S\&DS677: Topics in High-Dimensional Statistics and Information Theory

Spring 2021

Administrivia

- Schedule: Tuesday $330-520$ pm on zoom
- Instructor: Yihong Wu yihong.wu@yale.edu
- Office hours: by appointment
- Website:
http://www.stat.yale.edu/~yw562/teaching/SDS677/index.html or just google S\&DS677

Administrivia

(1) Course prerequisites:

Administrivia

(1) Course prerequisites:

- Maturity with probability theory

Administrivia

(1) Course prerequisites:

- Maturity with probability theory
- Some linear algebra

Administrivia

(1) Course prerequisites:

- Maturity with probability theory
- Some linear algebra
- Prior knowledge on Information Theory (e.g. SDS 364) is NOT required

Administrivia

(1) Course prerequisites:

- Maturity with probability theory
- Some linear algebra
- Prior knowledge on Information Theory (e.g. SDS 364) is NOT required
(2) Participation (30\%):

Administrivia

(1) Course prerequisites:

- Maturity with probability theory
- Some linear algebra
- Prior knowledge on Information Theory (e.g. SDS 364) is NOT required
(2) Participation (30\%):
- Zoom participation is highly encouraged

Administrivia

(1) Course prerequisites:

- Maturity with probability theory
- Some linear algebra
- Prior knowledge on Information Theory (e.g. SDS 364) is NOT required
(2) Participation (30\%):
- Zoom participation is highly encouraged
- Critiques on lecture notes/maybe a few scribes towards the end

Administrivia

(1) Course prerequisites:

- Maturity with probability theory
- Some linear algebra
- Prior knowledge on Information Theory (e.g. SDS 364) is NOT required

2 Participation (30%):

- Zoom participation is highly encouraged
- Critiques on lecture notes/maybe a few scribes towards the end

3 Homeworks (30\%): three problem sets

Administrivia

(1) Course prerequisites:

- Maturity with probability theory
- Some linear algebra
- Prior knowledge on Information Theory (e.g. SDS 364) is NOT required

2 Participation (30%):

- Zoom participation is highly encouraged
- Critiques on lecture notes/maybe a few scribes towards the end

3 Homeworks (30\%): three problem sets
4. Final project (40%)

Administrivia

(1) Course prerequisites:

- Maturity with probability theory
- Some linear algebra
- Prior knowledge on Information Theory (e.g. SDS 364) is NOT required
(2) Participation (30\%):
- Zoom participation is highly encouraged
- Critiques on lecture notes/maybe a few scribes towards the end

3 Homeworks (30\%): three problem sets
4. Final project (40%)

- either presenting paper(s) or a standalone research project.

Administrivia

(1) Course prerequisites:

- Maturity with probability theory
- Some linear algebra
- Prior knowledge on Information Theory (e.g. SDS 364) is NOT required

2 Participation (30\%):

- Zoom participation is highly encouraged
- Critiques on lecture notes/maybe a few scribes towards the end
(3) Homeworks (30\%): three problem sets

4. Final project (40%)

- either presenting paper(s) or a standalone research project.
- topics announced around week 6

Administrivia

(1) Course prerequisites:

- Maturity with probability theory
- Some linear algebra
- Prior knowledge on Information Theory (e.g. SDS 364) is NOT required
(2) Participation (30\%):
- Zoom participation is highly encouraged
- Critiques on lecture notes/maybe a few scribes towards the end

3 Homeworks (30\%): three problem sets
4 Final project (40%)

- either presenting paper(s) or a standalone research project.
- topics announced around week 6
(5 Materials: Lecture notes and additional reading materials will be posted online.

What this course is about?

Information-theoretic methods in high-dimensional statistics

What this course is about?

Information-theoretic \& related methods in high-dimensional statistics

What this course is about?

Information-theoretic \& related methods in high-dimensional statistics

Statistical problems

- Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, confidence statements)

$$
\underbrace{\theta \in \Theta}_{\text {parameter }} \mapsto \underbrace{X_{1}, \ldots, X_{n}}_{\text {data }} \mapsto \underbrace{\hat{\theta}}_{\text {estimate }}
$$

Statistical problems

- Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, confidence statements)

$$
\underbrace{\theta \in \Theta}_{\text {parameter }} \mapsto \underbrace{X_{1}, \ldots, X_{n}}_{\text {data }} \mapsto \underbrace{\hat{\theta}}_{\text {estimate }}
$$

- Understanding the fundamental limits:

Statistical problems

- Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, confidence statements)

- Understanding the fundamental limits:
(11) Characterize statistical optimum: What is possible/impossible?

Statistical problems

- Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, confidence statements)

- Understanding the fundamental limits:

Qi Characterize statistical optimum: What is possible/impossible?
Q2 How many samples are necessary and sufficient to achieve a prescribed goal?

