
S&DS677: Topics in High-Dimensional Statistics and
Information Theory

Spring 2021



Administrivia

• Schedule: Tuesday 330–520pm on zoom

• Instructor: Yihong Wu yihong.wu@yale.edu
I Office hours: by appointment

• Website:
http://www.stat.yale.edu/~yw562/teaching/SDS677/index.html

or just google S&DS677

yihong.wu@yale.edu
http://www.stat.yale.edu/~yw562/teaching/SDS677/index.html


Administrivia

1 Course prerequisites:

I Maturity with probability theory
I Some linear algebra
I Prior knowledge on Information Theory (e.g. SDS 364) is NOT required

2 Participation (30%):

I Zoom participation is highly encouraged
I Critiques on lecture notes/maybe a few scribes towards the end

3 Homeworks (30%): three problem sets

4 Final project (40%)

I either presenting paper(s) or a standalone research project.
I topics announced around week 6

5 Materials: Lecture notes and additional reading materials will be posted
online.
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Statistical problems

• Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, confidence statements)

θ ∈ Θ︸ ︷︷ ︸
parameter

7→ X1, . . . , Xn︸ ︷︷ ︸
data

7→ θ̂︸︷︷︸
estimate

• Understanding the fundamental limits:

Q1 Characterize statistical optimum: What is possible/impossible?
Q2 How many samples are necessary and sufficient to achieve a prescribed goal?
Q3 Can statistical limits be attained comptutationally efficiently, e.g., in

poly(n, p)-time? If yes, how? If not, why?
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High Dimensionality of Contemporary Datasets

Fields Data

Biomedical Research microarray, ECG, fMRI, ...
array sensor data,

Signal Processing face recognition,
hyper-spectral data, ...

Finance asset returns, ...
...

...

• Growth of data outpaced by increasing number of features

• A common feature: large d, but just comparable or smaller n

θ ∈ Rd 7→ X1, . . . , Xn

• low-dimensional structure
I Intrinsic: θ lies in a low-dimensional subset
I Extrinsic: θ has no structure but we only estimate low-dimensional

functional of θ



Classical topics



Example 1: high-dimensional linear regression

Microarray data:

• Leukaemia dataset [Golub et al.
’99]: d = 7129 genes and n = 72
samples

• Typically d� n

• Interpretability (gene selection)

that class discovery could be tested by class
prediction: If putative classes reflect true
structure, then a class predictor based on
these classes should perform well.

To test this hypothesis, we evaluated the
clusters A1 and A2. We constructed predic-
tors to assign new samples as “type A1” or
“type A2.” Predictors that used a wide range
of different numbers of informative genes
performed well in cross-validation. For ex-
ample, a 20-gene predictor gave 34 accurate
predictions with high prediction strength, one
error, and three uncertains (34). The one
“error” was the assignment of the sole AML
sample in class A1 to class A2, and two of the
three uncertains were ALL samples in class
A2. The cross-validation thus not only
showed high accuracy, but actually refined
the SOM-defined classes: With one excep-
tion, the subset of samples accurately classi-
fied in cross-validation were those perfectly
subdivided by the SOM into ALL and AML

classes. The results suggest an iterative pro-
cedure for refining clusters, in which an SOM
is used to initially cluster the data, a predictor
is constructed, and samples not correctly pre-
dicted in cross-validation are removed. The
edited data set could then be used to generate
an improved predictor to be tested on an
independent data set (35).

We then tested the class predictor of the
A1-A2 distinction on the independent data set.
In the general case of class discovery, predic-
tors for novel classes cannot be assessed for
“accuracy” on new samples, because the “right”
way to classify the independent samples is not
known. Instead, however, one can assess
whether the new samples are assigned a high
prediction strength. High prediction strengths
indicate that the structure seen in the initial data
set is also seen in the independent data set. The
prediction strengths, in fact, were quite high:
The median PS was 0.61, and 74% of samples
were above threshold (Fig. 4B). To assess these

results, we performed the same analyses with
random clusters. Such clusters consistently
yielded predictors with poor accuracy in cross-
validation and low prediction strength on the
independent data set (Fig. 4B). On the basis of
such analysis (36), the A1-A2 distinction can
be seen to be meaningful, rather than simply a
statistical artifact of the initial data set. The
results thus show that the AML-ALL distinc-
tion could have been automatically discovered
and confirmed without previous biological
knowledge.

