A CHARACTERIZATION OF B^{*}-ALGEBRAS

A. K. GAUR

Department of Mathematics
Duquesne University,
Pittsburgh, PA 15282

(Received December 11, 1995 and in revised form August 16, 1996)

Abstract

A characterization of B^{*}-algebras amongst all Banach algebras with bounded approximate identities is obtained.

1991 AMS Subject Classification: 46J99, 46J15
Key Words and Phrases: Approximate identity; B^{*}-algebra; self-adjoint elements; Hermitian elements.

1. Introduction.

We recall that an approximate identity in a Banach algebra A is a net $\left\{e_{\alpha}: \alpha \in I\right\}$ in A where I is a directed set such that $\lim _{\alpha} e_{\alpha} x=x=\lim _{\alpha} x e_{\alpha}$ for every x in A. If there is a finite constant M such that $\left\|e_{\alpha}\right\| \leq M$ for all α, then the approximate identity is said to be bounded.

Let A be a Banach algebra. For each x in A, let

$$
D_{A}(x)=\left\{f \in A^{\prime}:\|f\|=1=f(x)\right\}
$$

By a corollary of the Hahn-Banach theorem, $D_{A}(x)$ is non-empty. We denote $S(A)=\{x \in A$: $\|x\|=1\}$.

For each $a \in A$, we call the set $V_{A}(a)=\left\{f(a x): f \in D_{A}(x), x \in S(A)\right\}$ the spatial numerical range of a.

We recall [5] that the relative numerical range of a in A with respect to $x \in A$, is defined as

$$
\stackrel{\circ}{V}_{x}(A, a)=\left\{f(a x): f \in D_{A}(x)\right\} .
$$

Thus we see that $V_{A}(a)=\bigcup\left\{\stackrel{\circ}{V}_{x}(A, a): x \in S(A)\right\}$, which is a bounded subset of the complex numbers bounded by $\|a\|$.

If A has an approximate identity of norm less than or equal to one then A can embedded, isometrically and isomorphically, in a unital Banach algebra A^{+}in such a way that for each a in A

$$
V\left(A^{+}, a\right)=\overline{c o} V_{A}(a)
$$

where $V\left(A^{+}, a\right)=\left\{f(a): f \in\left(A^{+}\right)^{\prime},\|f\|=1=f(a)=\|a\|\right\}$. For details see [4], Theorem 2.3.

An element h of a Banach algebra A is said to be Hermitian if $V_{A}(a) \subset R$. We denote by $H(A)$ the set of all Hermitian elements of A. A B^{*}-algebra is a Banach algebra A with an involution, $a \rightarrow a^{*}$ satisfying the following conditions:
(1) $(a+b)^{*}=a^{*}+b^{*}$;
(2) $(a b)^{*}=b^{*} a^{*}$;
(3) $(\alpha a)^{*}=\bar{\alpha} a^{*}$;
(4) $a^{* *}=a$; and
(5) $\left|a^{*} a\right|=|a|^{2}$
for all a, b in A and α in C.
An element a in a B^{*}-algebra is said to be self-adjoint if $a=a^{*}$. The set of all self adjoint elements will be denoted by $S(A)$. Each element $a \in A$ can be written uniquely in the form $a=h+i k$ where $h, k \in S(A)$. Some of the well known properties of $S(A)$ are the following:
a) The set $S(A)$ is a real partially ordered Banach space,
b) each of its elements has real spectrum,
c) if $h, k \in S(A)$ then $i(h k-k h) \in S(A)$, and
d) for each $h \in S(A)$, the spectral radius $\rho(h)=\|h\|$.

It is clear that the set of Hermitian elements, $H(A)$, of a Banach algebra with a bounded approximate identity of norm less than or equal to one has many of the properties of $S(A)$ in a B^{*}-algebra.

In this note we prove that in an arbitrary B^{*}-algebra $A, H(A)=S(A)$ in Theorem 2.1. This results mimics a result by Bohnenblust and Karlin [2].

In [8], Vidav has shown that a unital Banach algebra A with the following conditions:
(1) $A=H(A)+i H(A)$;
(2) for each h in $H(A)$ there exists h_{1}, h_{2} in $H(A)$ such that $h_{1}+i h_{2}=h^{2}$ and $h_{1} h_{2}=h_{2} h_{1}$ is a B^{*}-algebra with Vidav-involution. Combining the results of Vidav [8], Berkson [1], and Glickfeld [6] we obtain the result that if A is a unital Banach algebra such that $A=H(A)+i H(A)$ then A is a B^{*}-algebra under the Vidav-involution. Here, we extend this result to the nonunital case in the form of Lemma 3.1.

Finally, combining the results of Theorem 2.1 and Lemma 3.1 we have a characterization of B^{*}-algebras with bounded approximate identities.

2. Some Results.

We now prove the following theorem.
Theorem 2.1 Let A be a B^{*}-algebra with a bounded approximate identity of norm less than or equal to one. An element of A is Hermitian if and only if it is self-adjoint.

Proof. Case 1. Suppose that A has a unit element 1. Let $f \in D_{A}(1)$. Then it is known that such a functional has the property that $f\left(h^{*}\right)=\overline{f(h)}$, for every h in A. Thus if h is a self-adjoint element of $A, f(h)=f\left(h^{*}\right)=\overline{f(h)}$ and hence $f(h)$ is real for all f in $D_{A}(1)$. Hence, $S(A) \subseteq H(A)$.

