
Running head: Querying Java Objects

Using an In-Memory Database for Efficient Querying of Java Objects

David Moskowitz

Doctoral Student

Nova Southeastern University

Fall 2010

Querying Java Objects 1

Abstract

This paper explores adding object query capability to the Java language through the use if an in-

memory database. Java contains no native object query capability. Searching for specific objects, or

relating two or more object collections, must be done in a manual and iterative manor, increasing the

likelihood of an inefficient implementation. This manual approach contrasts the capabilities of

relation database systems that support high level querying via SQL. This paper looks at providing

the same query capabilities on Java objects through the use of an in-memory database. A prototype

system is presented that provides transparent querying of programmatic Java objects. Related

research on in-memory databases and querying of programmatic objects is discussed and suggestions

for future research are proposed.

Querying Java Objects 2

 In their 2006 paper "Efficient Object Querying for Java", Willis, Pearce, and Noble

proposed an extension to the Java language to enable high-level object query capabilities for the Java

language. A prototype system that compiled SQL like queries into native Java code was developed.

This system, called the Java Query Language (JQL) was implemented as a Java library that

encapsulated several common database query techniques, such as nested loops and hash joins

(Willis, Pearce, & Noble, 2006).

 In a 2010 unpublished paper, Moskowitz criticized this approach, specifically JQL's

reimplementation of common database query processing functionality. JQL indexes all

programmatic objects at object creation time and performs queries against this index. This approach

is similar to what a typical RDBMS provides, without the concern for efficient disk access. In other

words, JQL essentially reproduced an in-memory database (Moskowitz, Research Critique of

"Efficient Object Querying for Java", 2010).

 While the motivation for JQL was correct and the prototype implementation sound, the

effort involved in creating the necessary query processing capabilities was high. In the conclusion of

the paper, Moskowitz proposed incorporating a true in-memory database to provide the same (and

likely much more) query capabilities envisioned for JQL. This document will examine such a system.

Querying Java Objects 3

The Problem of Querying Program Objects

 Before we get into the specifics of querying Java objects, we first discuss the concept of

querying of programmatic objects. Programmatic objects refer to any data structure created by an

application at run time. In an object-oriented language like Java, we create objects instances and

collections of object instances. Enabling query capabilities on these programmatic objects was the

motivation for the development of JQL and is the motivation for the system presented in this paper.

 Even though the implementation of JQL was in Java, the authors describe the lack of object

query capabilities in most major programming languages. An example from the JQL paper and

paraphrased in (Moskowitz, 2010) is the following:

 Given a domain of Students and Faculty, find all Students who are

 also Faculty

Such a query could be expressed in SQL as:

SELECT students.* FROM students, Faculty

WHERE students.name = faculty.name

The JQL authors argue that most programmers would implement such a search using a nested loop,

such as in the following code example:

List<Tuple2<Faculty,Student>> matches = new ArrayList<..>();

for(Faculty f : allFaculty) {

 for(Student s : allStudents) {

 if(s.name.equals(f.name)) {

 matches.add(new Tuple2<Faculty,Student>(f,s));

}}}

In most cases, a hash join approach, though slightly more complicated, would be much more

efficient. Benchmark results, presented later in this document, confirm this assertion.

 JQL proposed using a SQL-like syntax in Java source files. Using JQL, the above query

could be expressed as:

 matches = selectAll(Faculty f, Student s:

 f.name.equals(s.name));

Querying Java Objects 4

JQL, like SQL-based systems, hides the implementation details and determines the best execution

plan for the given query.

 The need to query programmatic objects is demonstrable, but support in programming

languages has been low. Nothing of the sort currently exists for Java. Several other languages,

particularly those that support closures, have limited query capabilities. An example of the type of

query support some languages provide is the Filter operation from Groovy (Groovy JDK API

Specification). This examples illustrates simple lists selection capabilities

 assert [2,4] == [1,2,3,4].findAll { it % 2 == 0 }

In this example a closure, checking if modulo 2 of the list element is 0, is passed to the findAll

method and applied to each element in the collection. This operation is analogous to the Selection

operation of relation algebra, and could be expressed in SQL as:

 select num from nums where num%2 =0

Another example is Groovy's version of the Cartesian Join, or Product from relational algebra.

assert [['a', 'b'],[1, 2, 3]].combinations()

 == [['a', 1], ['b', 1], ['a', 2], ['b', 2], ['a', 3],

 ['b', 3]]

In SQL, this would be written as:

 Select nums1.num,nums2.num from nums1, nums2

We could simulate a Theta Join from relational algebra by chaining the results of the findAll method

from the first example to the results of the Cartesian join. Such an approach to theta joins would be

logically correct but without the possibility of optimization, such as the use of indexes. Therefore,

performance is likely to be poor. It is also likely that Groovy is implementing the join using a simple

nested loop, where a hash join would be more efficient. Such Groovy operators are not meant to

take the place of database queries and rarely have the elegance of SQL

Querying Java Objects 5

 Even limited capabilities such as those described above are rare in most programming

languages. One notable exception is the Microsoft .NET platform and its LINQ extensions (Box &

Hejlsberg, 2007). A similar query to the one above example could be written in C# LINQ as:

List<String> words = new List<String> { "apple", "book" };

List<String> moreWords = new List<String> { "apple",

 "book", "cat", "do" };

var query = from word in words

 join word in moreWords

 on word equals words. word

 select new { word = words.word};

The results will be the expected theta join:

 {"apple" ,"book" }

This example shows how LINQ enables the use of SQL-like operators to programmatic objects.