We then sought to extend the class dis-
covery by searching for finer subclasses of
the leukemias. We used a SOM to divide the
samples into four clusters (denoted B1 to
B4). We subsequently obtained immunophe-
notype data on the samples and found that the
four classes largely corresponded to AML,
T-lineage ALL, B-lineage ALL, and B-lin-
eage ALL, respectively (Fig. 4C). The four-
cluster SOM thus divided the samples along

Fig. 3. (A) Prediction strengths. The scatter-
plots show the prediction strengths (PSs) for
the samples in cross-validation (left) and on the
independent sample (right). Median PS is de-
noted by a horizontal line. Predictions with PS
, 0.3 are considered as uncertain. (B) Genes
distinguishing ALL from AML. The 50 genes
most highly correlated with the ALL-AML class
distinction are shown. Each row corresponds to
a gene, with the columns corresponding to
expression levels in different samples. Expres-
sion levels for each gene are normalized across
the samples such that the mean is 0 and the SD
is 1. Expression levels greater than the mean
are shaded in red, and those below the mean
are shaded in blue. The scale indicates SDs
above or below the mean. The top panel shows
genes highly expressed in ALL, the bottom panel shows genes more
highly expressed in AML. Although these genes as a group appear
correlated with class, no single gene is uniformly expressed across the class,

illustrating the value of a multigene prediction method. For a complete list
of gene names, accession numbers, and raw expression values, see www.
genome.wi.mit.edu/MPR.

B

R E P O R T S

15 OCTOBER 1999 VOL 286 SCIENCE www.sciencemag.org534

Ref: [Golub et al. ’99, Zou-Hastie ’05]



Example 1: high-dimensional linear regression

Statistical model
y = Xβ + noise

• observation: y ∈ Rn and X ∈ Rn×d

• parameter: β ∈ Rd

• goal: estimate β or predict Xβ

• assumption: β is sparse



Example 2: Covariance matrix estimation & PCA

Climate Data
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One observation: January average temperature in 1969 [d = 2592, n = 157]

Ref: Bickel & Levina (08)



Example 2: Covariance matrix estimation & PCA

Statistical model

• observation: X1, . . . , Xn
iid∼ N(0,Σ) ∈ Rd

• parameter: Σ = E[XX ′] ∈ Rd×d

• goal: estimate Σ or its principle component (PCA)

• assumption: Σ is sparse/smooth(entrywise decay)/low-rank



Problems of combinatorial nature



Example 3: How many words did Shakespeare know?

• Linguistics

Biomttrika (1976), 63, 3, pp. 436-47 4 3 5
WithZ t«xt-flgun»

Printed in Great Britain

Estimating the number of unseen species: How many
words did Shakespeare know?

BY BRADLEY EFRON AND RONALD TBISTED

Department of Statistics, Stanford University, California

SUMMARY

Shakespeare wrote 31534 different words, of which 14376 appear only once, 4343 twice,
etc. The question considered is how many words he knew but did not use. A parametric
empirical Bayes model due to Fisher and a nonparametric model due to Good & Toulmin
are examined. The latter theory is augmented using linear programming methods. We
conclude that the models are equivalent to supposing that Shakespeare knew at least
35000 more words.

Some key words: Empirical Bayes; Euler transformation; Linear programming; Negative binomial;
Vocabulary.

1. LVTBODTJOTIOK

Estimating the number of unseen species is a familiar problem in ecological studies. In
this paper the unseen species are words Shakespeare knew but did not use. Shakespeare's
known works comprise 884647 total words, of which 14376 are types appearing just one
time, 4343 are types appearing twice, etc. These counts are based on Spevaok's (1968)
concordance and on the summary appearing in an unpublished report by J. Gani &
I. Saunders. Table 1 summarizes Shakespeare's word type counts, where nx is the number
of word types appearing exactly x times (x = 1,..., 100). Including the 846 word types
which appear more than 100 times, a total of

2 nx = 31534
x-1

different word types appear. Note that 'type' or 'word type' will be used to indicate a
distinct item in Shakespeare's vocabulary. 'Total words' will indicate a total word count
including repetitions. The definition of type is any distinguishable arrangement of letters.
Thus, 'girl' is a different type from 'girls' and 'throneroom' is a different type from both
' throne' and ' room'.

