32, S > 0 is equivalent to S > 0. 

In particular, let A0 be the smallest of these algebras A. Then 
there exists S0 E A0 such that S� = T and S0 > 0. If S E PAf(H) is any 
positive square root of T, let A be the smallest closed subalgebra of 
PAf(H) that contains I and S. Then T E A, since T = S2. Hence A0 c A, 
so that S0 E A. The conclusion of the preceding paragraph shows now 
that S = S0 . 

Finally, if T is invertible, then s- 1 = T - 1s, since S commutes 
with S2 = T. //// 

12.34 Theorem If T E PAf(H), then the positive square root of T* T is the 
only positive operator P E PAf(H) that satisfies I I  Px II = II Tx II for every x E H. 

PROOF. Note first that 

(1) (T* Tx, x) = (Tx, Tx) = I I Tx ll 2 > 0 (x E H), 
so that T* T > 0. (In the more abstract setting of Theorem 1 1 .28 this 
was much harder to prove ! )  

Next, if P E PAf(H) and P = P*, then 

(2) {P2x, x) = (Px, Px) = I I Px ll 2 (x E H). 
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By Theorem 12.7, it follows that I I Px ll = I I Tx ll for every x E H if and 
only if P2 = T* T. 

This completes the proof. /Ill 

The fact that every complex number A can be factored in the form 
A = rx l  A I , where I rx l  = 1, suggests the problem of trying to factor T E !?/J(H) 
in the form T = UP, with U unitary and P > 0. When this is possible, we 
call UP a polar decomposition of T. 

Note that U, being unitary, is an isometry. Theorem 12.34 shows 
therefore that P is uniquely determined by T. 

12.35 Theorem 
(a) If T E !?/J(H) is invertible, then T has a unique polar decomposition 

T = UP. 

(b) If T E !?/J(H) is normal, then T has a polar decomposition T = UP in 
which U and P commute with each other and with T. 

PROOF. (a) If T is invertible, so are T* and T* T, and Theorem 12.33 
shows that the positive square root P of T* T is also invertible. Put 
U = T P- 1 • Then U is invertible, and 

U*U = p - 1 T* TP- 1 = p- 1P2P- 1 = I, 

so that U is unitary. Since P is invertible, it is obvious that T P - I  is 
the only possible choice for U. 

(b) Put p(A) = I A I ,  u(A) = A/ I A I if A -=f. 0, u(O) = 1. Then p and u 
are bounded Borel functions on a( T). Put P = p(T), U = u(T). Since 
p > 0, Theorem 12.32 shows that P > 0. Since uu = 1 ,  UU* = 
U*U = I. Since A =  u(A)p(A), the relation T = UP follows from the 
symbolic calculus. //// 

Remark. It is not true that every T E !?/J(H) has a polar decomposi
tion. (See Exercise 19.) However, if P is the positive square root of 
T* T, then II Pxl l  = II Tx l l  for every x E H ;  hence Tx = Ty if Px = Py, 
by linearity. The formula 

VPx = Tx 

defines a linear isometry V of �(P) onto �(T), which has a contin
uous extension to a linear isometry of the closure of �(P) onto the 
closure of �(T). 

If there is a linear isometry of �(P)J.. onto �(T)1., then V can be 
extended to a unitary operator on H, and then T has a polar decom
position. This always happens when dim H < oo ,  since �(P) and �(T) 
have then the same codimension. 
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If V is extended to a member of !?/J(H) by defining Vy = 0 for all 
y E �(P)-L, then V is called a partial isometry. 

Every T E !?/J(H) thus has a factorization T = VP in which P is 
positive and V is a partial isometry. 

In (a), no two of T, U, P need to commute. For example, 

G �) = (� �)G �) 
In combination with Theorem 12. 1 6, the polar decomposition 

leads to an interesting result concerning similarity of normal oper
ators. 

12.36 Theorem Suppose M, N, T E !?/J(H), M and N are normal, T is 
invertible, and 

(1) 
If T = UP is the polar decomposition of T, then 

(2) 
Two operators M and N that satisfy (1) are usually called similar. If U 

is unitary and (2) holds, M and N are said to be unitarily equivalent. The 
theorem thus asserts that similar normal operators are actually unitarily 
equivalent. 

PROOF. By (1), MT = TN. Hence M*T = TN*, by Theorem 12. 16. 
Consequently, 

T*M = (M* T)* = (TN*)* = NT*, 
so that 

NP2 = NT*T = T*MT = T* TN = P2N , 

since P2 = T* T. Hence N commutes withf(P2), for every f E C(a(P2)). 
(See Section 12.24.) Since P > 0, a(P2) c [0, oo). Hf(Jc) = Jc1 i2 > 0 on 
a(P2), it follows that NP = PN. Hence (1) yields 

M = (UP)N(UP) - 1 = UPNP - 1 U- 1 = UNU- 1 • //// 

The Group of Invertible Operators 

Some features of the group of all invertible elements in a Banach algebra A 
were described at the end of Chapter 10. The following two theorems 
contain further information about this group, in the special case A = !?/J(H). 

12.37 Theorem The group G of all invertible operators T E !?/J(H) is con
nected, and every T E G is the product of two exponentials. 



334 PART III: BANACH ALGEBRAS AND SPECTRAL THEORY 

Here an exponential is, of course, any operator of the form exp (S) 
with S E £Jl(H). 

PROOF. Let T = UP be the polar decomposition of some T E G. 
Recall that U is unitary and that P is positive and invertible. Since 
a(P) c (0, oo ), log is a continuous real function on a(P). It follows 
from the symbolic calculus that there is a self-adjoint S E £Jl(H) such 
that P = exp (S). Since U is unitary, a(U) lies on the unit circle, so 
that there is a real bounded Borel function/ on a(U) that satisfies 

exp {if(Jc)} = A [A E a(U)]. 
(Note that there may not exist any continuous f with this property ! )  
Put Q = f(U). Then Q E £Jl(H) is self-adjoint, and U = exp (iQ). Thus 

T = UP = exp (iQ) exp (S). 
From this it follows easily that G is connected, for if T,. is defined, for 
0 < r < 1 ,  by 

T,. = exp (irQ) exp (rS) 
then r -+  T,. is a continuous mapping of the unit interval [0, 1] into G, 
T0 = I, and T1 = T. This completes the proof. //// 

It is now natural to ask whether every T E G is an exponential, rather 
than merely the product of two exponentials. In other words, is every 
product of two exponentials an exponential? The answer is affirmative if 
dim H < oo ;  in fact, it is affirmative in every finite-dimensional Banach 
algebra, as a consequence of Theorem 10.30. But in general the answer is 
negative, as we shall now see. 

1 2.38 Theorem 

( 1 )  

Let D be a bounded open set in ({, such that the set 
0 = {IX E ({,:  a2 E D} 

is connected and such that 0 is not in the closure of D. Let H be the space of 
all holomorphic functions f in D that satisfy 

(2) 1 1 / 1 2 dm2 < oo 

(where m2 is Lebesgue measure in the plane), with inner product 

(3) (f, g) = Lf g dm2 • 

Then H is a Hilbert space. Define the multiplication operator M E £Jl(H) by 
(4) (Mf)(z) = zf(z) {f E H, z E D). 
Then M is invertible, but M has no square root in £Jl(H). 
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Since every exponential has roots of all orders, it follows that M is not 
an exponential. 

PROOF. It is clear that (3) defines an inner product that makes H a 
unitary space. We show now that H is complete. Let K be a compact 
subset of D, whose distance from the complement of D if b. If z E K, 
if A is the open circular disc with radius [J and center z, and iff(() = 
L a.(( - z)" for ( E A, a simple computation shows that 

(5) 
OC! 1 i .
"f.

0
(n + 1 ) - 1 l a. l 2b2" + 2  = n 

a
l / 1 2 dm2 • 

Since f(z) = a0 , it follows that 

(6) (z E K, f E  H), 

where II f II = (f, /) 1 12• Every Cauchy sequence in H converges there
fore uniformly on compact subsets of D. From this it follows easily 
that H is complete. Hence H is a Hilbert space. 

Since D is bounded, M E !?/J(H). Since 1/z is bounded in D, 
M- I E !?/J(H). 

Assume now, to reach a contradiction, that M = Q2 for some 
Q E !?/J(H). Fix rx E 0. Put A = rx2. Then A E D. Define 

(7) M;. = M - AI, S = Q - rxl, T = Q + rxl, 

so that 

(8) ST = M;. = TS. 

Since we are dealing with holomorphic functions, the formula 

(9) (M;. g)(z) = (z - A)g(z) (z E D, g E H) 

shows that M;. is one-to-one and that its range �(M ;.) consists of 
exactly thosef E H that satisfy /(A) = 0. Hence (6) shows that �(M ;.) is 
a closed subspace of H, of codimension 1 . 

Since M;. is one-to-one, the first equation (8) shows that T is 
one-to-one ; the second shows that � is one-to-one. Since �(M;.) -=f. H, 
M;. is not invertible in !?/J(H). Hence at least one of S and T is not 
invertible. Suppose S is not invertible. Since M;. = ST, �(M ;.) c �(S), 
so that �(S) is either �(M;.) or H. In the latter case, the open mapping 
theorem would imply that S is invertible. Hence S is a one-to-one 
mapping of H onto �(M;.). But the equation M;. = ST shows that S 
maps �(T) onto �(M ;.). Hence �(T) = H, and another application of 
the open mapping theorem shows that T - 1 E !?/J(H). 

We have now proved that one and only one of the operators S 
and T is invertible in !?/J(H). Therefore exactly one of the numbers rx 
and - (1. lies in a( Q), if (1. E 0. It follows that Q is the union of two 
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disjoint congruent sets, a(Q) n n and - a(Q) n n, both of which are 
closed (relative to 0) since a(Q) is compact. The assumption that 
M = Q2 leads thus to the conclusion that n is not connected, which 
contradicts the hypothesis. 

This completes the proof. I I II 

The simplest example of a region D that satisfies the hypothesis of 
Theorem 12.38 is a circular annulus with center at 0. In that case, a more 
conceptual proof can be given. See Exercise 40. 

A Characterization of B*-algebras 

The fact that every !?/J(H) is a B*-algebra has been exploited throughout this 
chapter. We shall now establish a converse (Theorem 1 2.41 )  which asserts 
that every B*-algebra (commutative or not) is isometrically *-isomorphic to 
some closed subalgebra of some !?/J(H). The proof depends on the existence 
of a sufficiently large supply of positive functionals. 

12.39 Theorem If A is a B*-algebra and if z E A, then there exists a 
positive functional F on A such that 
( 1 )  F(e) = 1 and F(zz*) = ll z ll 2. 

PROOF. Set zz* = x0 . By (e) of Theorem 1 1 .28, a(x0) c [0, oo ). Let A0 
be the maximal ideal space of the closed algebra A0 c A generated by 
e and x0 . Then A0 = C(A0) and (by Theorem 1 1 . 1 9) x0 is a non
negative real continuous function on A0 . It attains its maximum at 
some point h E A0 . Thus 

(2) 

Define a linear functional/ on A0 by f(x) = x(h). Then 

(3) f(e) = 1,  
and 11/ 1 1 = 1 ,  because l f(x) l < ll x l l oo = l l x l l for all x E A0 . 

The Hahn-Banach theorem extends /to a linear functional F on 
A, with I I F I I  = 1 .  We have to prove that F(yy*) > 0 for every y E A. 

Fix y E A and let A1 be the maximal ideal space of the closed 
algebra A 1 c A generated by e and yy*. Then A1 = C(A1). Use F to 
define a linear functional q> on C(A1 ) by setting 

(4) q>(x) = F(x) (x E A1 ). 

Then q>( 1) = F(e) =f(e) = 1 ,  l q>(x) l < ll x l l = l l x l l oo , hence ll q> ll = 1 ,  
and now Lemma 5.26 shows that q>(x) > 0 for all x E A for which 
x > 0 on A1 . If x1 = yy*, we see, as at the start of this proof, that 
x1 > 0 on A1 . Thus F(yy*) = F(x 1 ) = q>(x 1) > 0, as needed. II II 
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12.40 Theorem If A is a B*-algebra and if u E A, u -=f. 0, there exists a 
Hilbert space Hu and there exists a homomorphism � of A into PA(Hu) that 
satisfies �(e) = I, 

( 1 )  

(2) 

�(x*) = �(x)* 

II �(x) ll < ll x l l 

(x E A), 

(x E A), 

and II �(u) ll = ll u l l . 

PROOF. We regard u as fixed and omit the subscripts u. Fix a positive 
functional F on A that satisfies 

(3) F(e) = 1 and 

Such an F exists, by Theorem 12.39. Define 

(4) Y = {y E A : F(xy) = 0 for every x E A}. 
Since F is continuous (Theorem 1 1 .3 1 ), Y is a closed subspace of A. 
Denote cosets of Y, that is, elements of A/ Y, by x' : 

(5) x' = x + Y (x E A). 

We claim that 

(6) (a', b') = F(b*a) 
defines an inner product on A/Y. 

To see that (a', b') is well defined by (6), i.e., that it is independent 
of the choice of representatives a and b, it is enough to show that 
F(b*a) = 0 if at least one of a or b lies in Y. If a E Y, F(b*a) = 0 
follows from (4). If b E Y, then 

(7) F(b*a) = F(a*b) = 0, 

by (a) of Theorem 1 1 . 3 1  and another application of (4). Thus (a', b') is 
well defined, it is linear in a', and conjugate-linear in b', and 

(8) (a', a') = F(a*a) � 0, 

since F is a positive functional. If (a', a') = 0, then F(a*a) = 0 ;  hence 
F(xa) = 0 for every x E A, by (b) of Theorem 1 1 . 3 1 ,  so that a E Y and 
a' = 0. 

A/Y is thus an inner product space, with norm l l a' l l = F(a*a) 1 12. 
Its completion H is the Hilbert space that we are looking for. We 
define linear operators T(x) on A/Y by 

(9) T(x)a' = (xa)'. 
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Again, one checks easily that this definition is independent of the 
choice of a E a', for if y E Y, (4) implies that xy E Y. (Y  is a left ideal 
in A.) It is obvious that x --+  T(x) is linear and that 

( 10) 

in particular, (9) shows that T(e) is the identity operator on A/Y. We 
now claim that 

( 1 1)  II T(x) ll < l l x l l (x E A). 

Once this is shown, the uniform continuity of the operators T(x) 
enables us to extend them to bounded linear operators on H. Note 
that 

( 12) II T(x)a' ll 2 = ((xa)', (xa)') = F(a*x*xa). 
For fixed a E A, define G(x) = F(a*xa). Then G is a positive functional 
on A, so that 

( 1 3) G(x*x) < G(e) ll x l l 2, 

by (d) of Theorem 1 1 . 3 1 . Thus 

( 1 4) I I T(x)a' l l 2 = G(x*x) < F(a*a) ll x l l 2 = ll a' l l 2 l l x ll 2, 

which proves ( 1 1 ). 
Next, the computation 

(T(x*)a', b') = ((x*a)', b') = F(b*x*a) = F((xb)*a) 
= (a', (xb)') = (a', T(x)b') = (T(x)*a', b') 

shows that T(x*)a' = T(x)*a', for all a' E A/Y. Since A/Y is dense in 
H, this proves ( 1 ). 

Finally, (3) and ( 12) show that 

( 1 5) II u 11 2 = F(u*u) = II T(u)e' l l 2 < II T(u) 1 1 2 

since l l e' l l 2 = F(e*e) = F(e) = 1 .  In conjunction with (1 1), ( 1 5) gtves 
II T(u) ll = ll u l l , and the proof is complete. //// 

12.41 Theorem If A is a B*-algebra, there exists an isometric *-isomor
phism of A onto a closed subalgebra of P4(H), where H is a suitably chosen 
Hilbert space. 

PROOF. Let H be the " dtrect sum " of the Hilbert spaces H u con
structed in Theorem 1 2.40. Here is a precise description of H: Let 
nu(v) be the Hu·coordinate of an element v of the cartesian product of 
the spaces H u . Then, by definition, v E H if and only if 

( 1 )  
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where l l nu(v) l l  denotes the Hu-norm of nu(v). The convergence of ( 1 )  
implies that at most countably many nu(v) are different from 0. The 
inner product in H is given by 

(2) (v', v") = L (nJv'), nu(v")) (v', v" E H), 
u 

so that l l v l l 2 = (v, v) is the left side of ( 1 ). We leave it as an exercise to 
verify that all Hilbert space axioms are now satisfied by H. 

If Su E !JH(HJ, if I I Su l l  < M for all u, and if Sv is defined to be the 
vector whose coordinate in H u is 

(3) 

one verifies easily that Sv E H if v E H, that S E !JH(H), and that 

(4) I I S I I = sup I I SJ . 
u 

We now associate with each x E A an operator T(x) E !JH(H), by 
requiring that 

(5) 

where T, is as in Theorem 12.40. Since 

(6) I I  T,(x) ll < l l x ll = II Tx(x) ll , 
by Theorem 1 2.40, it follows from (4) that 

(7) II T(x) ll = sup II T,(x) ll = l l x l l -
u 

That the mapping x -+  T(x) of A into !JI(H) 
required properties follows from a coordinatewise 
Theorem 12.40. 

has the other 
application of 

/Ill 

An Ergodic Theorem 

12.42 Definitions The term " ergodic " comes from statistical mechan
ics, where it is applied to systems in which " time average = space average " 
holds for certain quantities. To see a simple mathematical example, let J1 be 
a probability measure on some a-algebra A in a set n, let 1/1 map n into n, 
and define its iterates by !/II = 1/J, 1/J" = 1/J o 1/1"- I (n = 2, 3, 4, . . .  ). If we think 
of time as discrete, the " time average " of a function f on n, relative to the 
transformation 1/J, is 

( 1 )  . 1 -hm - (f + f o 1/J + . .  · + f o 1/J " I ) 
n --1' 00 n 

when this limit exists in some sense. 
The " space average " of anf E LI (Jl) is simply Jn f dJ1. 
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We will be concerned with measure-preserving one-to-one maps 1/J of n 
onto n. This means that 1/J(E) and 1/1 - 1 (£) are in A for every E E A and 
that their measure is J.l(E). It is then clear that 

(2) l (f 0 1/1) dJ.1 = lf dJ.1 

for every f E I!(J.l). 
If, moreover, 1/J(E) = E E A occurs only when J.l(E) = 0 or J.l(E) = 1, 

then 1/J is said to be ergodic. In that case it is clear that every measurable 
function g for which g o 1/J = g a.e. [J.l] is constant a.e. [J.lJ . 

We can now state von Neumann's mean ergodic theorem ; it is so 
named because fl-convergence used to be called " convergence in the 
mean." 

12.43 Theorem Let (0, A, J.l) be as above. lf i/J : Q -+  Q is one-to-one and 
measure-preserving, andf E fl(J.l), then the averages 

1 AJ = - (f + f 0 1/1 + . . . + f 0 1/1"- I ) n 
converge, in the fl-metric, to some g E fl(J.l), as n -+  oo .  

Moreover, g o 1/1 = g. Thus g is the constant Jn f d11 if !/I is ergodic. 

It is clear that the second assertion follows from the first. The first one 
says, explicitly, that 

lim l i g - A. / 12 d11 = o. 
n --1' 00 n 

The key to the proof is the observation that the map f-+ f o 1/1 is an 
isometry of I3(J.1) onto fl(J.l). It is thus a unitary operator on the Hilbert 
space L2(J.1). The following abstract reformulation of Theorem 1 2.43 is then 
an easy consequence of the spectral theorem. 

1 2.44 Theorem If U E PAf(H) is unitary and x E H, then the averages 

( 1 )  
1 A.x = - (x + Ux + · · ·  + U" - 1x) n 

converge, in the norm topology of H, to some y E H. 

PROOF. Let E be the spectral decomposition of U. Define functions a. 
and b on the unit circle by 

(2) 
1 a (A) = - ( 1  + A + · · · + A "- 1 ), " n 

b( 1) = 1 ,  b(A) = 0 for A -=f. 1 .  
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Then A. x = a.(U)x. Set y = b(U)x. This gives 

(3) I IY - A. x ll 2 = ll b(U)x - a.(U)x ll 2 = i l b - a. l2 dEx, x · 
<7(U) 

Since I b - a. I < 1 on the unit circle, and (b - a.)( A) --+ 0 pointwise, the 
dominated convergence theorem shows that 

(4) lim I IY - A. x l l = 0. Ill/ 

Exercises 

Throughout these exercises, the letter H denotes a Hilbert space. 
1. The completion of an inner product space is a Hilbert space. Make this state

ment more precise, and prove it. (See the proof of Theorem 12.40 for an applica
tion.) 

2. Suppose N is a positive integer, ex E q;, cxN = 1 ,  and cx2 # 1 .  Prove that every 
Hilbert space inner product satisfies the identities 

and 

1 N 
(x, y) = - I l lx + cx"y ll 2cx" 

N n� ! 

Generalize this : Which functions f and measures J-1 on a set n give rise to the 
identity 

(x, y) = l 1 1x + f(p)yll 2 dJ-t(p)? 

3. (a) Assume x. and Yn are in the closed unit ball of H, and (x. ,  y.) ----> 1 as n ----> oo.  
Prove that then l lx. - Y.l l ---+ 0. 

(b) Assume x. E H, x. ---+ x weakly, and l lx. ll ---+ l lx l l . Prove that then 
l lx. - x II ----> 0. 

4. Let H* be the dual space of H ;  define ljJ :  H* ----> H by 

y*(x) = (x, ljly*) (x E H, y* E H*). 

(See Theorem 12.5.) Prove that H* Is a Hilbert space, relative to the inner 
product 

[x*, y*] = (ljly*, ljlx*). 

If cf> : H** ---+ H* satisfies z**(y*) = [y*, cf>z**] for all y* E H* and z** E H**, 
prove that ljlcf> is an isomorphism of H** onto H whose existence implies that H 
is reflexive. 
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5. Suppose {u.} is a sequence of unit vectors in H (that is l lu. l l = 1), and assume 
that 

r2 = I  l (uj , u) l 2 < oo.  i =F-j 
If { exi} is any sequence of scalars, prove that 

n n 2 n 

( 1  - q I 1 ex; i2 < I exi ui < (1 + q I I exi 1 2 , i=m i=m i=m 
and deduce that the following three properties of {ex;} are equivalent to each 
other: 

00 

(a) I I exi 1 2 < oo. i= 1 
00 

(b) I exi ui converges, in the norm of H. i= 1 
00 

(c) I exi(ui , y) converges, for every y E H. i= 1 
This generalizes Theorem 12.6. 

6. Suppose E is a resolution of the identity, as in Section 12. 17, and prove that 

I Ex. y(w) 1 2 < Ex, x(w)Ey, y(w) 
for all x E H, y E H, and w E 9Jl. 

7. Suppose U E fi(H) is unitary, and s > 0. Prove that scalars ex0 , . . . , ex. can be 
chosen so that 

I I  u- I - exo I - ex, u - . . .  - ex. U"ll < s, 

if u(U) is a proper subset of the unit circle, but that this norm is never less than 
1 if u(U) covers the whole circle. 

8. Prove Theorem 12.35 with PU in place of UP. 
9. Suppose T = UP is the polar decomposition of an invertible T E fi(H). Prove 

that T is normal if and only if UP = P U. 
10. Prove that every normal invertible T E fi(H) is the exponential of some normal 

S E fi(H). 
11. Suppose N E fi(H) is normal, and T E fi(H) is invertible. Prove that TNT- 1 is 

normal if and only if N commutes with T*T. 
12. (a) Suppose S E fi(H), T E fi(H), S and T are normal, and ST = TS. Prove that 

S + T and ST are normal. 
(b) If, in addition, S > 0 and T > 0 (see Theorem 12.32), prove that S + T > 0 

and ST > 0. 
(c) Show, however, that there exist S > 0 and T > 0 such that ST is not even 

normal (of course, then ST # TS). In fact, such examples e[list if dim H = 2. 
13. If T E fi(H) is normal, show that T* = UT, for some unitary U. When is U 

unique? 
14. Assume T E fi(H) and T*T is a compact operator. Show that T is then 

compact. 
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15. Find a noncompact T E fli(H) such that T2 = 0. Can such an operator be 
normal? 

