

Today we will be learning about simultaneous equations.

## HW Online due $16 \cdot 11.15$

Daily Practice
11.11 .15
1.

Find the resultant vector $2 \boldsymbol{u}-\boldsymbol{v}$ when $\boldsymbol{u}=\left(\begin{array}{r}-2 \\ 3 \\ 5\end{array}\right)$ and $\boldsymbol{v}=\left(\begin{array}{r}0 \\ -4 \\ 7\end{array}\right)$.
Express your answer in component form.

$$
2 \underline{u}=\left(\begin{array}{c}
-4 \\
6 \\
10
\end{array}\right)
$$

2. Simplify $\frac{n^{5} \times 10 n}{2 n^{2}}=\frac{10 n^{6}}{2 n^{2}}=5 n^{4}$
3. Express $\frac{7}{x+5}-\frac{3}{x} \quad x \neq-5, x \neq 0$ as a single fraction in its simplest form.

$$
\frac{7 x}{x(x+5)}-\frac{3(x+5)}{x(x+5)}
$$

$$
=\frac{7 x-3 x-15}{x(x+5)}=\frac{4 x-15}{x(x+5)}
$$

```
Surds and Indices
    Expanding Brackets and Factorisation
    Expanding Bracke
    Algebraic Fractions
    Gradient of a Straight Line & y =mx +c(Level 4)
    Arcs and Sectors (Level 4)
    Volume of 3D shapes (Level 4)
    Significant Figures (Level 3)
    Completing the Square
    Equations and Inequalities
1. Changing the subject
    Averages & Consistency: Quartiles, SIQR, Mean & Standard Deviation
    Trigonometry: Area of Triangle, Sine & Cosine Rule, Bearings
    Trigonomages: Increase/Decrease & Reverse Percentages (Level 3)
    Operations with Fractions (Level 3)
    Equation of a line of Best-Fit
l
```

Topics I feel OK about

You can rearrange the equation so it is in the form $y=m x+c$ and use a table of values, but this method is sometimes tricky as the gradient might be a fraction.

Find the $x$ - intercept and $y$ - intercept and one other point on the line.
At the $x$-intercept, $y=0$.
At the $y$-interept, $x=0$.

## Daily Practice

13.11 .15

Q1. Multiply out and simplify $(3 x-2)\left(x^{2}-5 x+7\right)$

$$
\begin{gathered}
3 x^{3}-15 x^{2}+21 x-2 x^{2}+10 x-14 \\
3 x^{3}-17 x^{2}+31 x-14
\end{gathered}
$$

Q2. Using a table of values, draw the line $y=2 x+1$

Today we will be confinuing fo practise solving simulfaneous equations graphically.


Daily Practice
16.11.15

Q1. Calculate the original value of a car that is now worth $£ 4550$ after depreciating by $15 \% \quad 85 \%=4550$

$$
\begin{gathered}
1 \%=4550 \div 85 \\
100 \%=£ 5352.94
\end{gathered}
$$

Q2. Calculate the radius of a sphere with a volume of $1650 \mathrm{~cm}^{3}$

$$
V=\frac{4}{3} \pi r^{3} \quad 1650=\frac{4}{3} \pi r^{3} \quad \frac{1650}{\frac{4}{3} \pi}=r^{3}
$$

Q3. (i) Rearrange the line $3 x-2 y+4=0$ so that it is in the
form $y=m x+c$.
(ii) State the gradient and $y$-intercept of this line. $\sqrt[3]{\frac{1650}{4} \pi}=7.3$
(i) $\begin{aligned} 3 x-2 y+4 & =0 \\ +2 y & +2 y\end{aligned}$

$$
\underset{\div 2}{3 x+4}=2 y \div 2
$$

$$
1-5 x+2=y
$$

$$
y=1 \cdot 5 x+2
$$

## Daily Practice

 17.11 .15Q1. Calculate the original cost of a coat that is now $£ 131.75$ with $15 \%$ off.

