
9-1
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

SIMATIC Instructions

This chapter describes the SIMATIC instruction set for the S7-200.

Chapter Overview

Section Description Page

9.1 SIMATIC Bit Logic Instructions 9-2

9.2 SIMATIC Compare Instructions 9-10

9.3 SIMATIC Timer Instructions 9-15

9.4 SIMATIC Counter Instructions 9-23

9.5 SIMATIC High-Speed Counter Instructions 9-27

9.6 SIMATIC Pulse Output Instructions 9-49

9.7 SIMATIC Clock Instructions 9-70

9.8 SIMATIC Integer Math Instructions 9-72

9.9 SIMATIC Real Math Instructions 9-81

9.10 SIMATIC Move Instructions 9-99

9.11 SIMATIC Table Instructions 9-104

9.12 SIMATIC Logical Operations Instructions 9-110

9.13 SIMATIC Shift and Rotate Instructions 9-116

9.14 SIMATIC Conversion Instructions 9-126

9.15 SIMATIC Program Control Instructions 9-141

9.16 SIMATIC Interrupt and Communications Instructions 9-165

9.17 SIMATIC Logic Stack Instructions 9-192

9

http://www.kontrolkalemi.com

SIMATIC Instructions

9-2
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

9.1 SIMATIC Bit Logic Instructions

Standard Contacts

These instructions obtain the referenced value from the
memory or process-image register if the data type is I or
Q. You can use a maximum of seven inputs to both the
AND and the OR boxes.

The Normally Open contact is closed (on) when the bit
is equal to 1.

The Normally Closed contact is closed (on) when the bit
is equal to 0.

In LAD, normally open and normally closed instructions
are represented by contacts.

In FBD, normally open instructions are represented by
AND/OR boxes. These instructions can be used to
manipulate Boolean signals in the same manner as
ladder contacts. Normally closed instructions are also
represented by boxes. A normally closed instruction is
constructed by placing the negation symbol on the stem
of the input signal.

In STL, the Normally Open contact is represented by the
Load , And , and Or instructions. These instructions
Load, AND, or OR the bit value of the address bit to the
top of the stack.

In STL, the Normally closed contact is represented by
the Load Not , And Not , and Or Not instructions. These
instructions Load, AND, or OR the logical Not of the bit
value of the address bit to the top of the stack.

Inputs/Outputs Operands Data Types

bit (LAD, STL) I, Q, M, SM, T, C, V, S, L BOOL

Input (FBD) I, Q, M, SM, T, C, V, S, L, Power Flow BOOL

Output (FBD) I, Q, M, SM, T, C, V, S, L, Power Flow BOOL

L
A
D

S
T
L

LD bit
A bit
O bit

LDN bit
AN bit
ON bit

bit

bit

/

F
B
D

AND

OR

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-3
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Immediate Contacts

The immediate instruction obtains the physical input
value when the instruction is executed, but the
process-image register is not updated.

The Normally Open Immediate contact is closed (on)
when the physical input point (bit) is 1.

The Normally Closed Immediate contact is closed (on)
when the physical input point (bit) is 0.

In LAD, normally open and normally closed immediate
instructions are represented by contacts.

In FBD, normally open immediate instructions are
represented by the immediate indicator in front of the
operand tic. The immediate indicator may not be present
when power flow is used. The instruction can be used to
manipulate physical signals in the same manner as
ladder contacts.

In FBD, normally closed immediate instructions are also
represented by the immediate indicator and negation
symbol in front of the operand tic. The immediate
indicator cannot be present when power flow is used.
The normally closed instruction is constructed by placing
the negation symbol on the stem of the input signal.

In STL, the Normally Open Immediate contact is represented by the Load Immediate , And
Immediate , and Or Immediate instructions. These instructions Load, AND, or OR the physical
input value to the top of the stack immediately.

In STL, the Normally Closed Immediate contact is represented by the Load Not Immediate ,
And Not Immediate , and Or Not Immediate instructions. These instructions immediately
Load, AND, or OR the logical Not of the value of the physical input point to the top of the stack.

Inputs/Outputs Operands Data Types

bit (LAD, STL) I BOOL

Input (FBD) I BOOL

LDI bit
AI bit
OI bit

bit

I

LDNI bit
ANI bit
ONI bit

bit

/I

L
A
D

222 224
� ��

221

F
B
D

S
T
L

http://www.kontrolkalemi.com

SIMATIC Instructions

9-4
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Not

The NOT contact changes the state of power flow. When
power flow reaches the Not contact, it stops. When
power flow does not reach the Not contact, it supplies
power flow.

In LAD, the NOT instruction is shown as a contact.

In FBD, the NOT instruction uses the graphical negation
symbol with Boolean box inputs.

In STL, the NOT instruction changes the value on the top
of the stack from 0 to 1, or from 1 to 0.

Operands: none

Data Types: None

Positive, Negative Transition

The Positive Transition contact allows power to flow for
one scan for each off-to-on transition.

The Negative Transition contact allows power to flow
for one scan for each on-to-off transition.

In LAD, the Positive and Negative Transition instructions
are represented by contacts.

In FBD, the instructions are represented by the P and N
boxes.

In STL, the Positive Transition contact is represented by
the Edge Up instruction. Upon detection of a 0-to-1
transition in the value on the top of the stack, the top of
the stack value is set to 1; otherwise, it is set to 0.

In STL, the Negative Transition contact is represented by
the Edge Down instruction. Upon detection of a 1-to-0
transition in the value on the top of the stack, the top of
the stack value is set to 1; otherwise, it is set to 0.

Inputs/Outputs Operands Data Types

IN (FBD) I, Q, M, SM, T, C, V, S, L, Power Flow BOOL

OUT (FBD) I, Q, M, SM, T, C, V, S, L, Power Flow BOOL

L
A
D

NOT

NOT

222 224
� ��

221

S
T
L

F
B
D

L
A
D

P

N

EU

ED

P

N

IN OUT

IN OUT

222 224
� ��

221

L
A
D

S
T
L

F
B
D

http://www.kontrolkalemi.com

SIMATIC Instructions

9-5
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Contact Examples

NETWORK 1
LD I0.0
A I0.1
= Q0.0

NETWORK 2
LD I0.0
NOT
= Q0.1

NETWORK 3
LD I0.1
ED
= Q0.2

Network 1
Q0.0

LAD STL

I0.0 I0.1

Network 2
Q0.1I0.0

NOT

Network 3
Q0.2I0.1

N

Timing Diagram

I0.0

I0.1

Q0.0

Q0.1

Q0.2

On for one scan

FBD

Network 1

Network 2

Network 3

AND

Q0.0

I0.1

I0.0

=
I0.0

Q0.2
N

I0.1

Q0.1

IN OUT

Figure 9-1 Examples of Boolean Contact Instructions for SIMATIC LAD, STL, and FBD

http://www.kontrolkalemi.com

SIMATIC Instructions

9-6
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Output

When the Output instruction is executed, the output bit
in the process image register is turned on.

In LAD and FBD, when the output instruction is
executed, the specified bit is set to equal to power flow.

In STL, the output instruction copies the top of the stack
to the specified bit.

Inputs/Outputs Operands Data Types

bit I, Q, M, SM, T, C, V, S, L BOOL

Input (LAD) Power Flow BOOL

Input (FBD) I, Q, M, SM, T, C, V, S, L, Power Flow BOOL

Output Immediate

When the Output Immediate instruction is executed, the
physical output point (bit or OUT) is set equal to power
flow.

The “I” indicates an immediate reference; the new value
is written to both the physical output and the
corresponding process-image register location when the
instruction is executed. This differs from the
non-immediate references, which write the new value to
the process-image register only.

In STL, the output immediate instruction copies the top of
the stack to the specified physical output point (bit)
immediately.

Inputs/Outputs Operands Data Types

bit Q BOOL

Input (LAD) Power Flow BOOL

Input (FBD) I, Q, M, SM, T, C, V, S, L, Power Flow BOOL

= bit

bit

=

222 224
� ��

221

S
T
L

F
B
D

L
A
D

bit

L
A
D

S
T
L

=I bit

bit

I

F
B
D

=I

222 224
� ��

221

bit

http://www.kontrolkalemi.com

SIMATIC Instructions

9-7
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Set, Reset (N Bits)

When the Set and Reset instructions are executed, the
specified number of points (N) starting at the value
specified by the bit or OUT parameter are set (turned on)
or reset (turned off).

The range of points that can be set or reset is 1 to 255.
When using the Reset instruction, if the bit is specified to
be either a T- or C-bit, then either the timer or counter bit
is reset and the timer/counter current value is cleared.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address), 0091 (operand out of range)

Inputs/Outputs Operands Data Types

bit I, Q, M, SM, T, C, V, S, L BOOL

N VB, IB, QB, MB, SMB, SB, LB, AC, Constant,*VD, *AC, *LD BYTE

S bit, N

bit

S

N
bit

R

N

R bit, N

S
EN

N

R
EN

N

222 224
� ��

221

S
T
L

F
B
D

L
A
D

bit

bit

http://www.kontrolkalemi.com

http://www.efesotomasyon.com/html/siemens/siemens.html

SIMATIC Instructions

9-8
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Set Immediate, Reset Immediate (N Bits)

When the Set Immediate and Reset Immediate
instructions are executed, the specified number of
physical output points (N) starting at the bit or OUT are
immediately set (turned on) or immediately reset (turned
off).

The range of points that can be set or reset is 1 to 128.

The “I” indicates an immediate reference; the new value
is written to both the physical output point and the
corresponding process-image register location when the
instruction is executed. This differs from the
non-immediate references, which write the new value to
the process-image register only.

Error conditions that set ENO = 0:

SM4.3 (run-time), 0006 (indirect address), 0091 (operand
out of range)

Inputs/Outputs Operands Data Types

bit Q BOOL

N VB, IB, QB, MB, SMB, SB, LB, AC, Constant,*VD, *AC, *LD BYTE

No Operation

The No Operation instruction has no effect on the user
program execution. The operand N is a number from 0 to
255.

Operands: N: Constant (0 to 255)

Data Types: BYTE

F
B
D

SI
EN

RI
EN

N

bit

SI

N
bit

RI

N

SI bit, N

RI bit, N

N

222 224
� ��

221

L
A
D

S
T
L

bit

bit

NOP N

N

NOP

222 224
� ��

221

L
A
D

S
T
L

http://www.kontrolkalemi.com

SIMATIC Instructions

9-9
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Output Examples

NETWORK 1
LD I0.0
= Q0.0
S Q0.1, 1
R Q0.2, 2

Network 1
Q0.0

LAD STL

I0.0

S
Q0.1

R
Q0.2

Timing Diagram

I0.0

Q0.0

Q0.1

Q0.2

1

2

FBD

Q0.3

Network 1

=

S
EN

Q0.1

1 N

R
EN

N2

Q0.2

AND
I0.0

SM0.0

Q0.0

Figure 9-2 Examples of Output Instructions for SIMATIC LAD, STL, and FBD

http://www.kontrolkalemi.com

SIMATIC Instructions

9-10
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

9.2 SIMATIC Compare Instructions

Compare Byte

The Compare Byte instruction is used to compare two
values: IN1 to IN2. Comparisons include: IN1 = IN2,
IN1 >= IN2, IN1 <= IN2, IN1 > IN2, IN1 < IN2, or
IN1 <> IN2.