16. Suppose T E fli(H) is normal, and u(T) is a finite set. Deduce as much informa
tion about T from this as you can. 

17. Show, under the hypotheses of (d) of Theorem 12.29, that the equation Ty = x 
has a solution y E H if and only if 

00 

L 1 Ai l - 2 1 1 xi l l 2 < oo. 
i=  1 

(If Ai = 0 for one i, then xi must be 0, for this i.) 
18. The spectrum u(T) of T E fi(H) can be divided into three disjoint pieces : 

The point spectrum u p(T) consists of all A E (/: for which T - AI is not 
one-to-one. 

The continuous spectrum uc(T) consists of all A E (/: such that T - AI is a 
one-to-one mapping of H onto a dense proper subspace of H. 

The residual spectrum u,(T) consists of all other A E u(T). 
(a) Prove that every normal T E fi(H) has empty residual spectrum. 
(b) Prove that the point spectrum of a normal T E fli(H) is at most countable, if 

H is separable. 
(c) Let SR and SL be the right and left shifts (as defined in Exercise 2 of Chapter 

10), acting on the Hilbert space t2• 
Prove that (S R)* = S L and that 

up(SL) = u,(SR) = {A :  I A I < 1 } , 

uJSJ = uc(SR) = {A :  I A I = 1 } ,  

u,(SL) = C1 p(SR) = 0. 
19. Let SR and SL be as above. Prove that neither SR nor SL has polar decomposi

tions UP, with U unitary and P > 0. 
20. Let 11 be a positive measure on a measure space n, let H = I3(J-t), with the usual 

inner product 

(f, g) = ljg dJ-1. 

For </J E L"'(p.), define the multiplication operator M <I> by M <l>(f) = </Jf Then 
M <I> E fli(H). 

Under what conditions on </J does M<l> have eigenvalues? Give an example 
in which u(M <I>) = uc(M </>). Show that every M <I> is normal. What is the relation 
between u(M <I>) and the essential range of </J? Show that </J ---+ M <I> is an isometric 
*-isomorphism of L"'(J-t) onto a closed subalgebra A of fli(H). (Certain pathologi
cal measures 11 have to be excluded in order to make this last statement correct.) 
Is A a maximal commutative sub-algebra of fli(H)? Hint :  If T E fli(H) and 
T M <I> = M <I> T for all </J E L"'(J-t), and if J-t(!l) < oo, show that T is a multiplication 
by T(1 )  and hence that T E A. 

21. Suppose T E fli(H) is normal, A is the closed subalgebra of fli(H) generated by /, 
T, and T*, and T can be approximated, in the norm topology of fli(H), by finite 
linear combinations of projections that belong to A. 
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Under what (necessary and sufficient) conditions on u(T) does this 
happen? 

22. Does every normal T E £?l(H) have a square root in £?l(H)? What can you say 
about the cardinality of the set of all square roots of T? Can it happen that two 
square roots of the same T do not commute? Can this happen when T = I?  

23. Show that the Fourier transform !---+ J is a unitary operator on I3(R"). What is 
its spectrum? Suggestion : When n = 1 ,  compute the Fourier transforms of 

(m = 0, 1, 2, . . .  ). 

24. Show that any two infinite-dimensional separable Hilbert spaces are isometri
cally isomorphic (via countable orthonormal bases ; see [23]). Show that the 
space H in Theorem 12.38 is separable. Show that the answer to the question 
that precedes Theorem 12.38 is therefore negative for every infinite-dimensional 
H, separable or not. 

25. Suppose T E £?l(H) is normal, f is a bounded Borel function on u(T), and 
S = f(T). If Er and Es are the spectral decompositions of T and S, respectively, 
prove that 

Es(w) = Er(r '(w)) 

for every Borel set w c u(S). 
26. If S E £?l(H) and T E £?l(H), the notation S > T means that S - T > 0, that is, 

that 

(Sx, x) > (Tx, x) 

for all x E H. Prove the equivalence of the following four properties of a pair of 
self-adjoint projections P and Q:  
(a) p > Q. 
(b) .sll(P) => .sll(Q). 
(c) PQ = Q. 
(d) QP = Q. 

If E is a resolution of the identity, it follows that E(w') > E(w") if w' ::> w". 
27. Suppose * is an involution in a complex algebra A, q is an invertible element of 

A such that q* = q and x "'  is defined by 

x "' = q - 1x*q 

for every x E A. Show that "' is an involution in A. 
28. Let A be the algebra of all complex 4-by-4 matrices. If M = (mif) E A, let M* be 

the conjugate transpose of M :  mt = m1; .  Put 

0 0 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 0 

Q =  
0 1 0 0 

S =  
0 0 0 0 

T =  
0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 1 

As in Exercise 27, define 

M"' = Q - ' M*Q (M E A). 
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(a) Show that S and T are normal, with respect to the involution # that 
ST = TS, but that ST # # T #S. 

(b) Show that S + T is not # -normal. 
(c) Compare IISS# II with I ISV 
(d) Compute the spectral radius p(S + S#) ;  show that it is different from 

liS +  S# 1 1 .  
(e) Define V = (vi]) E A so that v1 2 = v24 = i, v3 1 = v43 = - i, viJ = 0 otherwise. 

Compute u( V V #) ;  it does not lie in [0, oo ). 
Part (a) shows that Theorem 12. 16 fails for some involutions. Part (b) 

does the same for part (a) of Exercise 12; (c), (d), and (e) show that various parts 
of Theorem 1 1 .28 fail for the involution # .  

29. Let X be the vector space of all trigonometric polynomials on the real line : 
these are functions of the form 

where sk E R and ck E (/:, for 1 < k < n. Show that 

1 fA -(f, g) = lim - f(t)g(t) dt 
A � ao  2A � A  

exists and defines an inner product on X, that 

and that the completion of X is a nonseparable Hilbert space H. Show that H 
contains all uniform limits of trigonometric polynomials ; these are the so-called 
" almost-periodic " functions on R. 

30. Let H w be an infinite-dimensional Hilbert space, with its weak topology. Prove 
that the inner product is a separately continuous function on H w x H w which is 
not jointly continuous. 

31. Assume T, E f!I(H) for n = 1, 2, 3, . . .  , and 

lim II T,x ll = 0 

for every x E H. Does it follow that 

lim liT: x ll = 0 

for every x E H? 
32. Let X be a uniformly convex Banach space. This means, by definition, that the 

assumptions 

ll x. ll :::;: 1 , 

imply that llx. - Y. ll ---+ 0. 

II Y. II < 1, llx. + Y. ll ----> 2 

For example, every Hilbert space is uniformly convex. 
(a) Prove that Theorem 12.3 holds in X. 
(b) Assume llx. ll = 1 ,  A E X*, IIA II = 1 ,  and Ax. ---+ 1 .  Prove that {x.} is a 

Cauchy sequence (in the norm-topology of X). Hint: Consider A(x. + xm). 
(c) Prove that every A E X* attains its maximum on the closed unit ball of X. 
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(d) Assume that x. -> x weakly and llx. ll ->  llx ll .  Prove that llx. - x ll -> 0. Hint: 
Reduce to the case l lx.ll = 1 .  Consider A(x. + x), for a suitable A. 

(c) Show that the preceding four properties fail in certain Banach spaces (for 
instance, in L', or in C). These are therefore not uniformly convex. 

33. Prove the assertion about the case dim H < oo made in the remark that follows 
Theorem 12.35. 

34. Find an operator T E 81(H), with u(T) = { 1  }, which is neither unitary nor self
adjoint. 

35. If S is self-adjoint and U = exp (iS), show that U is unitary. Deduce from this, 
and from the fact that u(U) lies on the unit circle, that u(S) lies on the real axis. 

36. Show that £Jl(T*) = £Jl(T) if T E 81(H) is normal. Hint :  Using Theorem 12.35, 
T = T*U2• 

37. Define T on H = 13(0, 1) by (Tf)(x) = xf(x). Show that T is self-adjoint and 
that £Jl(T) is a dense proper subspace of H. 

38. Find a nonnormal T E 81(H) such that 

II T il =  sup { I (Tx, x) l : x E H, llx ll < 1 } .  

(This shows that Theorem 12.25 has no converse.) 
39. Show that T and T* can have the same null space without being normal. 
40. Let D be a circular annulus in (/: with center at 0. Define H and M E 81(H) as in 

Theorem 12.38. Prove that M has no square root in 81(H) by completing the 
following outline : Assume Q E 81(H), Q2 = M. Put u(z) = 1, v(z) = z, h = Qu. 
Since QM = MQ, induction shows that Qv" = hv" for all integers n. It follows 
from the Laurent series expansion that Qf = hf for every f E H. This leads to 
h2 = v, i.e., h2(z) = z for all z E D, an impossibility. 

Find the adjoint M* of M. (Use Laurent series.) 



Introduction 

CHAPTER 

UNBOUNDED 
OPERATORS 

13.1 Definitions Let H be a Hilbert space. By an operator in H we shall 
now mean a linear mapping T whose domain EZJ(T) is a subspace of H and 
whose range 9l(T) lies in H. 

It is not assumed that T is bounded or continuous. Of course, if T is 
continuous [relative to the norm topology that EZJ(T) inherits from H] then 
T has a continuous extension to the closure of EZJ(T), hence to H, since 
EZJ(T) is complemented in H. In that case, T is the restriction to EZJ(T) of 
some member of PAf(H). 

The graph t§(T) of an operator T in H is the subspace of H x H that 
consists of the ordered pairs { x, Tx } , where x ranges over EZJ(T). Obviously, 
S is an extension of T [that is, EZJ(T) c EZJ(S) and Sx = Tx for x E EZJ(T)] if 
and only if t§(T) c t§(S). This inclusion will often be written in the simpler 
form 

(1) T c S. 

A closed operator in H is one whose graph is a closed subspace of 
H x H. By the closed graph theorem, T E PAf(H) if and only if EZJ(T) = H 
and T is closed. 

We wish to associate a Hilbert space adjoint T* to T. Its domain 
Eil(T*) is to consist of all y E H for which the linear functional 
(2) x --+  (Tx, y) 

347 



348 PART III: BANACH ALGEBRAS AND SPECTRAL THEORY 

is continuous on �(T). If y E �(T*), then the Hahn-Banach theorem 
extends the functional (2) to a continuous linear functional on H, and there
fore there exists an element T*y E H that satisfies 

(3) (Tx, y) = (x, T*y) [x E �(T)] . 
Obviously, T*y will be uniquely determined by (3) if and only if �(T) is 
dense in H, that is, if and only if T is densely defined. The only operators T 
that will be given an adjoint T* are therefore the densely defined ones. 
Routine verifications show then that T* is also an operator in H, that is, 
that �(T*) is a subspace of H and that T* is linear. 

Note that if T E PAf(H), then the definition of T* given here coincides 
with that given in Section 12.9. In particular, �(T*) = H and T* E PAf(H). 

Ordinary algebraic operations with unbounded operators must be 
handled with care ; the domains have to be watched. Here are the natural 
definitions for the domains of sums and products : 

(4) 

(5) 

(6) 

�(S + T) = �(S) n �(T), 
�(ST) = {x E �(T) : Tx E �(S)} .  

The usual associative laws 

(R + S) + T = R + (S + T), (RS)T = R(ST) 

then hold. As regards the distributive laws, one of them, namely, 
(R + S)T = RT + ST, holds in its usual form, but the other one may only 
hold in the form 

(7) T(R + S) :::::> TR + TS, 
since it can happen that (R + S)x E �(T), even though one of Rx or Sx is 
not in �(T). Scalar multiplication is defined as follows : If rx = 0, then 
�(rxT) = H and rxT = 0. If rx # 0, then �(rxT) = �(T) and (rxT)x = rx(Tx) for 
X E �(T). 

13.2 Theorem Suppose S, T, and ST are densely defined operators in H. 
Then 

(1) T*S* c (ST)*. 
If, in addition, S E PAf(H), then 

(2) T*S* = (ST)*. 
Note that ( 1 )  asserts that (ST)* is an extension of T*S*. The equality 

(2) implies that T*S* and (ST)* actually have the same domains. 

PROOF. Suppose x E �(ST) and y E �(T*S*). Then 

(3) (Tx, S*y) = (x, T*S*y), 
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because x E �(T) and S*y E �(T*), and 

(4) (STx, y) = (Tx, S*y), 

because Tx E �(S) and y E �(S*). Hence 

(5) (STx, y) = (x, T*S*y). 

This proves ( 1 ). 
Assume now that S E PAf(H) and y E �((ST)*). Then S* E PAf(H), 

so that �(S*) = H, and 

(6) (Tx, S*y) = (STx, y) = (x, (ST)*y) 

for every x E �(ST). Hence S*y E �(T*), and therefore y E �(T*S*). 
Now (2) follows from (1 ). /Ill 

13.3 Definition An operator T in H is said to be symmetric if 

(1) (Tx, y) = (x, Ty) 

whenever x E �(T) and y E �(T). The densely defined symmetric operators 
are thus exactly those that satisfy 

(2) T c  T*. 

If T = T*, then T is said to be self-adjoint. 
These two prpperties evidently coincide when T E PAf(H). In general, 

they do not. 
Moreover, if �(T) is dense and (Tx, y) = (x, Sy) for all x E �(T) and 

y E �(S), then S c T*. 

13.4 Example Let H = L2 = U([O, 1]), relative to Lebesgue measure. 
We define operators T1 , T2 , and T3 in L2. Their domains are as follows : 

�(T1) consists of all absolutely continuous functions f on [0, 1] with 
derivative f' E L2. 

�(T2) = �(T1) n {f: f(O) = /( 1 )} . 

�(T3) = �(T1 ) n {!: f(O) = /(1) = 0}. 

These are dense in U. Define 

(1) 

(2) 

1/J = if ' 

We claim that 

for f E �(T,J, k = 1 ,  2, 3. 
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Since T3 c T2 c T1 , it follows that T2 is a self-adjoint extension of the 
symmetric (but not self-adjoint) operator T3 and that the extension T1 of T2 is 
not symmetric. 

Let us prove (2). Note that 

(3) (Td, g) = r(!f')g = r f(ig') = (J, Tm g) 

when f E £&(7;,), g E !!&(Tm), and m + k = 4, since then f( 1)g( 1) = f(O)g(O). It 
follows that Tm c Tt, or 

(4) 

Suppose now that g E !!&(Tt) and ¢ = Ttg. Put <l>(x) = Jo ¢. Then, for 
f E £&(7;,), 

(5) r if'g = (Tk f, g) = (f, ¢) = f(1)<1>(1) 
_ r f'$. 

When k = 1 or 2, then !!&(Tk) contains nonzero constants, so that (5) implies 
<1>(1) = 0. When k = 3, thenf( 1) = 0. It follows, in all cases, that 

( 6) ig - <1> E 9P( 7;,)1.. 

Since 9P(Td = L
2
, ig = <I> if k = 1, and since <1>( 1) = 0 in that case, 

g E £&(T3). Thus TT c T3 • 
If k = 2 or 3, then 9P(7;,) consists of all u E L

2 such that g u = 0. Thus 

(7) 

where Y is the one-dimensional subspace of I3 that contains the constants. 
Hence (6) implies that ig - <I> is constant. Thus g is absolutely continuous 
and g' E !3, that is, g E £&(T1). Thus Tf c T2 • 

If k = 2, then <1>(1) = 0, hence g(O) = g(1), and g E £&(T2). Thus 
T! c T2 . 

This completes the proof. 
Before we turn to a more detailed study of the relations between sym

metric operators and self-adjoint ones, we insert another example. 

1 3.5 Example Let H = L2
, as in Example 13.4, define Df =f' for 

f E £&(T2), say (the exact domain is now not very important), and define 
(Mf)(t) = tf(t). Then (DM - M D)f = J, or 

(1) DM - MD = I, 

where I denotes the identity operator on the domain of D. 
The identity operator appears thus as a commutator of two operators, 

of which only one is bounded. The question whether the identity is the 
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commutator of two bounded operators on H arose in quantum mechanics. 
The answer is negative, not just in PJJ(H), but in every Banach algebra. 

13.6 Theorem If A is a Banach algebra with unit element e, if x E A and 
y E A, then 

xy - yx =I e. 

The following proof, due to Wielandt, does not even use the complete
ness of A. 

PROOF. Assume xy - yx = e. Make the induction hypothesis 

( 1) 

which is assumed to hold for n = 1. If (1) holds for some positive 
integer n, then xn =I 0 and 

xn + ly - yxn + l  = xn(xy - yx) + (xny - yxn)x 
= xne + nxn- lx = (n + 1)xn, 

so that (1 ) holds with n + 1 in place of n. It follows that 

n ll xn - 1 11 = l l xny - yxn ll < 2 1 1xn i i i i Y I I < 2 l l xn- l l l l l x i i i 1 Y I I , 
or n < 2 11x i i i i Y I I , for every positive integer n. This is obviously im
possible. I I I I 

Graphs and Symmetric Operators 

13.7 Graphs If H is a Hilbert space, then H x H can be made into a 
Hilbert space by defining the inner product of two elements {a, b} and 
{ c, d} of H x H to be 

(1) ({a, b}, {c, d}) = (a, c) + (b, d), 

where (a, c) denotes the inner product in H. We leave it as an exercise to 
verify that this satisfies all the properties listed in Section 12. 1 .  In particular, 
the norm in H x H is given by 

(2) 

Define 

(3) V{a, b} = { - b, a} (a E H, b E  H). 

Then V is a unitary operator on H x H, which satisfies V2 = - I. Thus 
V2 M = M if M is any subspace of H x H. 

This operator yields a remarkable description of T* in terms of T : 
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13.8 Theorem If T is a densely defined operator in H, then 

(1) '§(T*) = [V'§(T)l\ 
the orthogonal complement of V'§(T) in H x H. 

Note that once '§(T*) is known, so are E!&(T*) and T*. 

PROOF. Each of the following four statements is clearly equivalent to 
the one that follows and/or precedes it. 

(2) {y, z} E '§(T*). 

(3) (Tx, y) = (x, z) for every x E E!&(T). 
(4) ({ - Tx, x}, {y, z}) = 0 for every x E E!&(T). 
(5) {y, z} E [V'§(T)].L. /Ill 

13.9 Theorem If T is a densely defined operator in H, then T* zs a 
closed operator. In particular, self-adjoint operators are closed. 

PROOF. M.L is closed, for every M c H x H. Hence '§(T*) is closed in 
H x H, by Theorem 13 .8 . /Ill 

13.10 Theorem If T is a densely defined closed operator in H, then 
( 1 )  H x H = V'§(T) ffi '§(T*), 
a direct sum of two orthogonal subs paces. 

PROOF. If '§(T) is closed, so is V'§(T), since V is unitary, and therefore 
Theorem 13.8 implies that V'§(T) = ['§(T*)]\ see Theorem 12.4. //// 

Corollary. If a E H and b E H, the system of equations 

- Tx + y = a  
X +  T*y = b 

has a unique solution with x E E!&(T) and y E E!&(T*). 

Our next theorem states some conditions under which a symmetric 
operator is self-joint. 
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13.1 1 Theorem Suppose T is a densely defined operator in H, and T is 
symmetric. 

(a) If �(T) = H, then T is self-adjoint and T E PAf(H). 
(b) If T is self-adjoint and one-to-one, then Bl(T) is dense in H, and T - 1 is 

self-adjoint. 
(c) If Bl(T) is dense in H, then T is one-to-one. 
(d) If9l(T) = H, then T is self-adjoint, and T- 1 E PAf(H). 

PROOF. (a) By assumption, T c T*. If �(T) = H, it is thus obvious 
that T = T*. Hence T is closed (Theorem 1 3.9) and therefore contin
uous, by the closed graph theorem. (We could also refer to Theorem 
5. 1 .) 

(b) Suppose y j_ 9l(T). Then x --+ (Tx, y) = 0 is continuous in 
�(T), hence y E �(T*) = �(T), and (x, Ty) = (Tx, y) = 0 for all 
x E �(T). Thus Ty = 0. Since T is assumed to be one-to-one, it 
follows that y = 0. This proves that Bl(T) is dense in H. 

T - 1 is therefore densely defined, with �(T - 1 ) = Bl(T), and 
(T - 1)* exists. The relations 

( 1 )  and 

are easily verified : 

{a, b} E �(T - 1) ¢;. { b, a} E �(T) ¢;. { b, - a} E �( - T) 

¢;. {a, b} E V �( - T). 

Being self-adjoint, T is closed (Theorem 1 3.9) ; hence - T is 
closed, and hence T - 1 is closed, by ( 1 ). Theorem 1 3 . 1 0  can now be 
applied to T - 1 and to - T and yields the orthogonal decompositions 

(2) 

and 

Consequently, 

(4) �((T - 1 )*) = [V�(T - 1 )].L = �(T - 1 ), 

which shows that (T- 1 )* = T - 1 . 
(c) Suppose Tx = 0. Then (x, Ty) = (Tx, y) = 0 for every 

y E �(T). Thus x j_ Bl(T), and therefore x = 0. 
(d) Since Bl(T) = H, (c) implies that T is one-to-one, and 

�(T - 1) = H. If x E H and y E H, then x = Tz and y =  Tw, for some 
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z E �(T) and w E �(T), so that 

(T - 1x, y) = (z, Tw) = (Tz, w) = (x, T - 1y). 
Hence T - 1 is symmetric, (a) implies that T - 1 is self-adjoint (and 
bounded), and now it follows from (b) that T = (T - 1 ) - 1 is also self
adjoint. //// 

13.12 Theorem If T is a densely defined closed operator in H, then 
�(T*) is dense and T** = T. 

PROOF. Since V is unitary, and V2 = - I, Theorem 1 3 . 10  gives the 
orthogonal decomposition 

( 1 )  

(2) 

H x H = t§(T) ffi Vt§(T*). 

Suppose z j_ �(T*). Then (z, y) = 0 and therefore 

({0, z}, { - T*y, y}) = 0 

for all y E �(T*). Thus {0, z} E [Vt§(T*)].L = t§(T), which implies that 
z = T(O) = 0. Consequently, �(T*) is dense in H, and T** is defined. 

Another application of Theorem 1 3 . 1 0  gives therefore 

(3) H x H = Vt§(T*) ffi t§(T**). 

By ( 1 )  and (3), 

(4) t§(T**) = [Vt§(T*)F = t§(T), 

so that T** = T. //// 

We shall now see that operators of the form T*T have interesting 
properties. In particular, �(T* T) cannot be very small. 

13.13 Theorem Suppose T is a densely defined closed operator in H, and 
Q = I +  T*T. 

(a) Under these assumptions, Q is a one-to-one mapping of 

�(Q) = �(T*T) = {x E �(T) : Tx E �( T*)} 
onto H, and there are operators B E PAf(H), C E PAf(H) that satisfy 
II B II < 1 ,  I I C II < 1 ,  c = TB, and 

( 1)  B(I + T*T) c (I + T*T)B = I. 
Also, B > 0, and T*T is self-adjoint. 

(b) If T' is the restriction of T to �(T*T), then t§(T') is dense in t§(T). 
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Here, and in the sequel, the letter I denotes the identity operator with 
domain H. 

PROOF. If X E £&(Q) then Tx E £&(T*), so that 

(2) (x, x) + (Tx, Tx) = (x, x) + (x, T* Tx) = (x, Qx). 

Therefore II x 1 1 2 < I I  x I I  II Qx I I , which shows that Q is one-to-one. 
By Theorem 1 3. 10  there corresponds to every h E  H a unique 

vector Bh E S&(T) and a unique Ch E S&(T*) such that 

(3) {0, h} = { - TBh, Bh} + {Ch, T*Ch}. 