How many word types did Shakespeare actually know? To put the question more opera-
tionally, suppose another large quantity of work by Shakespeare were discovered, say
884 647J total words. How many new word types in addition to the original 31534 would we
expect to find? For the case t = 1, corresponding to a volume of new Shakespeare equal to
the old, there is a surprisingly explicit answer. We will show that a parametric model due
to Fisher, Corbet & Williams (1943) and a nonparametric model due to Good & Toulmin
(1956) both estimate about 11460 expected new word types, with an expected error of less
than 150.

The case t = oo corresponds to the question as originally posed: how many word types
did Shakespeare know? The mathematical model at the beginning of §2 makes explicit
the sense of the question. No upper bound is possible, but we will demonstrate a lower bound

 at U
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Example 3: How many words did Shakespeare know?

ACT I

SCENE I. Elsinore. A platform before the castle.

FRANCISCO at his post. Enter to him BERNARDO

BERNARDO

Who’s there?

.

.

.

.

.

.

.

.

.

PRINCE FORTINBRAS

Let four captains

Bear Hamlet, like a soldier, to the stage;

For he was likely, had he been put on,

To have proved most royally: and, for his passage,

The soldiers’ music and the rites of war

Speak loudly for him.

Take up the bodies: such a sight as this

Becomes the field, but here shows much amiss.

Go, bid the soldiers shoot.

A dead march. Exeunt, bearing off the dead bodies;

after which a peal of ordnance is shot off

Hamlet experiment

1 Starting from Act I, read a small
fraction of the text

2 Stop and estimate the number of
distinct words in entire Hamlet



Example 3: How many words did Shakespeare know?

Statistical model: Distinct element problem

• observation: X1, . . . , Xn sampled without replacements from an urn of k
colored balls

• parameter: composition of the urn (number of red, blue, etc.)

• goal: number of distinct colors

• assumption: NONE!

• Method: Estimator built from convex/LP duality



Example 3: How many words did Shakespeare know?
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Example 4: Community detection in networks

• Networks with community structures arise in many applications

• Task: Discover underlying communities based on the network topology

• Applications: Friend or movie recommendation in online social networks
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Political blogosphere

...in the 2004 U.S. election [Adamic-Glance ’05]

Figure 1: Community structure of political blogs (expanded set), shown using utilizing the GUESS visual-
ization and analysis tool[2]. The colors reflect political orientation, red for conservative, and blue for liberal.
Orange links go from liberal to conservative, and purple ones from conservative to liberal. The size of each
blog reflects the number of other blogs that link to it.

Because of bloggers’ ability to identify and frame break-
ing news, many mainstream media sources keep a close eye
on the best known political blogs. A number of mainstream
news sources have started to discuss and even to host blogs.
In an online survey asking editors, reporters, columnists and
publishers to each list the “top 3” blogs they read, Drezner
and Farrell [4] identified a short list of dominant “A-list”
blogs. Just 10 of the most popular blogs accounted for over
half the blogs on the journalists’ lists. They also found that,
besides capturing most of the attention of the mainstream
media, the most popular political blogs also get a dispro-
portionate number of links from other blogs. Shirky [12]
observed the same effect for blogs in general and Hindman
et al. [7] found it to hold for political websites focusing on
various issues.
While these previous studies focused on the inequality of

citation links for political blogs overall, there has been com-
paratively little study of subcommunities of political blogs.
In the context of political websites, Hindman et al. [7] noted
that, for example, those dealing with the issue of abortion,
gun control, and the death penalties, contain subcommuni-
ties of opposing views. In the case of the pro-choice and
pro-life web communities, an earlier study [1] found pro-life
websites to be more densely linked than pro-choice ones. In
a study of a sample of the blogosphere, Herring et al.[6] dis-
covered densely interlinked (non-political) blog communities
focusing on the topics of Catholicism and homeschooling, as
well as a core network of A-list blogs, some of them political.
Recently, Butts and Cross [3] studied the response in the

structure of networks of political blogs to polling data and
election campaign events. In another political blog study,
Welsch [15] gathered a single-day snapshot of the network

