S&DS677: Topics in High-Dimensional Statistics and Information Theory

Spring 2021

- Schedule: Tuesday 330–520pm on zoom
- Instructor: Yihong Wu yihong.wu@yale.edu
 - Office hours: by appointment
- Website:

http://www.stat.yale.edu/~yw562/teaching/SDS677/index.html
or just google S&DS677

1 Course prerequisites:

1 Course prerequisites:

Maturity with probability theory

1 Course prerequisites:

- Maturity with probability theory
- Some linear algebra

1 Course prerequisites:

- Maturity with probability theory
- Some linear algebra
- Prior knowledge on Information Theory (e.g. SDS 364) is NOT required

Course prerequisites:

- Maturity with probability theory
- Some linear algebra
- Prior knowledge on Information Theory (e.g. SDS 364) is NOT required

2 Participation (30%):

Course prerequisites:

- Maturity with probability theory
- Some linear algebra
- Prior knowledge on Information Theory (e.g. SDS 364) is NOT required

Participation (30%):

Zoom participation is highly encouraged

Course prerequisites:

- Maturity with probability theory
- Some linear algebra
- Prior knowledge on Information Theory (e.g. SDS 364) is NOT required

2 Participation (30%):

- Zoom participation is highly encouraged
- Critiques on lecture notes/maybe a few scribes towards the end

Course prerequisites:

- Maturity with probability theory
- Some linear algebra
- Prior knowledge on Information Theory (e.g. SDS 364) is NOT required
- Participation (30%):
 - Zoom participation is highly encouraged
 - Critiques on lecture notes/maybe a few scribes towards the end
- 3 Homeworks (30%): three problem sets

- Course prerequisites:
 - Maturity with probability theory
 - Some linear algebra
 - Prior knowledge on Information Theory (e.g. SDS 364) is NOT required
- Participation (30%):
 - Zoom participation is highly encouraged
 - Critiques on lecture notes/maybe a few scribes towards the end
- 3 Homeworks (30%): three problem sets
- 4 Final project (40%)

- Course prerequisites:
 - Maturity with probability theory
 - Some linear algebra
 - Prior knowledge on Information Theory (e.g. SDS 364) is NOT required
- Participation (30%):
 - Zoom participation is highly encouraged
 - Critiques on lecture notes/maybe a few scribes towards the end
- 3 Homeworks (30%): three problem sets
- 4 Final project (40%)
 - either presenting paper(s) or a standalone research project.

- Course prerequisites:
 - Maturity with probability theory
 - Some linear algebra
 - Prior knowledge on Information Theory (e.g. SDS 364) is NOT required
- Participation (30%):
 - Zoom participation is highly encouraged
 - Critiques on lecture notes/maybe a few scribes towards the end
- 3 Homeworks (30%): three problem sets
- 4 Final project (40%)
 - either presenting paper(s) or a standalone research project.
 - topics announced around week 6

- Course prerequisites:
 - Maturity with probability theory
 - Some linear algebra
 - Prior knowledge on Information Theory (e.g. SDS 364) is NOT required
- Participation (30%):
 - Zoom participation is highly encouraged
 - Critiques on lecture notes/maybe a few scribes towards the end
- 3 Homeworks (30%): three problem sets
- 4 Final project (40%)
 - either presenting paper(s) or a standalone research project.
 - topics announced around week 6
- 6 Materials: Lecture notes and additional reading materials will be posted online.

What this course is about?

Information-theoretic methods in high-dimensional statistics

What this course is about?

Information-theoretic & related methods in high-dimensional statistics

What this course is about?

Information-theoretic & related methods in high-dimensional statistics

• Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, confidence statements)

• Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, confidence statements)

• Understanding the fundamental limits:

• Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, confidence statements)

• Understanding the fundamental limits:

Oharacterize statistical optimum: What is possible/impossible?

• Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, confidence statements)

- Understanding the fundamental limits:
 - Of the provide the provided and the p
 - We have many samples are necessary and sufficient to achieve a prescribed goal?

• Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, confidence statements)

- Understanding the fundamental limits:
 - Otheracterize statistical optimum: What is possible/impossible?
 - We have many samples are necessary and sufficient to achieve a prescribed goal?
 - Solution Can statistical limits be attained comptutationally efficiently, e.g., in poly(n, p)-time? If yes, how? If not, why?