It is clear that B and C are linear operators in H, with domain H. The 
two vectors on the right of (3) are orthogonal to each other (Theorem 
1 3. 10). The definition of the norm in H x H implies therefore that 

(4) (h E H), 

so that IIB I I  < 1 and II C II < 1 .  
Consideration of the components in (3) shows that C = T B and 

that 

(5) h = Bh + T*Ch = Bh + T*T Bh = QBh 

for every h E  H. Hence QB = I. In particular, B is a one-to-one 
mapping of H onto S&(Q). If y E S&(Q), then y = Bh for some h E H, 
hence Qy = QBh = h, and BQy = Bh = y. Thus BQ c I, and (1) is 
proved. 

If h E H, then h E Qx for some x E S&(Q), so that 

(6) (Bh, h) = (BQx, Qx) = (x, Qx) > 0, 

by (2). Thus B > 0, B is self-adjoint (Theorem 1 2.32), and now (b) of 
Theorem 1 3. 1 1  shows that Q is self-adjoint, hence so is T*T = Q - I. 

This completes the proof of part (a). 
Since T is a closed operator, c.#(T) is a closed subspace of 

H x H;  hence c.#(T) is a Hilbert space. Assume {z, Tz} E c.#(T) IS 
orthogonal to c.#(T'). Then, for every x E S&(T*T) = S&(Q), 

0 = ({z, Tz}, {x, Tx}) = (z, x) + (Tz, Tx) = (z, x) + (z, T*Tx) 

= (z, Qx). 

But 9i?(Q) = H. Hence z = 0. This proves (b). Ill/ 

13.14 Definition A symmetric operator T in H is said to be maximally 
symmetric if T has no proper symmetric extension, i.e., if the assumptions 
( 1)  T c S, S symmetric 
imply that S = T. 
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13.15 Theorem Self-adjoint operators are maximally symmetric. 

PROOF. Suppose T is self-adjoint, S is symmetric (that is, S c S*), and 
T c S. This inclusion implies obviously (by the very definition of the 
adjoint) that S* c T*. Hence 

S c S* c T* = T c S, 
which proves that S = T. /Ill 

It should be noted that maximally symmetric operators need not be 
self-adjoint ; see Example 1 3.2 1 and Exercise 10. 

13.16 Theorem If T is a symmetric operator in H (not necessarily 
densely defined), the following statements are true : 

(a) I I Tx + ix ll 2 = l l x l l 2 + 11 Tx l l 2 [x E S&(T)]. 
(b) T is a closed operator if and only if Bl(T + il) is closed. 
(c) T + ii is one-to-one. 
(d) If Bl(T + ii) = H, then T is maximally symmetric. 
(e) The preceding statements are also true if i is replaced by - i. 

PROOF. Statement (a) follows from the identity 

I I Tx + ix l l 2 = l l x ll 2 + 11 Tx ll 2 + (ix, Tx) + (Tx, ix), 
combined with the symmetry of T. By (a), 

(T + il)x <-+ { x, Tx} 
is an isometric one-to-one correspondence between the range of 
T + ii and the graph of T. This proves (b). Next, (c) is also an imme
diate consequence of (a). If Bl(T + ii) = H and T1 is a proper exten
sion of T [that is, S&(T) is a proper subset of S&(Td], then T1 + il is a 
proper extension of T + il which cannot be one-to-one. By (c), T1 is 
not symmetric. This proves (d). 

It is clear that this proof is equally valid with - i in place of i. 

The Cayley Transform 

13.17 Definition The mapping 

(1) 
t - i t -+ --
t + i 

/Ill 

sets up a one-to-one correspondence between the real line and the unit 
circle (minus the point 1) . The symbolic calculus studied in Chapter 12 
shows therefore that every self-adjoint T E PAf(H) gives rise to a unitary 
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operator 

(2) U = (T - il)(T + i/) - 1 

and that every unitary U whose spectrum does not contain the point 1 is 
obtained in this way. 

This relation T +-+ U will now be extended to a one-to-one correspon
dence between symmetric operators, on the one hand, and isometries, on 
the other. 

Let T be a symmetric operator in H. Theorem 1 3 . 1 6  shows that 

(3) I I Tx + ix ll 2 = l l x l l 2 + II Tx ll 2 = I I Tx - ix ll 2 

Hence there is an isometry U, with 

(x E !!&(T)). 

(4) !!&(U) = &l(T + il), &l( U) = &l( T - il), 
defined by 

(5) U(Tx + ix) = Tx - ix (x E !!&(T)). 
Since (T + ii) - 1 maps S&(U) onto !!&(T), U can also be written in the 

form 

(6) U = (T - ii)(T + il) - 1 . 

This operator U is called the Cayley transform of T. Its main features 
are summarized in Theorem 1 3. 19. It will lead to an easy proof of the spec
tral theorem for self-adjoint (not necessarily bounded) operators. 

13.18 Lemma Suppose U is an operator in H which is an isometry : 
I I Ux ll = l l x l l for every x E !!&(U). 

(a) Ifx E !!&(U) and y E !!&(U), then (Ux, Uy) = (x, y). 
(b) If &1(1 - U) is dense in H, then I - U is one-to-one. 
(c) If any one of the three spaces !!&(U), &l(U), and ':#(U) is closed, so are the 

other two. 

PROOF. Any of the identities listed in Exercise 2 of Chapter 12 proves 
(a). To prove (b), suppose x E !!&(U) and (I - U)x = 0, that is, x = Ux. 
Then 

(x, (I - U)y) = (x, y) - (x, Uy) = (Ux, Uy) - (x, Uy) = 0 

for every y E !!&(U). Thus x j_ &l(I - U), so that x = 0 if &l(I - U) is 
dense in H. The proof of (c) is a consequence of the relations 

1 I I Ux - Uy ll = l l x - y l l = fi l l {x, Ux} - {y, Uy} l l , 

which hold for all x, y E !!&(U). Ill/ 
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13.19 Theorem Suppose U is the Cayley transform of a symmetric oper
ator T in H. Then the following statements are true : 

(a) U is closed if and only if T is closed. 
(b) �(I - U) = E!&(T), I - U is one-to-one, and T can be reconstructedfrom 

U by the formula 
T = i(I + U)(I - U) - 1 . 

(The Cayley transforms of distinct symmetric operators are therefore 
distinct.) 

(c) U is unitary if and only if T is self-adjoint. 

Conversely, if V is an operator in H which is an isometry, and if I - V 
is one-to-one, then V is the Cayley transform of a symmetric operator in H. 

PROOF. By Theorem 1 3 . 1 6, T is closed if and only if �(T + iJ) is 
closed. By Lemma 1 3 . 1 8, U is closed if and only if £&( U) is closed. 
Since E!&(U) = �(T + ii), by the definition of the Cayley transform, (a) 
is proved. 

The one-to-one correspondence x +-+ z between E!&(T) and 
E!&(U) = �(T + ii), given by 

( 1 )  z = Tx + ix, Uz = Tx - ix 
can be rewritten in the form 

(2) (I - U)z = 2ix, (I + U)z = 2Tx. 

This shows that I - U is one-to-one, that �(I - U) = E!&(T), so that 
(I - U) - 1 maps EZ&(T) onto EZ&(U), and that 

(3) 2Tx = (I +  U)z = (I +  U)(I - u) - 1 (2ix) [x E E!&(T)]. 

This proves (b). 
Assume now that T is self-adjoint. Then 

(4) 

by Theorem 1 3 . 1 3 . Since 

(5) (T + il)(T - i/) = I +  T2 = (T - il)(T + iJ) 
[the three operators (5) have domain £&(T2)], it follows from (4) that 

(6) E!&(U) = �(T + ii) = H 

and 

(7) 9f(U) = �(T - iJ) = H. 
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Since U is an isometry, (6) and (7) imply that U is unitary (Theorem 
12. 1 3). 

To complete the proof of (c), assume that U is unitary. Then 

(8) [91?(/ - U)].L = JV(I - U) = {0}, 

by (b) and the normality of I - U (Theorem 1 2. 1 2), so that £&(T) = 
91!(1 - U) dense in H. Thus T* is defined, and T c T*. 

Fix y E £&(T*). Since 9i!(T + il) = £&(U) = H, there exists Yo E 
£&(T) such that 

(9) (T* + il)y = (T + il)y0 = (T* + il)y0 . 

The last equality holds because T c T*. If y1 = y - Yo , then y1 E 
£&(T*) and, for every x E £&(T), 

(10) ((T - i/)x, y1 ) = (x, (T* + i/)y1) = (x, 0) = 0. 

Thus y1 j_ 9i!(T - il) = 9i!(U) = H, and so y1 = 0, and J! = Yo E £&(T). 
Hence T* c T, and (c) is proved. 
Finally, let V be as in the statement of the converse. Then there 

is a one-to-one correspondence z +-+ x between £&(V) and 91?(/ - V), 
given by 

( 1 1 ) x = z - Vz. 

Define S on £&(S) = 91!(1 - V) by 

( 12) Sx = i(z + Vz) if x = z - Vz. 

If x E £&(S) and y E £&(S), then x = z - Vz and y = u - Vu for some 
z E £&(V) and u E £&(V). Since V is an isometry, it now follows from (a) 
of Lemma 1 3 . 1 8  that 

( 1 3) (Sx, y) = i(z + Vz, u - Vu) = i(Vz, u) - i(z, Vu) 

= (z - Vz, iu + iVu) = (x, Sy). 

Hence S is symmetric. Since ( 12) can be written in the form 

( 14) 2iVz = Sx - ix, 2iz = Sx + ix [z E £&( V)], 

we see that 

( 1 5) V(Sx + ix) = Sx - ix [x E £&(S)] 

and that £&(V) = 9i?(S + il). Therefore V is the Cayley transform of S. 

Ill/ 
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13.20 The deficiency indices If U 1 and U 2 are Cayley transforms of 
symmetric operators T1 and T2 , it is clear that T1 c T2 if and only if U 1 c 

U 2 .  Problems about symmetric extensions of symmetric operators reduce 
therefore to (usually easier) problems about extensions of isometries. 

Let us now consider a closed and densely defined spmmetric operator 
T in H, with Cayley transform U. Then 91(T + ii) and 91(T - il) are closed 
(see Theorem 1 3 . 1 6), and U is an isometry carrying the first onto the 
second. The dimensions of the orthogonal complements of these two spaces 
are called the deficiency indices of T. (The dimension of a Hilbert space js, by 
definition, the cardinality of any one of its orthonormal bases.) 

Since 91(1 - U) = E!&(T) is now assumed to be dense in H, every iso
metric extension U 1 of U has 91(1 - U 1 ) dense in H, so that I - U 1 is 
one-to-one (Lemma 1 3 . 1 8) and U 1 is the Cayley transform of a symmetric 
extension T1 of T. 

The following three statements are easy consequences of Theorem 
1 3 . 1 9  and the preceding discussion ; we still assume that T is closed, sym
metric, and densely defined. 

(a) T is self-adjoint if and only if both its deficiency indices are 0. 
(b) T is maximally symmetric if and only if at least one of its deficiency 

indices is 0. 
(c) T has a self-adjoint extension if and only if its two deficiency indices are 

equal. 

The proofs of (a) and (b) are obvious. To see (c), use (c) of Theorem 
13 . 19 and note that every unitary extension of U must be an isometry of 
[9P(T + ii)].L onto [91(T - iJ)].L. 

13.21 Example Let V be the right shift on t2. Then V is an isometry 
and I - V is one-to-one (Chapter 1 2, Exercise 1 8), and so V is the Cayley 
transform of a symmetric operator T. Since E!&(V) = t2 and 91(V) has co
dimension 1 ,  the deficiency indices of T are 0 and 1 .  

This provides us with an example of a densely defined, maximally 
symmetric, closed operator T which is not self-adjoint. 

Resolution of the Identity 

13.22 Notation 9Jl will now be a a-algebra in a set n, H will be a 
Hilbert space, and E: Wl -+  PAf(H) will be a resolution of the identity, with all 
the properties listed in Definition 12. 17. Theorem 1 2.21 describes a sym
bolic calculus which associates to every f E e'(E) an operator 'l'{f) E PAf(H), 
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by the formula 

(1) ('l'{f)x, y) = lf dEx, y (x E H, y E H). 

This will now be extended to unbounded measurable functions f (Theorem 
13 .24). We shall use the same notations as in Definition 12. 1 7. 

13.23 Lemma Let f: n --+  (/; be measurable. Put 

( 1) � f = {X E H: l l f 1 2 dE X, X < 00} 
Then � 1 is a dense subspace of H. If x E H and y E H, then 

(2) ll f l d i Ex. y l < I IY I I {l l f l 2 dEx. xr1
2
. 

Iff is bounded and v = 'l'{f)z, then 

(3) (x E H, z E H). 

PROOF. If Z = X + y, and W E  9Jl, then 

II E(w)z l l 2 < ( I I E(w)x ll + II E(w)y ll )2 < 2 11 E(w)x ll 2 + 2 II E(w)y ll 2 

or 

(4) 

It follows that � 1 is closed under addition. Scalar multiplication is 
even easier. Thus � 1 is a subspace of H. 

For n = 1, 2, 3, . . .  , let w. be the subset of n in which I f I < n. If 
x E 9l(E( w.)) then 

(5) E(w)x = E(w)E(w.)x = E(w n w.)x 
so that 

(6) (w E 9Jl), 

and therefore 

(7) i l f l 2 dEx, x = i l f l 2 dEx, x < n2 l l x ll 2 < 00. 
Q Wn 

Thus Bl(E(w.)) c � 1 .  Since n = U:'� 1 w. , the countable additivity of 
w --+  E(w)y implies that y = lim E(w.)y for every y E H, so that y lies 
in the closure of � 1 .  Hence � 1 is dense. 
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If x E H, y E H, and f is a bounded measurable function on n, 
the Radon-Nikodym theorem [23] shows that there is a measurable 
function u on n, with 1 u I = 1 ,  such that 

(8) 

Hence 

(9) l 1 f I d I Ex, y I = ('l'(uf)x, y) < II 'l'(uf)x I I I I Y I I ·  

By Theorem 12.21 ,  

( 10) I I'I'(uf)x ll 2 = l l u/ 1 2 dEx, x = l l / 1 2 dEx. x · 

Now (9) and (10) give (2) for bounded! The general case follows from 
this. 

Finally (3) holds because 

Ig dEx, v = ('l'(g)x, v) = ('l'(g)x, 'l'{f)z) 

= ('l'(j)'l'(g)x, z) = ('l'{jg)x, z) = l gj dEx. z 

for every bounded measurable g, by Theorem 12.21 .  

13.24 Theorem Let E be a resolution of the identity, on a set n. 

Ill/ 

(a) To every measurable f: n -+  f; corresponds a densely defined closed 
operator 'I'(f) in H, with domain S&('l'{f)) = £& 1 ,  which is characterized 
by 

( 1) ('l'{f)x, y) = If dEx, Y (x E £& f ,  y E H) 

and which satisfies 

(2) II 'l'{f)x 11 2 = l1 f 1 2 dEx. x 

(b) The multiplication theorem holds in the following form: Iff and g are 
measurable, then 

(3) 'l'{f)'l'(g) c 'l'(fg) and S&('l'(f)'l'(g)) = £& g (1 £& fg .  
Hence 'l'(f)'l'(g) = 'I'(! g) if and only if£& 19 E £& 9 .  

(c) For every measurable! :  n -+  (/;, 

(4) 'l'{f)* = 'l'{j) 



and 

(5) 
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'l'(f)'l'{f)* = 'I'( I f 1 2) = 'l'{f)*'l'{f). 

PROOF. If x E � 1 then y --+  Jn f dEx, Y is a bounded conjugate-linear 
functional on H, whose norm is at most (J 1 / 1 2 dEx, x) 1 12, by (2) of 
Lemma 13 .23. It follows that there is a unique element 'l'{f)x E H 
that satisfies (1) for every y E H and that 

(6) I I'I'{f)x ll 2 < ll / 1 2 dEx, x  

The linearity of 'l'{f) on � 1 follows from (1 ), since Ex. Y is linear in x. 
Associate with each f its truncations fn = f¢n , where ¢nfp) = 1 if 

I f(p) I < n, ¢n(p) = o if I f(p) I > n. 
Then �J -!. = �1 ,  since each fn is bounded, and therefore (6) 

shows, by the dominated convergence theorem, that 

as n --+  oo ,  

for every x E � 1 .  Since f, is bounded, (2) holds with fn in place of f 
(Theorem 12.2 1). Hence (7) implies that (2) holds as stated. 

This proves (a), except for the assertion that 'l'(f) is closed. The 
latter follows from Theorem 13 .9 if (4) (to be proved presently) is 
applied to fin place off 

We turn to the proof of (b). 
Assume first that f is bounded. Then � 19 c � 9 .  If z E H and 

v = 'l'(j)z, Equation (3) of Lemma 13.23 and Theorem 12.21 show 
that 

('l'{f)'l'(g)x, z) = ('l'(g)x, 'l'(j)z) = ('l'(g)x, v) 

= l g dEx, v = IfgEx. z = ('l'{fg)x, z). 

Hence 

(8) 'l'{f)'l'(g)x = 'l'{fg)x (x E � 9 ,  j E e'). 

If y = 'l'(g)x, it follows from (8) and (2) that 

(9) I I f 1 2 dEy, y = I I fg 1 2 dE X, X (x E � g , f  E e'). 

Now let f be arbitrary (possibly unbounded). Since (9) holds for 
all f E L00, it holds for all measurable f Since �('l'{f)'l'(g)) consists of 
all x E � 9 such that y E � 1 ,  and since (9) shows that y E � 1 if and 
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only if x E � 19 , we see that 

( 10) �('l'{f)'l'(g)) = � g (1 � fg . 

If x E � 9 n � 19 , if y = 'l'(g)z, and if the truncations f. are 
defined as above, then fn --+ f in L2(Ey. y), f. g --+ fg in L2(Ex. xl, and now 
(8) (with f. in place off) and (2) imply 

'l'{f)'l'(g)x = 'I'(f)y = lim 'l'(f.)y = lim 'l'{f. g)x = 'l'(fg)x. 
n - co  n - co  

This proves (3) and hence (b). 
Suppose now that x E � 1 and y E �� = � 1 . It follows from (7) 

and Theorem 1 2.21 that 

('l'{f)x, y) = lim ('l'{f.)x, y) = lim (x, 'l'(].)y) = (x, 'I'(])y). 

Thus y E �('l'{f)*), and 

( 1 1) 'I'{]) c 'I' {f)*. 

To pass from ( 1 1) to (4) we have to show that every 
z E �('l'{f)*) lies in � 1 . Fix z ;  put v = 'l'{f)*z. Since f. = f¢. , the 
multiplication theorem gives 

( 1 2) 'l'{f.) = '1'{!)'1'(¢.). 

Since '1'(¢.) is self-adjoint, we conclude from Theorems 13 .2 and 12.21 
that 

'I'( ¢.)'1'{!)* c ['l'{f)'l'( ¢.)] * = 'I' {f.)* = '1'(].). 

Hence 

( 1 3) 'l'(¢.)v = 'l'(].)z (n = 1 ,  2, 3, . . . ). 
Since I ¢. I < 1 ,  ( 1 3) and (2) imply 

( 14) l 1 f. 1 2 dEz, z = l 1 ¢. 1 2 dEv. v < Ev, v(Q) 

for n = 1 ,  2, 3 ,  . . . .  Hence z E � 1 , and (4) is proved. 
Finally, (5) follows from (4) by another application of the multi-

plication theorem, because �11 c �1 . /Ill 

Remark. If g is bounded, then � 19 c �9 (simply because �9 = H) so 
that 'l'{f)'l'(g) = 'l'(fg). This was used in ( 12). It also shows, for 
bounded g, that 

( 1 5) 'l'(g)'l'{f) c 'l'{f)'l'(g), 
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because 'l'(g)'l'{f) c 'l'(gf) = 'l'(fg). If g is the characteristic function 
of a measurable set w c n, ( 1 5) becomes 

( 16) E(w)'l'(f) c 'l'(f)E(w). 
If x E � 1 n Bl(E(w)), it follows that 

( 17) E(w)'l'(f)x = 'l'(f)E(w)x = 'l'{f)x. 
Thus 'l'{f) maps � 1 n 9P(E(w)) into Bl(E(w)). 

This should be compared with the discussion of invariant sub
spaces in Section 12.27. 

Note also that, by analogy with (3), 

( 1 8) 'l'{f) + 'l'(g) c 'l'{f + g). 
Equality holds if and only if �J +g = �� n �9 , which is true when
ever at least one off, g is bounded. 

13.25 Theorem In the situation of Theorem 13.24, � 1 = H if and only if 
j E  e'(E). 

PROOF. Assume � 1 = H. Since '1'(/) is a closed operator, the closed 
graph theorem implies that 'l'{f) E PAf(H). If/n = FPn is a truncation of 
J, it follows from the multiplication theorem, combined with Theorem 
12.2 1, that 

1 1/n ll oo :::: l l 'l'{fn) l l  = I I'I'{f)'l'(¢n) 1 1  < II 'I'{!) II , 
since l l'1'(¢n) ll = l l<f:>n l l oo :s; 1 .  Thus 1 1 / l l oo  < 1 1'1'{!) 11 , and j E  L00(E). The 
converse is contained in Theorem 1 2.2 1 .  /Ill 

13.26 Definition The resolvent set of a linear operator T in H is the set 
of all Jc E q; such that T - AI is a one-to-one mapping of �(T) onto H 
whose inverse belongs to PAf(H). 

In other words, T - AI should have an inverse S E PAf(H), which 
satisfies 

S(T - AI) c (T - AI)S = I. 

For instance, Theorem 1 3 . 1 3  states that - 1  lies in the resolvent set of 
T* T if T is densely defined and closed. 

The spectrum a(T) of T is the complement of the resolvent set of T, 
just as for bounded operators. 

Some properties of a(T), for unbounded T, are described in Exercises 
1 7  to 20. 
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For the next theorem, we refer to Section 12.20 for the definition of 
the essential range of a function, with respect to a given resolution of the 
identity. 

1 3.27 Theorem Suppose E is a resolution of the identity on a set n, 
f :  n --+ (; is measurable, and 

w� = {p E O: f(p) = a} (a E (/;). 

(a) If a is in the essential range off and E(wJ # 0, then 'l'(f) - a/ is not 
one-to-one. 

(b) If a is in the essential range off but E(w�) = 0, then 'l'(f) - a/ is a 
one-to-one mapping of � 1 onto a dense proper subspace of H, and there 
exist vectors x. E H, with ll x. ll = 1, such that 

lim ['l'{f)x. - ax.] = 0. 

(c) a('!' {f)) is the essential range off 

In the terminology used earlier for bounded operators, we may say 
that a lies in the point spectrum of 'l'{f) in case (a) and in the continuous 
spectrum of 'l'{f) in case (b). The conclusion of (b) is sometimes stated by 
saying that a is an approximate eigenvalue of'l'(f). 

PROOF. We shall assume, without loss of generality, that a = 0. 
(a) If E(w0) # 0, there exists x0 E 9P(E(w0)) with l l x0 l l = 1 .  Let 

¢0 be the characteristic function of w0 • Then f¢0 = 0, hence 
'l'{f)'l'(¢0) = 0, by the multiplication theorem. Since '1'(¢0) = E(w0), it 
follows that 

'l'{f)x0 = 'l'(f)E(w0)x0 = 'l'{f)'l'(¢0)x0 = 0. 

(b) The hypothesis is now that E(w0) = 0 but E(w.) # 0 for 
n = 1 ,  2, 3, . . .  , where 

w. = {P E n : l f(p) l < �}· 
Choose x. E 9P(E(w.)), II x. II = 1 ;  let ¢. be the characteristic functions 
of w • .  The argument used in (a) leads to 

1 
I I 'I'{f)x.l l = II 'I'{f¢.)x. ll < I I 'I'{f¢.) 1 1 = ll f¢. 11 oo < - . n 

Thus 'l'{f)x. --+ 0 although l l x. l l = 1 .  
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If 'l'{f)x = 0 for some x E � 1 , then 

{ 1 f 1 2 dEx, x = l l 'l'{f)x ll 2 = 0. 

Since I f  I > 0 a.e. [Ex . xJ , we must have Ex, x(O) = 0. But Ex , x(O) = 
I I x 11 2• Hence 'I' {f) is one-to-one. 

