S&DS677: Topics in High-Dimensional Statistics and
Information Theory

Spring 2021



Administrivia

® Schedule: Tuesday 330-520pm on zoom

® |Instructor: Yihong Wu yihong.wu@Qyale.edu
» Office hours: by appointment
® Website:
http://www.stat.yale.edu/~ywb62/teaching/SDS677/index.html
or just google S&DS677


yihong.wu@yale.edu
http://www.stat.yale.edu/~yw562/teaching/SDS677/index.html
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@ Course prerequisites:

> Maturity with probability theory

> Some linear algebra

> Prior knowledge on Information Theory (e.g. SDS 364) is NOT required
@® Participation (30%):

» Zoom participation is highly encouraged

» Critiques on lecture notes/maybe a few scribes towards the end
® Homeworks (30%): three problem sets
© Final project (40%)

> either presenting paper(s) or a standalone research project.

» topics announced around week 6

© Materials: Lecture notes and additional reading materials will be posted
online.
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® Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, confidence statements)

0e® = X1,...,.Xp— 0
S~ —_——— ~~~

parameter data estimate



Statistical problems

® Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, confidence statements)

feO — Xq,...,. X, — 0
—— ~————— ~—
parameter data estimate

® Understanding the fundamental limits:



Statistical problems

® Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, confidence statements)

feO — Xq,...,. X, — 0
—— ~————— ~—
parameter data estimate

® Understanding the fundamental limits:
& Characterize statistical optimum: What is possible/impossible?



Statistical problems

® Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, confidence statements)

feO — Xq,...,. X, — 0
—— ~————— ~—
parameter data estimate

® Understanding the fundamental limits:

& Characterize statistical optimum: What is possible/impossible?
& How many samples are necessary and sufficient to achieve a prescribed goal?



Statistical problems

® Statistical tasks: using data to make informed decisions (hypotheses
testing, estimation, confidence statements)

feO — Xq,...,. X, — 0
—— ~————— ~—
parameter data estimate

® Understanding the fundamental limits:
& Characterize statistical optimum: What is possible/impossible?
& How many samples are necessary and sufficient to achieve a prescribed goal?
& Can statistical limits be attained comptutationally efficiently, e.g., in
poly(n, p)-time? If yes, how? If not, why?



High Dimensionality of Contemporary Datasets

Fields | Data

Biomedical Research | microarray, ECG, fMRI, ...
array sensor data,

Signal Processing face recognition,
hyper-spectral data, ...
Finance asset returns, ...

® Growth of data outpaced by increasing number of features

® A common feature: large d, but just comparable or smaller n
eR— X1,...,X,

® |ow-dimensional structure
» Intrinsic: 6 lies in a low-dimensional subset
» Extrinsic: 6 has no structure but we only estimate low-dimensional
functional of 6






Example 1: high-dimensional linear regression

Cmyh (U22376)

Microarray data:

® Leukaemia dataset [Golub et al. R ; & m,;:;: e
'99]: d = 7129 genes and n = 72 ' A S

samples
e Typically d > n
Interpretability (gene selection)

Catalase (X04085)

3 25 2 15 1 05 0 05 1 15 2 25 3
Tow Normalized Expression high

Ref: [Golub et al. '99, Zou-Hastie '05]



Example 1: high-dimensional linear regression

Statistical model
y = X + noise

® observation: y € R and X € R"*¢
® parameter: 3 € R?

® goal: estimate S or predict X3

® assumption: 3 is sparse



Example 2: Covariance matrix estimation & PCA

Climate Data

Altitude
0
L

Longitude

One observation: January average temperature in 1969 [d = 2592, n = 157]

Ref: Bickel & Levina (08)



Example 2: Covariance matrix estimation & PCA

Statistical model
e observation: X1,...,X, < N(0,%) € R¢
® parameter: ¥ = E[X X'] € R*4
® goal: estimate ¥ or its principle component (PCA)

® assumption: X is sparse/smooth(entrywise decay)/low-rank






Example 3: How many words did Shakespeare know?

® Linguistics
Estimating the number of unseen species: How many
words did Shakespeare know?

By BRADLEY EFRON axp RONALD THISTED
Department of Staiistics, Stanford University, California

® Ecology

THE RELATION BETWEEN THE NUMBER OF SPECIES AND
THE NUMBER OF INDIVIDUALS IN A RANDOM SAMPLE
OF AN ANIMAL POPULATION

By R. A. FISHER (Galton Laboratory), A. STEVEN -CORBET (British Museum, Natural History)
aND C. B. WILLIAMS (Rothamsted Experimental Station)




Example 3: How many words did Shakespeare know?