Byte comparisons are unsigned.

In LAD, the contact is on when the comparison is true.

In FBD, the output is on when the comparison is true.

In STL, the instructions Load, AND, or OR, a 1 with the
top of stack when the comparison is true.

Inputs/Outputs Operands Data Types

Inputs IB, QB, MB, SMB, VB, SB, LB, AC, Constant, *VD, *AC,*LD BYTE

Outputs (FBD) I, Q, M, SM, T, C, V, S, L, Power Flow BOOL

L
A
D

S
T
L

LDB= IN1, IN2
AB= IN1, IN2
OB= IN1, IN2

LDB>= IN1, IN2
AB>= IN1, IN2
OB>= IN1, IN2

LDB<= IN1, IN2
AB<= IN1, IN2
OB<= IN1, IN2

==B

F
B
D

LDB<> IN1, IN2
AB<> IN1, IN2
OB<> IN1, IN2
LDB< IN1, IN2
AB< IN1, IN2
OB< IN1, IN2

LDB> IN1, IN2
AB> IN1, IN2
OB> IN1, IN2

IN1

==B
IN2

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-11
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Compare Integer

The Compare Integer instruction is used to compare two
values: IN1 to IN2. Comparisons include: IN1 = IN2,
IN1 >= IN2, IN1 <= IN2, IN1 > IN2, IN1 < IN2, or
IN1 <> IN2.

Integer comparisons are signed (16#7FFF > 16#8000).

In LAD, the contact is on when the comparison is true.

In FBD, the output is on when the comparison is true.

In STL, the instructions Load, AND, or OR a 1 with the
top of stack when the comparison is true.

Inputs/Outputs Operands Data Types

Inputs IW, QW, MW, SW, SMW, T, C, VW, LW, AIW, AC, Constant, *VD,
*AC,*LD

INT

Outputs (FBD) I, Q, M, SM, T, C, V, S, L, Power Flow BOOL

L
A
D

LDW= IN1, IN2
AW= IN1, IN2
OW= IN1, IN2

LDW>= IN1, IN2
AW>= IN1, IN2
OW>= IN1, IN2

LDW<= IN1, IN2
AW<= IN1, IN2
OW<= IN1, IN2

F
B
D

LDW<> IN1, IN2
AW<> IN1, IN2
OW<> IN1, IN2
LDW< IN1, IN2
AW< IN1, IN2
OW< IN1, IN2

LDW> IN1, IN2
AW> IN1, IN2
OW> IN1, IN2

IN1

==I

IN2

222 224
� ��

221

S
T
L

==I

http://www.kontrolkalemi.com

SIMATIC Instructions

9-12
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Compare Double Word

The Compare Double Word instruction is used to
compare two values: IN1 to IN2. Comparisons include:
IN1 = IN2, IN1 >= IN2, IN1 <= IN2, IN1 > IN2,
IN1 < IN2, or IN1 <> IN2.

Double word comparisons are signed
(16#7FFFFFFF > 16#80000000).

In LAD, the contact is on when the comparison is true.

In FBD, the output is on when the comparison is true.

In STL, the instructions Load, AND, or OR a 1 with the
top of stack when the comparison is true.

Inputs/Outputs Operands Data Types

Inputs ID, QD, MD, SD, SMD, VD, LD, HC, AC, Constant, *VD, *AC, *LD DINT

Outputs (FBD) I, Q, M, SM, T, C, V, S, L, Power Flow BOOL

L
A
D

S
T
L

LDD= IN1, IN2
AD= IN1, IN2
OD= IN1, IN2

LDD>= IN1, IN2
AD>= IN1, IN2
OD>= IN1, IN2

LDD<= IN1, IN2
AD<= IN1, IN2
OD<= IN1, IN2

F
B
D

LDD<> IN1, IN2
AD<> IN1, IN2
OD<> IN1, IN2
LDD< IN1, IN2
AD< IN1, IN2
OD< IN1, IN2

LDD> IN1, IN2
AD> IN1, IN2
OD> IN1, IN2

IN1

==D

IN2

222 224
� ��

221

==D

http://www.kontrolkalemi.com

SIMATIC Instructions

9-13
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Compare Real

Compare Real instruction is used to compare two
values: IN1 to IN2. Comparisons include: IN1 = IN2,
IN1 >= IN2, IN1 <= IN2, IN1 > IN2, IN1 < IN2, or
IN1 <> IN2.

Real comparisons are signed.

In LAD, the contact is on when the comparison is true.

In FBD, the output is on when the comparison is true.

In STL, the instructions Load, AND, or OR a 1 with the
top of stack when the comparison is true.

Inputs/Outputs Operands Data Types

Inputs ID, QD, MD,SD, SMD, VD, LD, AC, Constant, *VD, *AC, *LD REAL

Outputs (FBD) I, Q, M, SM, T, C, V, S, L, Power Flow BOOL

L
A
D

S
T
L

LDR= IN1, IN2
AR= IN1, IN2
OR= IN1, IN2

LDR>= IN1, IN2
AR>= IN1, IN2
OR>= IN1, IN2

LDR<= IN1, IN2
AR<= IN1, IN2
OR<= IN1, IN2

F
B
D

LDR<> IN1, IN2
AR<> IN1, IN2
OR<> IN1, IN2
LDR< IN1, IN2
AR< IN1, IN2
OR< IN1, IN2

LDR> IN1, IN2
AR> IN1, IN2
OR> IN1, IN2

IN1

==R

IN2

222 224
� ��

221

==R

http://www.kontrolkalemi.com

SIMATIC Instructions

9-14
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Comparison Contact Examples

NETWORK 4
LDW>= VW4, VW8
= Q0.3

LAD STL

Network 4
Q0.3VW4

VW8

>=I

Timing Diagram

Q0.3

VW4 >= VW8 VW4 < VW8

FBD

Network 4

>=I
Q0.3VW4

VW8

Figure 9-3 Examples of Comparison Contact Instructions for LAD and STL

http://www.kontrolkalemi.com

http://www.efesotomasyon.com/html/siemens/siemens.html

SIMATIC Instructions

9-15
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

9.3 SIMATIC Timer Instructions

On-Delay Timer, Retentive On-Delay Timer, Off-Delay Timer

The On-Delay Timer and Retentive On-Delay Timer
instructions count time when the enabling input is ON.
When the current value (Txxx) is greater than or equal to
the preset time (PT), the timer bit is ON.

The On-Delay timer current value is cleared when the
enabling input is OFF, while the current value of the
Retentive On-Delay Timer is maintained when the input
is OFF. You can use the Retentive On-Delay Timer to
accumulate time for multiple periods of the input ON. A
Reset instruction (R) is used to clear the current value of
the Retentive On-Delay Timer.

Both the On-Delay Timer and the Retentive On-Delay
Timers continue counting after the Preset is reached, and
they stop counting at the maximum value of 32767.

The Off-Delay Timer is used to delay turning an output
OFF for a fixed period of time after the input turns OFF.
When the enabling input turns ON, the timer bit turns ON
immediately, and the current value is set to 0. When the
input turns OFF, the timer counts until the elapsed time
reaches the preset time. When the preset is reached, the
timer bit turns OFF and the current value stops counting.
If the input is OFF for a time shorter than the preset
value, the timer bit remains ON. The TOF instruction
must see an ON to OFF transition to begin counting.

If the TOF timer is inside an SCR region and the SCR
region is inactive, then the current value is set to 0, the
timer bit is turned OFF, and the current value does not
count.

Inputs/Outputs Operands Data Types

IN (LAD) Power Flow BOOL

IN (FBD) I, Q, M, SM, T, C, V, S, L, Power Flow BOOL

PT VW, IW, QW, MW, SW, SMW, LW, AIW, T, C, AC, Constant, *VD,
*AC, *LD

INT

L
A
D

S
T
L

TON Txxx, PT

TONR Txxx, PT

TON
IN

PT

Txxx

TONR
IN

PT

Txxx

F
B
D

Txxx

PT

TOF
IN

TOF Txxx, PT

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-16
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

TON, TONR, and TOF timers are available in three resolutions. The resolution is
determined by the timer number as shown in Table 9-1. Each count of the current
value is a multiple of the time base. For example, a count of 50 on a 10-ms timer
represents 500 ms.

Table 9-1 Timer Numbers and Resolutions

Timer Type Resolution in
milliseconds (ms)

Maximum Value
in seconds (s)

Timer Number

TONR 1 ms 32.767 s T0, T64

10 ms 327.67 s T1 to T4, T65 to T68

100 ms 3276.7 s T5 to T31, T69 to T95

TON, TOF 1 ms 32.767 s T32, T96

10 ms 327.67 s T33 to T36, T97 to T100

100 ms 3276.7 s T37 to T63, T101 to T255

Note

You cannot share the same timer numbers for TOF and TON. For example, you
cannot have both a TON T32 and a TOF T32.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-17
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Understanding the S7-200 Timer Instructions

You can use timers to implement time-based counting functions. The S7-200
instruction set provides three types of timers as shown below. Table 9-2 shows the
actions of the different timers.

� On-Delay Timer (TON) for timing a single interval

� Retentive On-Delay Timer (TONR) for accumulating a number of timed intervals

� Off-Delay Timer (TOF) for extending time past a false condition (in other words,
such as cooling a motor after it is turned off)

Table 9-2 Timer Actions

Timer
Type

Current >= Preset Enabling Input
ON

Enabling Input
OFF

Power Cycle/
First Scan

TON Timer bit ON,
Current continues
counting to 32,767

Current value
counts time

Timer bit OFF,
Current value = 0

Timer bit OFF,
Current value = 0

TONR Timer bit ON,
Current continues
counting to 32,767

Current value
counts time

Timer bit and
current value
maintain last state

Timer bit OFF,
Current value may
be maintained1

TOF Timer bit OFF,
Current = Preset,
stops counting

Timer bit ON,
Current value = 0

Timer counts after
ON to OFF
transition

Timer bit OFF,
Current value = 0

1 The retentive timer current value can be selected for retention through a power cycle. See Section 5.3 for information
about memory retention for the S7-200 CPU.