Likewise 'l'{f)* = 'I'{]) is one-to-one. If y j_ Bl('l'{f)), then 
x -+ ('l'{f)x, y) = 0 is continuous in � 1 , hence y E �('l'{f)*), and 

(x, 'l'{j)y) = ('l'{f)x, y) = 0 (x E � 1) .  

Therefore, 'I'(f)y = 0, and y = 0. This proves that Bl('l'{f)) is dense 
in H. 

Since 'I' {f) is closed, so is 'I' (f) - 1 •  If Bl('l'{f)) filled H, the closed 
graph theorem would imply that 'I' (f) - 1 E PAf(H). But this is impossi
ble, in view of the sequence {x.} constructed above. 

Hence (b) is proved. 
(c) It follows from (a) and (b) that the essential range off is a 

subset of a('l'{f)). To obtain the opposite inclusion, assume 0 is not 
in the essential range of f Then g = 1/f E e'(E), fg = 1 ,  hence 
'l'(f)'l'(g) = '1'(1) = I, which proves that Bl('l'{f)) = H. Since l f l > 0, 
'I' {f) is one-to-one, as in the proof of (b). Therefore 'I' {f)- ' E PAf(H), by 
the closed graph theorem. 

This completes the proof. /Ill 

The following theorem is sometimes called the change of measure 
principle. 

13.28 Theorem Suppose 

(a) 9Jl and 9Jl' are a-algebras in sets 0 and 0', 
(b) E :  ml -+  PAf(H) is a resolu tion of the identity, and 
(c) cp :  0 -+  0' has the property that cp - 1(w') E 9Jlfor every w' E 9Jl'. 

If E'( w') = E( ¢- '( w')), then E' : 9Jl' -+ PAf(H) is also a resolution of the 
identity, and 

( 1 )  i f dE�. y = i {f 0 cp) dEx, y 
(}' (} 

for every 9Jl' -measurable f: 0' -+ (/;for which either of these integrals exists. 

PROOF. For characteristic functions f, ( 1 )  is just the definition of E'. 
Hence (1) holds for simple functions f The general case follows from 
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this. The proof that E' is a resolution of the identity is a matter of 
straightforward verifications and is omitted. /Ill 

The Spectral Theorem 

13.29 Normal operators A (not necessarily bounded) linear operator 
T in H is said to be normal if T is closed and densely defined and if 

T*T = TT*. 
Every 'I' {f) that arises in Theorem 1 3.24 is normal ; this is part of the 

statement of the theorem. We shall now see, just as in the bounded case 
discussed in Chapter 12, that all normal operators can be represented in 
this way, by means of resolutions of the identity on their spectra (Definition 
1 3 .26). For self-adjoint operators, this can be deduced very quickly from the 
unitary case, via the Cayley transform (Theorem 1 3.30). For normal oper
ators in general, a different proof will be given in Theorem 1 3 .3 3 .  

13.30 Theorem To every selfadjoint operator A in H corresponds a 
unique resolution E of the identity, on the Borel subsets of the real line, such 
that 

(1) (Ax, y) = L: t dEx, y(t) (x E S&(A), y E H). 

Moreover, E is concentrated on a( A) c ( - oo ,  oo ), in the sense that 
E(a(A)) = I. 

As before, this E will be called the spectral decomposition of A. 

PROOF. Let u be the Cayley transform of A, let n be the unit circle 
with the point 1 removed, and let E' be the spectral decomposition of 
U (see Theorems 12.23 and 12.26). Since I - U is one-to-one 
(Theorem 13 . 19), E'( { 1 }) = 0, by (b) of Theorem 12.29, and therefore 

(2) (Ux, y) = l A dE�. y(A) (x E H, y E H). 

Define 

(3) f(A) = 
i(1 + A) 
1 - A 

(A E 0), 

and define 'l'{f) as in Theorem 13 .24 with E' in place of E :  

(4) ('l'{f)x, y) = Lf dE� . Y (x E £& 1 ,  y E H). 
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Since f is real-valued, 'l'(f) is self-adjoint (Theorem 13 .24), and 
since f(A)( 1 - A) = i(1 + A), the multiplication theorem gives 

(5) 'l'{f)(J - U) = i(J + U). 

In particular, (5) implies that 91(1 - U) c S&('l'{f)). By Theorem 13 . 19, 

(6) A(I - U) = i(J + U), 

and S&(A) = 91(1 - U) c S&('l'{f)). Comparison of (5) and (6) shows 
now that 'l'{f) is a self-adjoint extension of the self-adjoint operator 
A. By Theorem 1 3 . 1 5, A = 'l'{f). Thus 

(7) (Ax, y) = if dE�. Y [x E S&(A), y E H]. 

By (c) of Theorem 13 .27, a(A) is the essential range of f Thus 
a(A) c ( - oo, oo). Note thatfis one-to-one in n. If we define 

(8) E(f(w)) = E'(w) 

for every Borel set w c n, we obtain the desired resolution E which 
converts (7) to ( 1 ). 

Just as (1 ) was derived from (2) by means of the Cayley trans
form, (2) can be derived from (1) by using the inverse of the Cayley 
transform. The uniqueness of the representation (2) (Theorem 12.23) 
leads therefore to the uniqueness of the resolution E that satisfies (1) . 

This completes the proof. I I I I 

The machinery developed in Theorem 1 3.24 can now be applied to 
self-adjoint operators. The following theorem furnishes an example of this. 

13.31 Theorem Let A be a self-adjoint operator in H. 

(a) (Ax, x) > 0 for every x E S&(A) (briefly : A > 0) if and only if a( A) c 

[0, oo). 
(b) If A > 0, there exists a unique self-adjoint B > 0 such that B2 = A. 

PROOF. The proof of (a) is so similar to that of Theorem 12.32 that we 
omit it. 

Assume A > 0, so that a( A) c [0, oo ), and 

( 1) (Ax, y) = i"" t dEx, y(t) [x E S&(A), y E H], 

where S&(A) = { x E H :  f t2 dEx. y(t) < oo} ; the domain of integration 
is [0, oo ). Let s(t) be the nonnegative square root of t > 0, and put 
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B = 'l'(s) ; explicitly, 

(2) (Bx, y) = Ioo s(t) dEx, y(t) (x E �s , y E H). 

The multiplication theorem (b) of Theorem 13 .24, with f = g = s, 
shows that B2 = A. Since s is real, B is self-adjoint [(c) of Theorem 
13 .24] , and since s(t) > 0, (2) with x = y, shows that B > 0. 

To prove uniqueness, suppose C is self-adjoint, C > 0, C2 = A, 
and Ec is its spectral decomposition : 

(3) ( Cx, y) = I OCl s dE�, y(s) (x E .@(C), y E H). 

Apply Theorem 1 3 .28 with n = [0, oo), ¢(s) = s2,f(t) = t, and 

(4) E'(¢(w)) = Ec(w) for w c [0, oo), 

to obtain 

(5) (Ax, y) = (C2x, y) = Ioo s2 dE�. y(s) = Ioo t dE�. y(t). 

By (1 )  and (5), the uniqueness statement in Theorem 1 3 .30 shows that 
E' = E. By (4), E determines Ec, and hence C. //// 

The following properties of normal operators will be used in the proof 
of the spectral theorem 1 3.33. 

13.32 Theorem If N is a normal operator in H, then 

(a) �(N) = �(N*), 
(b) I I Nx ll = I I N*x l l for every x E �(N), and 
(c) N is maximally normal. 

PROOF. If y E �(N*N) = �(NN*), then (Ny, Ny) = (y, N*Ny) because 
Ny E �(N*), and (N*y, N*y) = (y, NN*y) because N*y E �(N) and 
N = N** (Theorem 13 . 12). Since N*N = NN*, it follows that 

( 1) I I Ny l l = I I N*y ll if y E �(N* N). 

Now pick x E �(N). Let N' be the restriction of N to �(N* N). 
By Theorem 1 3. 1 3 , {x, Nx} lies in the closure of the graph of N'. 
Hence there are vectors Y; E �(N* N) such that 

(2) I IY; - x ll -+ 0 as i -+  oo 
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and 

(3) II NY; - Nx ll --+ 0 as i --+  oo .  

By (1), I I N*y; - N*yi ll = I I  NY; - Nyi ll , so that (3) implies that {N*y;} 
is a Cauchy sequence in H. Hence there exists z E H such that 

(4) I I N*y; - z ll --+ 0 as i --+  oo .  

Since N* is a closed operator, (2) and (4) imply that {x, z} E t§(N*). 
From this we conclude first that x E �(N*), so that �(N) c 

�(N*), and secondly that 

(5) I I N*x ll = l l z l l = lim I I N*y; ll = lim I I NY; I I = I I Nx i i -
This proves (b) and half of (a). For the other half, note that N* is also 
normal (since N** = N), so that 

(6) �(N*) c �(N**) = �(N). 
Finally, suppose M is normal and N c M. Then M* c N*, so 

that 

(7) �(M) = �(M*) c �(N*) = �(N) c �(M), 
which gives �(M) = �(N) ; hence M = N. Ill/ 

13.33 Theorem Every normal operator N in H has a unique spectral 
decomposition E, which satisfies 

(1) (Nx, y) = i A dEx, y(A) 
11(N) 

(x E �(N), y E H). 

Moreover, E(w)S = SE(w) for every Borel set to w c a{N) and for every 
S E P4(H) that commutes with N, in the sense that SN c NS. 

It also follows from (1)  and Theorem 1 3.24 that E(w)N c NE(w). 

PROOF. Our first objective is to find self-adjoint projections P; , with 
pairwise orthogonal ranges, such that P; N c NP; E PAf(H), NP; is 
normal, and x = L P; x for every x E H. The spectral theorem for 
bounded normal operators will then be applied to the operators NP; , 
and this will lead to the desired result. 

By Theorem 1 3 . 1 3 , there exist B E  P4(H) and C E P4(H) such that 
B > 0, II Bll < 1 , C = N B, and 

(2) B(I + N*N) c I =  (I + N*N)B. 
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Since N* N = N N*, (2) implies 

(3) BN = BN(I + N*N)B = B(I + N*N)NB c NB = C. 
Consequently, BC = B(N B) = (BN)B c CB. Since B and C are 
bounded, it follows that BC = CB and therefore . that C commutes 
with every bounded Borel function of B. (See Section 12.24.) 

Choose {t;} so that 1 = t0 > t 1 > t2 > · · · , lim ti = 0. Let Pi be 
the characteristic function of (t i , ti � ,] ,  for i = 1 ,  2, 3, . . .  , and put 
/;(t) = Pi(t)/t. Each /; is bounded on a( B) c [0, 1]. Let EB be the spec
tral decomposition of B. The equality (2) shows that B is one-to-one, 
that is, 0 is not in the point spectrum of B. Hence EB({O}) = 0, and EB 
is concentrated on (0, 1]. 

Define 

(4) P; = Pi(B) (i = 1 , 2, 3 , . . .  ). 
Since Pi Pi = 0 if i -=f. j, the projections Pi have mutually orthogonal 
ranges. Since L Pi is the characteristic function of (0, 1] ,  we have 

OC! 

(5) L Pi x =  EB((O, 1])x = x (x E H). i = 1 
Since Pi(t) = t/;(t), 

(6) NPi = NBf.{B) = Cf.{B) E ffi(H), 

and P; N = /;(B)BN c /;(B)C, by (3), so that 

(7) 

By (6), �(NP;) = H, so that 

(8) �(Pi) c �(N) (i = 1 ,  2, 3 ,  . . .  ). 
Hence, if P; x = x, (7) implies P; Nx = NPi x = Nx. Thus N carries 
�(P;) into �(P;), or : �(P;) is an invariant subspace of N. 

Next, we wish to prove that each NPi is normal. By (7) and 
Theorem 13 .2, 

(9) (NPi)* c (Pi N)* = N*Pi . 
But NPi E ffi(H), so that (NPi)* has domain H. Hence 

( 10) (NP.)* = N*P . I " 

and now Theorem 1 3 .32 shows, by (8) and ( 10), that 

( 1 1) I I NP;x ll = I IN*Pi x ll = II (NPi)*x ll (x E H). 

By Theorem 12. 12, ( 1 1) implies that NPi is normal. 
Hence (5), (6), and (7) show that our first objective has now been 

reached. 
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By Theorem 12.23 , each NP; has a spectral decomposition E;, 
defined on the Borel subsets of (/;. 

Since N carries Bl(P;) into Bl(P;), P; commutes with NP; . There
fore P; commutes with E;(w), for every Borel set w c (/;, so that 

(x E H, i = 1 ,  2, 3, . . .  ). 

Since these ranges are pairwise orthogonal, and since (5) implies 

( 1 3) 
OC! OC! 

L II E;(w)P; x ll 2 < L IIP;x ll 2 = ll x l l 2, 
i =  1 i= 1 

the series L E;(w)P; x converges, in the norm of H, and it makes sense 
to define 

OC! 

( 14) E(w) = L E;(w)P; 
i =  1 

for all Borel sets w c (/;. 
It is easy to check that E is a resolution of the identity. Hence 

there is a normal operator M, defined by 

( 15) (Mx, y) = f A dEx, y(A) (x E !!&(M), y E H), 

where the domain of integration is (/;, and 

( 16) S&(M) = {x E H :  f I A l 2 dEx. AA) < ex:} 
Our assertion (1 )  will not be proved by showing that M = N. 
For any x E H, ( 14) shows that 

OC! OC! 

( 1 7) Ex, x(w) = II E(w)x ll 2 = L I I E;(w)P; x ll 2 = L E�,, x,(w), 
i= 1 i = 1 

where X; = P; x. If x E !!&(N), then P; Nx = NP; x, so that 

( 18) 
J
, J I A I 2 dE�,. x,(A) = ;�,

I I NP; x; l l 2 = 
J
, I I P; Nx l l 2 = I INx ll 2• 

It follows from (17) and ( 1 8) that the integral in ( 16) is finite for every 
x E S&(N). Hence 

( 19) !!&(N) c S&(M). 

If x E Bl(P;), then x = P;x, and so E(w)x = E;(w)x ; thus Ex, y = 

E�. Y for every y E H. Hence 

(Nx, y) = (NP; x, y) = f A dE�. y(A) = f ), dEx, y(A) = (Mx, y). 
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Consequently 

(20) P. Nx = NP. x = MP- x ' ' ' [x E �(N), i = 1 ,  2, 3 ,  . . .  ] .  

If Q;  = P 1 + · · · + P; , it follows that Q; Nx = MQ; x .  Thus 

(2 1) [x E �(N), i = 1 ,  2 ,  3, . . .  ] .  

Since t.#(M) is closed, it follows from (5) and (21) that {x, Nx} E t.#(M), 
that is, that Nx = Mx for every x E f?J(N). Thus N c M, by ( 19), and 
now the maximality of N (Theorem 1 3 .32) implies N = M. 

This gives the representation ( 1 ), with (/; in place of a(N). That E 
is actually concentrated on a(N) follows from (c) of Theorem 1 3 .27. 

To prove the uniqueness of E, consider the operator 

(22) 

where _fFj*N is the unique positive square root of N* N. If ( 1 )  holds, 
it follows from Theorem 13 .24 that 

(23) T = f ¢ dE, 

where ¢(A) = A/( 1 + I A I ), so that T E PAf(H), and since ¢ is one-to-one 
on (/;, Theorem 1 3.28 implies that the spectral decomposition ET of T 
satisfies 

(24) 
for every Borel set w c ft. The uniqueness of E follows now from that 
of ET (Theorem 12.23). 

Finally, assume S E PAf(H) and SN c NS. Put Q = Q. = E(w), 
where w = {). : I A I < n}, and n is some positive integer. Then 
NQ E PAf(H) is normal and is given by 

(25) NQ = f f dE, 

where /(A) = A on w, f(A) = 0 outside w. Theorem 13 .28 implies that 
the spectral decomposition E' of NQ satisfies E'(w) = E(f - '(w)), or 

(26) 

Hence 

(27) 

{E'(w) = E(w n w) = QE(w) if 0 ¢ w, 
E'({O}) = E({O} u ((/; - w)) = E({O}) + I - Q. 

E(w) = QE(w) = QE'(w) if w c w. 
By Theorem 1 3 .24, QN c NQ = QNQ, so that 

(28) (QSQ)(NQ) = QSNQ c QNSQ c (NQ)(QSQ). 
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Since (QSQ)(NQ) E PAf(H), the inclusions in (28) are actually equalities. 
Now Theorem 12.23 implies that QSQ commutes with every E'(w). 

Consider a bounded w, and take n so large that w c w. By (27) 

QSE(w) = QSQE'(w) = E'(w)QSQ = E(w)SQ 
so that 

(29) Q. SE(w) = E(w)SQ. ( n = 1 ,  2, 3, . . .  ). 
It now follows from Proposition 12. 1 8  that 

(30) SE(w) = E(w)S 

if w is bounded [let n � oo in (29)], and hence also if w is any Borel 
sct in � M 

Semigroups of Operators 

13.34 Definitions Let X be a Banach space, and suppose that to every 
t E [0, oo) is associated an operator Q(t) E PAf(X), in such a way that 

(a) Q(O) = I , 

(b) Q(s + t) = Q(s)Q(t) for all s > 0 and t > 0, and 

(c) lim II Q(t)x - x l l = 0 for every x E X. 
r- o 

If (a) and (b) hold, {Q(t)} is called a semigroup (or, more precisely, a 
one-parameter semigroup). Such semigroups have exponential representa
tions, provided that the mapping t � Q(t) satisfies some continuity assump
tion. The one that is chosen here, namely (c), is easy to work with. 

Motivated by the fact that every continuous complex function that 
satisfies f(s + t) = f(s)f(t) has the form f(t) = exp (At), and that f is deter
mined by the number A =  f'(O), we associate with {Q(t)} the operators A" 
by 

(1) 

and define 

(2) 

1 
A, x = - [Q(6)x - x] 

6 
(x E X, 6 > 0), 

Ax = limA, x 
,-o 

for all x E S&(A), that is, for all x for which the limit (2) exists in the norm 
topology of X. 

It is clear that S&(A) is a subspace of X and that A is thus a linear 
operator in X. 
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This operator, which is essentially Q'(O), is called the infinitesimal gen
erator of the semigroup { Q(t)} . 

13.35 Theorem If the semigroup {Q(t)} satisfies the preceding hypothe
ses, then 

(a) there are constants C, y such that 

I I Q(t) l l < CeYt (0 < t < oo) ; 

(b) t -+  Q(t)x is a continuous map of [0, oo) into X ,for every x E X;  
(c) 9ti(A) is dense in X and A is closed; 
(d) the differential equation 

d 
dt Q(t)x = AQ(t)x = Q(t)Ax 

holds for every x E 9ti(A) ; 
(e) for every x E X, 

Q(t)x = lim (exp (tA,))x, 
,-o 

the convergence being uniform on every compact subset of [0, oo) ;  and 
{f) if A E (/; and Re A > y, the integral 

R(A)x = i""
e - �1Q(t)x dt 

defines an operator R(A) E �(X) [the so-called resolvent of { Q(t)}J whose 
range is 9ti(A) and which inverts AI - A. 

It is remarkable that (e) holds for every x E X, not just for x E 9ti(A). 
The limit in (e), as well as the one that is implicit in the derivative used in 
(d), is understood to refer to the norm topology of X. It follows from {f) 
that a(A) lies in the half plane {A :  Re A <  y} . 

PROOF. (a) If there were a sequence t. -+ 0 with II Q(t.) II -+ oo, the 
Banach-Steinhaus theorem would imply the existence of an x E X  for 
which { I I Q(t.)x l l } is unbounded, contrary to our assumption that 

( 1)  II Q(t)x - x ll -+ 0 as t -+  0. 
Hence there is a b > 0 and a C < oo such that I I Q(t) l l < C on [0, b]. If 
now 0 < t < oo and n is the positive integer satisfying (n - l)b < 
t < nd, then I I Q(t/n) l l  < C, and the functional equation 

(2) Q(s + t) = Q(s)Q(t) 
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(3) 
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II Q(t) l l = II Q(t/n)" l l < C" < C1 + tfl>, 
which proves (a), with eY = C1il>. 

(b) If 0 < s < t < T, then (a) and (2) imply that 

II Q(t)x - Q(s)x II < II Q(s) II · II Q(t - s)x - x II 
< CeyT II Q(t - s)x - x ll , 

which tends to 0 as t - s --+ 0. 
(c) Because of (b), the X-valued integrals 

(4) 
1 it M1 x = - Q(s)x ds t 0 

(x E X, t > 0) 

can be defined. In fact, M1 E �(X) and I I M1 I I  < CeY1, by (a). We claim 
that 

(5) (s > 0, t > 0, x E X). 

To prove (5), insert the integrand Q(s)x ds into 

By (2), the left side becomes 

f [Q(s + s) - Q(s)]x ds = [Q(s) - I] f Q(s)s ds 

= sA, tM1 x. 
In the same way, the right side becomes tA1 sM, x. This gives (5). 

As s --+ 0, the right side of (5) converges to A1 x. Thus M1 x E 
�(A), which proves that �(A) is dense in X, because M1 x --+  x as 
t --+  0. Moreover, 

(6) (x E X). 

To show that A is closed, suppose x. E �(A), x. --+ x, and 
Ax. --+ y. Since Q(s) commutes with Q(t), A, commutes with M1 , and 
therefore A commutes with M1 on �(A). Thus (6) gives 

Letting n --+  oo ,  we get 

(7) 

As t --+ 0, the right side of (7) converges, to y ;  hence the same is true of 
A1 x. This says that x E �(A) and that Ax = y. The graph of A is 
therefore closed. 
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(d) Multiplying (6) by t gives 

(8) A J:Q(s)x ds = Q(t)x - x. 

The integrand is continuous. Differentiation of the integral therefore 
proves (d), since Q(t)Ax = AQ(t)x for x E �(A). [Note that Q(t)A, = 

A, Q(t).] 
(e) We need an estimate for the norm of 

exp (tA,) = e- 11' exp G Q(6)) 
= e- tfe I t"Q(n6) . 

n = O  n ! 6" 

Replace the norm of this sum by the sum of the norms, apply the 
estimate (a), and sum the resulting series, to obtain 

(9) l l exp (tA,) I I < C exp H (e1 n - 1)} < C exp (teY1) 

for 0 < 6 < 1 .  Now define, for fixed x E X, 

( 10) q>(s) = {exp ((t - s)A,)}Q(s)x (0 < s < t). 

If x E �(A), it follows from (d) that 

( 1 1 ) q>'(s) = { exp ((t - s)A,)}Q(s)(Ax - A, x). 
Thus (a) and (9) show that there is a K(t) < oo such that 

( 12) I I <J>'(s) l l < K(t) I I Ax - A, x ll 
whenever 0 < s < t, 0 < 6 < 1 ,  and x E �(A). 

Since q>(t) = Q(t)x and q>(O) = {exp (tA,)}x, ( 12) implies 

( 13) I I Q(t)x - {exp (tA,)}x ll < tK(t) I I Ax - A, x l l , 

for x E �(A), 0 < 6 < 1 .  This gives (e) for x E �(A). 
However, I I Q(t) - exp (tA,) I I is bounded on 0 < t < T, 0 < 6 < 1 ,  

by (a) and (9). These operators form therefore an equicontinuous 
family (Chapter 4, Exercise 3) ; it follows that their convergence on the 
dense set �(A) forces their convergence on all of X (Chapter 2, Exer
cise 14). This proves (e). 

( 14) 

{f) It follows from (a) that 

ioo 
C 

II R(.Ic) ll < C e<rRe �)t dt = < 00 

0 Re (Jc - y) 
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if Re A > y. Thus R(Jc) E �(X). The definition of R(Jc) shows that 

6A, R(Jc)x = l""
e - �1Q(t + 6)x dt - l""

e - �1Q(t)x dt. 