Similar syntax is applicable to relational database sources as well as non-relational sources such as

XML. This was the approach envisioned for JQL, though JQL is hampered by the lack of closure

support in Java1. At the time JQL was developed, Microsoft LINQ was just recently announced and

not yet integrated into the .NET platform. Since then, this approach has become a standard way to

access data from the .NET application.

 LINQ takes a similar approach to Microsoft's original common data access technology,

ODBC (Microsoft , 2010). As ODBC provided a relational SQL-like model on top of multiple

sources, relational and non relational (Microsoft Excel for example), LINQ provides query

capabilities to relational databases , and additional sources such as XML files, and, most pertinent to

our discussion, programmatic objects. As was the case for ODBC, the same API is used no matter

what the data source. Indeed LINQ can be seen as the latest generation of ODBC-like technologies.

Though specific to the .NET platform, ODBC can be used from a variety of platforms and tools,

including Java. The same is not true for LINQ, which is .NET specific.

1 A good description of closures and their potential use in the Java language is (Gafter, 2007)

Querying Java Objects 6

 In many ways, the approach taken by Hibernate (Relational Persistence for Java and .NET,

2010) is similar the object query functionality we are trying to implement. Hibernate is the most

popular of the class of object/relational mapping (ORM) tools for Java
2
. Hibernate shields the

programmer from the specifics of the database layer, allowing him to work solely at the Java object

level. A mapping is created during development that describes how Java objects map to database

tables. Operations and queries executed against the object layer are translated to equivalent SQL

statements and executed against the backing database.

 Our SQL example from earlier:

 SELECT students.* FROM students, Faculty

 WHERE students.name = faculty.name

could be written using Hibernate Query Language (HQL) as:

 SELECT s from Student s, Faculty f WHERE f.name = s.name

Note that the HQL and SQL queries are almost identical. The primary difference (though HQL

supports additional features not available in SQL) is the use of class names and not database table

names. In most cases, an actual database query will be executed and the Java objects loaded

according to the defined mapping. Hibernate does maintain an in memory cache, but this is not a

cache of the database, only a cache of loaded objects. A requested object may exist in and be

retrievable from the cache, but for complex joins a database retrieval is usually needed. The main

similarity between HQL and native object queries is that HQL queries are executed against

programmatic objects, not against database tables. Tools such as ODBC, and the Java equivalent,

JDBC, enable SQL statements against database tables.

 While the programming model is similar, Hibernate focuses exclusively on managing persistent

objects (objects that are read and/or written to disk) in a transparent manner. Though not the

2 A .NET implementation is also available

Querying Java Objects 7

equivalent of in memory query, this approach could conceivably be extended to work on both in-

memory objects and persistent database storage. Such an approach would be analogous to LINQ,

where the same query syntax is used for in memory and database objects. Given the widespread use

of Hibernate, and new Java ORM technologies such as the Java Persistence API, a likely avenue to

incorporate object querying into Java would be as an addition to one of these existing Java

technologies.

In-Memory Databases

 In this section, we explore in-memory databases. Such systems are generally used in place of,

or in conjunction with, an on-disk database in order to improve performance. An in-memory

database is not a replacement for object querying, in the same way an SQL database is not such a

replacement. Programmatic objects will continue to hold the transitory data while the database will

hold the persistent data. The use of an in-memory database may in fact be transparent to the

application, as the application is only aware that it is using a database via a standard interface such as

SQL.

 An in-memory database (IMDB), also called a main memory database (MMDB) is a variant

of a relational database management system where the entire database is resident in memory. This

organization is in contrast to a standard relational database management system (RDBMS) which

stores data in secondary storage, usually a hard disk.

 In-memory databases were first proposed in the 1980s as researchers envisioned

improvements to RDBMS systems due to the continually rising capacity and falling costs of

computer memory. Exemplary of this thought is a 1986 paper by Lehman and Carey, who write:

It is projected that memory chip densities will continue their current trend of doubling

every year for the foreseeable future, and, as a result, it is expected that main memory

Querying Java Objects 8

sizes of a gigabyte or more will be feasible and perhaps even common within the next

decade. (Lehman & Carey, 1986)

This predication turned out to be correct. Moore's law, the basis for the prediction, continues to

hold today. Main memory of several gigabytes is now standard on even common desktop

computers.

 Much of the research and techniques proposed in the seminal articles of the 1980s and

1990s are still the state of the art to this day. Commercial systems first became available in the late

1990s as main memory costs dropped and capacities rose. The progress since that time has been

made in the number of available IMDB systems. The choices include high-end commercial and low-

end embedded and open source solutions.

 Even with the increase in memory capacity, some databases will never fit entirely in memory.

Large repositories such as data warehouses, or emerging technologies such as satellite image storage

or Web indexing, will always need secondary storage. However, IMDBs have seen widespread use in

areas where real time and high performance data access is needed. Examples of these fields include

financial services (high volume transactions) and telecommunications (real-time switching).