Note

The Reset (R) instruction can be used to reset any timer. The TONR timer can
only be reset by the Reset instruction. The Reset instruction performs the following
operations:

Timer Bit = OFF
Timer Current = 0

After a reset, TOF timers require the enabling input to make the transition from ON
to OFF in order to restart.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-18
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

The actions of the timers at different resolutions are explained below.

1-Millisecond Resolution

The 1-ms timers count the number of 1-ms timer intervals that have elapsed since
the active 1-ms timer was enabled. The execution of the timer instruction starts the
timing; however, the 1-ms timers are updated (timer bit and timer current) every
millisecond asynchronous to the scan cycle. In other words, the timer bit and timer
current are updated multiple times throughout any scan that is greater than 1 ms.

The timer instruction is used to turn the timer on, reset the timer, or, in the case of
the TONR timer, to turn the timer off.

Since the timer can be started anywhere within a millisecond, the preset must be
set to one time interval greater than the minimum desired timer interval. For
example, to guarantee a timed interval of at least 56 ms using a 1-ms timer, the
preset time value should be set to 57.

10-Millisecond Resolution

The 10-ms timers count the number of 10-ms timer intervals that have elapsed
since the active 10-ms timer was enabled. The execution of the timer instruction
starts the timing, however the 10-ms timers are updated at the beginning of each
scan cycle (in other words, the timer current and timer bit remain constant
throughout the scan), by adding the accumulated number of 10-ms intervals (since
the beginning of the previous scan) to the current value for the active timer.

Since the timer can be started anywhere within a 10-ms interval, the preset must
be set to one time interval greater than the minimum desired timer interval. For
example, to guarantee a timed interval of at least 140 ms using a 10-ms timer, the
preset time value should be set to 15.

100-Millisecond Resolution

The 100-ms timers count the number of 100-ms timer intervals that have elapsed
since the active 100-ms timer was last updated. These timers are updated by
adding the accumulated number of 100-ms intervals (since the previous scan
cycle) to the timer’s current value when the timer instruction is executed.

The current value of a 100-ms timer is updated only if the timer instruction is
executed. Consequently, if a 100-ms timer is enabled but the timer instruction is
not executed each scan cycle, the current value for that timer is not updated and it
loses time. Likewise, if the same 100-ms timer instruction is executed multiple
times in a single scan cycle, the number of 100-ms intervals are added to the
timer’s current value multiple times, and it gains time. 100-ms timers should only
be used where the timer instruction is executed exactly once per scan cycle.

Since the timer can be started anywhere within a 100-ms interval, the preset must
be set to one time interval greater than the minimum desired timer interval. For
example, to guarantee a timed interval of at least 2100 ms using a 100-ms timer,
the preset time value should be set to 22.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-19
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Updating the Timer Current Value

The effect of the various ways in which current time values are updated depends
upon how the timers are used. For example, consider the timer operation shown in
Figure 9-4.

� In the case where the 1-ms timer is used, Q0.0 is turned on for one scan
whenever the timer’s current value is updated after the normally closed contact
T32 is executed and before the normally open contact T32 is executed.

� In the case where the 10-ms timer is used, Q0.0 is never turned on, because
the timer bit T33 is turned on from the top of the scan to the point where the
timer box is executed. Once the timer box has been executed, the timer’s
current value and its T-bit is set to zero. When the normally open contact T33 is
executed, T33 is off and Q0.0 is turned off.

� In the case where the 100-ms timer is used, Q0.0 is always turned on for one
scan whenever the timer’s current value reaches the preset value.

By using the normally closed contact Q0.0 instead of the timer bit as the enabling
input to the timer box, the output Q0.0 is guaranteed to be turned on for one scan
each time the timer reaches the preset value.

IN

PT300

T32T32
TON

IN

PT30

T33T33
TON

IN

PT3

T37T37
TON

T32 Q0.0

T33

T37

/

/

/

IN

PT300

T32Q0.0
TON

IN

PT30

T33Q0.0
TON

IN

PT3

T37Q0.0

TON

T32

T33

T37

/

/

/

 CorrectedWrong Using a 1-ms Timer

Wrong

Correct

Corrected

Better

Using a 10-ms Timer

Using a 100-ms Timer

Q0.0

Q0.0

Q0.0

Q0.0

Q0.0

Figure 9-4 Example of Automatically Retriggered One Shot Timer

http://www.kontrolkalemi.com

SIMATIC Instructions

9-20
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

On-Delay Timer Example

Maximum
value = 32767

3

LAD

STL

I2.0

LD I2.0
TON T33, 3

I2.0

Timing Diagram

T33 (current)

T33 (bit)

PT

IN TON
T33

PT = 3 PT = 3

FBD

TON

INI2.0

PT3

T33

Figure 9-5 Example of On-Delay Timer Instruction for LAD, FBD, and STL

http://www.kontrolkalemi.com

SIMATIC Instructions

9-21
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Retentive On-Delay Timer Example

10

LAD

STL

I2.1

LD I2.1
TONR T2, 10

Timing Diagram

PT

IN TONR
T2

FBD

TONR

INI2.1

PT10

T2

I2.1

T2 (current)

T2 (bit)

PT = 10

Maximum
value = 32767

Figure 9-6 Example of Retentive On-Delay Timer Instruction for LAD, FBD, and STL

http://www.kontrolkalemi.com

SIMATIC Instructions

9-22
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Off-Delay Timer Example

IN

PT3

T33I0.0

LD I0.0
TOF T33, 3

Timing Diagram

TOF

LAD

STL

I0.0

T33 (current)

T33 (bit)

PT = 3

FBD

TOF
INI0.0

PT

T33

3

PT = 3

Figure 9-7 Example of Off-Delay Timer Instruction for LAD, FBD, and STL

http://www.kontrolkalemi.com

SIMATIC Instructions

9-23
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

9.4 SIMATIC Counter Instructions

Count Up, Count Up/Down, Count Down

The Count Up instruction counts up to the maximum
value on the rising edges of the Count Up (CU) input.
When the current value (Cxxx) is greater than or equal to
the Preset Value (PV), the counter bit (Cxxx) turns on.
The counter is reset when the Reset (R) input turns on.

The Count Up/Down instruction counts up on rising
edges of the Count Up (CU) input. It counts down on the
rising edges of the Count Down (CD) input. When the
current value (Cxxx) is greater than or equal to the
Preset Value (PV), the counter bit (Cxxx) turns on. The
counter is reset when the Reset (R) input turns on.

The Count Down Counter counts down from the preset
value on the rising edges of the Count Down (CD) input .
When the current value is equal to zero, the counter bit
(Cxxx) turns on. The counter resets the counter bit
(Cxxx) and loads the current value with the preset value
(PV) when the load input (LD) turns on. The Down
Counter stops counting when it reaches zero.

Counter ranges: Cxxx=C0 through C255

In STL, the CTU Reset input is the top of the stack value,
while the Count Up input is the value loaded in the
second stack location.

In STL, the CTUD Reset input is the top of the stack
value, the Count Down input is the value loaded in the
second stack location, and the Count Up input is the
value loaded in the third stack location.

In STL, the CTD Load input is the top of stack, and the
Count Down input is the value loaded in the second stack
location.

Inputs/Outputs Operands Data Types

CU, CD (FBD) I, Q, M, SM, T, C, V, S, L, Power Flow BOOL

R, LD (FBD) I, Q, M, SM, T, C, V, S, L, Power Flow BOOL

PV VW, IW, QW, MW, SMW, LW, AIW, AC, T, C, Constant, *VD, *AC,
*LD, SW

INT

L
A
D

S
T
L

CTU Cxxx, PV

CTUD Cxxx, PV

Cxxx

CTUCU

R

PV

Cxxx

CTUDCU

R

PV

CD

F
B
D

Cxxx

CD

LD

PV

CTD

CTD Cxxx, PV

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-24
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Understanding the S7-200 Counter Instructions

The Up Counter (CTU) counts up from the current value of that counter each time
the count-up input makes the transition from off to on. The counter is reset when
the reset input turns on, or when the Reset instruction is executed. The counter
stops upon reaching the maximum value (32,767).

The Up/Down Counter (CTUD) counts up each time the count-up input makes the
transition from off to on, and counts down each time the count-down input makes
the transition from off to on. The counter is reset when the reset input turns on, or
when the Reset instruction is executed. Upon reaching maximum value (32,767),
the next rising edge at the count-up input causes the current count to wrap around
to the minimum value (-32,768). Likewise on reaching the minimum value
(-32,768), the next rising edge at the count-down input causes the current count to
wrap around to the maximum value (32,767).

The Up and Up/Down counters have a current value that maintains the current
count. They also have a preset value (PV) that is compared to the current value
whenever the counter instruction is executed. When the current value is greater
than or equal to the preset value, the counter bit (C-bit) turns on. Otherwise, the
C-bit turns off.

The Down counter counts down from the current value of that counter each time
the count down input makes the transition from off to on. The counter resets the
counter bit and loads the current value with the preset value when the load input
turns on. The counter stops upon reaching zero, and the counter bit (C-bit) turns
on.

When you reset a counter using the Reset instruction, the counter bit is reset and
the counter current value is set to zero. Use the counter number to reference both
the current value and the C-bit of that counter.

Note

Since there is one current value for each counter, do not assign the same number
to more than one counter. (Up Counters, Up/Down Counters, and Down counters
with the same number access the same current value.)

http://www.kontrolkalemi.com

SIMATIC Instructions

9-25
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Counter Examples

I1.0
Load

LD I3.0 //Count Down Input
LD I1.0 //Load Input
CTD C50, 3

Timing Diagram

LAD

STL

I3.0
Down

I3.0 C50

I1.0

CTD

LD

CD

PV

0
1

2
3 3

C50
(current)

C50
(bit)

C50

3

I3.0

I1.0

3

CD

PV

LD

FBD

CTD

2

0

Figure 9-8 Example of CTD Counter Instruction for LAD, FBD, and STL

http://www.kontrolkalemi.com

SIMATIC Instructions

9-26
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

I4.0
Up

LD I4.0 //Count Up Input
LD I3.0 //Count Down Input
LD I2.0 //Reset Input
CTUD C48, 4

Timing Diagram

LAD

STL

I3.0
Down

I4.0 C48

I3.0

4

I2.0

CTUDCU

R

CD

PV

I2.0
Reset

0
1

2
3

4
5

4
3

4
5

0
C48
(current)

C48
(bit)

C48
CTUDCU

R

CD

PV4

I4.0

I3.0

I2.0

FBD

Figure 9-9 Example of CTUD Counter Instruction for LAD, FBD, and STL

http://www.kontrolkalemi.com

SIMATIC Instructions

9-27
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

9.5 SIMATIC High-Speed Counter Instructions

High-Speed Counter Definition, High-Speed Counter

The High-Speed Counter Definition instruction assigns
a MODE to the referenced high-speed counter (HSC).
See Table 9-5.

