

Runtime Environments

Announcements

● Programming Project 3 checkpoint due
Monday at 11:59PM.
● This is a hard deadline and no late

submissions will be accepted, even with late
days.

● Remainder of the project due a week from
Monday at 11:59PM.

Where We Are

Lexical Analysis

Semantic Analysis

Syntax Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code

Where We Are

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code

Arche-Type

Lexical Analysis

Semantic Analysis

Syntax Analysis

Arche-Type

Where We Are

Lexical Analysis

Semantic Analysis

Syntax Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code

What is IR Generation?

● Intermediate Representation Generation.
● The final phase of the compiler front-end.
● Goal: Translate the program into the format

expected by the compiler back-end.
● Generated code need not be optimized; that's

handled by later passes.
● Generated code need not be in assembly; that

can also be handled by later passes.

Why Do IR Generation?
● Simplify certain optimizations.

● Machine code has many constraints that inhibit optimization.
(Such as?)

● Working with an intermediate language makes optimizations
easier and clearer.

● Have many front-ends into a single back-end.
● gcc can handle C, C++, Java, Fortran, Ada, and many other

languages.
● Each front-end translates source to the GENERIC language.

● Have many back-ends from a single front-end.
● Do most optimization on intermediate representation before

emitting code targeted at a single machine.

Designing a Good IR

● IRs are like type systems – they're extremely hard to
get right.

● Need to balance needs of high-level source language
and low-level target language.

● Too high level: can't optimize certain implementation
details.

● Too low level: can't use high-level knowledge to
perform aggressive optimizations.

● Often have multiple IRs in a single compiler.

Architecture of gcc

Architecture of gcc

Source
Code

Architecture of gcc

Source
Code

AST

Architecture of gcc

Source
Code

AST

GENERIC

Architecture of gcc

Source
Code

AST

GENERIC

High
GIMPLE

Architecture of gcc

Source
Code

AST

GENERIC

High
GIMPLE

SSA

Architecture of gcc

Source
Code

AST

GENERIC

High
GIMPLE

SSA

Low
GIMPLE

Architecture of gcc

Source
Code

AST

GENERIC

High
GIMPLE

SSA

Low
GIMPLE

RTL

Architecture of gcc

Source
Code

AST

GENERIC

High
GIMPLE

SSA

Low
GIMPLE

RTL

Machine
Code

Another Approach: High-Level IR

● Examples:
● Java bytecode
● CPython bytecode
● LLVM IR
● Microsoft CIL.

● Retains high-level program structure.
● Try playing around with javap vs. a disassembler.

● Allows for compilation on target machines.
● Allows for JIT compilation or interpretation.

Outline

● Runtime Environments (Today/Monday)
● How do we implement language features in

machine code?
● What data structures do we need?

● Three-Address Code IR (Wednesday)
● What IR are we using in this course?
● What features does it have?

Runtime Environments

An Important Duality

● Programming languages contain high-level structures:
● Functions
● Objects
● Exceptions
● Dynamic typing
● Lazy evaluation
● (etc.)

● The physical computer only operates in terms of several
primitive operations:
● Arithmetic
● Data movement
● Control jumps

Runtime Environments

● We need to come up with a representation of these
high-level structures using the low-level structures of
the machine.

● A runtime environment is a set of data structures
maintained at runtime to implement these high-level
structures.
● e.g. the stack, the heap, static area, virtual function

tables, etc.
● Strongly depends on the features of both the source

and target language. (e.g compiler vs. cross-
compiler)

● Our IR generator will depend on how we set up our
runtime environment.

The Decaf Runtime Environment

● Need to consider
● What do objects look like in memory?
● What do functions look like in memory?
● Where in memory should they be placed?

● There are no right answers to these
questions.
● Many different options and tradeoffs.
● We will see several approaches.

Data Representations

● What do different types look like in
memory?

● Machine typically supports only limited
types:
● Fixed-width integers: 8-bit, 16-bit- 32-bit,

signed, unsigned, etc.
● Floating point values: 32-bit, 64-bit, 80-bit

IEEE 754.

● How do we encode our object types using
these types?

Encoding Primitive Types

● Primitive integral types (byte, char, short, int,
long, unsigned, uint16_t, etc.) typically map
directly to the underlying machine type.

● Primitive real-valued types (float, double, long
double) typically map directly to underlying
machine type.

● Pointers typically implemented as integers holding
memory addresses.
● Size of integer depends on machine architecture; hence

32-bit compatibility mode on 64-bit machines.

Encoding Arrays
● C-style arrays: Elements laid out consecutively in memory.

● Java-style arrays: Elements laid out consecutively in memory with

size information prepended.