If we replace t by t - 6 in the first integral, we are led to 

( 1 5) A, R(Jc)x = R(Jc)x - - e�' e - �1Q(t)x dt. e�' - '  1 l' 
6 6 0 

As 6 --+  0, the right side of ( 15) converges to JcR(Jc)x - x. This shows 
that R(Jc)x E �(A) and that 

( 16) (AI - A)R(Jc)x = x (x E X). 
On the other hand, if x E �(A), we can apply (d) to 

( 1 7) R(Jc)A, x = l""
e -MQ(t)A, x dt 

and see that 

( 18) 
100 d R(Jc)Ax = e -�t - Q(t)x dt = -x + JcR(Jc)x 

0 dt 

by an integration by parts. Thus 

( 19) R(Jc)(AI - A)x = x (x E �(A)). 
In particular, �(A) lies in the range of R(Jc). This completes the proof. 

/Ill 

It is now natural to ask whether the limit can be removed from the 
conclusion (e), that is, under what conditions the exponential representation 
Q(t) = exp (tA) is valid. Theorems 1 3 .36 and 1 3.38 give answers to these 
questions. 

13.36 Theorem If {Q(t)} is as in Theorem 1 3 .35, then any of the follow
ing three conditions implies the other two : 
(a) �(A) = X. 

(b) lim I I Q(6) - I ll = 0. 

(c) A E �(X) and Q(t) = e1A (0 < t < oo). 

PROOF. We shall use the same notations as in the proof of Theorem 
1 3.35. 
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If (a) holds, the Banach-Steinhaus theorem implies that the 
norms of the operators A, are bounded, for all sufficiently small s > 0. 
Since Q(s) - I =  sA, , (b) follows from (a). 

If (b) holds, then also I I M1 - I l l --+ 0 as t --+  0. Fix t > 0, so small 
that M1 is invertible in �(X). Since M1 A, = A1 M, , we have 

(1) A, = (M1) - 1A1 M, . 
As s --+  0, ( 1 )  shows first of all that A, x converges, for every x E X  
[since M, x -+ x  and (M1)- 1A1 E �(X)], second that A = (M1) - 1An 
and third that 

(2) as s --+  0. 

The formula Q(t) = exp (tA) follows now from (e) of Theorem 13 .35, 
since (2) implies that 

(3) lim I I  exp (tA,) - exp (tA) I I  = o 
E�O 

Thus (c) follows from (b). 
The implication (c) --+ (a) is trivial. 

(0 < t < oo). 

Infinitesimal generators have the following characterization. 

/Ill 

13.37 The Hille-Yosida theorem A densely defined operator A in a 
Banach space X is the infinitesimal generator of a semigroup {Q(t)} as zn 
Definition 13 .34 if and only if there are constants C, y so that 
(1) 
for all A > y and all positive integers m. 

PROOF. If A is related to { Q(t)} as in Theorem 13.35, we saw there that 
(AI - A) - l  = R(A), for A > y, where 

(2) R(A)x = 100 e - �1Q(t)x dt 

is the Laplace transform of Q(t)x. Hence R(A)2x is the transform of the 
convolution 

(3) J: Q(t - s)Q(s)x ds = tQ(t)x. 

(The formalism is the same as for Fourier transforms.) Continuing in 
this way, we find that 

(4) 
1 i"" R(A)mx = tm - le - �1Q(t)x dt (m - 1) !  0 
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for m =  1 ,  2, 3 ,  . . . .  Therefore, with C and y as in (a) of Theorem 1 3 .35, 

(5) 
c lOC! 

II R(Jc)m ll < tm - le- <� - y)t dt = C(Jc - y) -m. 
(m - 1) ! o 

This proves the necessity of ( 1 ). 
For the converse, set S(s) = (I - sA)- 1 , so that ( 1 )  becomes 

(6) I I S(snl < C( 1 - sy) -m (0 < 6 < 60 , m = 1 ,  2, 3, . . .  ), 

and the relations 

(7) (I - sA)S(s)x = x = S(s)(I - sA)x 

hold, the first for all x E X, the second for all x E �(A). 
If x E �(A), then x - S(s)x = -sS(s)x, so that 

(8) lim S(s)x = x. 
,�o 

But since I I S(s) l l  < C( 1 - s0 y)- 1 , {S(s) : 0 < 6 < s0} is equicontinuous, 
and hence (8) holds for all x E X. 

Next we set 

(9) T(t, s) = exp (tAS(s)) 

and claim that 

( 10) I I  T(t, s) l l  < C exp { yt } 
1 - sy 

(0 < 6 < 60 , t > 0). 

Indeed, the relation sAS(s) = S(s) - I  [see (7)] shows that 

( 1 1)  
OCJ tm 

T(t, s) = e -t/E L 1 m S(st. 
m = O  m .  6 

Now ( 10) follows from (6) and ( 1 1). 
For x E �(A), (7) and (9) show that 

d 
dt { T(t, s)T(t, b) - 1x} = T(t, s)T(t, b) - 1 (S(s) - S(b))Ax. 

If we integrate this and apply T(t, b) to the result, we obtain 

( 12) T(t, s)x - T(t, b)x = LT(u, s)T(t - u, b)(S(s) - S(b))Ax du. 

If we use (8) with Ax in place of x, and refer to ( 10), we see that 
the right side of ( 12) converges to 0 when s --+  0 and b --+  0. The limit 

( 1 3) Q(t)x = lim T(t, s)x 
E�O 
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exists therefore for every x E £tJ(A), uniformly on every bounded 
subset of [0, oo). Moreover, ( 10) shows that I I Q(t)l l < CeYt. By equi
continuity, and the assumption that £tJ(A) is dense, we see now that 
( 1 3) holds for all x E X. Since T(t, e) is defined by (9), it follows that 
{Q(t)} is a semigroup, as in Definition 13 .34. 

Let A be the infinitesimal generator of { Q(t)}. Then, by {f) of 
Theorem 13 .35, 

(14) (AI - A) - 1x = 1"" e - �tQ(t)x dt (A > y). 

On the other hand, AS(e) is the infinitesimal generator of 
{exp (tAS(e))} = { T(t, e)} . Thus 

( 15) (AI - AS(e)) - 1x = 1"" e- �tT(t, e)x dt. 

By ( 1 3) this becomes 

( 16) (AI - A)- 1x = 1""
e - �tQ(t)x dt. 

Comparison of ( 14) and ( 16) shows now that AI - A and AI - A have 
the same inverse for all sufficiently large A, and this implies that 
A =  A. /Ill 

For our final theorem, we return to the Hilbert space setting. 

13.38 Theorem Assume that { Q(t) : 0 < t < oo} is a semi group of normal 
operators Q(t) E !?/J(H), which satisfies the continuity condition 

( 1 )  lim I I Q(t)x - x ll = 0 (x E H). 
t� o 

The infinitesimal generator A of { Q(t)} is then a normal operator in H, 
there is a y < oo such that Re A < y for every A E a( A), and 
(2) Q(t) = etA (0 < t < oo). 

If each Q(t) is unitary, then there is a self-adjoint operator S in H such 
that 
(3) Q(t) = eitS (0 < t < oo). 

This representation of unitary semigroups is a classical theorem of 
M. H. Stone. 

Note : Although £tJ(A) may be a proper subspace of H, the operators 
etA are defined in all of H and are bounded. To see this, let EA be the 
spectral decomposition of A (Theorem 13 .33). Since I et� I < ety for all 
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A E a(A), the symbolic calculus described in Theorem 12.21 allows us to 
define bounded operators etA by 

(4) etA = l et� dEA(Jc) J.,.(A) 
(0 < t < oo). 

The theorem has an easy converse : If A is as in the conclusion, then 
(2) obviously defines a semigroup of normal operators, and ( 1 )  holds 
because 

(5) I I Q(t)x - x ll 2 = r l et� - 1 1 2 dE1. x(A) --+ O  J.,.(A) 
as t --+ 0, by the dominated convergence theorem. 

PROOF . Since each Q(s) commutes with each Q(t). Theorem 12. 16  
implies that Q(s) and Q(t)* commute. The smallest closed subalgebra 
of !?/J(H) that contains all Q(t) and all Q(t)* is therefore normal. Let A 
be its maximal ideal space, and let E be the corresponding resolution 
of the identity, as in Theorem 12.22. 

Let !, and a, be the Gelfand transforms of Q(t) and A, , respec
tively. Then 

(6) a =  E 

f. - 1 
(6 > 0), 

6 

and a simple computation gives 

(7) 

since /2, = (h)2• Define 

(8) b(p) = lim a2 � .(p) 

for those p E A at which this limit exists (as a complex number), and 
define b(p) = 0 at all other p E A. Then b is a complex Borel function 
on A. Put B = 'l'(b), as in Theorem 13 .24, with domain 

(9) g}J(B) = {x E H:  11 b l2 dEx. x < 00} 
Then B is a normal operator in H. 

We will show that A =  B. 
If x E g}J(A) then I I A, x I I is bounded, as 6 --+ 0. Hence there exists 

ex < 00 such that 

( 10) l l a, l 2 dEx. x = I IA, x ll 2 < ex (0 < 6 < 1)  
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and therefore 

( 1 1 ) l l a2E - a, I dE X, X < � ex (0 < [J < 1), 

by (7). Take 6 = 2 -n (n = 1 ,  2, 3, . . .  ) in (1 1)  and add the resulting 
inequalities. It follows that 

OC! 

( 12) L I a2 -n + l - a2-n l  < 00 a.e. [Ex xJ .  
' 

n = l  

The limit (8) exists therefore a.e. [Ex, xJ, and now Fatou's lemma and 
( 10) imply that 

( 1 3) l l b l 2 dEx, x < ex . 

Consequently, �(A) c �(B). 
Part (a) of Theorem 1 3.35 shows that I I  exp (A,) I I  < y1 < oo for 

0 < 6 < 1 ,  where y 1 depends on {Q(t)}. Hence I exp a,(p) I < y 1 for 
every p E A, since the Gelfand transform is an isometry on B*
algebras. It now follows from (8) that I exp b(p) I < y 1 for every p E A. 
Hence there exists y < oo such that 

( 14) Re b(p) < y (p E A). 
For every x E �(A) and every t > 0, 

( 1 5) l l exp (tA,)x - exp (tB)x ll 2 = l l exp (ta,) - exp (tb) l 2 dEx, x 

tends to 0 as 6 -+ 0 through the sequence {2 - "} ,  because the integrand 
is bounded by 4yi' and its limit is 0 a.e. [Ex xl Hence (e) of Theorem ' 
1 3.35 implies that 

( 16) [x E �(A)]. 

However, e'b is a bounded function on A, e'B E PAf(H), and since 
( 16) shows that the continuous operators Q(t) and e'B coincide on the 
dense set �(A), we conclude that 

( 1 7) 

( 1 8) 

Q(t) = e'B 
It follows from ( 1 7) that 

(0 < t < oo). 

(e'B ] ) ' A, x - Bx = 
6 

- B x 

so that 

( 19) I I A, x - Bx ll 2 = l e'b - 1 2 
--- - b dEX X ' 

6 ' 
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As 6 --+  0, the integrand (19) tends to 0, at every point of A. Since 
I (ez - 1)/z I is bounded on every half-plane {z :  Re z < c}, and since 
the integrand ( 19) can be written in the form 

e'b - 1 --- - 1  
6b 

it follows from (14) and the dominated convergence theorem that 

(20) lim I I A, x - Bx l l 2 = 0 if X E g}J(B). 
,�o 

This proves that gj)(B) c g}J(A) and that A = B. 
That the real part of a(A) is bounded above follows now from 

(14) and (c) of Theorem 1 3 .27. 
This completes the proof, except for the final statement about 

unitary semigroups. If each Q(t) is unitary, then I f. I = 1 ,  (6) shows 
that lim a, is pure imaginary at every point at which it exists, as 6 --+  0, 
hence b(p) is pure imaginary at every p E A, and if S = - iB then ( 17) 
gives (3), and (c) of Theorem 1 3 .24 shows that S is self-adjoint. !II/ 

Exercises 

Throughout this set of exercises, the letter H denotes a Hilbert space, unless the 
contrary is stated. 

1. The associative law (T, T2)T3 = �(I; T3) has been used freely throughout this 
chapter. Prove it. Prove also that T1 c T2 implies ST1 c SI; and T1S c I; S. 

2. Let T be a densely defined operator in H. Prove that T has a closed extension if 
and only if !?&(T*) is dense in H. In that case, prove that T** is an extension 
of T. 

3. By Theorem 13 .8, !?&(T*) = {0} for a densely defined operator T in H if and only 
if 'O§(T) is dense in H x H. Show that this can actually happen. 

Suggestion : Let {e. : n = 1, 2, 3, . . .  } be an orthonormal basis of H;  let 
{x.} be a dense subset of H;  define Te. = x. ; and extend T linearly to !?&(T), the 
set of all finite linear combinations of the basis vectors e • .  Show that the graph 
of this T is dense in H x H. 

4. Suppose T is a densely defined, closed operator in H, and T* T c TT*. Does it 
follow that T is normal? 

5. Suppose T is a densely defined operator in H, and (Tx, x) = 0 for every 
x E !?&(T). Does it follow that Tx = 0 for every x E !?&(T)? 

6. If T is an operator in H, define 

JV(T) = {x E !?&(T) : Tx = 0}. 

If !?&( T) is dense, prove that 

JV( T*) = £Jl( T)j_ n !?&( T*). 
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If T is also closed, prove that 

JV(T) = .sll(T*)j_ n !?&(T). 

This generalizes Theorem 12. 10. 
7. Consider the following three boundary value problems. The differential equa

tion is 

!" -f = g, 

where g E U([O, 1]) is given. The choices of boundary conditions are 
(i) f(O) = f( 1) = 0. 

(ii) f'(O) = f'( 1) = 0. 
(iii) f(O) = f(1) andf'(O) = f'( 1). 

Show that each of these problems has a unique solution f such that f' is 
absolutely continuous and f" E U([O, 1]). Hint :  Combine Example 13 .4 with 
Theorem 13 . 13. 

Do this also by solving the problems explicitly. 
8. (a) Prove the self-adjointness of the operator T in U(R), defined by Tf = if', 

with !?&(T) consisting of all absolutely continuous! E .e such thatf' E E. 
Hint: You may need to know that f(t) -+ 0 as t -• + oo for every 

f E !?&(T). Prove this. Or prove more, namely, that every f E !?&(T) is the 
Fourier transform of an I!-function. 

(b) Fix g E .e{R). Use Theorem 13. 1 3  to prove that the equation 

f" - f = g 

has a unique absolutely continuous solution f E .e, which has f' E .e, 
f" E E, andf' absolutely continuous. 

Prove also, by direct calculation, that 

1 fx 1 foo 
f(x) = - - rxg(t) dt - - ex - 'g(t) dt. 2 - oo 

2 x 
This solution can also be found by means of Fourier transforms. 

9. Let H2 be the space of all holomorphic functions f(z) = I e" z" in the open unit 
disc that satisfy 

00 

1 1 ! 1 1 2 = I 1 en i2 < 00. 
n = O  

Show that H2 is a Hilbert space which is isomorphic to t2 via the one-to-one 
correspondence f +-+ { e"} .  

Define V E 81(H2) by (Vf)(z) = zf(z). Show that V is the Cayley transform 
of the symmetric operator T in H2, given by 

1 + z 
(Tf)(z) = i f(z). 

1 - z 

Find the ranges of T + il and of T - il ; show that one is H2 and one has 
codimension 1. (Compare with Example 13.2 1 .) 
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10. With H2 as in Exercise 9, define V now by 

( Vf)(z) = zf(z 2). 

Show that V is an isometry which is the Cayley transform of a closed symmetric 
operator T in H2, whose deficiency indices are 0 and oo.  

1 1. Prove part (c) of Lemma 13 . 1 8. 
12. (a) In the context of Theorem 13.24, how are the operators 'l'(f + g) and 

'I' (f) + 'l'(g) related? 
(b) If f and g are measurable and g is bounded, prove that 'l'(g) maps � 1 

into �1 . 
(c) Prove that 'l'(f) = 'l'(g) if and only iff = g a.e. [E], that is, if and only if 

E({p:  f(p) of. g(p)}) = 0. 

13. Is the operator C that occurs in the proof of Theorem 13 .33 normal? 
14. Prove that every normal operator N in H, bounded or not, has a polar decom

position 

N = UP = PU ' 

where U is unitary, P is self-adjoint, P > 0. Moreover, �(P) = �(N). 
15. Prove the following extension of Theorem 12. 16 :  If T E PJ(H), if M and N are 

normal operators in H, and if TM c NT, then also TM* c N*T. 
16. Suppose T is a closed operator in H, �(T) = �(T*), and I! Tx ll = II T*xi l for 

every x E �(T). Prove that T is normal. Hint : Begin by proving that 

(Tx, Ty) = (T*x, T*y) (x E �(T), y E �(T)). 

17. Prove that the spectrum o-(T) of any operator T in H is a closed subset of q;. 
(See Definition 1 3.26.) Hint : If S T c TS = I, and S E PJ(H), then S(J - .l.S) - 1 is 
a bounded inverse of T - M, for small ! .A. 1 .  

18. Put ¢(t) = exp ( - t2). Define S E PJ(I3), where I3 = I3(R), by 

(Sf)(t) = ¢(t)f(t - 1) 

so that (S2f)(t) = ¢(t)¢(t - 1)f(t - 2), etc. (Note that S is presented in its polar 
decomposition S = PU.) 

Find S*. Compute that { (n - 1)n(n + 1)} 
li S" II = exp -

12 
(n = 1, 2, 3, . . . ). 

Conclude that S is one-to-one, that £Jl(S) is dense in /3, and that o-(S) = {0}. 
Define T, with domain �(T) = £Jl(S), by 

TSf = f (f E IJ). 
Prove that o-(T) is empty. 

19. Let T1, T2 , � be as in Example 1 3.4, put 

�(�) = {fE .@(T1) :  f(O) = 0}, 

and define T4 f = if' for allf E �(T4). 
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Prove the following assertions : 
(a) Every .A. E q; is in the point spectrum of T1 • 
(b) u(J;) consists of the numbers 2nn, where n runs through the integers; each of 

these is in the point spectrum of 7; . 
(c) .'Jl(T3 - AI) has codimension 1 for every .A. E q;. Hence u(T3) = q;. The point 

spectrum of T3 is empty. 
(d) u( �) is empty. 

Hint :  Study the differential equation if' - .l.f = g. 
This illustrates how sensitive the spectrum of a differential operator is to 

its domain (in this case, to the boundary conditions that are imposed). 
20. Show that every nonempty closed subset of q; is the spectrum of some normal 

operator in H (if dim H = oo). 
21. Define Q(t) E §1(13), where 13 = I3(R), by 

(Q(t)f)(s) = f(s + t). 

(a) Prove that each Q(t) is unitary. 
(b) Prove that { Q(t)} satisfies the conditions stated in Definition 13 .34. 
(c) If A is the infinitesimal generator of {Q(t)}, prove thatf E  !?&(A) if and only if 

J I y](y) 1 2 dy < oo (where J is the Fourier transform of f) and that Af = f' 
for allf E !?&(A). 

(d) Prove that u(A) is the imaginary axis. More precisely, show that A - AI is 
one-to-one for every .A. E q;, that .A. lies in the resolvent set of A if and only if 
.A. is not pure imaginary, and that the range of A - AI is a proper dense 
subspace of 13 if .A. is pure imaginary. 

Hint : g E .'Jl(A - AI) if and only if g E 13 and also g(y)j(iy - .A.) is in 13. 
22. Iff E H2 (see Exercise 9) andf(z) = I c. z", define 

00 

[Q(t)f](z) = I (n + W 'c. z" (0 < t < OC> ). 
n = O  

Show that each Q(t) is self-adjoint (and positive). Find the infinitesimal gener
ator A of the semigroup {Q(t)}. Is A self-adjoint? Show that A has pure point 
spectrum, at the points log 1, log t, log ·h . . . .  

23. For f E 13(R), x E R, 0 < y < oo, define 

1 Joo y 
[Q(y)f](x) = - ( �')2 2 

f(�) d�, 
7t - oo  X - s  + y  

and put Q(O)f = f Show that { Q(y): 0 < y < oo } satisfies the conditions imposed 
in Definition 13 .34 and that II Q(y) II = 1 for all y. 

[The integral represents a harmonic function in the upper half-plane, with 
boundary values f The semi group property of { Q(y)} can be deduced from this, 
as well as from a look at the Fourier transforms of the functions Q(y)f] 

Find the domain of the infinitesimal generator A of { Q(y)}, and prove that 

Af = - Hf', 

where H is the Hilbert transform (Chapter 7, Exercise 24). 
Prove that - A  is positive and self-adjoint. 
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24. Show that every isometric operator in H has a closed isometric extension. 
25. On the other hand, show that some symmetric operators in H have no closed 

symmetric extension by completing the following outline. 
Let { e 1 , e 2 , e3 , • • •  } be an orthonormal basis of H. Let X be the set of all 

finite sums I ex; e; , subject to the condition I ex; = 0. Prove that X is a dense 
subspace of H. Define U E fi(H) by 

u(� CX; e) = cx 1 e 1 - � CX; e; , 

and let V be the restriction of U to X. Then V is an isometry, with !?&(V) = X, 
and I - V is one-to-one on X. Hence V is the Cayley transform of a symmetric 
operator T. Any closed symmetric extension of T would correspond to a closed 
isometric extension V1 of V, with I - V1 one-to-one. But !?&(V) is dense in H;  
hence V has only one closed isometric extension, namely U, and I - U is not 
one-to-one. 





APPENDIX 

COMPACTNESS 
AND CONTINUITY 

Al Partially ordered sets A set fJJ is said to be partially ordered by a 
binary relation < if: 

(i) a < b and b < c implies a < c. 
(ii) a < a for every a E r!l', 

(iii) a < b and b < a implies a = b. 

A subset !!2 of a partially ordered set r!l' is said to be totally ordered if 
every pair a, b E !!2 satisfies either a < b or b s a. 

Hausdorff's maximality theorem states : 

Every nonempty partially ordered set fJJ contains a totally ordered 
subset !!2 which is maximal with respect to the property of being totally 
ordered. 

A proof (using the axiom of choice) may be found in [23]. Explicit 
applications of the theorem occur in the proofs of the Hahn-Banach 
theorem, of the Krein-Milman theorem, and of the theorem that every 
proper ideal in a commutative ring with unit lies in a maximal ideal. It will 
now be applied once more (A2) to prepare the way to an easy proof of the 
Tychonoff theorem. 

391 
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A2 Subbases A collection !7 of open subsets of a topological space X is 
said to be a subbase for the topology r of X if the collection of all finite 
intersections of members of !7 forms a base for r. (See Section 1 .5.) Any 
subcollection of !7 whose union is X will be called an !7 -cover of X. By 
definition, X is compact provided that every open cover of X has a finite 
subcover. It is enough to verify this property for !7 -covers : 

Alexander's subbase theorem. If !7 is a subbase for the topology of a 
space X, and if every !7 -cover of X has a finite subcover, then X is 
compact. 

PROOF. Assume X is not compact. We will deduce from this that X 
has an !/-cover r without finite subcover. 

Let r!l' be the collection of all open covers of X that have no 
finite subcover. By assumption, r!l' "# 0. Partially order r!l' by inclu
sion, let n be a maximal totally ordered subcollection of r!l', and let r 
be the union of all members of n. Then 

(a) r is an open cover of X, 

(b) r has no finite subcover, but 

(c) r u { V} has a finite subcover, for every open V � r. 

Of these, (a) is obvious. Since n is totally ordered, any finite 
subfamily of r lies in some member of n, hence cannot cover X ;  this 
gives (b), and (c) follows from the maximality of n. 

Put r = r n !7. Since r c r, (b) implies that r has no finite 
subcover. To complete the proof, we show that r covers X. 