The High-Speed Counter instruction, when executed,
configures and controls the operational mode of the
high-speed counter, based on the state of the HSC
special memory bits. The parameter N specifies the
high-speed counter number.

CPU 221 and CPU 222 do not support HSC1 and HSC2.

Only one HDEF box may be used per counter.

HDEF: Error conditions that set ENO = 0:

SM4.3 (run-time), 0003 (input point conflict), 0004 (illegal
instruction in interrupt), 000A (HSC redefinition)

HSC: Error conditions that set ENO = 0:

SM4.3 (run-time), 0001 (HSC before HDEF), 0005
(simultaneous HSC/PLS)

Inputs/Outputs Operands Data Types

HSC Constant BYTE

MODE Constant BYTE

N Constant WORD

Understanding the High-Speed Counter Instructions

High-speed counters count high-speed events that cannot be controlled at CPU
scan rates, and can be configured for up to twelve different modes of operation.
The counter modes are listed in Table 9-5. The maximum counting frequency of a
high-speed counter is dependent upon your CPU type. See Appendix A for more
information about your CPU.

Each counter has dedicated inputs for clocks, direction control, reset, and start,
where these functions are supported. For the two-phase counters, both clocks may
run at their maximum rates. In quadrature modes, an option is provided to select
one times (1x) or four times (4x) the maximum counting rates. All counters run at
maximum rates without interfering with one another.

L
A
D

S
T
L

HDEF HSC, MODE

HSC N

HDEF
EN

HSC

MODE

HSC
EN

N

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-28
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Using the High-Speed Counter

Typically, a high-speed counter is used as the drive for a drum timer, where a shaft
rotating at a constant speed is fitted with an incremental shaft encoder. The shaft
encoder provides a specified number of counts per revolution and a reset pulse
that occurs once per revolution. The clock(s) and the reset pulse from the shaft
encoder provide the inputs to the high-speed counter. The high-speed counter is
loaded with the first of several presets, and the desired outputs are activated for
the time period where the current count is less than the current preset. The counter
is set up to provide an interrupt when the current count is equal to preset and also
when reset occurs.

As each current-count-value-equals-preset-value interrupt event occurs, a new
preset is loaded and the next state for the outputs is set. When the reset interrupt
event occurs, the first preset and the first output states are set, and the cycle is
repeated.

Since the interrupts occur at a much lower rate than the counting rates of the
high-speed counters, precise control of high-speed operations can be implemented
with relatively minor impact to the overall scan cycle of the programmable logic
controller. The method of interrupt attachment allows each load of a new preset to
be performed in a separate interrupt routine for easy state control, making the
program very straightforward and easy to follow. Of course, all interrupt events can
be processed in a single interrupt routine. For more information about the interrupt
instructions, see Section 9.16.

Understanding the Detailed Timing for the High-Speed Counters

The following timing diagrams (Figure 9-10 through Figure 9-16) show how each
counter functions according to mode. The operation of the reset and start inputs is
shown in a separate timing diagram and applies to all modes that use reset and
start inputs. In the diagrams for the reset and start inputs, both reset and start are
shown with the active state programmed to a high level.

Reset (Active High) 0

1

+2,147,483,647

-2,147,483,648

0Counter Current Value

Reset interrupt generated

Counter value is somewhere in this range.

Figure 9-10 Operation Example with Reset and without Start

http://www.kontrolkalemi.com

SIMATIC Instructions

9-29
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Start (Active High) 0
1

Reset (Active High)

-2,147,483,648

0

+2,147,483,647

Reset interrupt
generated

1

0

Counter
Enabled

Counter
Disabled

Counter
Current Value

Counter
Disabled

Reset interrupt
generated

Counter
Enabled

Current
value
frozen

Counter value is somewhere in this range.

Current
value
frozen

Figure 9-11 Operation Example with Reset and Start

Clock 0
1

Internal
Direction
Control
(1 = Up)

0

1

0

Current value loaded to 0, preset loaded to 4, counting direction set to Up.
Counter enable bit set to enabled.

Counter
Current
Value

PV=CV interrupt generated
Direction changed within interrupt routine

1
2

3
4

3
2

1
0

-1

Figure 9-12 Operation Example of Modes 0, 1, or 2

http://www.kontrolkalemi.com

SIMATIC Instructions

9-30
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Clock 0
1

External
Direction
Control
(1 = Up)

0

1

0

Current value loaded to 0, preset loaded to 4, counting direction set to Up.
Counter enable bit set to enabled.

Counter
Current
Value

PV=CV interrupt generated

1
2

3
4

3
2

1

PV=CV interrupt generated and
Direction Changed interrupt generated

4
5

Figure 9-13 Operation Example of Modes 3, 4, or 5

When you use counting modes 6, 7, or 8 and a rising edge on both the up clock
and down clock inputs occurs within 0.3 microseconds of each other, the
high-speed counter may see these events as happening simultaneously. If this
happens, the current value is unchanged and no change in counting direction is
indicated. As long as the separation between rising edges of the up and down
clock inputs is greater than this time period, the high-speed counter captures each
event separately. In either case, no error is generated and the counter maintains
the correct count value. See Figure 9-14, Figure 9-15, and Figure 9-16.

Count
Up
Clock 0

1

Count
Down
Clock

0

1

0

Current value loaded to 0, preset loaded to 4, initial counting direction set to Up.
Counter enable bit set to enabled.

Counter
Current
Value

PV=CV interrupt generated

1

2

3

4

5

2

1

4

3

PV=CV interrupt generated and
Direction Changed interrupt generated

Figure 9-14 Operation Example of Modes 6, 7, or 8

http://www.kontrolkalemi.com

SIMATIC Instructions

9-31
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Phase A
Clock 0

1

Phase B
Clock

0

1

0

Current value loaded to 0, preset loaded to 3, initial counting direction set to Up.
Counter enable bit set to enabled.

Counter
Current
Value

PV=CV interrupt
generated

1
2

3
4

3

PV=CV interrupt generated and
Direction Changed interrupt
generated

2

Figure 9-15 Operation Example of Modes 9, 10, or 11 (Quadrature 1x Mode)

Phase A
Clock 0

1

Phase B
Clock

0

1

0

Current value loaded to 0, preset loaded to 9, initial counting direction set
to Up. Counter enable bit set to enabled.

Counter Current
Value

PV=CV interrupt generated

1
2

3

4
5

PV=CV
interrupt generated

6
7

8
9
10

12

Direction Changed
interrupt generated

11

6
7

8

9
10

11

Figure 9-16 Operation Example of Modes 9, 10, or 11 (Quadrature 4x Mode)

http://www.kontrolkalemi.com

SIMATIC Instructions

9-32
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Connecting the Input Wiring for the High-Speed Counters

Table 9-3 shows the inputs used for the clock, direction control, reset, and start
functions associated with the high-speed counters. These input functions and the
HSC modes of operation are described in Table 9-5 through Table 9-10.

Table 9-3 Dedicated Inputs for High-Speed Counters

High-Speed Counter Inputs Used

HSC0 I0.0, I0.1, 0.2

HSC1 I0.6, I0.7, I1.0, I1.1

HSC2 I1.2, I1.3, I1.4, I1.5

HSC3 I0.1

HSC4 I0.3, I0.4, I0.5

HSC5 I0.4

There is some overlap in the input point assignments for some high-speed
counters and edge interrupts, as shown in the shaded area of Table 9-4. The same
input cannot be used for two different functions, however, any input not being used
by the present mode of its high-speed counter can be used for another purpose.
For example, if HSC0 is being used in mode 2 which uses I0.0 and I0.2, I0.1 can
be used for edge interrupts or for HSC3.

If a mode of HSC0 is used that does not use input I0.1, then this input is available
for use as either HSC3 or edge interrupts. Similarly, if I0.2 is not used in the
selected HSC0 mode, this input is available for edge interrupts; and if I0.4 is not
used in the selected HSC4 mode, this input is available for HSC5. Note that all
modes of HSC0 always use I0.0 and all modes of HSC4 always use I0.3, so these
points are never available for other uses when these counters are in use.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-33
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Table 9-4 Input Point Assignments for High-Speed Counters and Edge Interrupts

Input Point (I)

Element 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1.0 1.1 1.2 1.3 1.4 1.5

HSC0 x x x

HSC1 x x x x

HSC2 x x x x

HSC3 x

HSC4 x x x

HSC5 x

Edge
Interrupts

x x x x

Table 9-5 HSC0 Modes of Operation

HSC0

 Mode Description I0.0 I0.1 I0.2

0 Single phase up/down counter with internal direction control

SM37 3 = 0 count down Clock
1

SM37.3 = 0, count down
SM37.3 = 1, count up

Clock
Reset

3 Single phase up/down counter with external direction control

I0 1 = 0 count down Clock Dir.
4

I0.1 = 0, count down
I0.1 = 1, count up

Clock Dir.
Reset

6 Two-phase counter with count up and count down clock
inputs Clock Clock

7
inputs Clock

(Up)
Clock
(Dn) Reset

9 A/B phase quadrature counter,

phase A leads B by 90 degrees for clockwise rotation, Clock
Ph

Clock
Ph10

hase A leads B by 90 degrees for clockwise rotation,
phase B leads A by 90 degrees for counterclockwise
rotation

Phase
A

Phase
B

Reset

http://www.kontrolkalemi.com

SIMATIC Instructions

9-34
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Table 9-6 HSC1 Modes of Operation

HSC1

 Mode Description I0.6 I0.7 I1.0 I1.1

0 Single phase up/down counter with internal direction control
Clock

1 SM47.3 = 0, count down
SM47.3 = 1, count up

Clock
Reset

2
SM47.3 = 1, count u

Start

3 Single phase up/down counter with external direction control
Cl k Di

4 I0.7 = 0, count down
I0 7 = 1 count up

Clock Dir.
Reset

5
I0.7 = 1, count up

Start

6 Two-phase counter with count up and count down clock
i t Cl k Cl k

7
inputs Clock

(Up)
Clock
(Dn)

Reset

8
(U) (Dn)

Start

9 A/B phase quadrature counter,
Clock Clock

10 phase A leads B by 90 degrees for clockwise rotation,
phase B leads A by 90 degrees for counterclockwise