$$
\begin{aligned}
& 85 \%=131.75 \\
& 1 \%=131.75 \div 85=1.55 \\
& 100 \%=1.55 \times 100=f 155
\end{aligned}
$$

Q2. $\left(\frac{3}{5} \div \frac{2}{3}\right)+1 \frac{1}{6}$ $\frac{3}{5} \times \frac{3}{2}=\frac{9}{10} \quad \frac{9}{10}+1 \frac{1}{6}=\frac{9}{10}+\frac{7}{6}$
$\frac{54}{60}+\frac{70}{60}=\frac{124}{6}$ Q3. Draw the resultant vector of $a+b$ where $a=\binom{2}{-3} \begin{aligned} & \frac{54}{60}+\frac{10}{60}=\left(\begin{array}{l}4 \\ \text { and } b \\ 5\end{array}\right)=2 \frac{4}{60} \\ & =2 \frac{1}{15}\end{aligned}$

$$
a+b=\binom{6}{2}
$$

Today we will be continuing to learn how to solve simultaneous equations.

Homework Due!

Solving Simultaneous Equations Graphically
Solve the following by sketching and stating the point of intersection:
(a) $3 y-x=9$
(b) $2 x-3 y=6$
$x+y=11$
$x+2 y=10$
(c) $x+2 y=10$
$2 x+y=8$
(d) $x-2 y=-2$
(e) $\quad x-y=7$
(f) $3 x+2 y=6$
$2 x-y=2$
$3 x-2 y=24$

$$
x-2 y=10
$$

(g) $2 y-x=8$ $3 y+x=17$
(h) $x+y=2$ $2 x-y=4$
(i) $x-2 y=3$
$x+y=0$
1
From Pegasys

## Daily Practice

18.11.15

Q1. Noel bought a painting for $£ 3500$ and sold it for $£ 4800$.
Calculate the profit as a percentage
$f 4800-t 3500=21300$

$$
\begin{array}{r}
\frac{1300}{3500}=0.3714 \times 10^{0}=3 \\
=3
\end{array}
$$ $37.1 \%$

Q2. Rearrange the line $2 y-3 x=4$ so that it is in the form $y=m x+c$ and state the gradient and

$$
\begin{array}{ll}
\text { gradient and } y-\text { intercept } \\
2 y=3 x+4 & m=1.5 \\
y=15 x+2 & c=2(0.2)
\end{array}
$$

Q3. State where the line $7 \mathrm{y}-\mathrm{x}=14$ cuts the x and y axes
$(-14,0) \quad(0,2)$
Q4. Calculate the size of the angle $A B C$

$$
\frac{\sin A}{48}=\frac{\sin 35}{36}
$$

$\sin A=0.0159 \times 48$
$A=\sin ^{-1}(0.189 \ldots \times 48)$
$A=49.88^{\circ}$


Today we will be learning to solve simultaneous equations by elimination.

Solving Simultaneous Equations by Flimination $\quad 18 \cdot 11 \cdot 15$
We can solve a pair of simultaneous equations by adding or subtracting the equations and eliminating one of the variables.


Solving Simultaneous Equations by Flimination.
Solve the following pairs of simultaneous equations:
(a) $\begin{aligned} 2 x+y & =15 \\ x-y & =6\end{aligned}$
(b) $\begin{aligned} 3 x+2 y & =32 \\ x-2 y & =8\end{aligned}$
(c) $5 x+3 y=26$
$2 x-3 y=2$
(d) $\begin{aligned} 3 x+y & =9 \\ x+y & =5\end{aligned}$
(e) $\quad 4 x+y=11$
(f) $\quad 7 x+2 y=36$

$\begin{aligned} 3 x-4 y & =1 \\ 3(3)-4 y & =1 \quad(3,2) \\ 9-4 y & =1 \\ -4 y & =-8 \\ y & =2\end{aligned}$