● D-style arrays: Elements laid out consecutively in memory; array

variables store pointers to first and past-the-end elements.

● (Which of these works well for Decaf?)

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

Arr[0] Arr[1] Arr[2] ... Arr[n-1]n

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

First Past-End

Encoding Arrays
● C-style arrays: Elements laid out consecutively in memory.

● Java-style arrays: Elements laid out consecutively in memory with

size information prepended.

● D-style arrays: Elements laid out consecutively in memory; array

variables store pointers to first and past-the-end elements.

● (Which of these works well for Decaf?)

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

Arr[0] Arr[1] Arr[2] ... Arr[n-1]n

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

First Past-End

Encoding Arrays
● C-style arrays: Elements laid out consecutively in memory.

● Java-style arrays: Elements laid out consecutively in memory with

size information prepended.

● D-style arrays: Elements laid out consecutively in memory; array

variables store pointers to first and past-the-end elements.

● (Which of these works well for Decaf?)

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

Arr[0] Arr[1] Arr[2] ... Arr[n-1]n

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

First Past-End

Encoding Arrays
● C-style arrays: Elements laid out consecutively in memory.

● Java-style arrays: Elements laid out consecutively in memory with

size information prepended.

● D-style arrays: Elements laid out consecutively in memory; array

variables store pointers to first and past-the-end elements.

● (Which of these works well for Decaf?)

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

Arr[0] Arr[1] Arr[2] ... Arr[n-1]n

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

First Past-End

Encoding Arrays
● C-style arrays: Elements laid out consecutively in memory.

● Java-style arrays: Elements laid out consecutively in memory with

size information prepended.

● D-style arrays: Elements laid out consecutively in memory; array

variables store pointers to first and past-the-end elements.

● (Which of these works well for Decaf?)

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

Arr[0] Arr[1] Arr[2] ... Arr[n-1]n

Arr[0] Arr[1] Arr[2] ... Arr[n-1]

First Past-End

Encoding Multidimensional Arrays

● Often represented as an array of arrays.
● Shape depends on the array type used.
● C-style arrays:

int a[3][2];

Encoding Multidimensional Arrays

● Often represented as an array of arrays.
● Shape depends on the array type used.
● C-style arrays:

int a[3][2];

a[0][0] a[0][1] a[1][0] a[1][1] a[2][0] a[2][1]

Encoding Multidimensional Arrays

● Often represented as an array of arrays.
● Shape depends on the array type used.
● C-style arrays:

int a[3][2];

a[0][0] a[0][1] a[1][0] a[1][1] a[2][0] a[2][1]

Array of size 2 Array of size 2 Array of size 2

Encoding Multidimensional Arrays

● Often represented as an array of arrays.
● Shape depends on the array type used.
● C-style arrays:

int a[3][2];

a[0][0] a[0][1] a[1][0] a[1][1] a[2][0] a[2][1]

Array of size 2 Array of size 2 Array of size 2

How do you know
where to look for an
element in an array

like this?

Encoding Multidimensional Arrays

● Often represented as an array of arrays.
● Shape depends on the array type used.
● Java-style arrays:

int[][] a = new int [3][2];

Encoding Multidimensional Arrays

● Often represented as an array of arrays.
● Shape depends on the array type used.
● Java-style arrays:

int[][] a = new int [3][2];

a[0]

a[1]

a[2]

3

Encoding Multidimensional Arrays

● Often represented as an array of arrays.
● Shape depends on the array type used.
● Java-style arrays:

int[][] a = new int [3][2];

a[0]

a[1]

a[2]

3 a[0][0] a[0][1]

a[1][0] a[1][1]

a[2][0] a[2][1]

2

2

2

Encoding Functions

● Many questions to answer:
● What does the dynamic execution of functions

look like?
● Where is the executable code for functions

located?
● How are parameters passed in and out of

functions?
● Where are local variables stored?

● The answers strongly depend on what the
language supports.

Review: The Stack

● Function calls are often implemented using a
stack of activation records (or stack
frames).

● Calling a function pushes a new activation
record onto the stack.

● Returning from a function pops the current
activation record from the stack.

● Questions:
● Why does this work?
● Does this always work?

Activation Trees

● An activation tree is a tree structure
representing all of the function calls made by a
program on a particular execution.
● Depends on the runtime behavior of a program;

can't always be determined at compile-time.
● (The static equivalent is the call graph).

● Each node in the tree is an activation record.
● Each activation record stores a control link to

the activation record of the function that
invoked it.