 In-memory databases are claimed to be 10 times faster than on-disk RDBMS. This often-

repeated metric inspired the name of one of the earliest commercial entries into the IMDB field,

Times Ten, who was recently purchased by Oracle (Oracle, 2005). The Times Ten software is

marketed as a standalone IMDB as well as an in-memory caching layer for Oracle's flagship

database.

 In a 1992 paper, Garcia-Molina and Salem describe the early history of in-memory databases.

Most of the systems described at that time were prototypes research projects in various levels of

development. The sole commercial product, Fast Path, was a component of the hierarchical IBM

IMS database. Fast Path was added into IMS in 1975 (Gawlick & Kinkade, 1985) to support higher

Querying Java Objects 9

performance processing through increases in memory storage of recently used data, referred to as

"hot spots". The system supported both in memory and on disk data.

 A key point mentioned in journal papers, and used frequently in IMDB product literature, is

the distinction between an IMDB and an on-disk databases with a large cache. Even if the cache

were large enough to hold a copy of the entire database, the systems would have fundamentally

different implementations. On-disk databases are optimized to limit disk access. Index structures

such as B-trees are commonly used for storage while buffers are used for data transfer between disk

and memory. Running such an on disk database in a RAM drive, for example, will still incorporate

disk-optimized structures and buffering techniques. While such caching will boost performance and

should certainly be used when appropriate, systems that need to gain every last bit of performance

will generally look towards, true in-memory optimized databases.

 In-memory databases are tuned for CPU efficiency/speed and reduced memory footprint.

Structures such as T-trees, first proposed in 1986 (Lehman & Carey) for IMDBs, are commonly

employed. Recently, further optimized index structures have been developed to take advantage of

speed improvements at the CPU memory cache level. These indexes are sometimes called Cache

Conscious indexes and optimize performance based on the speed differential between cache and

main memory. Rao and Ross (1999) observed that throughout the 1980s and 1990s,

processor/cache performance has increased by 60% per year while DRAM/Main memory

performance only increased by 10% per year. This metric, they claim, raised questions as to the

conclusions of earlier researchers who proposed T-trees as optimal IMDB structures. Instead, they

propose Cache-Sensitive Search Trees (CSS-trees) as a better solution. Later researchers proposed

additional cache sensitive index structures, such as cache sensitive B-trees. Cache sensitive solutions

attempt to minimize cache misses, thereby performing most lookups in faster cache memory. This

scenario is analogous to earlier (and ongoing) techniques to minimize "misses" to main memory

Querying Java Objects 10

lookups and avoid disk access. The major difference is that disk sensitive operations are under the

control of the DBMS, while cache sensitive performance is dictated by the computer hardware and

therefore non-deterministic.

 Such in-memory systems are gaining popularity as hardware capacity increases and costs

decline. Several open source IMBDs are available. Such tools make excellent candidate for

incorporation into JimQL, due to their price point (free) and open source license. Modern IMDBs

are available that support SQL.

 Also available are "no SQL" or key-value store databases. Key stores are used to cache data

so it is available for processing later. Key-value pairs provide a generic data mode usable by many

disparate system types. These systems can provide optimal performance for certain applications, as

the entire data model is limited to an in-memory hash table.

 We will use an SQL oriented database for JimQL, as our goal is to enable simple high level

querying. Most no-SQL systems require programmatic access to data similar to hierarchical and

network models of the past.

Embedded Databases

 Embedded databases are designed for use by an application and only accessed through the

application. This approach contracts non-embedded databases that can be access by multiple and

heterogeneous client tools. Embedded databases can be disk or memory based. Most will persist

data to disk (as most MMDBs do for durability) in order to achieve long-term storage of application

information.

 One of the earliest embedded databases was Btrieve, developed in 1982. This tool offered

programmatic access to an ISAM structure and was popular through the mid 1990s. In 1992,

Microsoft released Open Database Connectivity (ODBC) that provided a common programming

interface to disparate databases. Most importantly, this tool opened up SQL database access to

Querying Java Objects 11

emerging client-server programming environments, such as Microsoft's own Visual Basic. Visual

Basic 3.0 included support for Microsoft Access databases through the Jet library. Though not a true

DBMS, Access supported SQL queries and a relational view of data. ODBC and SQL back-ends

soon became the standard for client-server development. Many systems in need of an embedded

Database used Access files controlled by Jet engine embedded visual basic applications. Java

Database Connectivity (JDBC), released in 1997 as part of JDK 1.1, is the Java equivalent of ODBC

and has been the standard method for data access on the Java platform through the mid 2000s. In

the past decade, new data access methodologies like LINQ for Microsoft platforms and Enterprise

Java Beans and Hibernate for the Java platforms have gained popularity. However, SQL based

access through JDBC remains a commonly used data access approach.

 Embedded databases usually have a small memory footprint. Many of these systems are

geared towards embedded devices like set-top boxes or other hardware that may not have large

memory capacities. Our approach to Java object querying assumes enough memory to store our

needed objects. It is understood that whenever specific performance or memory requirements issues

arise in development, lower level implementation routines may be faster and necessary.

Implementation

 For the needs of our prototype Java object query processor, an in-memory embedded

database is the most appropriate. Providing data access from outside the application is not necessary,

nor is disk persistence. We also require SQL support to enable high-level queries. We will refer to

our implementation as Java In-memory Query Language, or JimQL.