Hamlet experiment

et 1 @ Starting from Act |, read a small
SCENE I. Elsinore. A platform before the castle. .
fraction of the text

FRANCISCO at his post. Enter to him BERNARDO

BERNARDO ® Stop and estimate the number of
distinct words in entire Hamlet

Who’s there?

PRINCE FORTINBRAS

Let four captains

Bear Hamlet, like a soldier, to the stage;

For he was likely, had he been put on,

To have proved most royally: and, for his passage,
The soldiers’ music and the rites of war

Speak loudly for him.

Take up the bodies: such a sight as this

Becomes the field, but here shows much amiss.

Go, bid the soldiers shoot.

A dead march. Exeunt, bearing off the dead bodies;
after which a peal of ordnance is shot off



Example 3: How many words did Shakespeare know?

Statistical model: Distinct element problem

® observation: X1,..., X, sampled without replacements from an urn of &k
colored balls

® parameter: composition of the urn (number of red, blue, etc.)

goal: number of distinct colors
® assumption: NONE!
Method: Estimator built from convex/LP duality



Example 3: How many words did Shakespeare know?
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Example 4: Community detection in networks

® Networks with community structures arise in many applications
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Example 4: Community detection in networks

® Networks with community structures arise in many applications

A e

¥

*> ascalar andothalial

Agent-based vt

Models scaisr soratg o |
e,

Mathematical
Ecology

/4}\ Structure of RNA
SAen

® Task: Discover underlying communities based on the network topology

® Applications: Friend or movie recommendation in online social networks



Political blogosphere

...in the 2004 U.S. election [Adamic-Glance '05]




Stochastic block model — graph view
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Stochastic block model — graph view

@ n nodes are randomly partitioned into 2 equal-sized communities
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Stochastic block model — graph view

@ n nodes are randomly partitioned into 2 equal-sized communities
® For every pair of nodes in same community, add an edge w.p. p
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Stochastic block model — adjacency matrix view

nz = 7962



Stochastic block model — adjacency matrix view

0 50 100 150 200
nz = 7962



Example 4: Community detection

Statistical model: Stochastic block model SBM(n, p, q)
® observation: a single graph G
® parameter: partition of two communities (subsets of [n])
® goal: locate the community (under various criteria)

® assumption: low-rankness of E[adjancency matrix]



Example 5: spiked Wigner model

Noisy observation of rank-one matrix:
Y =Xzz' + Z,

where
® signal: z uniform on the hypercube {:l:ﬁ}”
® noise: Z iid N(0,1)
® goal: recover x better than chance
» Find unit vector & = Z(Y), s.t. E|[(Z,z)| = Q(1)
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Example 5: spiked Wigner model

Noisy observation of rank-one matrix:
Y =Xzz' + Z,

where
® signal: z uniform on the hypercube {:l:ﬁ}”
® noise: Z iid N(0,1)
® goal: recover = better than chance
» Find unit vector & = Z(Y), s.t. E|[(Z,z)| = Q(1)
® Random matrix theory: PCA works iff A > 1 [Baik-Ben Arous-Peche '04]
We will show A > 1 is needed by any algo (information-percolation method)



What is information theory

Information theory: theory of fundamental limits

® Information measures: How to measure randomness, dependency,
dissimilarity (entropy, mutual information, divergence...)

® Coding theorems: Operational problems (data compression, data
transmission, etc)

coding theorems
information measures fundamental limits
operational meaning
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Information-theoretic methods

® Negative results (converse, impossibility results, lower bound):
» Conceptually: quantify “information” and “dissimilarity”

® two distributions too “close” = impossible to distinguish
® [(observation; parameter) too “small” = impossible to estimate
® dimension/entropy too “high” = need large sample size
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® Negative results (converse, impossibility results, lower bound):

>

>

Conceptually: quantify “information” and “dissimilarity”
® two distributions too “close” = impossible to distinguish
® [(observation; parameter) too “small” = impossible to estimate
® dimension/entropy too “high” = need large sample size
More advanced techniques:
® area theorem
® strong data processing inequality and information-percolation method
(Broadcasting on trees, spiked Wigner model...)
® (truncated) second moment method

® Positive results (achievability, constructive results, upper bound):

>

vvyyvyy

maximal likelihood estimate

entropy method (estimators based on pairwise comparison)
duality method

aggregation

efficient procedures/algorithms