Statistical problems

- Statistical tasks: using data to make informed decisions (hypotheses testing, estimation, confidence statements)

- Understanding the fundamental limits:

Qi Characterize statistical optimum: What is possible/impossible?
Q2 How many samples are necessary and sufficient to achieve a prescribed goal?
*. Can statistical limits be attained comptutationally efficiently, e.g., in poly (n, p)-time? If yes, how? If not, why?

High Dimensionality of Contemporary Datasets

Fields	Data
Biomedical Research	microarray, ECG, fMRI, ...
Signal Processing	array sensor data, face recognition, hyper-spectral data, \ldots
	asset returns, \ldots
	\vdots

- Growth of data outpaced by increasing number of features
- A common feature: large d, but just comparable or smaller n

$$
\theta \in \mathbb{R}^{d} \mapsto X_{1}, \ldots, X_{n}
$$

- low-dimensional structure
- Intrinsic: θ lies in a low-dimensional subset
- Extrinsic: θ has no structure but we only estimate low-dimensional functional of θ

Classical topics

Example 1: high-dimensional linear regression

Microarray data:

- Leukaemia dataset [Golub et al. '99]: $d=7129$ genes and $n=72$ samples
- Typically $d \gg n$
- Interpretability (gene selection)

Ref: [Golub et al. '99, Zou-Hastie '05]

Example 1: high-dimensional linear regression

Statistical model

$$
y=X \beta+\text { noise }
$$

- observation: $y \in \mathbb{R}^{n}$ and $X \in \mathbb{R}^{n \times d}$
- parameter: $\beta \in \mathbb{R}^{d}$
- goal: estimate β or predict $X \beta$
- assumption: β is sparse

Example 2: Covariance matrix estimation \& PCA

Climate Data

One observation: January average temperature in 1969 [$d=2592, n=157$]

Example 2: Covariance matrix estimation \& PCA

Statistical model

- observation: $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} N(0, \Sigma) \in \mathbb{R}^{d}$
- parameter: $\Sigma=\mathbb{E}\left[X X^{\prime}\right] \in \mathbb{R}^{d \times d}$
- goal: estimate Σ or its principle component (PCA)
- assumption: Σ is sparse/smooth(entrywise decay)/low-rank

Problems of combinatorial nature

Example 3: How many words did Shakespeare know?

- Linguistics

Estimating the number of unseen species: How many words did Shakespeare know?

By BRADLEY EFRON and RONALD THISTED
Department of Statistics, Stanford University, California

- Ecology

THE RELATION BETWEEN THE NUMBER OF SPECIES AND THE NUMBER OF INDIVIDUALS IN A RANDOM SAMPLE OF AN ANIMAL POPULATION

By R. A. FISHER (Galton Laboratory), A. STEVEN CORBET (British Museum, Natural History)
${ }^{\wedge} \mathrm{nd}$ C. B. WILLIAMS (Rothamsted Experimental Station)

Example 3: How many words did Shakespeare know?

```
ACT I
SCENE I. Elsinore. A platform before the castle.
    FRANCISCO at his post. Enter to him BERNARDO
BERNARDO
    Who's there?
```

Hamlet experiment
(1) Starting from Act I, read a small fraction of the text
(2) Stop and estimate the number of distinct words in entire Hamlet

PRINCE FORTINBRAS

```
Let four captains
Bear Hamlet, like a soldier, to the stage;
For he was likely, had he been put on,
To have proved most royally: and, for his passage,
The soldiers' music and the rites of war
Speak loudly for him.
Take up the bodies: such a sight as this
Becomes the field, but here shows much amiss.
Go, bid the soldiers shoot.
A dead march. Exeunt, bearing off the dead bodies;
after which a peal of ordnance is shot off
```


Example 3: How many words did Shakespeare know?

Statistical model: Distinct element problem

- observation: X_{1}, \ldots, X_{n} sampled without replacements from an urn of k colored balls
- parameter: composition of the urn (number of red, blue, etc.)
- goal: number of distinct colors
- assumption: NONE!
- Method: Estimator built from convex/LP duality

Example 3: How many words did Shakespeare know?

Example 4: Community detection in networks

- Networks with community structures arise in many applications

Example 4: Community detection in networks

- Networks with community structures arise in many applications

- Task: Discover underlying communities based on the network topology

Example 4: Community detection in networks

- Networks with community structures arise in many applications

- Task: Discover underlying communities based on the network topology
- Applications: Friend or movie recommendation in online social networks

Political blogosphere

...in the 2004 U.S. election [Adamic-Glance '05]

Stochastic block model - graph view

Stochastic block model - graph view

(1) n nodes are randomly partitioned into 2 equal-sized communities

Stochastic block model - graph view

(1) n nodes are randomly partitioned into 2 equal-sized communities
(2) For every pair of nodes in same community, add an edge w.p. p