Design Goals

 Like JQL, our primary requirement is to provide a high level SQL like query capability on

programmatic Java objects. The user should be able to simply specify the objects included in the

query and the select or join criteria to apply to those objects.

Querying Java Objects 12

 The two recommendations made for future research in the Moskowitz paper will be

addressed as well. These recommendations are:

1. Use a Java compatible syntax

2. Incorporate a commercial or open source in memory database as the query processing

engine

We also add the following requirement to our implementation

3. enable transparent plug in support for multiple IMDB implementations

This last requirement will allow easy comparison of multiple query engines and allow the

incorporation of additional IMDBs that may meet specific needs.

 The system should also maintain reasonable performance for simple queries and superior

performance for complex queries. Ideally, the performance of our system will be much better than

hand coded implementations, especially when query requirements are complex and the hand-coded

implementation may not take advantage of available query optimization strategies.

Java Compatible Syntax

 One problem with the JQL approach mentioned by Moskowitz is that the query syntax is

not Java compatible and an additional query compilation step is needed. Such requirements makes

JQL code difficult to integrate into a modern IDE.

 Java syntax can be easily achieved by using String parameters to represent queries. This

approach is used by similar technologies such as Object-Graph Navigation Language (OGNL) and

Hibernate HQL. While using strings makes type checking more difficult3, the flexibility of this

approach makes it preferable.

3 A separate type checker could be developed and perhaps integrated into an IDE or, as JQL, through an additional
compile stage.

Querying Java Objects 13

 To gain Java compatibility we could modify the JQL query syntax from the earlier example

to the following:

matches = JQL.selectAll("Faculty f, Student s",

 "f.name.equals(s.name)");

JimQL will use a slightly different syntax. The following is the JimQL representation of the above

query:

matches = .query("f.name = s.name",f,s);

This method uses a String argument for the join condition and a varargs argument for a variable

number of collection objects.

Incorporating an In-memory Database

 Rather than implementing an in-memory query processor for Java objects, and recognizing

the difficulty of such an approach, we instead choose to incorporate an existing embedded in-

memory database. Of the available systems, we choose the following for initial implementation and

testing:

1. HSQLDB (The HSQL Development Group)

2. H2 Database Engine (H2 Database Engine)

3. Apache Derby4 (Apache Derby)

These systems are all open source and freely available and distributable. There are also several

commercial implementations (ex. ExtremeDb (eXtremeDB Embedded Database In-Memory

Database System), SolidDb (solidDb Product Family)) that could be used. Open source systems are

generally preferable in a project such as ours, since the source code can be modified if necessary for

integration purposes or to satisfy specific functionality requirements. Closed source projects are

4 Derby in included in Java version 6 distribution as JavaDB

Querying Java Objects 14

more appropriate when used as- is, and, given our design goal of easy plug in transparency, could be

easily incorporated when appropriate.

 The basic approach in JimQL can be described as follows

1. Load source Java objects into target IMDB

2. Execute a query against target IMDB

3. Return results as Java objects

 Intuition would hold that step 1 would be the bottleneck, as this operation is not needed for most

other data query techniques. We can verify this assumption and gauge the performance penalty from

such an approach through benchmark testing. If Step 1 does prove to be the bottleneck, we can take

steps to avoid reloading collections that do not need to be loaded. We can do this by

 reusing existing, already loaded, collections if they are identical

 not loading specific tuples if they already exist

 Step 2, query execution, will be handled by the chosen In-memory database engine. Our

requirement here is to formulate the query from the input parameters. As will be shown, this is a

straightforward translation.

 Consider step 3, retrieving the result. Step 2 works on a representation of the actual source

objects; In this case, a copy of the objects loaded into the IMDB. Therefore, what is returned from

the query may not be the actual objects, but only a copy or close facsimile. Two options exist to

return actual source objects:

 create new instances of the original class using the returned objects

 store a reference to all loaded objects and retrieve that reference for each row in the

result

We will use the later approach, as it satisfied our requirements at the expense of slightly greater

memory usage. To implement this technique, we will create a hash table containing each original

Querying Java Objects 15

source object loaded into the IMDB. While we could use a unique hash function based on the object

properties, the objects are not guaranteed to contain a unique key. The simplest approach is to

create an incrementing counter and associate this counter with a specific source object. In effect, we

are creating an incrementing primary key, similar to an Oracle sequence or an Identity field in other

database systems. Such a technique proves to be relatively straightforward and provided a direct

mapping between source object and database rows.

Querying with JimQL

To illustrate the object query capabilities of JimQL, we will use the following domain:

 State(id,stateName)

 City(id,cityname,stateId)

 Zipcode(id,cityId,zip)

As a first example, we examine joining cities to their corresponding zip codes.

In SQL, this query would be written as:

SELECT city.id, cityname, zip FROM zipcode

INNER JOIN city ON (zipcode.city = city.id)

The corresponding JimQL:

JimQL jimql = new JimQL (JimQL.DBTYPE.HSQLDB);

List<Map<String, Object>> list = jimql. loadAndQuery

 ("zipcode.city = city.id", cities, zipcodes);

In the above example, we first create a JimQL object, (optionally) specifying the database

implementation to use. We then execute the loadAndQuery method. This method first loads each

collection specified (in this case, cities and zipcodes) into an in-memory representation, then

executes the corresponding join/filter using the criteria specified. The syntax of the criteria is similar

to OGNL (OpenSymphony) and other Java-bases expression languages and corresponds directly to

the structure of the source objects.