## Daily Practice

$\qquad$ 20.11.15

Q1. Calculate the original size of a box of cereal that now weighs 725 grams with $25 \%$ extra free
$100 \%=5-8 \times 100=580 \mathrm{~g}$
$125 \%=725$

$$
1 \%=725 \div 125=5.8
$$

Q2. Write with a rational denominator $\begin{aligned} & \frac{3}{\sqrt{6}} \times \sqrt{6} \\ & \times \sqrt{6}=\frac{3 \sqrt{6}}{6}=\frac{\sqrt{6}}{2} \\ & \div 3\end{aligned}$

Q3. Evaluate $500 \times 7000.184$ and write your answer in scientific notation

Q4. Simplify $3 x^{2}\left(x^{0.5}-x^{-3}\right)$
$3 x^{2.5}-3 x^{-1}$
$3 x^{\frac{5}{2}}-\frac{3}{x}$
$3 \sqrt{x^{5}}-\frac{3}{x}$

Q5 $20 \%$ of $£ 40-£ 3.86$
$f 8-£ 3.86=£ 4.14$
=

## Solving Simultaneous Equations by Flimination

Sometimes you need to multiply one or both of the equations by a number first, to ensure that one of the variables can cancel.


$$
\begin{aligned}
& 2 x+3 y=7(x 5) \quad 10 x+15 y=35 \\
& 5 x-6 y=8(\times 2) \quad 10 x-12 y=16
\end{aligned}
$$

Daily Practice
Q1. Multiply out and simplify $(2 x-4)\left(3 x^{2}+6 x-7\right) 12 x^{2}-24 x+28$
Q2. Calculate the size of the angle PRQ

$$
6 x^{3}-38 x+28
$$


$A=\sin ^{-1}(8 \times 0.1026 \ldots)=55.2^{\circ}$ (1d.p)
Q3. State the equation of the line joining $(2,3)$ and $(4,-5)$. Express your

$$
\begin{aligned}
& \text { answer in the form } y=m x+c \\
& m=\frac{-5-3}{4-2}=\frac{-8}{2}=-4 \\
& y=-4 x+c \\
& 3=-4(2)+c \\
& 3=-8+c \\
& c=11
\end{aligned}\left\{\begin{array} { l } 
{ y = - 4 x + 1 1 }
\end{array} \left\{\begin{array}{l}
y-b=m(x-a) \\
y+5=-4(x-4) \\
y+5=-4 x+16 \\
y=-4 x+11
\end{array}\right.\right.
$$



$$
\text { Q2. Solve } \frac{2 x+3}{2}-\frac{x}{2}=\frac{2 x}{3}
$$

$$
\begin{array}{rlrl}
\frac{6 x+9}{6}-\frac{3 x}{6} & =\frac{4 x}{6} & -x=-9 \\
6 x+9-3 x & =4 x & & = \\
3 x+9 & =4 x &
\end{array}
$$

Q3. Calculate the median and Inter-quartile range of the data set
$2,14,3,5,13,21,22,15,7$
$2,3,5,7\left(13,14, \frac{15,21,22}{1}\right.$
$\operatorname{media}\left(Q_{2}\right)=13 \quad Q_{1}=\frac{3+5}{2}=4, \frac{Q_{3}=\frac{15+21}{2}=18}{}$
Inter-quotile range
$=Q_{3}-Q_{1}=18-4=14$

Today we will be learning how to solve worded simultaneous equations.

Today we will be continuing to practise worded simultaneous equations.