High Dimensionality of Contemporary Datasets

Fields	Data
Biomedical Research	microarray, ECG, fMRI,
	array sensor data,
Signal Processing	face recognition,
	hyper-spectral data,
Finance	asset returns,
:	:
:	

- Growth of data outpaced by increasing number of features
- A common feature: large d, but just comparable or smaller n

$$\theta \in \mathbb{R}^d \mapsto X_1, \dots, X_n$$

- low-dimensional structure
 - Intrinsic: θ lies in a low-dimensional subset
 - Extrinsic: θ has no structure but we only estimate low-dimensional functional of θ

Classical topics

Example 1: high-dimensional linear regression

Microarray data:

- Leukaemia dataset [Golub et al. '99]: d = 7129 genes and n = 72samples
- Typically $d \gg n$
- Interpretability (gene selection)

Ref: [Golub et al. '99, Zou-Hastie '05]

Example 1: high-dimensional linear regression

Statistical model

$$y = X\beta + \mathsf{noise}$$

- observation: $y \in \mathbb{R}^n$ and $X \in \mathbb{R}^{n \times d}$
- parameter: $\beta \in \mathbb{R}^d$
- goal: estimate β or predict $X\beta$
- assumption: β is sparse

Example 2: Covariance matrix estimation & PCA Climate Data

One observation: January average temperature in 1969 [d = 2592, n = 157]

Ref: Bickel & Levina (08)

Example 2: Covariance matrix estimation & PCA

Statistical model

- observation: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(0, \Sigma) \in \mathbb{R}^d$
- parameter: $\Sigma = \mathbb{E}[XX'] \in \mathbb{R}^{d \times d}$
- goal: estimate Σ or its principle component (PCA)
- assumption: Σ is sparse/smooth(entrywise decay)/low-rank

Problems of combinatorial nature

Linguistics

Estimating the number of unseen species: How many words did Shakespeare know?

Bx BRADLEY EFRON AND RONALD THISTED Department of Statistics, Stanford University, California

Ecology

THE RELATION BETWEEN THE NUMBER OF SPECIES AND THE NUMBER OF INDIVIDUALS IN A RANDOM SAMPLE OF AN ANIMAL POPULATION

By R. A. FISHER (Galton Laboratory), A. STEVEN CORBET (British Museum, Natural History) ND C. B. WILLIAMS (Rothamsted Experimental Station)

ACT I

SCENE I. Elsinore. A platform before the castle.

FRANCISCO at his post. Enter to him BERNARDO

BERNARDO

Who's there?

PRINCE FORTINBRAS

Let four captains Bear Hamlet, like a soldier, to the stage; For he was likely, had he been put on, To have proved most royally: and, for his passage, The soldiers' music and the rites of war Speak loudly for him. Take up the bodies: such a sight as this Becomes the field, but here shows much amiss. Go, bid the soldiers shoot.

A dead march. Exeunt, bearing off the dead bodies; after which a peal of ordnance is shot off

Hamlet experiment

- Starting from Act I, read a small fraction of the text
- Stop and estimate the number of distinct words in entire Hamlet

Statistical model: Distinct element problem

- observation: X_1, \ldots, X_n sampled without replacements from an urn of k colored balls
- parameter: composition of the urn (number of red, blue, etc.)
- goal: number of distinct colors
- assumption: NONE!
- Method: Estimator built from convex/LP duality

Example 4: Community detection in networks

Networks with community structures arise in many applications

Example 4: Community detection in networks

Networks with community structures arise in many applications

• Task: Discover underlying communities based on the network topology

Example 4: Community detection in networks

Networks with community structures arise in many applications

- Task: Discover underlying communities based on the network topology
- Applications: Friend or movie recommendation in online social networks

Political blogosphere

...in the 2004 U.S. election [Adamic-Glance '05]

0 n nodes are randomly partitioned into 2 equal-sized communities

- $\mathbf{0}$ n nodes are randomly partitioned into 2 equal-sized communities
- **2** For every pair of nodes in same community, add an edge w.p. p

- $\mathbf{1}$ n nodes are randomly partitioned into 2 equal-sized communities
- **2** For every pair of nodes in same community, add an edge w.p. p
- ${f 3}$ For every pair of nodes in diff. community, add an edge w.p. q

- $\mathbf{0}$ n nodes are randomly partitioned into 2 equal-sized communities
- **2** For every pair of nodes in same community, add an edge w.p. p
- ${f 3}$ For every pair of nodes in diff. community, add an edge w.p. q