Querying Java Objects 16

 Behind the scenes, this query will be translated into the following SQL:

SELECT City.*, Zipcode .* FROM City, Zipcode

WHERE Zipcode .city = City.id

As can be inferred, JimQL executes the Cartesian product on the included relations and applies the

filter condition on the result (the equivalent of a Theta Join in relational algebra). Since we are using

an IMDB to do the actual query processing and optimization, we expect this operation will be more

efficient that a true Cartesian join, especially if indexes exist on the joined columns. In fact, the

necessary indexes will be created during the database load step.

 JimQL does not currently support queries on nested complex objects types. For instance, if a

City has a property latLong of type LatLong, an object containing a Latitude and Longitude value,

JimQL does not support a query such as "city.latLong.longitude = 65.443" 5. However, we can

simulate this capability by adding the appropriate getter method to the City class:

public double getLongitude(){}

 return latLong.getLongitude

}

Adding this additional getter method would force our load routine to create a column for longitude

and this column would then be available for querying. This technique has the drawback of forcing

retrieval of each longitude value, from another class, for each source object loaded. This getter could

be an expensive operation such as database or network call. As a future enhancement, Java

annotations could be used to include or exclude specific getter methods or provide other directives

to JimQL.

5 Supporting such nested objects would require loading multiple tables per source object and runs the risk of loading
much more data than is needed for the actual query being processes. More research is needed to determine the feasibility
of supporting this feature.

Querying Java Objects 17

Loading the Data

 The data load step of our approach incurs the most overhead. Other query approaches work

with data in place, be it a true database or in-memory objects6. In order to take advantage of IMDB

query capabilities, we must load the data into the database. In most IMDB implementations, the data

is loaded from persistent storage on startup, or for a continually available system, on a recovery

event. For programmatic objects, the data needs to be loaded dynamically at query time. To achieve

this, we implement the following algorithm:

for each Java source objects

 create a table in the target IMDB;

 Create an identity column using an incrementing integer value;

 for each public getter method in the source object

 create a column in the new table;

 if the getter method is included in the query criteria

 create an index on that column
7
;

 end;

 Store the source object in a hash table using the identify value

 as the hash key;

end;

 Another possible data loading approach, not currently implemented, is to load all

programmatic objects, or those specifically annotated, into the target IMDB. JQL uses this

technique. Such an approach would eliminate any redundant reloading of data, as all data would be

only loaded once upon object creation. This approach would incur a larger memory usage overhead

and additional facilities would be necessary to keep objects and IMDB data in sync.

6 This statement is not entirely accurate, as disk-based DBMSs must transfer persistent date to in-memory buffers for
processing. However, this process can be optimized in any manner appropriate and the appearance of a single persistent
data store is maintained. JimQL requires loading of the entire relations into memory.
7 Creating indexes may be done during query execution if the requested criteria is not available at load time.

Querying Java Objects 18

 It should be noted that JimQL requires, and assumes, enough available memory to load full

relations. This is a reasonable requirement, as all data loaded already exists as transitory Java objects.

While we have not benchmarked the exact memory requirements, a reasonable estimate is that the

memory required for a Java object will double.

Querying the Data

 Once the data is loaded and if the criteria is correctly formed, we can execute the query using

the SQL interface of the target DB. The basic form of the database query created JimQL is:

 SELECT * FROM Table1,table2,...,TableN WHERE Criteria

The tables in the query are the tables created from the target java objects. The criteria in the query is

used as the join clause passed into JimQL. No modifications to the criteria are made so this query

must be valid SQL or a run time error will be thrown.

Transforming the Query Results

 The query is executed using standard Java JDBC and the results made available as a JDBC

Resultset. These results needs to be translated back into Java objects, ideally, the same object

instances passed into the JimQL query, appropriately filtered and joined. This is accomplish by

creating an index of the source objects as they are loaded into the IMDB. A hash table is used to

store this index, with the primary key of the database row created as the hash key and the original

source object as the hash value. For each returned row, we look up the original source object from

the hash table index and add that object to our results List. As we may have multiple source objects,

each returned row can include more than one object type. We handle this by returning a List of Map

objects. This typing can be seen in the JimQL query syntax described earlier.

Querying Java Objects 19

 The following algorithm is used to transform database query results into Java objects:

Execute SQL query;

for each row in query results

 create a Map representing that row ;

 for each Java source object in the query

 get the value of the identity column corresponding to the

 source object from the query results;

 Lookup up the actual source object from the hash table

 created during Load;

 add the source object to current row Map;

 end;

 add the current map to the result List;

end;

For our sample city-zipcode join, the following database query result:

City.id Zipcode.id

1 10

2 5

2 6

 will be transformed into a List of Maps:

List Index

1 key:"City"

Value: City-1

Key:"Zipcode"

Value: Zipcode-10

2 key:"City"

Value: City-2

Key:"Zipcode"

Value: Zipcode-5

3 key:"City"

Value: City-2

Key:"Zipcode"

Value: Zipcode-6

In the result List, City-n and Zipcode-n are instances of our original target Java object.