Activation Trees

Activation Trees
int main() {
 Fib(3);
}

int Fib(int n) {
 if (n <= 1) return n;
 return Fib(n – 1) + Fib(n – 2);
}

Activation Trees
int main() {
 Fib(3);
}

int Fib(int n) {
 if (n <= 1) return n;
 return Fib(n – 1) + Fib(n – 2);
}

main

Activation Trees
int main() {
 Fib(3);
}

int Fib(int n) {
 if (n <= 1) return n;
 return Fib(n – 1) + Fib(n – 2);
}

main

Fib

n = 3

Activation Trees
int main() {
 Fib(3);
}

int Fib(int n) {
 if (n <= 1) return n;
 return Fib(n – 1) + Fib(n – 2);
}

main

Fib

n = 3

Fib

n = 2

Activation Trees
int main() {
 Fib(3);
}

int Fib(int n) {
 if (n <= 1) return n;
 return Fib(n – 1) + Fib(n – 2);
}

main

Fib

n = 3

Fib

n = 2

Fib

n = 1

Activation Trees
int main() {
 Fib(3);
}

int Fib(int n) {
 if (n <= 1) return n;
 return Fib(n – 1) + Fib(n – 2);
}

main

Fib

n = 3

Fib

n = 2

Fib

n = 0

Fib

n = 1

Activation Trees
int main() {
 Fib(3);
}

int Fib(int n) {
 if (n <= 1) return n;
 return Fib(n – 1) + Fib(n – 2);
}

main

Fib

n = 3

Fib

n = 1

Fib

n = 2

Fib

n = 0

Fib

n = 1

An activation tree is a spaghetti stack.

The runtime stack is an optimization
of this spaghetti stack.

Why Can We Optimize the Stack?

● Once a function returns, its activation
record cannot be referenced again.
● We don't need to store old nodes in the

activation tree.

● Every activation record has either finished
executing or is an ancestor of the current
activation record.
● We don't need to keep multiple branches alive

at any one time.

● These are not always true!

Breaking Assumption 1

● “Once a function returns, its
activation record cannot be
referenced again.”

● Any ideas on how to break this?

Breaking Assumption 1

● “Once a function returns, its
activation record cannot be
referenced again.”

● Any ideas on how to break this?
● One option: Closures

function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

Breaking Assumption 1

● “Once a function returns, its
activation record cannot be
referenced again.”

● Any ideas on how to break this?
● One option: Closures

function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

Closures

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

>

MyFunction

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

>

CreateCounter

counter = 0

MyFunction

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

>

CreateCounter

counter = 0

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

>

CreateCounter

<fn>

counter = 0

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

>

CreateCounter

<fn>

counter = 0

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

>

CreateCounter

<fn>

counter = 1

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

>

CreateCounter

<fn>

counter = 1

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

> 1

CreateCounter

<fn>

counter = 1

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

> 1

CreateCounter

<fn>

counter = 1

<fn>

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

> 1

CreateCounter

<fn>

counter = 1

<fn>

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

> 1

CreateCounter

<fn>

counter = 2

<fn>

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

> 1

CreateCounter

<fn>

counter = 2

<fn>

MyFunction

f = <fn>

Closures
function CreateCounter() {
 var counter = 0;
 return function() {
 counter ++;
 return counter;
 }
}

function MyFunction() {
 f = CreateCounter();
 print(f());
 print(f());
}

> 1
 2

CreateCounter

<fn>

counter = 2

<fn>

MyFunction

f = <fn>

Control and Access Links

● The control link of a function is a
pointer to the function that called it.
● Used to determine where to resume

execution after the function returns.

● The access link of a function is a pointer
to the activation record in which the
function was created.
● Used by nested functions to determine the

location of variables from the outer scope.

Closures and the Runtime Stack

● Languages supporting closures do not
typically have a runtime stack.

● Activation records typically dynamically
allocated and garbage collected.

● Interesting exception: gcc C allows for
nested functions, but uses a runtime stack.

● Behavior is undefined if nested function
accesses data from its enclosing function
once that function returns.
● (Why?)

Breaking Assumption 2

● “Every activation record has either
finished executing or is an ancestor
of the current activation record.”

● Any ideas on how to break this?

Breaking Assumption 2

● “Every activation record has either
finished executing or is an ancestor
of the current activation record.”

● Any ideas on how to break this?
● One idea: Coroutines

def downFrom(n):
 while n > 0:
 yield n
 n = n - 1

Breaking Assumption 2

● “Every activation record has either
finished executing or is an ancestor
of the current activation record.”