Clock
Phase

Clock
Phase Reset

11
hase B leads A by 90 degrees for counterclockwise

rotation

Phase
A

Phase
B Start

Table 9-7 HSC2 Modes of Operation

HSC2

 Mode Description I1.2 I1.3 I1.4 I1.5

0 Single phase up/down counter with internal direction control
Cl k

1 SM57.3 = 0, count down
SM57 3 = 1 count up

Clock
Reset

2
SM57.3 = 1, count up

Start

3 Single phase up/down counter with external direction control
Cl k Di

4 I1.3 = 0, count down
I1 3 = 1 count up

Clock Dir.
Reset

5
I1.3 = 1, count up

Start

6 Two phase counter with count up and count down clock inputs
Cl k Cl k

7
Clock
(Up)

Clock
(Dn)

Reset

8
(U) (Dn)

Start

9 A/B phase quadrature counter, Clock
Phase

Clock
Phase

10 phase A leads B by 90 degrees for clockwise rotation,
phase B leads A by 90 degrees for counterclockwise

Phase
A

Phase
B Reset

11
hase B leads A by 90 degrees for counterclockwise

rotation

A B
Start

http://www.kontrolkalemi.com

http://www.efesotomasyon.com/html/siemens/siemens.html

SIMATIC Instructions

9-35
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Table 9-8 HSC3 Modes of Operation

HSC3

 Mode Description I0.1

0 Single phase up/down counter with internal direction control

SM137.3 = 0, count down
SM137.3 = 1, count up

Clock

Table 9-9 HSC4 Modes of Operation

HSC4

 Mode Description I0.3 I0.4 I0.5

0 Single phase up/down counter with internal direction control

SM147 3 = 0 count down Clock
1

SM147.3 = 0, count down
SM147.3 = 1, count up

Clock
Reset

3 Single phase up/down counter with external direction control

I0 4 = 0 count down Clock
Dir.

4
I0.4 = 0, count down
I0.4 = 1, count up

Clock
Reset

6 Two phase counter with count up and count down clock inputs Clock
(U)

Clock
(D)

7
(Up) (Dn)

Reset

9 A/B phase quadrature counter,

phase A leads B by 90 degrees for clockwise rotation,

Clock
Phase
A

Clock
Phase
B10

hase A leads B by 90 degrees for clockwise rotation,
phase B leads A by 90 degrees for counterclockwise
rotation

A B Reset

Table 9-10 HSC5 Modes of Operation

HSC5

 Mode Description I0.4

0 Single phase up/down counter with internal direction control

SM157.3 = 0, count down
SM157.3 = 1, count up

Clock

http://www.kontrolkalemi.com

SIMATIC Instructions

9-36
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Addressing the High-Speed Counters (HC)

To access the count value for the high-speed counter, you specify the address of
the high-speed counter, using the memory type (HC) and the counter number
(such as HC0). The current value of the high-speed counter is a read-only value
and can be addressed only as a double word (32 bits), as shown in Figure 9-17.

Format: HC[high-speed counter number] HC2

HC 2

HC231
MSB

0
LSB

High-speed counter number
Area identifier (high-speed counter)

Least significantMost significant

Byte 0Byte 1Byte 2Byte 3

Figure 9-17 Accessing the High-Speed Counter Current Values

Understanding the Different High-Speed Counters

All counters function the same way for the same counter mode of operation. There
are four basic types of counter modes as shown in Table 9-5. Note that every
mode is not supported by every counter. You can use each type: without reset or
start inputs, with reset and without start, or with both start and reset inputs.

When you activate the reset input, it clears the current value and holds it cleared
until you de-activate reset. When you activate the start input, it allows the counter
to count. While start is de-activated, the current value of the counter is held
constant and clocking events are ignored. If reset is activated while start is
inactive, the reset is ignored and the current value is not changed. If the start input
becomes active while the reset input is active, and the current value is cleared.

You must select the counter mode before a high-speed counter can be used. You
can do this with the HDEF instruction (High-Speed Counter Definition). HDEF
provides the association between a high-speed counter (HSCx) and a counter
mode. You can only use one HDEF instruction for each high-speed counter. Define
a high-speed counter by using the first scan memory bit, SM0.1 (this bit is turned
on for the first scan and is then turned off), to call a subroutine that contains the
HDEF instruction.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-37
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Selecting the Active State and 1x/4x Mode

Four counters have three control bits that are used to configure the active state of
the reset and start inputs and to select 1x or 4x counting modes (quadrature
counters only). These bits are located in the control byte for the respective counter
and are only used when the HDEF instruction is executed. These bits are defined
in Table 9-11.

You must set these control bits to the desired state before the HDEF instruction is
executed. Otherwise, the counter takes on the default configuration for the counter
mode selected. The default setting of the reset input and the start input are active
high, and the quadrature counting rate is 4x (or four times the input clock
frequency). Once the HDEF instruction has been executed, you cannot change the
counter setup unless you first place the CPU in the STOP mode.

Table 9-11 Active Level for Reset, Start, and 1x/4x Control Bits

HSC0 HSC1 HSC2 HSC4 Description
(used only when HDEF is executed)

SM37.0 SM47.0 SM57.0 SM147.0 Active level control bit for Reset:
0 = Reset is active high; 1 = Reset is active low

-- SM47.1 SM57.1 -- Active level control bit for Start:
 0 = Start is active high; 1 = Start is active low

SM37.2 SM47.2 SM57.2 SM147.2 Counting rate selection for Quadrature counters:
0 = 4X counting rate; 1 = 1X counting rate

http://www.kontrolkalemi.com

SIMATIC Instructions

9-38
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Control Byte

Once you have defined the counter and the counter mode, you can program the
dynamic parameters of the counter. Each high-speed counter has a control byte
that allows the counter to be enabled or disabled; the direction to be controlled
(modes 0, 1, and 2 only), or the initial counting direction for all other modes; the
current value to be loaded; and the preset value to be loaded. Examination of the
control byte and associated current and preset values is invoked by the execution
of the HSC instruction. Table 9-12 describes each of these control bits.

Table 9-12 Control Bits for HSC0, HSC1, and HSC2

HSC0 HSC1 HSC2 HSC3 HSC4 HSC5 Description

SM37.0 SM47.0 SM57.0 SM137.0 SM147.0 SM157.0 Not used after HDEF has been executed
(Never used by counters that do not
have an external reset input)

SM37.1 SM47.1 SM57.1 SM137.1 SM147.1 SM157.1 Not used after HDEF has been executed
(Never used by counters that do not
have a start input)

SM37.2 SM47.2 SM57.2 SM137.2 SM147.2 SM157.2 Not used after HDEF has been executed
(Never used by counters that do not
support quadrature counting)

SM37.3 SM47.3 SM57.3 SM137.3 SM147.3 SM157.3 Counting direction control bit:
0 = count down; 1 = count up

SM37.4 SM47.4 SM57.4 SM137.4 SM147.4 SM157.4 Write the counting direction to the HSC:
0 = no update; 1 = update direction

SM37.5 SM47.5 SM57.5 SM137.5 SM147.5 SM157.5 Write the new preset value to the HSC:
0 = no update; 1 = update preset

SM37.6 SM47.6 SM57.6 SM137.6 SM147.6 SM157.6 Write the new current value to the HSC:
0 = no update; 1 = update current value

SM37.7 SM47.7 SM57.7 SM137.7 SM147.7 SM157.7 Enable the HSC: 0 = disable the HSC; 1
= enable the HSC

Setting Current Values and Preset Values

Each high-speed counter has a 32-bit current value and a 32-bit preset value. Both
the current and the preset values are signed integer values. To load a new current
or preset value into the high-speed counter, you must set up the control byte and
the special memory bytes that hold the current and/or preset values. You must
then execute the HSC instruction to cause the new values to be transferred to the
high-speed counter. Table 9-13 describes the special memory bytes used to hold
the new current and preset values.

In addition to the control bytes and the new preset and current holding bytes, the
current value of each high-speed counter can be read using the data type HC
(High-Speed Counter Current) followed by the number (0, 1, 2, 3, 4, or 5) of the
counter. Thus, the current value is directly accessible for read operations, but can
only be written with the HSC instruction described above.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-39
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Table 9-13 Current and Preset Values of HSC0, HSC1, HSC2, HSC3, HSC4, and HSC5

Value to be Loaded HSC0 HSC1 HSC2 HSC3 HSC4 HSC5

New current SMD38 SMD48 SMD58 SMD138 SMD148 SMD158

New preset SMD42 SMD52 SMD62 SMD142 SMD152 SMD162

Status Byte

A status byte is provided for each high-speed counter that provides status memory
bits that indicate the current counting direction, and whether the current value is
greater or equal to the preset value. Table 9-14 defines these status bits for each
high-speed counter.

Table 9-14 Status Bits for HSC0, HSC1, HSC2, HSC3, HSC4, and HSC5

HSC0 HSC1 HSC2 HSC3 HSC4 HSC5 Description

SM36.0 SM46.0 SM56.0 SM136.0 SM146.0 SM156.0 Not used

SM36.1 SM46.1 SM56.1 SM136.1 SM146.1 SM156.1 Not used

SM36.2 SM46.2 SM56.2 SM136.2 SM146.2 SM156.2 Not used

SM36.3 SM46.3 SM56.3 SM136.3 SM146.3 SM156.3 Not used

SM36.4 SM46.4 SM56.4 SM136.4 SM146.4 SM156.4 Not used

SM36.5 SM46.5 SM56.5 SM136.5 SM146.5 SM156.5 Current counting direction status bit:
0 = counting down;
1 = counting up

SM36.6 SM46.6 SM56.6 SM136.6 SM146.6 SM156.6 Current value equals preset value
status bit:
0 = not equal; 1 = equal

SM36.7 SM46.7 SM56.7 SM136.7 SM146.7 SM156.7 Current value greater than preset value
status bit:
0 = less than or equal;
1 = greater than

Note

Status bits are valid only while the high-speed counter interrupt routine is being
executed. The purpose of monitoring the state of the high-speed counter is to
enable interrupts for the events that are of consequence to the operation being
performed.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-40
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

HSC Interrupts

All counter modes support an interrupt on current value equal to the preset value.
Counter modes that use an external reset input support an interrupt on external
reset activated. All counter modes except modes 0, 1, and 2 support an interrupt
on a counting direction change. Each of these interrupt conditions may be enabled
or disabled separately. For a complete discussion on the use of interrupts, see
Section 9.16.

Note

When you are using the external reset interrupt, do not attempt to load a new
current value or disable, then re-enable the high-speed counter from within the
interrupt routine attached to that event. A fatal error condition can result.