Querying Java Objects 20

Performance Benchmarks

 Benchmark tests were done to gauge the performance of JimQL compared to other query

processing methods. The tests use the City, Zipcode, and State relations described above. The sizes

of the relations are:

 City: 29982 rows

 State: 51 rows

 Zipcode: 41986 rows

These relations are stored in a Java ArrayList or database table. We will refer to these as target

relations in the discussion below, as tests may be applied to either ArrayLists or Tables.

 All tests were performed on an AMD Athlon II X4 630 Processor 2.80 GHZ desktop with

6GB Ram running Windows7 Home Premium. All external database servers run on the local

machine.

 Tables 1 through 3 shows the test results and descriptions for the benchmarks performed.

All results are measured in seconds. Not all tests are applicable to all methods. Algorithmic

complexities of various tests and methods are included where applicable, except where the queries

are handled directly by the DBMS. In such cases, and on a fully indexed relation, the performance

will vary between constant and linear complexity. Algorithmic complexities only consider in-memory

operations, as no disk retrievals are needed.

 While these benchmarks are informal, they are intended to show the feasibility incorporating

an in-memory database into Java query processing. Additional testing is needed to verify further

explain the results recorded. Specifically, each needs to be broken down into their components to

determine exactly where each technology accelerates or hinders performance.

Querying Java Objects 21

Table 1

Benchmark Results

 Test

 Method
Find Id
500X

Find City
Name

2-way
Join

3-way
Join

2-way
Select Load All

 Nested-loop 0.28 56.78

Java
Ordered
Nested-loop 27.22

 Hash Join 0.04

 MySQL 0.24 0.38 0.46 0.02

Database
MySQL -
No Indexes 14.29 91.09 121.62 0.11

SQL Server -
No Indexes 1.58 0.19 0.15 0.02

 H2 4.42 0.27 1.27 1.11 0.67 0.42

IMDB HSQL 4.28 0.21 0.84 0.69 0.48 0.24

 Derby 11.85 1.85 5.41 4.93 4.16 3.6

 on-disk MySql 1301.69 1412.61 3052 3036 3080 3126.4

 Mode SqlServer* 10.73 12.69 31.48 23.94 26.03 27.04

Execution time in seconds

 A big surprise is the performance differential between Apache Derby, a tool included in

recent Java distributions, and the two other IMDBs. Derby is generally 3-5 times slower across all

tests. While H2 is a close second, HSQLDB is clearly the fastest of the three IMDBs tested and

would be the obvious choice for inclusion in our system.

 The tests show the stark difference between native Java nested joins and hash joins. The

nested join tests, simulating a naive search implementation, perform much worse than all of our

JimQL tests. Also surprising is that our binary join on a non-indexed database performs worse than

even our nested join Java implementation. Our test database, MySQL, apparently performs no

additional optimizations. SQL Server, by contrast, performs well even when not indexed. SQL

Server also performs well in our On-disk Simulation tests. It's performance is not as good as the true

in memory databases, but is reasonable considering the table creation and loading that is taking place

Querying Java Objects 22

on the slower disk medium. SQL server has a (well-deserved) reputation for under the hood

optimization. It is also possible that a commercial IMDB would have superior performance to the

systems tested here.

Table 2

Benchmark Tests

Test Description

Find ID 500X Choose a random city id and look up the corresponding entry in the source object

collection. Perform this operation 500 times.

For IMDBs load the target data once

We can describe the complexity of this and other test based on the size of the City

and Zipcode relations (C and Z, respectively)

Algorithmic complexity of this test varies based on the method used (as described in

table 3).

Best case = 500 for indexed collections

Average case = 500C/2 , or O(N), for non-indexed, table scan approaches.

Find City Name Return all cities where the cityname = 'Albany'.

The same list of random cities is used for all methods in this test.

2-way Join Join City to Zipcode on matching City ids

3-way Join Join State to City to Zipcode on matching City and State ids

2-way Select Same as 2-way Join, but filter the results where City.cityname = 'Albany'.

This test is similar to the Find City Name test, but includes zip codes in the result.

(By the way, there are 15 cities in the U.S. named Albany comprising 72 zip codes)

Load All Load the City, Zipcode, and State relations into the database table.

This test should measure the overhead that our load before query approach has over

a system of query in place.

Loading complexity is always proportional to the number of records loaded, or O

(N).

Further improvements could be made by performing all loads in parallel.

Querying Java Objects 23

Table 3

Test Methods

Class Method Description/Notes

Java

This class of tests includes Java

operations on native data

structures. These tests simulate

the manner in which most Java

based object querying is

implemented in practice.

Nested-loop

(JDK 1.6.20)

A linear or nested loop on one or more Java

collections

We can describe the complexity of this and

other test based on the size of the City and

Zipcode relations (C and Z, respectively)

Unary relation : C/2 or O(n)

Binary relation: CZ or O (n2)

Note: Without adequate indexes, database

queries will have similar performance as our

nested joins, as our no-index DMSB tests

show.

Ordered Nested-loop

(JDK 1.6.20)

 For a nested loop join, optimize join order so

the inner loop can be aborted when a result is

found. In joining City to Zip, if we use Zip as

the outer loop, we can abort the inner city look

when a single city is found. If City is the outer

loop, we must continue checking each zip in

the inner loop since more than one zip can be

found for each City

complexity: CZ/2 or O(n2)

Hash Join

(JDK 1.6.20)

A hash join can be used when the join

condition is an equality. This will provide the

best (linear) performance.