Stochastic block model - adjacency matrix view

Stochastic block model - adjacency matrix view

Example 4: Community detection

Statistical model: Stochastic block model SBM(n, p, q)

- observation: a single graph ${\cal G}$
- parameter: partition of two communities (subsets of [n])
- goal: locate the community (under various criteria)
- assumption: low-rankness of $\mathbb{E}[adjancency matrix]$

Example 5: spiked Wigner model

Noisy observation of rank-one matrix:

$$Y = \lambda x x^{\top} + Z,$$

where

- signal: x uniform on the hypercube $\{\pm \frac{1}{\sqrt{n}}\}^n$
- noise: Z iid $N(0, \frac{1}{n})$
- goal: recover x better than chance
 - Find unit vector $\hat{x} = \hat{x}(Y)$, s.t. $\mathbb{E}|\langle \hat{x}, x \rangle| = \Omega(1)$

Example 5: spiked Wigner model

Noisy observation of rank-one matrix:

$$Y = \lambda x x^\top + Z,$$

where

- signal: x uniform on the hypercube $\{\pm \frac{1}{\sqrt{n}}\}^n$
- noise: Z iid $N(0, \frac{1}{n})$
- goal: recover x better than chance

Find unit vector $\hat{x} = \hat{x}(Y)$, s.t. $\mathbb{E}|\langle \hat{x}, x \rangle| = \Omega(1)$

• Random matrix theory: PCA works iff $\lambda > 1$ [Baik-Ben Arous-Peche '04]

Example 5: spiked Wigner model

Noisy observation of rank-one matrix:

$$Y = \lambda x x^\top + Z,$$

where

- signal: x uniform on the hypercube $\{\pm \frac{1}{\sqrt{n}}\}^n$
- noise: Z iid $N(0, \frac{1}{n})$
- goal: recover x better than chance

Find unit vector $\hat{x} = \hat{x}(Y)$, s.t. $\mathbb{E}|\langle \hat{x}, x \rangle| = \Omega(1)$

- Random matrix theory: PCA works iff $\lambda > 1$ [Baik-Ben Arous-Peche '04]
- We will show $\lambda > 1$ is needed by any algo (information-percolation method)

What is information theory

Information theory: theory of fundamental limits

- Information measures: How to measure randomness, dependency, dissimilarity (entropy, mutual information, divergence...)
- Coding theorems: Operational problems (data compression, data transmission, etc)

information measures <u>coding theorems</u> fundamental limits operational meaning

What is information theory

Information theory: theory of fundamental limits

- Information measures: How to measure randomness, dependency, dissimilarity (entropy, mutual information, divergence...)
- Coding theorems: Operational problems (data compression, data transmission, etc)

information measures <u>coding theorems</u> fundamental limits operational meaning

Information-theoretic methods

- Negative results (converse, impossibility results, lower bound):
 - Conceptually: quantify "information" and "dissimilarity"
 - two distributions too "close" \Rightarrow impossible to distinguish
 - $I(\text{observation}; \text{parameter}) \text{ too "small"} \Rightarrow \text{impossible to estimate}$
 - dimension/entropy too "high" \Rightarrow need large sample size

Information-theoretic methods

- Negative results (converse, impossibility results, lower bound):
 - Conceptually: quantify "information" and "dissimilarity"
 - two distributions too "close" \Rightarrow impossible to distinguish
 - $I(\text{observation}; \text{parameter}) \text{ too "small"} \Rightarrow \text{impossible to estimate}$
 - dimension/entropy too "high" \Rightarrow need large sample size
 - More advanced techniques:
 - area theorem
 - strong data processing inequality and information-percolation method (Broadcasting on trees, spiked Wigner model...)
 - (truncated) second moment method

Information-theoretic methods

- Negative results (converse, impossibility results, lower bound):
 - Conceptually: quantify "information" and "dissimilarity"
 - two distributions too "close" \Rightarrow impossible to distinguish
 - $I(\text{observation}; \text{parameter}) \text{ too "small"} \Rightarrow \text{impossible to estimate}$
 - dimension/entropy too "high" \Rightarrow need large sample size
 - More advanced techniques:
 - area theorem
 - strong data processing inequality and information-percolation method (Broadcasting on trees, spiked Wigner model...)
 - (truncated) second moment method
- Positive results (achievability, constructive results, upper bound):
 - maximal likelihood estimate
 - entropy method (estimators based on pairwise comparison)
 - duality method
 - aggregation
 - efficient procedures/algorithms