Case 2. If A has no identity element then it will have an approximate identity of norm less than or equal to one. Also, with the involution defined by $(a, \alpha)^{*}=\left(a^{*}, \bar{\alpha}\right)$ for $(a, \alpha) \in A^{+}$, and
by Theorem 2.3 in [4], A^{+}becomes a unital B^{*} - algebra containing as a sub- B^{*}-algebra, ([3], 1.3.8).

Let h be a self-adjoint element of A. Then ($h, 0$) is self-adjoint and hence Hermitian in the unital B^{*}-algebra A^{+}. Hence $h \in H(A)$. We have therefore for any B^{*}-algebra, $S(A) \subseteq H(A)$.

Suppose conversely that $h \in H(A)$. Then for h_{1} and h_{2} in $S(A), h=h_{1}+i h_{2}$. This implies that $\nu\left(h_{2}\right)=0$ (where $\nu(x)=\sup \left\{|\lambda|: \lambda \in V_{A}(x)\right\}$ and is called numerical radius of x in A) and hence $h_{2}=0$. Thus $h=h_{1}$ so that h is self-adjoint. That is $H(A) \subseteq S(A)$ and hence the theorem.

Remark 2.1 The above theorem shows that in a B^{*}-algebra the Hermitian elements generate the whole algebra in the sense that each element a may be written in the form $a=h_{1}+i h_{2}$ with h_{1} and h_{2} in $H(A)$. In an arbitrary Banach algebra A this is not true. We therefore consider the set $J(A)=H(A)+i H(A)$. Since $H(A)$ is a real space it follows that $J(A)$ is a complex linear space. If A has no unit element then by Theorem 2.3, [4], $J(A) \times C=J\left(A^{+}\right)$. We define a map $a \rightarrow a^{*}$ from $J(A)$ into itself by

$$
\left(h_{1}+i h_{2}\right)^{*}=h_{1}-i h_{2}, \text { for all } h_{1}, h_{2} \in H(A) .
$$

The linear map $a \rightarrow a^{*}$ is known as the Vidav-involution on $J(A)$.
Remark 2.2 If A has no unit element then it is a simple matter to verify that the Vidavinvolution on $J\left(A^{+}\right)$is an extension of the Vidav-involution on $J(A)$. The space $J(A)$ is a complex Banach space and $a \rightarrow a^{*}$ is a continuous linear involution on $J(A)$. In general, the Banach space $J(A)$ is not an algebra, and if $J(A)$ is an algebra under some conditions, then the Vidav-involution has the additional property

$$
(a b)^{*}=a^{*} b^{*}, \text { for all } a, b \in J(A) .
$$

3. Characterization.

Vidav has shown in [8] that a unital Banach algebra A with the following conditions:
(V1) $A=H(A)+i H(A)$,
(V2) for each h in $H(A)$ there exists h_{1}, h_{2} in $H(A)$ such that $h_{1}+i h_{2}=h^{2}$ and $h_{1} h_{2}=h_{2} h_{1}$, is a B^{*}-algebra with Vidav-involution and a norm equivalent to the original norm on A.

According to Palmer [7], the condition (V1) implies (V2). Also Berkson [1], Glickfeld [6], and Palmer [7] have shown that if (V1) is satisfied by the algebra A the equivalent norm by Vidav is equal to the original norm on A. So by these results we have the result that if A is a unital Banach algebra satisfying (V1) then A is B^{*}-algebra under the Vidav-involution. The following lemma extends this result to the non-unital case.

Lemma 3.1 Let A be a Banach algebra with a bounded approximate identity of norm less than or equal to one. Suppose that every a in A has the form $a=h_{1}+i h_{2}$, for all h_{1}, h_{2} in $H(A)$. Then with the Vidav-involution, A is a B^{*}-algebra.

Proof. From Remark 2.1 we have that $J\left(A^{+}\right)=J(A) \times C$. Since $J(A)=A$ (by the hypothesis) we have $J\left(A^{+}\right)=A^{+}$. Therefore A^{+}is a unital B^{*}-algebra under the Vidavinvolution. Furthermore, A is a closed and self adjoint subalgebra of A^{+}, and is therefore a B^{*}-algebra under the Vidav-involution.

Finally, combining the results of Theorem 2.1 and Lemma 3.1 we have the following:
Theorem 3.2 Let A be a Banach algebra with a bounded approximate identity of norm less than or equal to one. Then A is a B^{*}-algebra under some involution if and only if each element a of A can be written in the form $a=h_{1}+i h_{2}$ where h_{1} and h_{2} are Hermitian elements of A.

4. Acknowledgement.

The author expresses his appreciation to the referee for his or her valuable suggestions which improved the clarity of this presentation.

References

[1] E. Berkson, "Some characterizations of C^{*}-algebras", Illinois J. Math., 10, (1966), 1-8.
[2] H.F. Bohnenblust and S. Karlin, "Geometrical properties of the unit sphere of Banach algebras", Ann. of Math, 62, (1955), 217-229.
[3] J. Dixmier, "Les C*-algébres et leurs représentations", Gauthier Villars, 1964.
[4] A.K. Gaur and T. Husain, "Spatial numerical ranges of elements of Banach algebras", Internat. J. Math. and Math. Sci., 12, (1989), 633-640.
[5] A.K. Gaur and T. Husain, "Relative numerical ranges", Math. Japonica, 36, (1991), 127135.
[6] B.W. Glickfeld, "A metric characterization of $C(X)$ and its generalization to C *-algebras", Illinois J. of Math., 10, (1966), 547-566.
[7] T.W. Palmer, "Characterization of C^{*}-algebras", Bull. Amer. Math. Soc., 74, (1968), 538-540.
[8] I. Vidav, "Eine metrische kennzeichnung der selbstad jungierten operatoren", Math. Z., 66, (1956), 121-128.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