If not, some X E X is not covered by r. By (a), X E w for some 
W E r. Since !7 is a subbase, there are sets V1, . . .  , V, E !7 such that 
X E n v; c W. Since X is not covered by r, no v; belongs to r. Hence 
(c) implies that there are sets Yp . . . , Y, ,  each a finite union of 
members of r, such that X = v; u Y; for 1 < i < n. Hence 

" 

X = Y1 u · · · u Y. u n V; c Y1 u · · · u Y. u W, 
i ;;:;;;. 1 

which contradicts (b). /Ill 

A3 Tychonoff's theorem If X is the cartesian product of any nonempty 
collection of compact spaces X" , then X is compact. 

PROOF. If n"(x) denotes the X"-coordinate of a point x E X, then, by 
definition, the topology of X is the weakest one that makes each 
n" : X -+  X" continuous ;  see Section 3.8. Let Y" be the collection of all 
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sets rr;a-
1
(V:), where V: is any open subset of X a .  If !7 is the union of all 

!7 a ,  it follows that !7 is a subbase for the topology of X. 
Suppose r is an .9" -cover of X. Put r a = r n !7 a .  Assume (to 

get a contradiction) that no r a covers X. Then there corresponds to 
each rx a point xa E X a such that r a covers no point of the set n; 

1
(xa), 

and if X E X  is chosen so that na(x) = Xa ' then X is not covered by r. 
But r is a cover of X. 

Hence at least one ra covers X. Since Xa is compact, some finite 
subcollection of ra covers X. Since ra c r, r has a finite subcover, 
and now Alexander's theorem implies that X is compact. !/II 

A4 Theorem If K is a closed subset of a complete metric space X, then 
thefollowing three properties are equivalent :  

(a) K is compact. 
(b) Every infinite subset of K has a limit point in K. 

(c) K is totally bounded. 

Recall that (c) means that K can be covered by finitely many balls of 
radius 6, for every 6 > 0. 

PROOF. Assume (a). If E c K is infinite and no point of K is a limit 
point of E, there is an open cover { V:} of K such that each V: contains 
at most one point of E. Therefore { V:} has no finite subcover, a con
tradiction. Thus (a) implies (b). 

Assume (b), fix 6 > 0, and let d be the metric of X. Pick x1 E K. 
Suppose x1 ,  . . .  , x. are chosen in K so that d(x; , x) > 6 if i # j. If 
possible, choose x. + 1 E K so that d(x; , x. + 1 )  > 6 for 1 < i < n. This 
process must stop after a finite number of steps, because of (b). The 
6-balls centered at x1 ,  . • .  , x. then cover K. Thus (b) implies (c). 

Assume (c), let r be an open cover of K, and suppose (to reach a 
contradiction) that no finite subcollection of r covers K. By (c), K is a 
union of finitely many closed sets of diameter < 1 .  One of these, say 
K 1 ,  cannot be covered by finitely many members of r. Do the same 
with K 1 in place of K, and continue. The result is a sequence of closed 
sets K; such that 

(i) 
(ii) 
(iii) 

K � K  � K  � . . .  1 2 - ' 
diam K. < 1/n, and 

no K. can be covered by finitely many members of r. 

Choose x. E K • .  By (i) and (ii), {x.} is a Cauchy sequence which 
(since X is complete and each K. is closed) converges to a point 
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X E n  K • .  Hence X E v for some v E r. By (ii), K. c v when n is 
sufficiently large. This contradicts (iii). Thus (c) implies (a). //// 

Note that the completeness of X was used only in going from (c) to (a). In 
fact, (a) and (b) are equivalent in any metric space. 

A5 Ascoli's theorem Suppose X is a compact space, C(X) is the sup
normed Banach space of all continuous complex functions on X, and 
<I> c C(X) is pointwise bounded and equicontinuous. More explicitly, 

(a) sup { I  f(x) I : f E <I>} < oo for every x E X, and 
(b) if 6 > 0, every x E X  has a neighborhood V such that I f(y) -f(x) I < 6 

for all y E V and for all f E <I>. 

Then <I> is totally bounded in C(X). 

Corollary. Since C(X) is complete, the closure of <I> is compact, and 
every sequence in <I> contains a uniformly convergent subsequence. 

PROOF. Fix 6 > 0. Since X is compact, (b) shows that there are points 
x 1 , . . .  , x. E X, with neighborhoods V1, . . . , V, ,  such that X = U v; 
and such that 

( 1 )  I f(x) -f(xi) I < 6 {f E <1>, X E Jli , 1 < i < n). 

If (a) is applied to x 1 , . . .  , x. in place of x, it follows from (1)  that <I> is 
uniformly bounded : 

(2) sup { l f(x) l : x E X, f E  <I>} = M < oo .  

Put D = {A E (/;:  I A I < M}, and associate to each f E <I> a point p(f) E 
D" c q;, by setting 

(3) p(f) = {f(x 1 ), . . .  , f(x.)). 
Since D" is a finite union of sets of diameter < 6. there exist /1, . . .  , 
fm E <I> such that every p(f) lies within 6 of some p(fk). 

If/ E <I>, there exists k, 1 < k < m, such that 

(4) ( 1  < i < n). 

Every x E X lies in some v; ,  and for this i 

(5) I f(x) -f(xi) I < 6 and 

Thus I f(x) -fk(x) I < 36 for every x E X. 
The 36-balls centered at /1, . . .  , /,. therefore cover <I>. Since 6 was 

arbitrary, <I> is totally bounded. //// 
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A6 Sequential continuity If X and Y are Hausdorff spaces and if 
f maps X into Y, then f is said to be sequentially continuous provided 
that lim.- 00 f(x.) = f(x) for every sequence { x.} in X that satisfies 
lim._ ""  x. = x. 

Theorem 

(a) Iff: X --+  Y is continuous, thenf is sequentially continuous. 
(b) Iff: X --+  Y is sequentially continuous, and if every point of X has a 

countable local base (in particular, if X is metrizable), then f is 
continuous. 

PROOF. (a) Suppose x. --+ x in X, V is a neighborhood of f(x) in Y, 
and U = f - 1( V). Since f is continuous, U is a neighborhood of x, and 
therefore x. E U for all but finitely many n. For these n, f(x.) E V. 
Thusf(x.) --+ f(x) as n --+  oo .  

(b) Fix x E X, let { U.} be a countable local base for the topol
ogy of X at x, and assume that f is not continuous at x. Then there is 
a neighborhood V of f(x) in Y such that f - 1(V) is not a neighbor
hood of x. Hence there is a sequence x. , such that x. E U" , x. --+ x as 
n --+  oo ,  and x. ¢ f - 1(V). Thus f(x.) ¢ V, so that f is not sequentially 
continuous. //// 

A 7 Totally disconnected compact spaces A topological space X is 
said to be totally disconnected if none of its connected subsets contains 
more than one point. 

A set E c X is said to be connected if there exists no pair of open sets 
� ' v2 such that 

Theorem. Suppose K c V c X, where X is a compact Hausdorff 
space, V is open, and K is a component of X. Then there is a compact 
open set A such that K c A c V. 

Corollary. If X is a totally disconnected compact Hausdorff space, then 
the compact open subsets of X form a base for its topology. 

PROOF. Let r be the collection of all compact open subsets of X that 
contain K. Since X E r, r ¥ 0. Let H be the intersection of all 
members of r. 

Suppose H c W, where W is open. The complements of the 
members of r form an open cover of the compact complement of W. 
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Since r is closed under finite intersections, it follows that A c W for 
some A E r. 

We claim that H is connected. To see this, assume H = H0 u 
H 1 , where H 0 and H 1 are disjoint compact sets. Since K c H and K is 
connected, K lies in one of these. Say K c H0 . By Urysohn's lemma, 
there are disjoint open sets W0 , W1 such that H 0 c W0 , H 1 c W1, and 
the preceding paragraph shows that some A E r satisfies A c Wo u 
W1 . Put A0 = A  n W0 . Then K c A0 , A0 is open, and A0 is 

compact, because A n W0 = A  n W0 .  Thus A0 E r. Since H c A0 , it 
follows that H 1 = 0. 

Thus H is connected. Since K c H and K is a component, we 
see that K = H. The preceding argument, with K and V in place of H 
and W, shows that A c V for some A E r. /Ill 
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NOTES AND 
COMMENTS 

The abstract tendency in analysis which developed into what is now known 
as functional analysis began at the turn of the century with the work of 
Volterra, Fredholm, Hilbert, Frechet, and F. Riesz, to mention only some of 
the principal figures. They studied integral equations, eigenvalue problems, 
orthogonal expansions, and linear operations in general. It is of course no 
accident that the Lebesgue integral was born in the same period. 

The normed space axioms appear in F. Riesz' work on compact oper
ators in C([a, b]) (Acta Math., vol. 4 1 ,  pp. 71-98, 1 9 1 8), but the first abstract 
treatment of the subject is in Banach's 1920 thesis (Fundam. Math., vol. 3, 
pp. 1 33- 1 8 1 ,  1922). His book [2] , published in 1932, was tremendously 
influential. It contains what is still the basic theory of Banach spaces, but 
with some omissions which, from our vantage point, seem curious. 

One of these is the complete absence of complex scalars, in spite of 
Wiener's observation (Fundam. Math., vol. 4, pp. 1 36-143, 1923) that the 
axioms can be formulated just as well over (/;, and, more importantly, that a 
theory of Banach-space-valued holomorphic functions can then be devel
oped whose basic features are very similar to the classical complex-valued 
case. Very little (if anything) was done with this until 1938. (See the notes 
for Chapter 3 in this appendix.) 

Even more puzzling, in retrospect, is Banach's treatment of weak 
convergence-surely one of his most important contributions to the subject. 

397 
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In spite of the vigorous development of topology in the twenties, and in 
spite of von Neumann's explicit description of weak neighborhoods in a 
Hilbert space and in operator algebras (Math. Ann., vol. 102, pp. 370--427, 
1930; see p. 379), Banach deals only with weakly convergent sequences. 
Since the adjunction of all limits of weakly convergent subsequences of a set 
need not lead to a weakly sequentially closed set (see Exercise 9, Chapter 3), 
he is forced into complicated notations such as transfinite closures, but he 
never uses the much simpler and more satisfactory concept of weak topol
ogies. 1 

Occasionally, unnecessary separability assumptions are made in [2]. 
This is also true of von Neumann's axiomatization of Hilbert space (Math. 
Ann., vol. 102, pp. 49- 1 3 1 , 1930), where separability is included among the 
defining properties. In this fundamental paper on unbounded operators, he 
establishes the spectral theorem for them, thus generalizing what Hilbert 
had done for the bounded ones more than 20 years earlier. Another basic 
contribution to operator theory was M. H. Stone's 1 932 book [28]. 

Although continuous functions obviously play an important role in 
Banach's book, he considers only their vector space structure. They are 
never multiplied. But multiplication was not neglected for very long. In his 
work on the tauberian theorem (Ann. Math., vol. 33, pp. 1-100, 1932) 
Wiener stated and used the fact that the Banach space of absolutely con
vergent Fourier series satisfies the multiplicative inequality l l xy ll < ll x i i i i Y I I . 
M. H. Stone's generalization of the Weierstrass approximation theorem 
(Trans. Amer. Math. Soc., vol. 4 1 ,  pp. 375-48 1 ,  1937 ; especially pp. 453--48 1) 
is undoubtedly the best-known instance of the explicit use of the ring struc
ture of spaces of continuous functions. Von Neumann's interest in operator 
theory, which stemmed from quantum mechanics, led him to a systematic 
study of operator algebras. M.  Nagumo (Jap. J. Math., vol. 13 ,  pp. 6 1-80, 
1936) initiated the abstract study of normed rings. But what really got this 
subject off the ground was Gelfand's discovery of the important role played 
by the maximal ideals of a commutative algebra (Mat. Sbornik N. S., vol. 9, 
pp. 3-24, 1941 )  and his construction of what is now known as the Gelfand 
transform. 

Before the middle forties, the interest of functional analysts was 
focused almost exclusively on normed spaces. The first major paper on the 
general theory of locally convex spaces is that of J. Dieudonne and L. 
Schwartz in Ann. Inst. Fourier (Grenoble), vol. 1 ,  pp. 61- 101 ,  1 949. One of 

1 Banach is obviously one of the major heroes of this story. The preceding remarks are not 

intended to be in any way derogatory (as some readers of the first edition thought) or to 
belittle the importance and originality of his work. Their intent is merely to contrast our 
present mathematical environment with what it was then. 
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its principal motivations was Schwartz' construction of the theory of dis
tributions [26] . (The first version of this book appeared in 1950.) Just as 
Banach and Gelfand had predecessors, so did Schwartz. As Bochner points 
out in his review of Schwartz' book (Bull. Amer. Math. Soc., vol. 58, pp. 
78-85, 1952), the idea of " generalized functions " goes back at least as far as 
Riemann. It was applied in Bochner's V orlesungen iiber F ouriersche I nte
grale (Leipzig, 1932), a book that played a very important role in the devel
opment of harmonic analysis. Sobolev's work also predates Schwartz. But it 
was Schwartz who built all this into a smoothly operating very general 
structure that turned out to have many applications, especially to partial 
differential equations. 

The following expository articles describe some of the history of our 
subject in greater detail. 

Bonsall, F. F. : "A Survey of Banach Algebra Theory," Bull. London Mat h. 
Soc., vol. 2, pp. 257-274, 1970. 

Hildebrandt, T. H. : " Integration in Abstract Spaces," Bull. Amer. Mat h. 
Soc., vol. 59, pp. 1 1 1-1 39, 1953. 

Horvath, J. : "An Introduction to Distributions," A mer. Mat h. Monthly, vol. 
77, pp. 227-240, 1 970. 

Lorch, E. R. : " The Structure of Normed Abelian Rings," Bull. Amer. Mat h. 
Soc., vol. 50, pp. 447--463, 1944. 

Taylor, A. E. : " Notes on the History and Uses of Analyticity in Operator 
Theory," Amer. Math. Monthly, vol. 78, pp. 3 3 1-342, 197 1 .  

Tn':ves, F. : "Applications of Distributions to PDE Theory," Amer. Mat h. 
Monthly, vol. 77, pp. 24 1-248, 1970. 

Volume 1 of the series Studies in Mathematics (published by the Math
ematical Association of America, 1962, edited by R. C. Buck) contains arti
cles by 

Goffman, C. : " Preliminaries to Functional Analysis " 
Lorch, E. R. : " The Spectral Theorem " 

McShane, E. J. : "A Theory of Limits " 

Stone, M. H. : "A Generalized Weierstrass Approximation Theorem " 

There are two special issues of Bull. Amer. Math. Soc. :  One (May 
1 958) is devoted to the work of John von Neumann ; the other (January 
1966) to that of Norbert Wiener. 

The origins of functional analysis are well described in Dieudonne's 
book [36]. 

We now give detailed references to some items in the text. 
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Chapter 1 

For the general theory of topological vector spaces, see [5], [ 14], [ 1 5] ,  
[3 1] ,  [32] . 

Section 1 .8 (e). In Banach's definition of an F-space, he postulated 
only the separate continuity of scalar multiplication and proved that joint 
continuity was a consequence. See [4], pp. 5 1-53, for a proof based on 
Baire's theorem. Another proof (due to S. Kakutani) does not require com
pleteness of X but uses Lebesgue measure in the scalar field ; see [33], 
pp. 3 1-32. 

Theorem 1 .24. This metrization theorem was first proved (in the more 
general context of topological groups) by G. Birkhoff ( Compositio Mat h., 
vol. 3 ,  pp. 427--430, 1 936) and by S. Kakutani (Proc. Imp. Acad. Tokyo, vol. 
12,  pp. 128- 142, 1936). Part (d) of the theorem is perhaps new. 

Section 1 .33 .  The Minkowski functional of a convex set is sometimes 
called its support function. 

Theorem 1 .39 is due to A. Kolmogorov (Studia Math., vol. 5, pp. 
29-33, 1934). It may well be the first theorem about locally convex spaces. 

Section 1 .46. The construction of the function g by repeated averag
ing may be found on pp. 80--84 of S. Mandelbrojt's 1 942 Rice Institute 
Pamphlet "Analytic Functions and Classes of Infinitely Differentiable Func
tions," where it is credited to H. E. Bray. 

Section 1 .47. Of particular interest among the F-spaces that are not 
locally convex but have enough continuous linear functionals to separate 
points are certain subspaces of I!.', the HP-spaces (with 0 < p < 1). For a 
detailed study of these, see the paper by P. L. Duren, B. W. Romberg, and 
A. L. Shields in J. Reine Angew. Math., vol. 238, pp. 32-60, 1969, and those 
by Duren and Shields in Trans. Amer. Math. Soc., vol. 14 1 ,  pp. 255-262, 
1969, and in Pac. J. Math., vol. 32, pp. 69-78, 1970, as well as [40] . 

Chapter 2 

Basically, all results of this chapter are in [2]. 
Exercise 1 1 . Charles Horowitz constructed a bilinear map from 

R3 x R3 onto R4 which is not open at (0, 0), in Proc. Amer. Math. Soc., vol. 
53 ,  pp. 293-294, 1 975. P. 1. Cohen (J. Func. Anal., vol. 1 6, pp. 235-239, 
1974) had earlier constructed a much more complicated example, mapping 
{1 x {1 onto {1 . 

Exercise 13 .  A barrel is a closed, convex, balanced, absorbing set. A 
space is barreled if every barrel contains a neighborhood of 0. Exercise 13  
asserts : Topological vector spaces of the second category are barreled. 
There exist barreled spaces of the first category, and certain versions of the 
Banach-Steinhaus theorem are valid for them. See [ 14], p. 104 ;  also [ 15]. 
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Barreled spaces with the Heine-Bore! property are often called Monte/ 
spaces ; see Sec. 1 .45. 

Chapter 3 

Theorem 3.2 is in [2]. Its complex version, Theorem 3 .3 ,  was proved by 
H. F. Bohnenblust and A. Sobczyk, Bull. A mer. Mat h. Soc., vol. 44, pp. 
9 1-93, 1 938, and by G. A. Soukhomlinoff, Mat. Sbornik, vol. 3, pp. 353-358, 
1938. The latter also considered quaternion scalars. In Proc. Amer. Math. 
Soc., vol. 50, pp. 322-327, 1975, J. A. R. Holbrook presents a proof in which 
real scalars are not treated separately, and he includes a simplified version 
of Nachbin's work on Hahn-Banach extensions of linear transformations 
(in place of linear functionals); see Trans. Amer. Math. Soc., vol. 68, pp. 
28--46, 1950. 

Theorem 3 .6. For a partial converse, see J. H. Shapiro, Duke Math. J., 
vol. 37, pp. 639-645, 1970. 

Theorem 3. 1 5. See L. Alaoglu, Ann. Math., vol. 41 ,  pp. 252-267, 1940. 
For separable Banach spaces, the theorem is in [2], p. 1 23 .  

Theorem 3 . 1 8 . A shorter proof, based on seminorms, may be found 
on p. 223 of [32]. 

Section 3.22. Compact convex sets with no extreme point exist in 
some F-spaces. See [40] . 

Theorem 3.23 was proved, for weak*-compact convex subsets of the 
dual of a Banach space, by M. Krein and D. Milman, in Studia Math., vol. 
9, pp. 1 3 3-1940. 

Theorem 3.25 appeared in Dokl. Akad. Nauk SSSR, vol. 57, pp. 1 1 9-
122, 1947. 

The history of vector-valued integration is described by T. H. Hilde
brandt in Bull. Amer. Math. Soc., vol. 59, pp. 1 1 1-1 39, 1 953 .  The " weak " 
integral of Definition 3.26 was developed by B. 1. Pettis, Trans. Amer. Mat h. 
Soc., vol. 44, pp. 277-304, 1938. 

The history of vector-valued holomorphic functions is described by 
A. E. Taylor in Amer. Math. Monthly, vol. 78, pp. 33 1-342, 197 1 .  

Theorem 3.3 1 .  That weakly holomorphic functions (with values in 
a complex Banach space) are strongly holomorphic was proved by 
N. Dunford in Trans. Amer. Math. Soc., vol. 44, pp. 304--356, 1 938. 

Theorem 3.32 was used by A. E. Taylor to prove that the spectrum of 
every bounded linear operator on a complex Banach space is nonempty 
(Bull. Amer. Math. Soc., vol. 44, pp. 70-74, 1938). Since every Banach 
algebra A is isomorphic to a subalgebra of �(A) (see the proof of Theorem 
10.2), Taylor's result contains (a) of Theorem 10. 1 3 .  

Exercise 9 is due to von Neumann, Math. Ann., vol. 102, pp. 370--427, 
1 930;  see p. 380. 
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Exercise 10 is patterned after a construction in the appendix of [2]. 
Exercise 25. If K is also separable and metric, then such a J1 exists 

even on E, rather than on E. This is Choquet's theorem. See [20] . For a 
recent paper on this, see R. D. Bourgin, Trans. A mer. Mat h. Soc., vol. 1 54, 
pp. 323-340, 1 97 1 .  

Exercise 28 (c). This is the easy part of the Eberlein-Smulian theorem. 
See [4], pp. 430-433 and p. 466. Another characterization of weak com
pactness has been given by R. C. 1 ames, Trans. Amer. Mat h. Soc., vol. 1 1 3, 
pp. 129-140, 1964 : A weakly closed set S in a Banach space X is weakly 
compact if and only if every x* E X* attains its supremum on S. 

Exercise 33 .  See [14], p. 1 33 .  

Chapter 4 

A large part of this chapter is in [2]. 
Compact operators used to be called completely continuous. As defined 

by Hilbert (in t2) this means that weakly convergent sequences are mapped 
to strongly convergent ones. The presently used definition was given by 
F. Riesz (Acta Math., vol. 41 ,  pp. 71-98, 1 9 1 8). In reflexive spaces, the two 
definitions coincide (Exercise 18). 

Section 4.5. R. C. James has constructed a nonrejiexive Banach space 
X which is isometrically isomorphic with X** (Proc. Nat/. Acad. Sci. USA, 
vol. 37, pp. 1 7.4-- 1 77, 195 1 ). 

Theorems 4. 1 9  and 4.25 were proved by J. Schauder (Studia Math., 
vol. 2, pp. 183-196, 1930). For generalizations to arbitrary topological 
vector spaces, see J. H. Williamson, J. London Math. Soc., vol. 29, pp. 149-
156, 1954 ; also [5], chap. 9. 

Exercise 1 3 . It was a problem of long-standing whether every 
compact operator in every separable Banach space can be approximated (in 
the operator norm) by operators with finite-dimensional ranges. The first 
counterexample was constructed by P. Enflo, in Acta Math., vol. 1 30, pp. 
309-3 17, 1973. (This also gave a negative solution to the so-called basis 
problem.) Ramifications of this approximation problem are discussed in 
[4 1] .  

Exercise 15 .  These operators are usually called Hilbert-Schmidt oper
ators. See [ 4], chap. XI. 

Exercise 1 7. Operators of this type are discussed by A. Brown, P. R. 
Halmos, and A. L. Shields in Acta Sci. Math. Szeged., vol. 26, pp. 125-137, 
1965. 

Exercise 1 9. This " max-min duality " was exploited by W. W. Rogo
sinski and H. S. Shapiro to obtain very detailed information about certain 
extremum problems for holomorphic functions. See Acta Math., vol. 90, pp. 
287-3 18, 1 953. 
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Exercise 2 1 .  This was proved by M. Krein and V. Smulian in Ann. 
Math., vol. 4 1 ,  pp. 556-583, 1 940. See also [4] , pp. 427-429. 

Chapter 5 

Theorem 5. 1 .  For a more general version, see R. E. Edwards, J. London 
Math. Soc., vol. 32, pp. 499-501,  1957. 

Theorem 5.2 is due to A. Grothendieck, Can. J. Math., vol. 6, pp. 
1 58- 160, 1954. His proof is less elementary than the one given here. 

Theorem 5.3. For more on trigonometric series with gaps, see J. 
Math. Mech., vol. 9, pp. 203-228, 1 960 ; also, sec. 5.7 of [24], 1. P. Kahane's 
article in Bull. A mer. Mat h. Soc., vol. 70, pp. 199-2 1 3, 1964, and [ 42]. 