Complexity: C+Z or O(n)

An example hash join implementation is given

in the appendix.

Database - On Disk

We use an on-disk MySQL

database as a comparison to our

in-memory approach.

MySQL(5.1.47) Remember, we are not targeting our IMDB as

a replacement for an ODDB, but as a

replacement for low-level operations on

programmatic Java objects. This method will

not have the overhead incurred when we load

the IMDB.

Querying Java Objects 24

Non Indexed

We include several tests against

non-indexed databases, as those

are similar to a non-indexed java

collection.

MySQL (5.1.47) -

no Indexes

In this test, the DBMS will be forced to

perform full table scans for select and join

operations (unless it performs independent

optimizations).

SQL Server (2008) -

no indexes

In-memory Database

The actual JimSQL

implementation

HSQL(2.0.1)

HSQL exhibits the best overall performance of

the three JimQL implementations.

H2 (1.3.146) H2 is a close second to HSQL in most tests.

Derby(10.6.2.1)

Derby is surprisingly slower in all tests than the

other two IMDBs.

In-memory Database -

On-disk Simulation

We also test our two disk based

DBMS, but use these as if they

were in memory databases.

This test measures the

performance gain by using an

IMDB compared to an on-disk

DBMS. In most cases, it would

not be feasible to load on-disk

tables to perform such queries.

For small relations, even nested

loops may provide adequate

performance. For larger relations,

the load time would be a limiting

factor.

MySQL (5.1.47) MySQL exhibits extremely poor performance.

SQL Server (2008) SQL Server exhibits relatively good

performance in our load tests. Overall, this is a

very versatile DBMS.

 Also surprising is that the in-memory loads times do not appear to incur the majority of test

time. This bodes well for our approach, as loading is the major overhead compared to in place

operations on databases. Further research is needed to determine specifically where any bottlenecks

occur within each test.

 In summary, the performance of the in-memory databases are commendable and sufficient

for our approach to be of value within normal application development.

Querying Java Objects 25

Future Research

 This study has proven the feasibility and utility of using an in-memory database to efficiently

query native of Java objects. Several immediate enhancements could be made to the software to

provide incremental improvement. The most obvious improvement to be made is in parallel loading

of target relations. Since load operations are independent of one another, we could load all these

into our IMDB in parallel. Further determination would need to be made as to the optimal

concurrency level. This optimal concurrency load factor would likely be at least as high as the

number of tables involved in the query, so all tables could be loaded simultaneously.

 The development of the JimQL prototype did not focused largely on performance.

However, performance issues are always an important concern and perhaps a limiting factor for

widespread interest or adoption in any similar technology. Our target database can likely be tuned.

For some cases, it might be possible to bypass the target database altogether. For small relations

and simple criteria, JimQL could implement in place queries on Java objects, using nested loops or

hash joins, and avoid loading the IMDB back end. Bypassing the IMDB should remain limited, as

we risk gradually building a full IMDB. Avoiding building such a system was the primary motivation

for JimQL.

 Additional SQL features, such as group-by capabilities, could also be supported. The group-

by operation could be done by the database engine or by JimQL while processing the result set.

Optimization analysis will determine which approach is best. As before, we should lean towards

letting the IMDB to the actual query processing.

 JimQL is also a likely candidate for an open source project. Posting on an open source

repository, such as Google Code, would help gauge interest in this approach and perhaps solicit

input and additional participation.

Querying Java Objects 26

 While our approach using JimQL enables querying of Java objects, we are using SQL, which

lacks some of the functionality available in imperative languages like Java. Research is already

underway to include closures in Java (Gafter, Closures (Lambda Expressions) for the Java

Programming Language). Such a feature would allow native Java querying on collections and make a

LINQ-like implementation for Java possible. Query capabilities like that offered by JimQL could be

incorporated directly into the Java language itself. Derby (or something better performing) querying

could also be enabled using the approach we have outlined. Having both closure and SQL-based

query capabilities would allow developers to choose the appropriate query language based on the

specific developments and would provide Java an edge over .NET and other languages and

technologies in this area.

Conclusion

 This paper has shown how Java objects can be queried by incorporating an in-memory

database to provide the query processing capabilities. A prototype implementation, JimQL, was

introduced. Benchmark tests were performed and presented. These tests show the capabilities and

performances of the prototype system are sufficient and can for the basis for future development

and research, or even incorporated into the Java language.

Querying Java Objects 27

Appendix A - Sample JimQL Code

 The following code illustrates the use of the JimQL library for selected benchmark tests

described above. Non-JimQL search routines are included in the Appendix B.