● Any ideas on how to break this?
● One idea: Coroutines

def downFrom(n):
 while n > 0:
 yield n
 n = n - 1

Coroutines

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

>

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

>

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

>

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

>

downFrom

n = 3

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

>

downFrom

n = 3

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

>

downFrom

n = 3

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 3

>

downFrom

n = 3

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 3

>

downFrom

n = 3

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 3

> 3

downFrom

n = 3

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 3

> 3

downFrom

n = 3

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 3

> 3

downFrom

n = 3

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 3

> 3

downFrom

n = 2

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 3

> 3

downFrom

n = 2

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 3

> 3

downFrom

n = 2

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 2

> 3

downFrom

n = 2

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 2

> 3

downFrom

n = 2

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 2

> 3
 2

downFrom

n = 2

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 2

> 3
 2

downFrom

n = 2

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 2

> 3
 2

downFrom

n = 2

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 2

> 3
 2

downFrom

n = 1

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 2

> 3
 2

downFrom

n = 1

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 2

> 3
 2

downFrom

n = 1

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 1

> 3
 2

downFrom

n = 1

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 1

> 3
 2

downFrom

n = 1

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 1

> 3
 2
 1

downFrom

n = 1

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 1

> 3
 2
 1

downFrom

n = 1

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 1

> 3
 2
 1

downFrom

n = 1

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 1

> 3
 2
 1

downFrom

n = 0

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 1

> 3
 2
 1

downFrom

n = 0

Coroutines
def downFrom(n):
 while n > 0:
 yield n
 n = n – 1

def myFunc():
 for i in downFrom(3):
 print i

myFunc

i = 1

> 3
 2
 1

downFrom

n = 0

Coroutines

● A subroutine is a function that, when invoked, runs
to completion and returns control to the calling
function.
● Master/slave relationship between caller/callee.

● A coroutine is a function that, when invoked, does
some amount of work, then returns control to the
calling function. It can then be resumed later.
● Peer/peer relationship between caller/callee.

● Subroutines are a special case of coroutines.

Coroutines and the Runtime Stack

● Coroutines often cannot be implemented
with purely a runtime stack.
● What if a function has multiple coroutines

running alongside it?

● Few languages support coroutines,
though some do (Python, for example).

So What?

● Even a concept as fundamental as “the
stack” is actually quite complex.

● When designing a compiler or
programming language, you must keep in
mind how your language features
influence the runtime environment.

● Always be critical of the languages
you use!

Functions in Decaf

● We use an explicit runtime stack.
● Each activation record needs to hold

● All of its parameters.
● All of its local variables.
● All temporary variables introduced by the IR

generator (more on that later).

● Where do these variables go?
● Who allocates space for them?

Decaf Stack Frames

● The logical layout of a Decaf stack frame is
created by the IR generator.
● Ignores details about machine-specific calling

conventions.
● We'll discuss today.

● The physical layout of a Decaf stack frame is
created by the code generator.
● Based on the logical layout set up by the IR generator.
● Includes frame pointers, caller-saved registers, and

other fun details like this.
● We'll discuss when talking about code generation.

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

Param 1

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

Param 1

Storage for
Locals and
Temporaries

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function

g(a, …, m)

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

Param 1

Storage for
Locals and
Temporaries

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

Param 1

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Decaf IR Calling Convention

● Caller responsible for pushing and
popping space for callee's arguments.
● (Why?)

● Callee responsible for pushing and
popping space for its own temporaries.
● (Why?)

Parameter Passing Approaches

● Two common approaches.
● Call-by-value

● Parameters are copies of the values specified
as arguments.

● Call-by-reference:
● Parameters are pointers to values specified

as parameters.

Other Parameter Passing Ideas

● JavaScript: Functions can be called with
any number of arguments.
● Parameters are initialized to the

corresponding argument, or undefined if not
enough arguments were provided.

● The entire parameters array can be retrieved
through the arguments array.

● How might this be implemented?

Other Parameter Passing Ideas

● Python: Keyword Arguments
● Functions can be written to accept any

number of key/value pairs as arguments.
● Values stored in a special argument

(traditionally named kwargs)
● kwargs can be manipulated (more or less) as

a standard variable.

● How might this be implemented?

Summary of Function Calls

● The runtime stack is an optimization of the activation
tree spaghetti stack.

● Most languages use a runtime stack, though certain
language features prohibit this optimization.

● Activation records logically store a control link to the
calling function and an access link to the function in
which it was created.

● Decaf has the caller manage space for parameters and
the callee manage space for its locals and temporaries.

● Call-by-value and call-by-name can be implemented
using copying and pointers.

● More advanced parameter passing schemes exist!

Next Time

● Implementing Objects
● Standard object layouts.
● Objects with inheritance.
● Implementing dynamic dispatch.
● Implementing interfaces.
● … and doing so efficiently!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127