Stochastic block model - graph view

(1) n nodes are randomly partitioned into 2 equal-sized communities
(2) For every pair of nodes in same community, add an edge w.p. p
(3) For every pair of nodes in diff. community, add an edge w.p. q

Stochastic block model - graph view

(1) n nodes are randomly partitioned into 2 equal-sized communities
(2) For every pair of nodes in same community, add an edge w.p. p
(3) For every pair of nodes in diff. community, add an edge w.p. q

Stochastic block model - adjacency matrix view

Stochastic block model - adjacency matrix view

Example 4: Community detection

Statistical model: Stochastic block model $\operatorname{SBM}(n, p, q)$

- observation: a single graph G
- parameter: partition of two communities (subsets of $[n]$)
- goal: locate the community (under various criteria)
- assumption: low-rankness of \mathbb{E} [adjancency matrix]

Example 5: spiked Wigner model

Noisy observation of rank-one matrix:

$$
Y=\lambda x x^{\top}+Z,
$$

where

- signal: x uniform on the hypercube $\left\{ \pm \frac{1}{\sqrt{n}}\right\}^{n}$
- noise: Z iid $N\left(0, \frac{1}{n}\right)$
- goal: recover x better than chance
- Find unit vector $\hat{x}=\hat{x}(Y)$, s.t. $\mathbb{E}|\langle\hat{x}, x\rangle|=\Omega(1)$

Example 5: spiked Wigner model

Noisy observation of rank-one matrix:

$$
Y=\lambda x x^{\top}+Z,
$$

where

- signal: x uniform on the hypercube $\left\{ \pm \frac{1}{\sqrt{n}}\right\}^{n}$
- noise: Z iid $N\left(0, \frac{1}{n}\right)$
- goal: recover x better than chance
- Find unit vector $\hat{x}=\hat{x}(Y)$, s.t. $\mathbb{E}|\langle\hat{x}, x\rangle|=\Omega(1)$
- Random matrix theory: PCA works iff $\lambda>1$ [Baik-Ben Arous-Peche '04]

Example 5: spiked Wigner model

Noisy observation of rank-one matrix:

$$
Y=\lambda x x^{\top}+Z,
$$

where

- signal: x uniform on the hypercube $\left\{ \pm \frac{1}{\sqrt{n}}\right\}^{n}$
- noise: Z iid $N\left(0, \frac{1}{n}\right)$
- goal: recover x better than chance
- Find unit vector $\hat{x}=\hat{x}(Y)$, s.t. $\mathbb{E}|\langle\hat{x}, x\rangle|=\Omega(1)$
- Random matrix theory: PCA works iff $\lambda>1$ [Baik-Ben Arous-Peche '04]
- We will show $\lambda>1$ is needed by any algo (information-percolation method)

What is information theory

Information theory: theory of fundamental limits
(1) Information measures: How to measure randomness, dependency, dissimilarity (entropy, mutual information, divergence...)
(1) Coding theorems: Operational problems (data compression, data transmission, etc)
information measures $\xlongequal[\text { operational meaning }]{\text { coding theorems }}$ fundamental limits

What is information theory

Information theory: theory of fundamental limits
(1) Information measures: How to measure randomness, dependency, dissimilarity (entropy, mutual information, divergence...)
(1) Coding theorems: Operational problems (data compression, data transmission, etc)
information measures $\xlongequal[\text { operational meaning }]{\text { coding theorems }}$ fundamental limits

Information-theoretic methods

- Negative results (converse, impossibility results, lower bound):
- Conceptually: quantify "information" and "dissimilarity"
- two distributions too "close" \Rightarrow impossible to distinguish
- I (observation; parameter) too "small" \Rightarrow impossible to estimate
- dimension/entropy too "high" \Rightarrow need large sample size

Information-theoretic methods

- Negative results (converse, impossibility results, lower bound):
- Conceptually: quantify "information" and "dissimilarity"
- two distributions too "close" \Rightarrow impossible to distinguish
- I (observation; parameter) too "small" \Rightarrow impossible to estimate
- dimension/entropy too "high" \Rightarrow need large sample size
- More advanced techniques:
- area theorem
- strong data processing inequality and information-percolation method (Broadcasting on trees, spiked Wigner model...)
- (truncated) second moment method

Information-theoretic methods

- Negative results (converse, impossibility results, lower bound):
- Conceptually: quantify "information" and "dissimilarity"
- two distributions too "close" \Rightarrow impossible to distinguish
- I (observation; parameter) too "small" \Rightarrow impossible to estimate
- dimension/entropy too "high" \Rightarrow need large sample size
- More advanced techniques:
- area theorem
- strong data processing inequality and information-percolation method (Broadcasting on trees, spiked Wigner model...)
- (truncated) second moment method
- Positive results (achievability, constructive results, upper bound):
- maximal likelihood estimate
- entropy method (estimators based on pairwise comparison)
- duality method
- aggregation
- efficient procedures/algorithms