To help you understand the operation of high-speed counters, the following
descriptions of the initialization and operation sequences are provided. HSC1 is
used as the model counter throughout these sequence descriptions. The
initialization descriptions make the assumption that the S7-200 has just been
placed in the RUN mode, and for that reason, the first scan memory bit is true. If
this is not the case, remember that the HDEF instruction can be executed only one
time for each high-speed counter after entering RUN mode. Executing HDEF for a
high-speed counter a second time generates a run-time error and does not change
the counter setup from the way it was set up on the first execution of HDEF for that
counter.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-41
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Initialization Modes 0, 1, or 2

The following steps describe how to initialize HSC1 for Single Phase Up/Down
Counter with Internal Direction (Modes 0, 1, or 2):

1. Use the first scan memory bit to call a subroutine in which the initialization
operation is performed. Since you use a subroutine call, subsequent scans do
not make the call to the subroutine, which reduces scan time execution and
provides a more structured program.

2. In the initialization subroutine, load SMB47 according to the desired control
operation. For example:

SMB47 = 16#F8 produces the following results:
Enables the counter
Writes a new current value
Writes a new preset value
Sets the direction to count up
Sets the start and reset inputs to be active high

3. Execute the HDEF instruction with the HSC input set to 1 and the MODE input
set to 0 for no external reset or start, to 1 for external reset and no start, or to 2
for both external reset and start.

4. Load SMD48 (double word size value) with the desired current value (load with
0 to clear it).

5. Load SMD52 (double word size value) with the desired preset value.

6. In order to capture the current value equal to preset event, program an interrupt
by attaching the CV = PV interrupt event (event 13) to an interrupt routine. See
Section 9.16 for complete details on interrupt processing.

7. In order to capture an external reset event, program an interrupt by attaching
the external reset interrupt event (event 15) to an interrupt routine.

8. Execute the global interrupt enable instruction (ENI) to enable interrupts.

9. Execute the HSC instruction to cause the S7-200 to program HSC1.

10.Exit the subroutine.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-42
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Initialization Modes 3, 4, or 5

The following steps describe how to initialize HSC1 for Single Phase Up/Down
Counter with External Direction (Modes 3, 4, or 5):

1. Use the first scan memory bit to call a subroutine in which the initialization
operation is performed. Since you use a subroutine call, subsequent scans do
not make the call to the subroutine, which reduces scan time execution and
provides a more structured program.

2. In the initialization subroutine, load SMB47 according to the desired control
operation. For example:

SMB47 = 16#F8 produces the following results:
Enables the counter
Writes a new current value
Writes a new preset value
Sets the initial direction of the HSC to count up
Sets the start and reset inputs to be active high

3. Execute the HDEF instruction with the HSC input set to 1 and the MODE input
set to 3 for no external reset or start, 4 for external reset and no start, or 5 for
both external reset and start.

4. Load SMD48 (double word size value) with the desired current value (load with
0 to clear it).

5. Load SMD52 (double word size value) with the desired preset value.

6. In order to capture the current value equal to preset event, program an interrupt
by attaching the CV = PV interrupt event (event 13) to an interrupt routine. See
Section 9.16 for complete details on interrupt processing.

7. In order to capture direction changes, program an interrupt by attaching the
direction changed interrupt event (event 14) to an interrupt routine.

8. In order to capture an external reset event, program an interrupt by attaching
the external reset interrupt event (event 15) to an interrupt routine.

9. Execute the global interrupt enable instruction (ENI) to enable interrupts.

10.Execute the HSC instruction to cause the S7-200 to program HSC1.

11.Exit the subroutine.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-43
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Initialization Modes 6, 7, or 8

The following steps describe how to initialize HSC1 for Two Phase Up/Down
Counter with Up/Down Clocks (Modes 6, 7, or 8):

1. Use the first scan memory bit to call a subroutine in which the initialization
operations are performed. Since you use a subroutine call, subsequent scans
do not make the call to the subroutine, which reduces scan time execution and
provides a more structured program.

2. In the initialization subroutine, load SMB47 according to the desired control
operation. For example:

SMB47 = 16#F8 produces the following results:
Enables the counter
Writes a new current value
Writes a new preset value
Sets the initial direction of the HSC to count up
Sets the start and reset inputs to be active high

3. Execute the HDEF instruction with the HSC input set to 1 and the MODE set to
6 for no external reset or start, 7 for external reset and no start, or 8 for both
external reset and start.

4. Load SMD48 (double word size value) with the desired current value (load with
0 to clear it).

5. Load SMD52 (double word size value) with the desired preset value.

6. In order to capture the current value equal to preset event, program an interrupt
by attaching the CV = PV interrupt event (event 13) to an interrupt routine. See
Section 9.16 for complete details on interrupt processing.

7. In order to capture direction changes, program an interrupt by attaching the
direction changed interrupt event (event 14) to an interrupt routine.

8. In order to capture an external reset event, program an interrupt by attaching
the external reset interrupt event (event 15) to an interrupt routine.

9. Execute the global interrupt enable instruction (ENI) to enable interrupts.

10.Execute the HSC instruction to cause the S7-200 to program HSC1.

11.Exit the subroutine.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-44
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Initialization Modes 9, 10, or 11

The following steps describe how to initialize HSC1 for A/B Phase Quadrature
Counter (Modes 9, 10, or 11):

1. Use the first scan memory bit to call a subroutine in which the initialization
operations are performed. Since you use a subroutine call, subsequent scans
do not make the call to the subroutine, which reduces scan time execution and
provides a more structured program.

2. In the initialization subroutine, load SMB47 according to the desired control
operation.

For example (1x counting mode):
SMB47 = 16#FC produces the following results:

Enables the counter
Writes a new current value
Writes a new preset value
Sets the initial direction of the HSC to count up
Sets the start and reset inputs to be active high

For example (4x counting mode):
SMB47 = 16#F8 produces the following results:

Enables the counter
Writes a new current value
Writes a new preset value
Sets the initial direction of the HSC to count up
Sets the start and reset inputs to be active high

3. Execute the HDEF instruction with the HSC input set to 1 and the MODE input
set to 9 for no external reset or start, 10 for external reset and no start, or 11 for
both external reset and start.

4. Load SMD48 (double word size value) with the desired current value (load with
0 to clear it).

5. Load SMD52 (double word size value) with the desired preset value.

6. In order to capture the current value equal to preset event, program an interrupt
by attaching the CV = PV interrupt event (event 13) to an interrupt routine. See
Section 9.16 for complete details on interrupt processing.

7. In order to capture direction changes, program an interrupt by attaching the
direction changed interrupt event (event 14) to an interrupt routine.

8. In order to capture an external reset event, program an interrupt by attaching
the external reset interrupt event (event 15) to an interrupt routine.

9. Execute the global interrupt enable instruction (ENI) to enable interrupts.

10.Execute the HSC instruction to cause the S7-200 to program HSC1.

11.Exit the subroutine.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-45
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Change Direction in Modes 0, 1, or 2

The following steps describe how to configure HSC1 for Change Direction for
Single Phase Counter with Internal Direction (Modes 0, 1, or 2):

1. Load SMB47 to write the desired direction:

SMB47 = 16#90 Enables the counter
Sets the direction of the HSC to count down

SMB47 = 16#98 Enables the counter
Sets the direction of the HSC to count up

2. Execute the HSC instruction to cause the S7-200 to program HSC1.

Load a New Current Value (Any Mode)

The following steps describe how to change the counter current value of HSC1
(any mode):

Changing the current value forces the counter to be disabled while the change is
made. While the counter is disabled, it does not count or generate interrupts.

1. Load SMB47 to write the desired current value:

SMB47 = 16#C0 Enables the counter
Writes the new current value

2. Load SMD48 (double word size) with the desired current value (load with 0 to
clear it).

3. Execute the HSC instruction to cause the S7-200 to program HSC1.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-46
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Load a New Preset Value (Any Mode)

The following steps describe how to change the preset value of HSC1 (any mode):

1. Load SMB47 to write the desired preset value:

SMB47 = 16#A0 Enables the counter
Writes the new preset value

2. Load SMD52 (double word size value) with the desired preset value.

3. Execute the HSC instruction to cause the S7-200 to program HSC1.

Disable a High-Speed Counter (Any Mode)

The following steps describe how to disable the HSC1 high-speed counter (any
mode):

1. Load SMB47 to disable the counter:

SMB47 = 16#00 Disables the counter

2. Execute the HSC instruction to disable the counter.

Although the above sequences show how to change direction, current value, and
preset value individually, you may change all or any combination of them in the
same sequence by setting the value of SMB47 appropriately and then executing
the HSC instruction.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-47
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

High-Speed Counter Example

LAD STL

HDEF

HSC
MODE

1
11

HSC1 configured for
quadrature mode with
reset and start inputs.

HSC 1 current value = preset
value (EVENT 13) attached
to interrupt routine 0.

Network 1
LD SM0.1
CALL 0

EN

MAIN OB1

SM0.1

Enable the counter.
Write a new current value.
Write a new preset value.
Set initial direction to count
up. Set start and reset
inputs to be active high.
Set 4x mode.

IN16#F8

MOV_B

OUT SMB47

EN
SM0.0

IN0

MOV_DW

OUT SMD48

EN

Set HSC1 preset value to 50.

Clear the current value of
HSC1.

IN50

MOV_DW

OUT SMD52

EN

INT0

ATCH
EN

EVENT13

Global interrupt enable.

HSC
EN Program HSC1.

On the first scan, call
subroutine 0.

End of main program.

N1

ENI

SM0.0

IN0

MOV_DW

OUT SMD48

EN

Write a new current value
and enable the counter.

Clear the current value
of HSC1.

IN16#C0

MOV_B

OUT SMB47

EN

Program HSC1.
HSC

EN

N1

Network 1
LD SM 0.0
MOVD 0, SMD48
MOVB 16#C0, SMB47
HSC 1

Network 1
LD SM0.0
MOVB 16#F8, SMB47
HDEF 1, 11
MOVD 0, SMD48
MOVD 50, SMD52
ATCH 0, 13
ENI
HSC 1

EN
SBR0

ENO

ENO

ENO

ENO

ENO

ENO

ENO

ENO

ENO

INTERRUPT 0

SUBROUTINE 0

Network 1

Network 1

Network 1

Figure 9-18 Example of Initialization of HSC1 (LAD and STL)

http://www.kontrolkalemi.com

SIMATIC Instructions

9-48
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

FBD

HDEF

HSC
MODE

1
11

EN

MAIN OB1

SM0.1

IN16#F8

MOV_B

OUT SMB47

ENSM0.0

IN0

MOV_DW

OUT SMD48

EN

IN50

MOV_DW

OUT SMD52

EN

INT0

ATCH
EN

EVENT13

On the first scan, call
subroutine 0.

Network 1

End of main program.