Homework due Monday

Solving Simultaneous Fquations by Flimination
(g) $\quad 2 x-5 y=-21$
(l) $3 x+8 y=23$
(i) $3 x+4 y=10$
$5 x-2 y=16$
$3 x+4 y=20$
(k) $\quad 7 x+3 y=-13$
(I) $3 x-5 y=8$
Pegasys

Solve the following pairs of simultaneous equations:
(a) $\begin{aligned} 5 x+2 y & =9 \\ 2 x=3 y & =-4\end{aligned}$
(d) $3 x+y=16$
(b) $\begin{aligned} 4 x-5 y & =7 \\ 7 x-3 y & =24\end{aligned}$
(c) $\begin{aligned} 5 x-2 y & =14 \\ 4 x-5 y & =-2\end{aligned}$
$3 x+3 y=13$
(e) $\quad 8 x-3 y=19$
(f) $5 x-3 y=19$
(g) $2 x \approx 5 y=21$
(h) $2 x-3 y=17$
(i) $\quad 8 x+2 y=23$
(j) $\quad 2 x+3 y=7$
(k) $\quad 7 x+2 y=11$
(I) $\begin{aligned} 7 x-5 y & =35 \\ 9 x-4 y & =45\end{aligned}$

Q1.
$\begin{array}{lll}\text { (g) } x=2 \text { and } y=5 & \text { (h) } x=5 \text { and } y=1 & \text { (i) } x=2 \text { and } y=1\end{array}$
Q. $\begin{array}{llll}\text { (j) } & x=4 \text { and } y=2 & \text { (k) } x=-1 \text { and } y=-2 & \text { (l) } \\ \text { Q2. } & x=1 \text { and } y=-1 \\ \begin{array}{llll}\text { (a) } & x=1 \text { and } y=2 & \text { (b) } x=3 \text { and } y=-1 & \text { (c) } x=2 \text { and } y=2 \\ \text { (d) } x=5 \text { and } y=1 & \text { (e) } x=5 \text { and } y=7 & \text { (f) } x=5 \text { and } y=-2 \\ \text { (g) } x=3 \text { and } y=-3 & \text { (h) } x=4 \text { and } y=-3 & \text { (i) } x=2 \text { and } y=3.5 \\ \text { (j) } x=0.5 \text { and } y=2 & \text { (k) } x=1 \text { and } y=2 & \text { (l) } x=5 \text { and } y=0\end{array}\end{array}$

Daily Practice
27.11.15

Q1. Calculate the height of a cone that has a volume of 2 Litres and a radius of $\mathbf{2 4 c m}$. Give your answer to $2 \mathrm{~s} . \mathrm{f}$.

Q2. Factorise $6 x^{2}+11 x-2$

Q3. Multiply out and simplify $(7 x-1)\left(2 x^{2}+9 x-8\right)+4 x^{2}$

Q4. State the gradient and $y$-intercept of the line $x-3 y=4$

Worded Simultaneous Equations $25 \cdot 11 \cdot 15$
Examples:

1. Robyn sold 30 tickets for a concert.

She sold $x$ tickets for $£ 3$ each, andy tickets for $£ 4.50$ each.
she collected $£ 123$ in total.
a. Write down two equations connectinge and $y$. $x+y=30$
$3 x+4 \cdot 5 y=123$
b. Solve these simultaneous equations to
find the numbers of the two different types of tickets sold.

$$
\begin{aligned}
& \begin{array}{l}
x+y=30 \quad\left(x^{3}\right)\left(\begin{array}{l}
3 x+3 y=90 \\
3 x+4.5 y=123
\end{array} \frac{10}{3 x+4 \cdot 5 y=123}\right. \\
-1.5 y=-33
\end{array} \\
& x+22=30 \\
& x=8 \text { tickets }
\end{aligned}
$$

Today we will continue to practise simultaneous equations in worded form.

Homework due Monday.

Worded Simultaneous Equations
Examples:
2. A rectangular park is $x$ metres long and $y$ metres broad. The difference between the length and the breadth is 50 m and the perimeter of the park is 200 m . Calculate its length and breadth.
(1) $2 x+2 y=200$

| (1) |  |
| ---: | :--- |
| (2) |  |
| (4) |  |
| $x-y$ | $=50$ |

$$
2 x=150
$$


$x=75$ metres (length)
$75+y=100$
$y=\frac{25 \text { metres }}{(\text { breadth })}$