Find City Name

Jimql jimql = new Jimql(Jimql.DBTYPE.HSQLDB);

List<Map<String, Object>> list = jimql.loadAndQuery("city.cityName =

 'Albany'", cities);

3-way Join

Jimql jimql = new Jimql(Jimql.DBTYPE.HSQLDB);

List<Map<String, Object>> list = jimql.loadAndQuery(

 "city.stateId = state.id and zipcode.city = city.id",

 cities, states, zipcodes);

2-way Select

Jimql jimql = new Jimql(Jimql.DBTYPE.HSQLDB);

List<Map<String, Object>> list = jimql.loadAndQuery(

 "zipcode.city = city.id and city.cityName = 'Albany'",

 cities, zipcodes);

Load Data

Jimql jimql = new Jimql(Jimql.DBTYPE.HSQLDB);

jimql.loadData(cities, states, zipcodes);

Querying Java Objects 28

Appendix B - Native Java Search Implementation

Nested Join

List<City> citiesAndZips = new ArrayList<City>();

for (City city : cities) {

 for (Zipcode zipcode : zipcodes) {

 if (zipcode.getCity().equals(city.getId())) {

 City cityAndZip = new City();

 cityAndZip.setId(city.getId());

 cityAndZip.setCityName(city.getCityName());

 cityAndZip.setZip(zipcode.getZip());

 citiesAndZips.add(cityAndZip);

 }

 }

}

assertTrue(citiesAndZips.size() == zipcodes.size());

Nested Join with optimal order

List<City> citiesAndZips = new ArrayList<City>();

for (Zipcode zipcode : zipcodes) {

 for (City city : cities) {

 if (zipcode.getCity().equals(city.getId())) {

 City cityAndZip = new City();

 cityAndZip.setId(city.getId());

 cityAndZip.setCityName(city.getCityName());

 cityAndZip.setZip(zipcode.getZip());

 citiesAndZips.add(cityAndZip);

 break;

 }

 }

 }

 assertTrue(citiesAndZips.size() == zipcodes.size());

Querying Java Objects 29

Hash Join

List<City> citiesAndZips = new ArrayList<City>();

Map<Integer, City> cityMap = new HashMap<Integer, City>();

for (City city : cities) {

 cityMap.put(city.getId(), city);

}

for (Zipcode zipcode : zipcodes) {

 City city = cityMap.get(zipcode.getCity());

 City cityAndZip = new City();

 cityAndZip.setId(city.getId());

 cityAndZip.setCityName(city.getCityName());

 cityAndZip.setZip(zipcode.getZip());

 citiesAndZips.add(cityAndZip);

 }

 assertTrue(citiesAndZips.size() == zipcodes.size());

Querying Java Objects 30

References

Apache Derby. (n.d.). Retrieved November 25, 2010, from http://db.apache.org/derby/

Box, D., & Hejlsberg, A. (2007, February). LINQ: .NET Language-Integrated Query. Retrieved

November 13, 2010, from MSDN: http://msdn.microsoft.com/library/bb308959.aspx

eXtremeDB Embedded Database In-Memory Database System. (n.d.). Retrieved from

http://www.mcobject.com/standardedition.shtml

Gafter, N. (2007, January 28). A Definition of Closures. Retrieved 28 2010, November, from Neal

Gafter's blog: http://gafter.blogspot.com/2007/01/definition-of-closures.html

Gafter, N. (n.d.). Closures (Lambda Expressions) for the Java Programming Language. Retrieved November

28, 2010, from Javac.info: http://javac.info/

Gawlick, D., & Kinkade, D. (1985). Varieties of Concurrency Control in IMS/VS Fast Path. IEEE

Database Engineering Bulletin , 8 (2), 3-10.

Groovy JDK API Specification. (n.d.). Retrieved November 20, 2010, from groovy.codehaus.org:

http://groovy.codehaus.org/groovy-jdk/

H2 Database Engine. (n.d.). Retrieved November 25, 2010, from http://www.h2database.com

Lehman, T. J., & Carey, M. J. (1986). A Study of Index Structures for Main Memory Database

Management Systems. Proceedings of the 12th International Conference on Very Large Data Bases,

(pp. 294-303).

Microsoft . (2010, July 2). ODBC--Open Database Connectivity Overview. Retrieved November 28, 2010,

from Microsoft.com: http://support.microsoft.com/kb/110093

Moskowitz, D. (2010). Research Critique of "Efficient Object Querying for Java". Unpublished

paper.

OpenSymphony. (n.d.). OGNL. Retrieved November 27, 2010, from opensymphony.com:

http://www.opensymphony.com/ognl/

Querying Java Objects 31

Oracle. (2005, June 20). Oracle Completes Acquisition Of TimesTen . Retrieved Novembe 17, 2010, from

Oracle.com: http://www.oracle.com/corporate/press/2005_jun/ttcomplete.html

Rao, J., & Ross, K. A. (1999). Cache Conscious Indexing for Decision-Support in Main Memory.

Proceedings of the 25th International Conference on Very Large Data Bases (VLDB '99) (pp. 78-89).

San Francisco, CA: Morgan Kaufmann Publishers Inc.

Relational Persistence for Java and .NET. (2010). Retrieved November 15, 2010, from Hibernate Web

Site: http://www.hibernate.org/

solidDb Product Family. (n.d.). Retrieved from IBM.com: http://www-

01.ibm.com/software/data/soliddb/

The HSQL Development Group. (n.d.). HSQLDB. Retrieved November 13, 2010, from hsqldb.org:

http://hsqldb.org/

Willis, D., Pearce, D. J., & Noble, J. (2006). Efficient Object Querying for Java. Proceedings of the

European Conference on Object-Oriented Programming (ECOOP) , 28-49.