neighborhoods of Atrios, a popular liberal blog, and In-
stapundit, a popular conservative blog. He found the In-
stapundit neighborhood to include many more blogs than
the Atrios one, and observed no overlap in the URLs cited
between the two neighborhoods. The lack of overlap in lib-
eral and conservative interests has previously been observed
in purchases of political books on Amazon.com [8]. This
brings about the question of whether we are witnessing a
cyberbalkanization [11, 13] of the Internet, where the prolif-
eration of specialized online news sources allows people with
different political leanings to be exposed only to information
in agreement with their previously held views. Yale law pro-
fessor Jack Balkin provides a counter-argument7 by pointing
out that such segregation is unlikely in the blogosphere be-
cause bloggers systematically comment on each other, even
if only to voice disagreement.

In this paper we address both hypotheses by examining in
a systematic way the linking patterns and discussion topics
of political bloggers. In doing so, we not only measure the
degree of interaction between liberal and conservative blogs,
but also uncover differences in the structure of the two com-
munities. Our data set includes the posts of 40 A-list blogs
over the period of two months preceding the U.S. Presiden-
tial Election of 2004. We also study a large network of over
1,000 political blogs based on a single day snapshot that in-
cludes blogrolls (the list of links to other blogs frequently
found in sidebars), and so presents a more static picture of
a broader blogosphere.

From both samples we find that liberal and conservative
blogs did indeed have different lists of favorite news sources,

7http://balkin.blogspot.com/2004 01 18 balkin
archive.html#107480769112109137



Stochastic block model – graph view

1 n nodes are randomly partitioned into 2 equal-sized communities

2 For every pair of nodes in same community, add an edge w.p. p

3 For every pair of nodes in diff. community, add an edge w.p. q
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Stochastic block model – graph view

1 n nodes are randomly partitioned into 2 equal-sized communities
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3 For every pair of nodes in diff. community, add an edge w.p. q
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Stochastic block model – graph view

1 n nodes are randomly partitioned into 2 equal-sized communities

2 For every pair of nodes in same community, add an edge w.p. p

3 For every pair of nodes in diff. community, add an edge w.p. q
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Stochastic block model – graph view

1 n nodes are randomly partitioned into 2 equal-sized communities

2 For every pair of nodes in same community, add an edge w.p. p

3 For every pair of nodes in diff. community, add an edge w.p. q
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Stochastic block model – adjacency matrix view
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Example 4: Community detection

Statistical model: Stochastic block model SBM(n, p, q)

• observation: a single graph G

• parameter: partition of two communities (subsets of [n])

• goal: locate the community (under various criteria)

• assumption: low-rankness of E[adjancency matrix]



Example 5: spiked Wigner model

Noisy observation of rank-one matrix:

Y = λxx> + Z,

where

• signal: x uniform on the hypercube {± 1√
n
}n

• noise: Z iid N(0, 1
n )

• goal: recover x better than chance
I Find unit vector x̂ = x̂(Y ), s.t. E|〈x̂, x〉| = Ω(1)

• Random matrix theory: PCA works iff λ > 1 [Baik-Ben Arous-Peche ’04]

• We will show λ > 1 is needed by any algo (information-percolation method)
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What is information theory

Information theory: theory of fundamental limits

I. Information measures: How to measure randomness, dependency,
dissimilarity (entropy, mutual information, divergence...)

II. Coding theorems: Operational problems (data compression, data
transmission, etc)

information measures
coding theorems

EGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGC

operational meaning
fundamental limits
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Information-theoretic methods

• Negative results (converse, impossibility results, lower bound):
I Conceptually: quantify “information” and “dissimilarity”

• two distributions too “close” ⇒ impossible to distinguish
• I(observation; parameter) too “small” ⇒ impossible to estimate
• dimension/entropy too “high” ⇒ need large sample size

I More advanced techniques:
• area theorem
• strong data processing inequality and information-percolation method

(Broadcasting on trees, spiked Wigner model...)
• (truncated) second moment method

• Positive results (achievability, constructive results, upper bound):
I maximal likelihood estimate
I entropy method (estimators based on pairwise comparison)
I duality method
I aggregation
I efficient procedures/algorithms
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