SM0.0

IN0

MOV_DW

OUT SMD48

EN

IN16#C0

MOV_B

OUT SMB47

EN

Network 1

HSC
EN

N1

EN
SBR0

ENO ENO ENO

ENOENO

ENO ENO ENO

INTERRUPT 0

SUBROUTINE 0

Network 1

ENI

HSC
EN ENO

1 N

Figure 9-19 Example of Initialization of HSC1 (FBD)

http://www.kontrolkalemi.com

SIMATIC Instructions

9-49
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

9.6 SIMATIC Pulse Output Instructions

Pulse Output

The Pulse Output instruction examines the special
memory bits for the pulse output (Q0.0 or Q0.1). The
pulse operation defined by the special memory bits is
then invoked.

Operands: Q Constant (0 or 1)

Data Types: WORD

Pulse Output Ranges Q0.0 through Q0.1

Understanding the S7-200 High-Speed Output Instructions

The CPUs each have two PTO/PWM generators to output high-speed pulse train
and pulse width modulated waveforms. One generator is assigned to digital output
point Q0.0 and the other generator is assigned to digital output point Q0.1.

The PTO/PWM generators and the process-image register share the use of Q0.0
and Q0.1. When a PTO or PWM function is active on Q0.0 or Q0.1, the PTO/PWM
generator has control of the output, and normal use of the output point is inhibited.
The output waveform is not affected by the state of the process-image register, the
forced value of the point, or execution of immediate output instructions. When the
PTO/PWM generator is inactive, control of the output reverts to the process-image
register. The process-image register determines the initial and final state of the
output waveform, causing the waveform to start and end at a high or low level.

Note

It is recommended that the process-image register for Q0.0 and Q0.1 be set to a
value of zero before enabling PTO or PWM operation.

The pulse train (PTO) function provides a square wave (50% duty cycle) output
with user control of the cycle time and the number of pulses. The pulse width
modulation (PWM) function provides a continuous, variable duty cycle output with
user control of the cycle time and the pulse width.

Each PTO/PWM generator has a control byte (8 bits), a cycle time value and pulse
width value (unsigned 16-bit values), and a pulse count value (unsigned 32-bit
value). These values are all stored in designated locations of the special memory
(SM) area. Once these special memory bit locations have been set up to select the
desired operation, the operation is invoked by executing the Pulse Output
instruction (PLS). This instruction causes the S7-200 to read the SM locations and
program the PTO/PWM generator accordingly.

L
A
D

PLS Q

PLS
EN

Q

ENO

F
B
D

S
T
L

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-50
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

You can change the characteristics of a PTO or PWM waveform by modifying the
desired locations in the SM area (including the control byte), and then executing
the PLS instruction.

You can disable the generation of a PTO or PWM waveform at any time by writing
zero to the PTO/PWM enable bit of the control byte (SM67.7 or SM77.7), and then
executing the PLS instruction.

Note

Default values for all control bits, cycle time, pulse width, and pulse count values
are zero.

Note

The PTO/PWM outputs must have a minimum load of at least 10% of rated load to
provide crisp transitions from off to on, and from on to off.

PWM Operation

The PWM function provides for variable duty cycle output. The cycle time and the
pulse width can be specified in a time base of either microseconds or milliseconds.
The cycle time has a range either from 50 microseconds to 65,535 microseconds,
or from 2 milliseconds to 65,535 milliseconds. The pulse width time has a range
either from 0 microseconds to 65,535 microseconds, or from 0 milliseconds to
65,535 milliseconds. When the pulse width is specified to have a value greater or
equal to the cycle time value, the duty cycle of the waveform is 100% and the
output is turned on continuously. When the pulse width is specified as 0, the duty
cycle of the waveform is 0% and the output is turned off. If a cycle time of less than
two time units is specified, the cycle time defaults to two time units.

There are two different ways to change the characteristics of a PWM waveform:
with a synchronous update and with an asynchronous update.

� Synchronous Update: If no time base changes are required, then a
synchronous update can be performed. With a synchronous update, the change
in the waveform characteristics occurs on a cycle boundary, providing for a
smooth transition.

� Asynchronous Update: Typically with PWM operation, the pulse width is varied
while the cycle time remains constant. Therefore, time base changes are not
required. However, if a change in the time base of the PTO/PWM generator is
required, then an asynchronous update is used. An asynchronous update
causes the PTO/PWM generator to be disabled momentarily, asynchronous to
the PWM waveform. This can cause undesirable jitter in the controlled device.
For that reason, synchronous PWM updates are recommended. Choose a time
base that will work for all of your anticipated cycle time values.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-51
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

The PWM Update Method bit (SM67.4 or SM77.4) in the control byte is used to
specify the update type. Execute the PLS instruction to invoke the changes. Be
aware that if the time base is changed, an asynchronous update will occur
regardless of the state of the PWM Update Method bit.

PTO Operation

The PTO function provides for the generation of a square wave (50% duty cycle)
pulse train with a specified number of pulses. The cycle time can be specified in
either microsecond or millisecond increments. The cycle time has a range either
from 50 microseconds to 65,535 microseconds, or from 2 milliseconds to 65,535
milliseconds. If the specified cycle time is an odd number, some duty cycle
distortion will result. The pulse count has a range from 1 to 4,294,967,295 pulses.

If a cycle time of less than two time units is specified, the cycle time defaults to two
time units. If a pulse count of zero is specified, the pulse count defaults to one
pulse.

The PTO Idle bit in the status byte (SM66.7 or SM76.7) is provided to indicate the
completion of the programmed pulse train. In addition, an interrupt routine can be
invoked upon the completion of a pulse train (see Section 9.16 for information
about the interrupt and communication instructions). If you are using the multiple
segment operation, the interrupt routine will be invoked upon completion of the
profile table. See Multiple Segment Pipelining below.

The PTO function allows the chaining or pipelining of pulse trains. When the active
pulse train is complete, the output of a new pulse train begins immediately. This
allows continuity between subsequent output pulse trains.

This pipelining can be done in one of two ways: in single segment pipelining or in
multiple segment pipelining.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-52
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Single Segment Pipelining In single segment pipelining, you are responsible for
updating the SM locations for the next pulse train. Once the initial PTO segment
has been started, you must modify immediately the SM locations as required for
the second waveform, and execute the PLS instruction again. The attributes of the
second pulse train will be held in a pipeline until the first pulse train is completed.
Only one entry at a time can be stored in the pipeline. Once the first pulse train is
completed, the output of the second waveform will begin and the pipeline is made
available for a new pulse train specification. You can then repeat this process to
set up the characteristics of the next pulse train.

Smooth transitions between pulse trains will occur except in the following
situations:

� If a change in time base is performed

� If the active pulse train is completed before a new pulse train setup is captured
by the execution of the PLS instruction.

If you attempt to load the pipeline while it is full, the PTO overflow bit in the status
register (SM66.6 or SM76.6) is set. This bit is initialized to zero on entry to RUN
mode. If you want to detect subsequent overflows, you must clear this bit manually
after an overflow is detected.

Multiple Segment Pipelining In multiple segment pipelining, the characteristics
of each pulse train segment are read automatically by the CPU from a profile table
located in V memory. The only SM locations used in this mode are the control byte
and the status byte. To select multiple segment operation, the starting V memory
offset of the profile table must be loaded (SMW168 or SMW178). The time base
can be specified to be either microseconds or milliseconds, but the selection
applies to all cycle time values in the profile table, and cannot be changed while
the profile is running. Multiple segment operation can then be started by executing
the PLS instruction.

Each segment entry is 8 bytes in length, and is composed of a 16-bit cycle time
value, a 16-bit cycle time delta value, and a 32-bit pulse count value.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-53
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

The format of the profile table is shown in Table 9-15. An additional feature
available with multiple segment PTO operation is the ability to increase or
decrease the cycle time automatically by a specified amount for each pulse.
Programming a positive value in the cycle time delta field increases cycle time.
Programming a negative value in the cycle time delta field decreases cycle time. A
value of zero results in an unchanging cycle time.

If you specify a cycle time delta value that results in an illegal cycle time after a
number of pulses, a mathematical overflow condition occurs. The PTO function is
terminated, and the output reverts to image register control. In addition, the delta
calculation error bit in the status byte (SM66.4 or SM76.4) is set to a one.

If you manually abort a PTO profile in progress, the user abort bit in the status byte
(SM66.5 or SM76.5) will be set to one as a result.

While the PTO profile is operating, the number of the currently active segment is
available in SMB166 (or SMB176).

Table 9-15 Profile Table Format for Multiple Segment PTO Operation

Byte Offset From
Profile Table Start

Profile Segment
Number

Description of Table Entries

0 Number of segments (1 to 255); a value of 0
generates a non-fatal error. No PTO output is
generated.

1 #1 Initial cycle time (2 to 65535 units of the time
base)

3 Cycle time delta per pulse (signed value)
(-32768 to 32767 units of the time base)

5 Pulse count (1 to 4294967295)

9 #2 Initial cycle time (2 to 65535 units of the time
base)

11 Cycle time delta per pulse (signed value)
(-32768 to 32767 units of the time base)

13 Pulse count (1 to 4294967295)

:
:

:
:

:
:

http://www.kontrolkalemi.com

http://www.efesotomasyon.com/html/siemens/siemens.html

SIMATIC Instructions

9-54
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Calculating Profile Table Values

The multiple segment pipelining capability of the PTO/PWM generators can be
useful in many applications, particularly in stepper motor control.

The example shown in Figure 9-20 illustrates how to determine the profile table
values required to generate an output waveform that accelerates a stepper motor,
operates the motor at a constant speed, and then decelerates the motor.

10 kHz

2 kHz

Frequency

Time

Segment #1
(200 pulses)

Segment #2 Segment #3
(400 Pulses)

4,000 pulses

Figure 9-20 Example Frequency vs. Time Diagram for Simple Stepper Motor Application

For this example, it is assumed that 4,000 pulses are required to achieve the
desired number of motor revolutions. The starting and final pulse frequency is
2 kHz and the maximum pulse frequency is 10 kHz. Since profile table values are
expressed in terms of period (cycle time) instead of frequency, convert the given
frequency values into cycle time values. Therefore, the starting and final cycle time
is 500 µs and the cycle time corresponding to the maximum frequency is 100 µs.

During the acceleration portion of the output profile, it is desired that the maximum
pulse frequency be reached in approximately 200 pulses. It is also assumed that
the deceleration portion of the profile should be completed in around 400 pulses.

In this example, a simple formula can be used to determine the delta cycle time
value that the PTO/PWM generator uses to adjust the cycle time of each pulse:

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ

Á
Á
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁ
ÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

delta cycle time = | ending cycle time - initial cycle time | / quantity of pulses

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ

Á
Á
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁ
ÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁUsing this formula, the delta cycle time for the acceleration portion (or segment #1)

is calculated to be -2. Likewise, the delta cycle time for the deceleration portion (or
segment #3) is calculated to be 1. Since segment #2 is the constant speed portion
of the output waveform, the delta cycle time value for that segment is zero.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-55
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Assuming that the profile table is located in V memory starting at V500, the table
values used to generate the desired waveform are shown in Table 9-16.