Theorem 5.5 was first proved by A. Liapounoff, Bull. Acad. Sci. USSR, 
vol. 4, pp. 465-478, 1940. The proof of the text is due to 1. Lindenstrauss, J. 
Math. Mech., vol. 1 5, pp. 971-972, 1966. 1. 1. Uhl (Proc. Amer. Math. Soc., 
vol. 23, pp. 1 58- 163, 1969) generalized the theorem to measures whose 
values lie in a reflexive Banach space or in a separable dual space. 

Theorem 5.7. The idea to use Krein-Milman to prove Stone
Weierstrass is due to L. de Branges, Proc. Amer. Math. Soc., vol. 10, pp. 
822-824, 1959. E. Bishop's generalization is in Pac. J. Mat h., vol. 1 1 , pp. 
777-783, 196 1 .  The proof given here is that of I. Glicksberg, Trans. Amer. 
Math. Soc., vol. 105, pp. 41 5-435, 1962. C. Hamburger pointed out to me 
that one does not need to assume that A contains the constants. A very 
elementary approach to Bishop's theorem was found by Mao Chao-Lin, C. 
R. Acad. Sci. Paris, vol. 301 ,  pp. 349-350, 1985. 

Theorem 5.9. Bishop proved this in Proc. Amer. Math. Soc., vol. 1 3, 
pp. 140--143, 1962. For the special case of the disc algebra, see Proc. Amer. 
Math. Soc., vol. 7, pp. 808-8 1 1 , 1 956, and L. Carleson's paper in Math Z., 
vol. 66, pp. 447-451 ,  1957. Other applications occur in Chapter 6 of [25] 
and in Chapter 10 of [45]. See also [29] . 

Theorem 5. 1 0. The proof follows that of M. Heins, Ann. Mat h., vol. 
52, pp. 568-573, 1950, where the same method is applied to a large class of 
interpolation problems. 

Theorem 5.1 1 was proved by S. Kakutani in Proc. Imp. Acad. Tokyo, 
vol. 14, pp. 242-245, 1 938. The proof given here was communicated to me 
by Isaac Namioka and is due to F. Hahn, Math. Systems Theory, vol. 1 ,  pp. 
55-57, 1968. The lemma avoids the use of nets and subnets at the end of the 
proof. 

Theorem 5. 14. This simple construction of the Haar measure of a 
compact group is essentially that of von Neumann (Compositio Math., vol. 
1 ,  pp. 106-1 14, 1 934). His is even more elementary and self-contained, 
though a little longer, since he uses no fixed point theorem. (In Trans. 
Amer. Math. Soc., vol. 36, pp. 445-492, 1934, he uses the same method to 
construct mean values of almost periodic functions.) If compactness is 
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replaced by local compactness, the construction of Haar measure becomes 
more difficult. See [ 1 8], [ 1 1], [ 1 6] .  

Theorem 5. 1 8  was proved (for Banach spaces) in Proc. Amer. Math. 
Soc., vol. 1 3, pp. 429--432, 1962. For further results on uncomplemented 
subspaces, see H. P. Rosenthal's 1966 AMS Memoir Projections onto 
Translation-Invariant Subspaces of ll(G) and his paper in Acta Math., vol. 
1 24, pp. 205-248, 1970. There are also positive results. For example c0 is 
complemented in any separable Banach space which contains it 
(isomorphically) as a closed subspace. A very short proof of this theorem of 
A. Sobczyk was obtained by W. A. Veech in Proc. Amer. Math. Soc., vol. 28, 
pp. 627-628, 197 1 .  

Section 5 . 19. That H1 is uncomplemented in L1 was first proved by 
D. 1. Newman, Proc. Amer. Math. Soc., vol. 12, pp. 98-99, 196 1 .  The proof 
given here is in Proc. Amer. Mat h. Soc., vol. 1 3, pp. 429--432, 1962. 

Theorem 5.2 1 .  F. F. Bonsall's paper in Quart. J. Math. Oxford, vol. 
37, pp. 1 29-1 36, 1986, contains this and further applications of Theorem 
5.22. 

Theorems 5.23, 5.28. The history of these fixed point theorems is 
described on pp. 470--471  of [ 4] . A proof of Brouwer's theorem that is both 
elementary and simple may be found on pp. 38--40 of Dimension Theory by 
Hurewicz and Wallman, Princeton University Press, Princeton, N.J., 1948. 

Chapter 6 

The standard reference is, of course, [26]. See also [5], [8], [27], [3 1] .  [ 1 3] 
contains a very concise introduction to the subject. 

Definition 6.3. £&(0) is here topologized as the inductive limit of the 
Frechet spaces S&K(O). See [ 1 5], pp. 2 17-225, for a systematic discussion of 
this notion in an abstract setting. 

Chapter 7 

For those aspects of Fourier analysis that are related to distributions, we 
refer to [26] and [ 13]. The group-theoretic aspects of the subject are dis
cussed in [1 1] and [24]. The standard work on Fourier series is [34]. 

Theorem 7.4. The intimate relation between Fourier transforms and 
differentiation is no accident ; Fourier series were invented, in the eighteenth 
century, as tools to solve differential equations. 

Theorem 7.5 is sometimes called the Riemann-Lebesgue lemma. 
Theorem 7.9 was originally proved by M. Plancherel in Rend. 

Palermo., vol. 30, pp. 289-335, 19 10. 
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Theorems 7.22 and 7.23. These proofs are as in [ 1 3] but contain more 
details. 

Theorem 7.25 is due to S. L. Sobolev, Mat. Sbornik, vol. 4, pp. 47 1-
497, 1938. 

Exercise 16. This is taken from L. Schwartz' first counterexample to 
the spectral synthesis problem (C. R. Acad. Sci. Paris, vol. 227, pp. 424--426, 
1 948). For further information on this problem, see C. S. Herz (Trans. 
Amer. Math. Soc., vol. 94, pp. 1 8 1-232, 1960) and chap. 7 of [24]. 

Exercise 1 7. See C. S. Herz, Ann. Math., vol. 68, pp. 709-7 12, 1958. 

Chapter 8 

General references : [1] ,  [ 1 3], [27], [30]. 
The existence of fundamental solutions (Theorem 8.5) was established 

independently by L. Ehrenpreis (Amer. J. Math., vol. 76, pp. 883-903, 1 954) 
and by B. Malgrange in his thesis (Ann. Inst. Fourier, vol. 6, pp. 27 1-355, 
1 955- 1956). Lemma 8.3 is Malgrange's. He proves it for Fourier transforms 

f of test functions. He integrates over a ball where we have used a torus. As 
far as applications are concerned, this makes hardly any difference. The 
point is to get some useful majorization off by fP, that is, to have division 
by P under control. Ehrenpreis solved this division problem in a different 
way and went on to solve more general division problems of this type. See 
[ 1 3] and [30] for further references and more detailed results. 

It is essential in Theorem 8.5 that the coefficients of the differential 
operator under consideration be constant. This follows from an equation 
constructed by H. Lewy (Ann. Math., vol. 66, pp. 1 55- 158, 1957), which has 
C' coefficients but no solution. Hormander ([ 13], chap. VI) has investigated 
this nonexistence phenomenon very completely. 

Section 8.8. Many other types of Sobolev spaces have been studied. 
See [ 1 3], chap. II. 

Theorem 8. 1 2. See K. 0. Friedrichs, Comm. Pure Appl. Math., vol. 6, 
pp. 299-325, 1953, and P. D. Lax, Comm. Pure Appl. Math., vol. 8, pp. 
6 15-633, 1955. Lax treats the periodic case first, via Fourier series, and then 
uses the bootstrap proposition to obtain the general case. He does not 
assume that the highest-order terms are constant. See also [ 4], pp. 1 703-
1708. 

Exercise 10. G is the so-called " Green's function " of P(D). 
Exercise 1 6. This is a theorem about zero sets of homogeneous poly

nomials (with complex coefficients) in R". See [1] ,  p. 46. 

Chapter 9 
• 

Section 9. 1 .  See A. Tauber, Monatsh. Math., vol. 8, pp. 273-277, 1897, and 
J. E. Littlewood, Proc. London Math. Soc., vol. 9, pp. 434--448, 19 10. 
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Theorem 9.3. The use of distributions in this proof is as in J. 
Korevaar's paper in Proc. Amer. Math. Soc., vol. 16, pp. 353-355, 1 965. 

Theorem 9.4 to Theorem 9.7. N. Wiener, Ann. Math., vol. 33, pp. 
1-100, 1 932, and H. R. Pitt, Proc. London Mat h. Soc., vol. 44, pp. 243-288, 
1938. Later proofs gave various generalizations ; see [24], p. 159, for further 
references. See also A. Beurling, Acta Math., vol. 77, pp . . l 27-1 36, 1945. 

Section 9.9. The prime number theorem was first proved, indepen
dently, by J. Hadamard (Bull. Soc. Math. France, vol. 24, pp. 199-220, 1896) 
and by Ch. J. de la Vallee-Poussin (Ann. Soc. Sci. Bruxelles, vol. 20, pp. 
183-256, 1896). Both used complex variable methods. Wiener gave the first 
tauberian proof, as an application of his general theorem. " Elementary " 
proofs were found in 1949 by A. Selberg and by P. Erdos. For a simpler 
elementary proof, see N. Levinson, Amer. Math. Monthly, vol. 76, pp. 225-
245, 1969. The complex variable proofs still give the best error estimates ; 
see W. J. Le Veque, Topics in Number Theory, vol. II, p. 25 1 ,  Addison
Wesley Publishing Company, Reading, Mass., 1956. 

Theorem 9. 12. A. E. Ingham, J. London Math. Soc., vol. 20, pp. 17 1-
1 80, 1945. 

The material on the renewal equation is from S. Karlin, Pac. J. Mat h., 
vol. 5, pp. 229-257, 1955, where references to earlier work may be found. 
Nonlinear versions of the renewal equation are discussed by J. Chover and 
P. Ney in J. d'Analyse Math., vol. 2 1 ,  pp. 38 1--4 1 3, 1968 ; see also B. Henry, 
Duke Math. J., vol. 36, pp. 547-558, 1969. 

Exercise 7. This approximation problem is much less delicate in I3. 
See [23], sec. 9. 1 6. 

Chapter 10 

General references : [7], [ 12], [ 1 6], [ 19], [2 1] .  In [ 16] and [2 1], a great 
deal of basic theory is developed without assuming the presence of a unit. 
[2 1] contains some material about real algebras. 

Gelfand's paper (Mat. Sbornik, vol. 9, pp. 3-24, 194 1 ) contains Theo
rems 10.2, 10. 1 3, and 10. 14, some symbolic calculus, and Theorem 1 1 .9. For 
Fourier transforms of measures, the spectral radius formula (b) of Theorem 
10. 1 3  had been obtained earlier by A. Beurling (Proc. I X Congres de Mat h. 
Scandinaves, Helsingfors, pp. 345-366, 1938). See also the note to Theorem 
3.32. 

Theorem 10.9. The commutative case was obtained independently by 
A. M. Gleason (J. Anal. Math., vol. 19, pp. 1 7 1-172, 1 967) and by 1. P. 
Kahane and W. Zelazko (Studia Math., vol. 29, pp. 339-343, 1968). W. 
Zelazko (Studia Math., vol. 30, pp. 83-85, 1968) removed the commutativity 
hypothesis. The proof given in the text contains some simplifications. See 
also Theorem 1 .4.4 of [3], and J. A. Siddiqi, Can. Math. Bull., vol. 13 ,  pp. 
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2 19-220, 1970. M. Roitman and Y. Sternfeld (Trans. Amer. Math. Soc., vol. 
267, pp. 1 1 1-124, 198 1 )  found a more algebraic proof, which uses no func
tion theory. Related results concerning ideals of finite codimension were 
found by N. V. Rao (J. Func. Anal., vol. 82, pp. 237-258, 1 989). 

Theorem 10. 1 9. H. A. Seid (Amer. Math. Monthly, vol. 77, pp. 282-
283, 1 970) obtains the same conclusions, without assuming that A has a 
unit, if M = 1 .  

Theorem 10.20 says that a(x) is an upper semicontinuous function of 
x. An example of Kakutani ([21], p. 282) shows that a(z) is not, in general, a 
continuous function of x. See also Exercise 20. 

Section 10.2 1 .  The terms operational calculus or functional calculus are 
also frequently used. [ 12] contains a very thorough treatment of the sym
bolic calculus in Banach algebras. 

Theorem 10.34 (d) is due to E. R. Lorch (Trans. Amer. Math. Soc., vol. 
52, pp. 238-248, 1942). 

Theorem 10.35. Lomonosov's proof was published in Func. Anal. and 
Appl., vol. 7, pp. 55-56, 1 973. Even for a single operator it is much simpler 
and more far-reaching than anything that was known before. A. 1.  Michaels 
gave an account of Hilden's contribution in Adv. in Mat h., vol. 25, pp. 
56--58, 1977. 

As regards earlier work, N. Aronszajn and K. T. Smith (Ann. Mat h., 
vol. 60, pp. 345-350, 1954) proved that every compact operator on a 
Banach space has a proper invariant subspace . .  A. R. Bernstein and A. 
Robinson (Pac. J. Math., vol. 1 6, pp. 42 1--43 1 ,  1966) obtained the same 
conclusion for bounded operators T on a Hilbert space that have p(T) 
compact for some polynomial p. Their proof uses nonstandard analysis ; 
P. R. Halmos converted it into one that uses only classical concepts (Pac. J. 
Math., vol. 16, pp. 433--437, 1 966). 

Since some operators, even on a Hilbert space, commute with no 
compact one (Exercise 26), Lomonosov's theorem does not settle the invari
ant subspace problem. In fact, operators without invariant subspaces have 
been found in certain nonreflexive Banach spaces (P. Enflo, Acta Math., vol. 
1 58 ,  pp. 2 1 3-3 13 ,  1987), and even in {1 and c0 (C. J. Read, Proc. London 
Math. Soc., vol. 53, pp. 583-607, 1989). See also Section 1 2.27. 

Exercise 22. This is one of the simplest cases of the Arens-Royden 
theorem for commutative Banach algebras. It relates the group G/G1 to the 
topological structure of the maximal ideal space of A. See H. L. Royden's 
article in Bull. Amer. Math. Soc., vol. 69, pp. 28 1-298, 1963, that by R. 
Arens in F. T. Birtel, ed., Function Algebras, pp. 164-- 168, Scott, Foresman 
and Company, Glenview, Ill., 1966, and [6] and [29]. 

Exercise 23. For the precise structure of G/G1 in this case, see J. L. 
Taylor, Acta Math., vol. 126, pp. 195-225, 197 1 .  

Exercise 24. See C. Le Page, C. R. Acad. Sci. Paris, vol. 265, pp. 
A235-A237, 1967. 
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Exercise 26. The invariant subspaces of this shift operator are com
pletely known. This is Beurling's theorem (Acta Math., vol. 8 1 ,  pp. 239-255, 
1 949). Helson and Lowdenslager (Acta Mat h., vol. 99, pp. 1 65-202, 1958) 
used different methods and extended Beurling's theorem to other settings. 

Chapter 1 1  

Theorem 1 1 .7. The case n = 1 was proved in elementary fashion by P. 1. 
Cohen in Proc. Amer. Math. Soc., vol. 12, pp. 1 59-163, 1 96 1 .  For n > 1 ,  the 
proof of the text seems to be the only one that is known. 

Theorem 1 1 .9. When A has no unit, then A is locally compact (but 
not compact) and A c C0(A) ; the origin of A* is then in the closure of A. 
See [ 16] ,  pp. 52-53 .  

Theorem 1 1 . 1 0  is what has been called an " automatic continuity " 
theorem. (Theorems 10.7 and 1 1 . 3 1  are other examples.) This is a concept 
which brings classical analysis into contact with axiomatic set theory. For 
example, " Kaplansky's problem " is the following : Is it true, for every 
compact Hausdorff space X and every Banach algebra A, that every homo
morphism from C(X) into A is continuous ? The work of Dales, Esterle, 
Solovay, and Woodin has shown that this question is undecidable in ZFC 
(Zermelo-Frankel set theory plus the axiom of choice). See [38] for details. 

Example 1 1 . 1 3  (d) shows why there are very close relations between 
commutative Banach algebras, on the one hand, and holomorphic functions 
of several complex variables on the other. This topic is not at all pursued in 
the present book. Very good, up-to-date accounts of it may be found in the 
books by Browder [3]. Gamelin [6], Stout [29], and Wermer [47] . A sym
bolic calculus for functions of several Banach algebra elements can be 
developed. See R. Arens and A. P. Calderon, Ann. Math., vol. 62, pp. 204--
2 16, 1955, and J. L. Taylor, Acta Math., vol. 1 25, pp. 1-38, 1970. 

Example 1 1 . 1 3  (e) shows why certain parts of Fourier analysis may be 
derived easily from the theory of Banach algebras. This is done in [16] and 
[24]. 

Theorem 1 1 . 1 8  was proved by Gelfand and Naimark in Mat. Sbornik, 
vol. 12, pp. 197-2 1 3, 1943. In the same paper they also proved that every 
B*-algebra A (commutative or not) is isometrically *-isomorphic to an 
algebra of bounded operators on some Hilbert space (Theorem 12.4 1), if 
e + x*x is invertible for every x E A. That this additional hypothesis is 
redundant was proved 1 5  years later by I. Kaplansky [{f) of Theorem 
1 1 .28].  See [2 1],  p. 248, for references to the rather tangled history of this 
theorem. B. J. Glickfeld (Ill. J. Math., vol. 10, pp. 547-556, 1966) has shown 
that A is a B*-algebra if l lexp (ix) II = 1 for every hermitian x E A. 

Theorem 1 1 .20. The idea to pass from A to A/R, in order to prove the 
theorem without assuming the involution to be continuous, is due to J. W. 
M. Ford (J. London Math. Soc., vol. 42, pp. 521-522, 1967). 
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Theorem 1 1 .23. See R. S. F oguel, Ark. Mat., vol. 3, pp. 449--461 ,  1957. 
Theorem 1 1 .25. See P. Civin and B. Yood, Pac. J. Math., vol. 9, pp. 

41 5--436, 1959 ; especially p. 420. Also [2 1],  p. 182. 
Theorem 1 1 .28. A recent treatment of these matters was given by v. 

Ptak, Bull. London Mat h. Soc., vol. 2, pp. 327-334, 1970. Also, see the note 
to Theorem 1 1 . 18 .  

Theorem 1 1 .3 1 .  See [ 19] ,  [2 1] .  H.  F. Bohnenblust and S. Karlin (Ann. 
Math., vol. 62, pp. 21 7-229, 1955) have found relations between positive 
functionals, on the one hand, and the geometry of the unit ball of a Banach 
algebra on the other. 

Theorem 1 1 .32. See [7]. Also [ 16], p. 97, and [2 1], p. 230. 
Theorem 1 1 .33  is in [20], for continuous involutions. 
Exercise 1 3 . Part (g) contradicts the second half of corollary (4.5.3) in 

[2 1] .  It also affects Theorem (4.8. 16) of [2 1]. 
Exercise 14. This was first proved by S. Bochner (Math. Ann., vol. 

108, pp. 378--4 10, 193 3 ;  especially p. 407), using essentially the same 
machinery that we used in Theorem 7.7. See [24] for a somewhat different 
proof. The proof that is suggested here shows that the presence or absence 
of a unit element makes a difference in studying positive functionals. See 
[ 16], p. 96, and [2 1],  p. 2 19. 

Chapter 12 

General references : [4], [9], [ 10], [ 1 7], [22]. 
Theorem 12. 16. B. Fuglede proved the case M = N in Proc. Nat/. 

Acad. Sci. USA, vol. 36, pp. 35--40, 1950, including the unbounded case 
(Chapter 1 3, Exercise 1 5). His proof used the spectral theorem and was 
extended to the case M # N by C. R. Putnam (Amer. J. Mat h., vol. 73, pp. 
357-362, 195 1), who also obtained Theorem 12.36. The short proof of the 
text is due to M. Rosenblum, J. London Math. Soc., vol. 33,  pp. 376-377, 
1958. 

Theorem 12.22. The extension process that is used here to go from 
continuous functions to bounded ones is as in [ 16], pp. 93-94. 

Theorem 12.23. See [4], pp. 926-936, for historical remarks about the 
spectral theorem. See also P. R. Halmos' article in Amer. Math. Monthly, 
vol. 70, pp. 241-247, 1963, for a different description of the spectral 
theorem. 

Theorem 12.38 was proved by P. R. Halmos, G. Lumer, and J. 
Schaffer, in Proc. Amer. Math. Soc., vol. 4, pp. 142-1 49, 1953. D. Deckard 
and C. Pearcy (Acta Sci., Mat h. Szeged., vol. 28, pp. 1-7, 1967) went further 
and proved that the range of the exponential function is neither open nor 
closed in the group of invertible operators. Their paper contains several 
references to intermediate results. 

Theorem 12.39. See [2 1] ,  p. 227. 
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Theorem 12.4 1 .  Closed *-subalgebras of !?/J(H) are called C*-algebras. 
Before Theorem 12.41 was known (see the note to Theorem 1 1 . 1 8), 
B*-algebras were studied separately, but now the term B*-algebra is no 
longer used much. 

Theorems 12.43, 12.44. Several types of ergodic theorems are dis
cussed in [ 4] and [ 43] .  

Exercise 2 is very familiar if N = 4. 
Exercise 18 .  The relation between shift operators and the invariant 

subspace problem is discussed by P. R. Halmos in J. Reine Angew. Math., 
vol. 208, pp. 102-1 12, 1 96 1 .  

Exercise 27. See P. Civin and B. Yood, Pac. J. Math., vol. 9, pp. 4 1 5-
436, 1 959, for many results about involutions. 

Exercise 32. Part (c) implies that every uniformly convex Banach 
space is reflexive. See Exercise 1 of Chapter 4 and the note to Exercise 28 of 
Chapter 3. All IT-spaces (with 1 < p < oo) are uniformly convex. See J. A. 
Clarkson, Trans. Amer. Math. Soc., vol. 40, pp. 396--414, 1 936, or [ 15], pp. 
355-359. 

Chapter 13 

General references : [ 4], [ 12], [22]. 
Theorem 1 3 .6 was first proved by A. Wintner, Phys. Rev., vol. 7 1 , pp. 

738-739, 1947. The more algebraic proof of the text is H. Wielandt's, Math. 
Ann., vol. 12 1 , p. 2 1 ,  1949. It was generalized by D. C. Kleinecke (Proc. 
A mer. Mat h. Soc., vol. 8, pp. 535-536, 1 957), to yield the following theorem 
about derivations: If D is a continuous linear operator in a Banach algebra 
A such that D(xy) = xDy + (Dx)y for all x, y E A, then the spectral radius of 
Dx is 0 for every x that commutes with Dx. This was also proved by Shiro
kov (Uspehi, vol. 1 1 , no. 4, pp. 167-1 68, 1956) and, in commutative Banach 
algebras, by Singer and Wermer (Math. Ann., vol. 1 29, pp. 260--264, 1955). 
See p. 20 of I. Kaplansky's article " Functional Analysis " in Some Aspects of 
Analysis and Probability, 1 ohn Wiley & Sons, New York, 1958. 

A. Brown and C. Pearcy (Ann. Math., vol. 82, pp. 1 1 2-127, 1965) have 
proved, for separable H, that an operator T E !?/J(H) is a commutator if and 
only if T is not of the form M + C, where A # 0 and C is compact. See also 
C. Schneeberger, Proc. Amer. Math. Soc., vol. 28, pp. 464-472, 197 1 .  

The Cayley transform, its relation to deficiency indices, and the proof 
of Theorem 1 3 .30 are in von Neumann's paper in Math. Ann., vol. 102, pp. 
49- 1 3 1 , 1 929- 1930, and so is the spectral theorem for normal unbounded 
operators. The material on graphs is in his paper in Ann. Mat h., vol. 33, pp. 
294--3 10, 1932. Our proof of Theorem 1 3.33 is like that of F. Riesz and E. R. 
Lorch, Trans. Amer. Math. Soc., vol. 39, pp. 33 1-340, 1 936. See also [4], 
chap. XII. 
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Definition 1 3 .34. The continuity condition we impose can be 
weakened : if (a) and (b) hold, and if Q(t)x --+ x weakly, as t --+  0, for every 
x E X, then (c) holds. See [33], pp. 233-234. The proof uses more from the 
theory of vector-valued integration than the present book contains. 

Theorems 1 3 .35-1 3.37 are proved in [4], [ 12], [22], [33], and [46] . 
Theorem 13 .38. This is due to M. H. Stone, Ann. Math., vol. 33,  pp. 

643-648, 1932; see also B. Sz. Nagy, Math. Ann. vol. 1 1 2, pp. 286-296, 1936. 
Exercise 25 was pointed out to me by Sheldon Axler. It corrects an 

error made on p. 341 of the first edition of this book. 

Appendix A 

Section A2. 1. W. Alexander, Proc. Nat/. Acad. Sci. USA, vol. 25, pp. 296-
298, 1939. 

Section A3. A. Tychonoff proved this for cartesian products of inter
vals (Math. Ann., vol. 102, pp. 544--561 ,  1930) and used it to construct what 
is now known as the Cech (or Stone-Cech) compactification of a completely 
regular space. E. Cech (Ann. Math., vol. 38, pp. 823-844, 1937 ; especially 
p. 830) proved the general case of the theorem and studied properties of the 
compactification. Thus it appears that Cech proved the Tychonoff theorem, 
whereas Tychonoff found the Cech compactification-a good illustration of 
the historical reliability of mathematical nomenclature. 
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The numbers that follow the symbols indicate the sections where their 
meanings are explained. 

Spaces 

C(O) 1 .3 go(x, Y) 4. 1 
H(O) 1 .3 go( X) 4. 1 
C':_ 1 .3 X** 4.5 
.K(A) 1 . 1 6  M.l 4.6, 1 2.4 
R" 1 . 19 .LN 4.6 
([;" 1 . 19 .K(T) 4. 1 1  
X/N 1 .40 �(T) 4. 1 1  
Y. 1 .43 Hl 5 . 19  
�K 1 .46 � 6. 1 
C00(0) 1 .46 �(n) 6.2 
Lip IX Exercise 22, Chapter 1 �'(0) 6.7 
{P Exercise 5, Chapter 2 !/n 7.3 
X* 3 . 1  C0(R") 7.5 
xw 3. 1 1  !7' n 7. 1 1  
[00 Exercise 4, Chapter 3 C(P)(Q) 7.24 
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T" 8.2 H 12. 1  
H" 8.8 L(YJ(E) 12.20 
H(An) 10.26 �(T) 1 3. 1  
A(U") 1 1 .7 �(T) 1 3 . 1  
rad A 1 1 .8 �� 1 3.23 

� A 1 1 .8 

Operators 

Da 1 .46 Da 7. 1 
T* 4. 10, 1 3 . 1  P(D) 7. 1 
I 4. 1 7  Dk 

i 7.24 
R. 5. 12 � 8.5 
L. 5 . 12  a Exercise 8, Chapter 8 
-r. 5. 19 a Exercise 8, Chapter 8 
{Jx 6.9 Mx 10.2 
At 6. 1 1  SL Exercise 2, Chapter 10 
Ap. 6. 1 1  SR Exercise 2, Chapter 10 

'rx 6.29 v 1 3.7 

Number Theoretic Functions and Symbols 

n(x) 9.9 1/J(x) 9. 10 
[x] 9. 10 F(x) 9. 10 
d i n 9. 10 '(s) 9. 1 1  
A(n) 9. 10 

<;; 1 . 1  
R 1 . 1  
l l x l l 1 .2 

Other Symbols 

complex field I a l  1 .46 
real field 
norm PN(f) 1 .46 

A 

order of 
multi-index . 
semmorm 

dim X 1 .4 dimension f(n) Exercise 6, Chap. 2 
0 1 .4 empty set Fourier 
E 1 .5 closure coefficient 
Eo 1 . 5  interior co( E) 3 . 19  convex hull 
f: X -+ Y  1 . 16 function co( E) 3 . 19  closed convex hull 

notation Indr (z) 3 .30 index 
f(A) 1 . 16 

. (x, x*) 4.2 value of x* at x Image 
/ - 1 (B) 1 . 1 6  

. 
mverse Image a{T) 4. 1 7, 1 3.26 spectrum 

f1A 1 .33  Minkowski ffi 4.20 direct sum 
functional I .le i  5.5 total variation 

T:N 1 .40 quotient of measure 
topology f iE 5.6 restriction 
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I I ¢ 1 1 N 6.2 norm in £&(0) 
x · y  6. 10 scalar product 
l x l 6. 10 length of vector 
X a 6.10 monomial 
SA 6.24 support 
v 6.29 u(x) = u( - x) u 
u * v 6.29, 6.34, 6.37, 7. 1 

convolution 
m. 7. 1 Lebesgue 

measure on R" 
et 7. 1 character 
/(t) 7. 1 Fourier 

transform 
ez 7.20 exponential 
rB 7.22 ball of radius r 
E 8. 1 fundamental 

solution 
a. 8.2 Haar measure 

on T" 
fls 8.8 measure related 

to H• 
Z(Y) 9.3 zero set 

fla ' fls 9. 14 Lebesgue 
decomposition 
of 11 

e 10. 1  unit element 

G(A) 10. 10 group of 
invertible elemen 

a(x) 10. 1 0  spectrum 
p{x) 10. 10 spectral radius 
An 10.26 members of A 

with spectrum 
in n 

j 10.26 A-valued 
holomorphic 
functions 

1 1 .5 maximal ideal 
space 

U" 1 1 .7 polydisc 
A 1 1 .8  Gelfand X 

transform 
r(S) 1 1 .2 1 centralizer 
(x, y) 12. 1 inner product 
j_ 12 . 1  orthogonality 

relation 
E 12. 1 7  resolution of 

identity 
Ex, y 12. 1 7  spectral 

measure 
T c S  1 3 . 1  inclusion of 

operators 



Absorbing set, 25 
Adjoint, 97, 3 1 1 , 347 
Affine map, 127 
Alaoglu, L., 68, 401 
Alexander, J. W., 41 1 
Algebra, 103, 121, 245 

commutative, 246 
self-adjoint, 122 
semisimp1e, 280 

*-Algebra, 321 
Almost periodic function, 345, 403 
Annihilator, 95, 122 
An tisymmetric set, 121  
Approximate eigenvalue, 1 1 5, 366 
Approximate identity, 173 
Arens, Richard F., 407, 408 
Arens-Royden theorem, 407 
Aronszajn, Nachman, 407 
Ascoli's theorem, 394 
Automatic continuity, 408 
Axler, Sheldon, 41 1 

B*-algebra, 288 
Baire's theorem, 43 
Balanced local base, 13  
Balanced set, 6 
Ball, 4 
Banach, Stefan, 397, 398 
Banach-Alaoglu theorem, 68 

converse of, 1 13 
Banach algebra, 245 
Banach limit, 85 
Banach space, 4 
Banach-Steinhaus theorem, 43, 44 
Barrel, 400 
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Base of a topology, 7 
Basis of a vector space, 16 
Bernstein, Allen R., 407 
Beurling, Arne, 406, 408 
Bilinear mapping, 52, 55, 400 
Birkhoff, George D., 400 
Bishop, Errett, 403 
Bishop's theorem, 121,  124 
Blaschke product, 125 
Bochner, Salomon, 399, 409 
Bochner's theorem, 298, 303 
Bohnenblust, H. F., 401 ,  409 
Bonsall, Frank F., 1 38, 399, 404 
Bootstrap proposition, 220, 405 
Borel measure, 78 

regular, 80 
Borel set, 78 
Bounded linear functional, 14, 24 
Bounded linear transformation, 24 
Bounded set, 8, 23 
Bourgin, Richard D., 402 
Branges, Louis de, 403 
Bray, Hubert E., 400 
Brouwer's fixed point theorem, 143, 404 
Browder, Andrew, 408 
Brown, Arlen, 402, 410 
Buck, R. Creighton, 399 

C*-algebra, 410 
Calderon, Alberto P., 408 
Carleson, Lennart, 403 
Cartesian product, 50 
Category, 42 
Category theorem, 43 
Cauchy formula, 83, 224, 261 
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Cauchy-Riemann equation, 222 

Cauchy sequence, 20 

Cauchy's theorem, 83 
Cayley transform, 356 
Cech, Eduard, 41 1 

Centralizer, 292 

Change of measure, 367 

Character, 182 
Characteristic polynomial, 216 

Choquet's theorem, 402 

Chover, Joshua, 406 
Civin, Paul, 409, 410 

Clarkson, James A., 410 

Oosed convex hull, 72 

Closed graph theorem, 5 1  
Closed operator, 347 
Closed range theorem, 100, 138 

Closed set, 7 

Closure, 7 
Codimension, 39 

Cohen, Paul J., 400, 408 

Commutator, 351, 410 

Compact operator, 103 
Compact set, 7 

Complete metric, 20 

Completely continuous operator, 402 

Complex algebra, 245 

Complex homomorphism, 249 

Complex-linear functional, 57 

Complex vector space, 5 

Component, 256 

principal, 267 

Conjugate-linear function, 306 

Continuity, 7 

of scalar multiplication, 41 

Continuous spectrum, 343, 366 

Contour, 259 

Convergent sequence, 7 

of distributions, 161 

Convex base, 1 3  

Convex combination, 38 

Convex hull, 38, 72 

Con vex set, 6 

Convolution, 170, 1 82 
of distributions, 171,  174, 180, 195 
of measures, 237 

of rapidly decreasing functions, 188 

Convolution algebra, 244, 248, 285 

Dales, H. Garth, 408 

Deckard, Don, 409 
Deficiency index, 360 

Degree of polynomial, 21 1 

Dense set, 1 5  

Densely defined operator, 348 

Derivation, 410 

Diagonal, 50 
Dieudonne, Jean, 398, 399 
Differential operator, 34, 202, 216 

elliptic, 216 

order of, 34, 216 

Differentiation : 
of distributions, 150, 158 

Dilation, 21 

Dimension, 6, 360 

Dirac measure, 156, 165, 194 

Direct sum, 106 

of Hilbert spaces, 338 

Disc algebra, 124, 248 

Distance, 4 

Distribution, 149, 1 56 
on a circle, 1 79 
locally H', 218  

periodic, 207, 225 

tempered, 1 89 

on a torus, 207 

Distribution derivative, 158  

Domain, 347 

Dual space, 56 
of c, c0 , 87, 1 15 

of C(K), 67, 80 

of C(Q), 88 

of a Hilbert space, 308, 341 

of 1•, 86 

of U, 36 

of a quotient space, 97 
of a reflexive space, 1 1 1  
second, 9 5, 1 1 1  

of a subspace, 97 
-

Dunford, Nelson, 401 

Duren, Peter L., 400 

Eberlein-�mulian theorem, 402 
Edwards, Robert E., 403 
Ehrenpreis, Leon, 210, 405 
Eigenfunction, 1 13 

Eigenvalue, 104, 328 

Eigenvector, 104 

Elliptic operator, 216 

Enflo, P ., 402, 407 

Entire function, 197 

Equicontinuity, 43, 394 
Equicontinuous group, 1 27 
Erdos, Paul, 406 



Ergodic theorem, 339 

Essential range, 285, 3 18  

Essential supremum, 86, 3 18  
Essentially bounded function, 285, 3 18  

Esterle, Jean, 408 

Evaluation functional, 90, 165 

Exact degree, 2 1 1  

Exponential function, 264, 267, 3 15, 334 
Extension of holomorphic function, 262 

Extension theorem, 57, 58, 6 1  

Extreme point, 74, 299 

Extreme set, 74 

F-space, 9 

Finite additivity, 139, 317 

First category, 42 

F oguel, Shaul R,, 409 

Ford, J, W. M., 408 

Fourier coefficient, 54 

of a distribution, 191  

Fourier-Plancherel transform, 189 

Fourier transform, 183 

of convolutions, 1 83 

of derivatives, 184 

of U-functions, 188 

of polynomials, 194 

of rapidly decreasing functions, 184 

of tempered distributions, 192 
Frechet, Maurice, 397 

Frechet space, 9 

Fredholm, Ivar, 397 

Fredholm alternative, 1 1 2  

Free group, 143 

Friedrichs, Kurt 0., 405 

Fuglede, Bent, 315, 409 

Function : 
almost periodic, 327, 377 

entire, 180 

essentially bounded, 285, 303 

exponential, 264, 267, 3 15, 3 17, 334 

harmonic, 178, 388 
Heaviside, 180 

holomorphic, 34, 82 

infinitely differentiable, 34 

locally integrable, 150 
locally U, 202 

positive-definite, 303 

rapidly decreasing, 184 

slowly oscillating, 229 

strongly holomorphic, 82 

weakly holomorphic, 82 
(See also Functional ; Operator) 

Functional, 14 
bounded, 24 

complex-linear, 57 
continuous, 15, 56 

linear, 14 

multiplicative, 249 

positive, 296, 336 
on quotient space, 96 

real-linear, 57 
sesquilinear, 292 
on subspace, 96 

(See also Dual space) 
Functional calculus, 407 

Fundamental solution, 210 
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Gamelin, Theodore W., 408 

Gelfand, Izrail M., 255, 398, 406, 408 

Gelfand-Mazur theorem, 255 

Gelfand-Naimark theorem, 289, 380 

Gelfand topology, 280 

Gelfand transform, 280 

Gleason, Andrew M., 251,  406 
Glickfeld, Barnett W., 408 

Glicksberg, Irving, 403 

Goffman, Casper, 399 

Graph, 50, 347 

Green's function, 405 

Grothendieck, Alexandre, 1 17, 403 

Group: 
compact, 1 29 

of invertible elements, 252, 267 

of operators, 1 27, 1 34, 333 

topological, 128 

Haar measure, 130, 144, 403 

of a torus, 21 1 

Hadamard, Jacques, 406 

Hahn, Frank, 403 
Hahn-Banach theorems, 56-61, 141 

Halmos, Paul R., 402, 407, 409, 410 

Hamburger, C., 403 

Hamel basis, 53 

Harmonic function, 178, 388 

Hausdorff separation axiom, 1 1, 50 

Hausdorff space, 7 

Hausdorff topology, 7, 62 

Hausdorff's maximality theorem, 39 1 

Heaviside function, 1 80 
Heine-Borel property, 9, 153 
Heins, Maurice, 403 

Hellinger-Toeplitz theorem, 1 1 7  
Helson, Henry, 408 
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Hermitian operator, 3 12  
Herz, Carl S., 405 
Hilbert, David, 397, 398 
Hilbert-Schmidt operator, 402 
Hilbert space, 307 

adjoint, 3 1 2, 347 
automorphism, 3 1 4  

Hilbert transform, 208, 388 
Hildebrandt, T. H., 399, 401 
Hilden, Hugh M., 269, 407 
Hille-Yosida theorem, 380 
Holbrook, J. A. R., 401 
Holder's inequality, 1 19 
Holomorphic distribution, 222 
Holomorphic function, 34 

of several variables, 1 97 
vector-valued, 82 

Homomorphism, 183, 249, 276 
Hiirmander, Lars, 405 
Horowitz, Charles, 400 
Horvath, John M., 399 
Hurewicz, Witold, 404 
Hyperplane, 85 

Ideal, 275 
maximal, 275 
proper, 275 

Idempotent element, 302 
Image, 14 
Index, 82 
Inductive limit, 404 
Infinitesimal generator, 376 
Ingham, Albert E., 406 
Ingham's theorem, 233 
Inherited topology, 7 
Inner product, 306 
Integral of vector function, 77, 81 ,  89, 196, 

254, 259 
Integration by parts, 136 
Interior, 7 
Internal point, 85 
Invariant measure, 130 
Invariant metric, 1 8  
Invariant subspace, 269, 327, 410 
Invariant topology, 8 
Inverse, 249, 365 
In verse image, 14 
Inversion theorem, 186 
Invertible element, 249 
Invertible operator, 104 

Involution, 287 
*-Isomorphism, 289 

James, Robert C., 402 

Kahane, Jean-Pierre, 251, 403, 406 
Kakutani, Shizuo, 400, 403, 407 
Kakutani's fixed point theorem, 127, 140 
Kaplansky, Irving, 408, 410 
Kaplansky's problem, 404 
Karlin, Samuel, 237, 406, 409 
Kleinecke, David C., 410 
Kolmogorov, A., 400 
Korevaar, Jacob, 406 
Krein, M., 401, 403 
Krein-Milman theorem, 75, 403 

Laplace equation, 215 
Laplace transform, 200, 380 
Laplacian, 206 
La Vallee-Poussin, Ch.-J. de, 406 
Lax, Peter D., 405 
Lebesgue decomposition, 237 
Lebesgue integral, 397 
Lebesgue spaces, 33, 36, 1 17 
Left continuity, 246 
Left multiplication, 247 
Left shift, 271 
Left translate, 129 
Leibniz formula, 159 160 
Le Page, Claude, 407 
Le Veque, William J., 406 
Levinson, Norman, 406 
Lewy, Hans, 405 
Liapounoff, A., 403 
Limit, 7 
Lindenstrauss, Joram, 403 
Linear functional (see Functional) 
Linear mapping, 14 
Liouville's theorem, 84 
Lipschitz space, 41 
Littlewood, John E., 227, 405 
Littlewood's tauberian theorem, 227, 241 
Local base, 8, 122 

balanced, 1 3  
convex, 13 

Local compactness, 9 
Local convexity, 9, 24 
Local diffeomorphism, 253 
Local equality of distributions, 162 
Local finiteness, 162 
Locally bounded space, 9 
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Locally integrable function, 1 50 
Locally L 2 function, 202 
Logarithm, 264 
Lomonosov, Victor J., 407 
Lomonosov's theorem, 269 
Lorch, Edgar R., 399, 407, 4 10  
Lowdenslager, David, 408 
Lumer, Gunter, 409 

McShane, Edward J., 399 
Malgrange, Bernard, 2 1  0, 405 
Mandelbrojt, Szolem, 400 
Mao, Chao-Lin, 403 
Mapping : 

bilinear, 52, 55, 400 
open, 3 1 , 48 
(See also Operator) 

Markov, A., 140 
Max-min duality, 402 . 
Maximal ideal space, 280 
Maximally normal operator, 370 
Maximally symmetric operator, 355 
Mean ergodic theorem, 340 
Measure : 

Borel, 78 
H-valued, 318 
Haar, 130 
nonatomic, 120 
normalized Lebesgue, 182 
probability, 78 
projection-valued, 3 17  
regular, 80 

Mergelyan's theorem, 123 
Metric, 4 

compatible, 7 
complete, 20 
euclidean, 16 
invariant, 18  

Metric space, 4 
Metrization theorem, 1 8, 63, 400 

in locally con vex spaces, 29 
Milman, D., 76, 401 
Minkowski functional, 25, 143 
Monomial, 1 57 
Montel space, 401 
Multi-index, 34 
Multiplication operator, 8, 1 1 2, 334 
Multiplication theorem, 362 
Multiplicative functional, 249 
Multiplicative inequality, 245 

Nachbin, Leopoldo, 401 
Nagumo, M., 398 
Naimark, M. A., 408 
Namioka, Isaac, 403 
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Neumann, John von, 340, 398, 401, 403, 410 
Newman, Donald J., 404 
Ney, Peter, 406 
Nonatomic measure, 120 
Nontangentially dense, 1 38 
Norm, 3 

in dual space, 89 
Norm topology, 4 
Normable space, 9 
Normal element, 294 
Normal operator, 3 12, 368 
Normal subset, 294 
Normalized Lebesgue measure, 182 
Normed dual, 92 
Normed space, 3 
Nowhere dense set, 42 
Null space, 15, 99 

Open mapping, 3 1  
Open mapping theorem, 48 
Open set, 6 
Operational calculus, 407 
Operator : 

bounded, 24 
closed, 347 
compact, 103 
completely continuous, 376 
densely defined, 348 
differential, 34, 202, 216 
elliptic, 216 
hermitian, 312 
invertible, 103 
linear, 14 
locally H', 218 
maximally normal, 370 
maximally symmetric, 355 
normal, 3 12, 368 
positive, 330, 369 
self-adjoint, 312, 349 
symmetric, 1 16, 349 
unitary, 3 12  

Order: 
of a differential operator, 34, 216 
of a distribution, 1 56 
of an operator on Sobolev spaces, 217 
partial, 391 
total, 391 
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Orthogonal projection, 314 
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Partially ordered set, 39 1 
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of unity, 162 
Pearcy, Carl M., 409, 410 
Pettis, Billy J., 401 
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Pitt, Harry R., 229, 406 
Pitt's theorem, 229, 238 
Plancherel, M., 404 
Plancherel theorem, 188 
Point spectrum, 266, 273, 328, 343 
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Polar of a set, 68 
Polar decomposition, 332, 387 
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Polydisc, 279 
Poly disc algebra, 301 
Polynomial convexity, 284 
Positive-definite function, 303 
Positive functional, 296, 336 
Positive operator, 330, 369 
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Principal part of operator, 216 
Principal value integral, 180 
Probability measure, 78 
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Projection, 133, 3 12, 314 
Ptak, Vlastimil, 409 
Putnam, Calvin R., 3 15, 409 

Quotient algebra, 276 
Quotient map, 3 1  
Quotient norm, 3 2  
Quotient space, 30 
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Radical, 280 
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Rapidly decreasing function, 184 
Read, C.J., 407 
Real vector space, 5 
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Renewal equation, 236 
Residual spectrum, 343 
Resolution of identity, 3 1 6, 360, 368 
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Riemann-Lebesgue lemma, 404 
Riemann sums, 89 
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Riesz, Frederic, 124, 397, 402, 410 
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Right multiplication, 247 
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Robinson, Abraham, 407 
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Romberg, Bernard W., 400 
Root, 264 
Rosenblum, Marvin, 315, 409 
Rosenthal, Haskell, P., 404 
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Scalar multiplication, 5 
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Schauder-Tychonoff theorem, 143, 269 
Schneeberger, Charles M., 410 
Schwartz, Laurent, 398, 405 
Schwarz inequality, 307 
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Seid, Howard A., 407 
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Self-adjoint algebra, 122 
Self-adjoint element, 288 
Self-adjoint operator, 312, 349 
Semigroup, 375 

of normal operators, 382 
unitary, 382 
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Semisimple algebra, 280 
Separable space, 69 
Separate continuity, 52 
Separating family, 25 
Separation theorems, 10, 59, 74 
Sequential continuity, 395 
Sesquilinear functional, 306 
Set : 

absorbing, 25 
an tisymmetric, 121  
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Borel, 78 
bounded, 8, 23 
closed, 7 
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connected, 395 
convex, 6 
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of first category, 42 
normal, 294 
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open, 6 
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Shapiro, Joel H., 401 
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Slowly oscillating function, 229 
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complete metric, 20 
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Hilbert, 307 
Lipschitz, 41 
locally bounded, 9 
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metric, 4 
Montel, 401 
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reflexive, 95, 1 1 1 , 410  
separable, 69 
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unitary, 306 
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Spectral mapping theorem, 263, 266 
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formula, 253 
Spectral theorem, 321,  324, 368, 371 
Spectrum, 104, 252, 365 

of compact operator, 109 
continuous, 343, 366 
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of self-adjoint operator, 3 14, 368 
of unitary operator, 3 14 
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Unitary space, 306 

Vector space, 5 
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real, 5 
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locally bounded, 9 
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metrizable, 9 
normable, 9 

Vector topology, 7 
Veech, William A., 404 
Volterra, Vito, 397 

Wallman, Henry, 404 
Weak closure, 65 
Weak neighborhood, 65 
Weak sequential closure, 87 
Weak topology, 62, 65 
Weak*-topology, 67 
Weakly bounded set, 66 
Weakly convergent sequence, 66 
Weakly holomorphic function, 82 
Wermer, John, 408, 410 
Wielandt, Helmut W., 351, 410 
Wiener, Norbert, 397-399, 406 
Wiener's lemma, 278 
Wiener's theorem, 228, 229 
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