Table 9-16 Profile Table Values

V Memory Address Value

VB500 3 (total number of segments)

VW501 500 (initial cycle time - segment #1)

VW503 -2 (initial cycle time - segment #1)

VW505 200 (number of pulses - segment #1)

VW509 100 (initial cycle time - segment #2)

VW511 0 (delta cycle time - segment #2)

VW513 3400 (number of pulses - segment #2)

VW517 100 initial cycle time - segment #3)

VW519 1 (delta cycle time - segment #3)

VD521 400 (number of pulses - segment #3)

The values of this table can be placed in V memory by using instructions in your
program. An alternate method is to define the values of the profile in the data
block. An example containing the program instructions to use the multiple segment
PTO operation is shown in Figure 9-23.

The cycle time of the last pulse of a segment is not directly specified in the profile,
but instead must be calculated (except of course for the case in which the delta
cycle time is zero). Knowing the cycle time of a segment’s last pulse is useful to
determine if the transitions between waveform segments are acceptable. The
formula for calculating the cycle time of a segment’s last pulse is:

ÁÁÁÁ
ÁÁÁÁ

ÁÁ
ÁÁ
Á
Á
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
cycle time of last pulse=initial cycle time + (delta cycle time * (number of pulses - 1))

ÁÁÁÁ
ÁÁÁÁ

ÁÁ
ÁÁ
Á
Á
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

While the simplified example above is useful as an introduction, real applications
may require more complicated waveform profiles. Remember that:

� The delta cycle time can be specified only as an integer number of
microseconds or milliseconds

� The cycle time modification is performed on each pulse

The effect of these two items is that calculation of the delta cycle time value for a
given segment may require an iterative approach. Some flexibility in the value of
the ending cycle time or the number of pulses for a given segment may be
required.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-56
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

The duration of a given profile segment can be useful in the process of determining
correct profile table values. The length of time to complete a given profile segment
can be calculated using the following formula:

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

Á
Á
Á

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

duration = no. of pulses *(initial cycle time + ((delta cycle time / 2) * (no. of pulses-1)))

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ

Á
Á
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁ
ÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PTO/PWM Control Registers

Table 9-17 describes the registers used to control the PTO/PWM operation. You
can use Table 9-18 as a quick reference to determine the value to place in the
PTO/PWM control register to invoke the desired operation. Use SMB67 for
PTO/PWM 0, and SMB77 for PTO/PWM 1. If you are going to load the new pulse
count (SMD72 or SMD82), pulse width (SMW70 or SMW80), or cycle time
(SMW68 or SMW78), you should load these values as well as the control register
before you execute the PLS instruction. If you are using the multiple segment
pulse train operation, you also need to load the starting offset (SMW168 or
SMW178) of the profile table and the profile table values before you execute the
PLS instruction.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-57
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Table 9-17 PTO /PWM Control Registers

Q0.0 Q0.1 Status Byte

SM66.4 SM76.4 PTO profile aborted due to delta calculation error
0 = no error; 1 = aborted

SM66.5 SM76.5 PTO profile aborted due to user command
0 = no abort; 1 = aborted

SM66.6 SM76.6 PTO pipeline overflow/underflow
0 = no overflow; 1 = overflow/underflow

SM66.7 SM76.7 PTO idle 0 = in progress; 1 = PTO idle

Q0.0 Q0.1 Control Byte

SM67.0 SM77.0 PTO/PWM update cycle time value 0 = no update; 1 = update cycle time

SM67.1 SM77.1 PWM update pulse width time value 0 = no update; 1 = update pulse width

SM67.2 SM77.2 PTO update pulse count value 0 = no update; 1 = update pulse count

SM67.3 SM77.3 PTO/PWM time base select 0 = 1 µs/tick; 1 = 1ms/tick

SM67.4 SM77.4 PWM update method:
 0 = asynchronous update, 1 = synchronous update

SM67.5 SM77.5 PTO operation: 0 = single segment operation 1 = multiple segment operation

SM67.6 SM77.6 PTO/PWM mode select 0 = selects PTO; 1 = selects PWM

SM67.7 SM77.7 PTO/PWM enable 0 = disables PTO/PWM;

1 = enables PTO/PWM

Q0.0 Q0.1 Other PTO/PWM Registers

SMW68 SMW78 PTO/PWM cycle time value (range: 2 to 65535)

SMW70 SMW80 PWM pulse width value (range: 0 to 65535)

SMD72 SMD82 PTO pulse count value (range: 1 to 4294967295)

SMB166 SMB176 Number of segment in progress (used only in multiple segment PTO operation)

SMW168 SMW178 Starting location of profile table, expressed as a byte offset from V0 (used only in
multiple segment PTO operation)

http://www.kontrolkalemi.com

SIMATIC Instructions

9-58
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Table 9-18 PTO/PWM Control Byte Reference

Control Result of executing the PLS instructionControl
Register

(Hex
Value)

Enable Select
Mode

PTO
Segment
Operation

PWM Update
Method

Time Base Pulse
Count

Pulse
Width

Cycle
Time

16#81 Yes PTO Single 1 µs/cycle Load

16#84 Yes PTO Single 1 µs/cycle Load

16#85 Yes PTO Single 1 µs/cycle Load Load

16#89 Yes PTO Single 1 ms/cycle Load

16#8C Yes PTO Single 1 ms/cycle Load

16#8D Yes PTO Single 1 ms/cycle Load Load

16#A0 Yes PTO Multiple 1 µs/cycle

16#A8 Yes PTO Multiple 1 ms/cycle

16#D1 Yes PWM Synchronous 1 µs/cycle Load

16#D2 Yes PWM Synchronous 1 µs/cycle Load

16#D3 Yes PWM Synchronous 1 µs/cycle Load Load

16#D9 Yes PWM Synchronous 1 ms/cycle Load

16#DA Yes PWM Synchronous 1 ms/cycle Load

16#DB Yes PWM Synchronous 1 ms/cycle Load Load

PTO/PWM Initialization and Operation Sequences

Descriptions of the initialization and operation sequences follow. They can help you
better understand the operation of PTO and PWM functions. The pulse output
Q0.0 is used throughout these sequence descriptions. The initialization
descriptions assume that the S7-200 has just been placed in RUN mode, and for
that reason the first scan memory bit is true. If this is not the case, or if the
PTO/PWM function must be re-initialized, you can call the initialization routine
using a condition other than the first scan memory bit.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-59
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

PWM Initialization

To initialize the PWM for Q0.0, follow these steps:

1. Use the first scan memory bit (SM0.1) to initialize the output to 0, and call the
subroutine that you need in order to perform the initialization operations. When
you use the subroutine call, subsequent scans do not make the call to the
subroutine. This reduces scan time execution and provides a more structured
program.

2. In the initialization subroutine, load SMB67 with a value of 16#D3 for PWM
using microsecond increments (or 16#DB for PWM using millisecond
increments). These values set the control byte to enable the PTO/PWM
function, select PWM operation, select either microsecond or millisecond
increments, and set the update pulse width and cycle time values.

3. Load SMW68 (word size value) with the desired cycle time.

4. Load SMW70 (word size value) with the desired pulse width.

5. Execute the PLS instruction so that the S7-200 programs the PTO/PWM
generator.

6. Load SMB67 with a value of 16#D2 for microsecond increments (or 16#DA for
millisecond increments). This preloads a new control byte value for subsequent
pulse width changes.

7. Exit the subroutine.

Changing the Pulse Width for PWM Outputs

To change the pulse width for PWM outputs in a subroutine, follow these steps. (It
is assumed that SMB67 was preloaded with a value of 16#D2 or 16#DA.)

1. Call a subroutine to load SMW70 (word size value) with the desired pulse width.

2. Execute the PLS instruction to cause the S7-200 to program the PTO/PWM
generator.

3. Exit the subroutine.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-60
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

PTO Initialization - Single Segment Operation

To initialize the PTO, follow these steps:

1. Use the first scan memory bit (SM0.1) to initialize the output to 0, and call the
subroutine that you need to perform the initialization operations. This reduces
scan time execution and provides a more structured program.

2. In the initialization subroutine, load SMB67 with a value of 16#85 for PTO using
microsecond increments (or 16#8D for PTO using millisecond increments).
These values set the control byte to enable the PTO/PWM function, select PTO
operation, select either microsecond or millisecond increments, and set the
update pulse count and cycle time values.

3. Load SMW68 (word size value) with the desired cycle time.

4. Load SMD72 (double word size value) with the desired pulse count.

5. This is an optional step. If you want to perform a related function as soon as the
pulse train output is complete, you can program an interrupt by attaching the
pulse train complete event (Interrupt Category 19) to an interrupt subroutine,
using the ATCH instruction, and executing the global interrupt enable instruction
ENI. Refer to Section 9.16 for complete details on interrupt processing.

6. Execute the PLS instruction to cause the S7-200 to program the PTO/PWM
generator.

7. Exit the subroutine.

Changing the PTO Cycle Time - Single Segment Operation

To change the PTO Cycle Time in an interrupt routine or subroutine when using
single segment PTO operation, follow these steps:

1. Load SMB67 with a value of 16#81 for PTO using microsecond increments (or
16#89 for PTO using millisecond increments). These values set the control byte
to enable the PTO/PWM function, select PTO operation, select either
microsecond or millisecond increments, and set the update cycle time value.

2. Load SMW68 (word size value) with the desired cycle time.

3. Execute the PLS instruction to cause the S7-200 to program the PTO/PWM
generator. The CPU must complete any PTO that is in process before output of
the PTO waveform with the updated cycle time begins.

4. Exit the interrupt routine or the subroutine.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-61
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Changing the PTO Pulse Count - Single Segment Operation

To change the PTO Pulse Count in an interrupt routine or a subroutine when using
single segment PTO operation, follow these steps:

1. Load SMB67 with a value of 16#84 for PTO using microsecond increments (or
16#8C for PTO using millisecond increments). These values set the control
byte to enable the PTO/PWM function, select PTO operation, select either
microsecond or millisecond increments, and set the update pulse count value.

2. Load SMD72 (double word size value) with the desired pulse count.

3. Execute the PLS instruction to cause the S7-200 to program the PTO/PWM
generator. The CPU must complete any PTO that is in process before output of
the waveform with the updated pulse count begins.

4. Exit the interrupt routine or the subroutine.

Changing the PTO Cycle Time and the Pulse Count - Single Segment Operation

To change the PTO Cycle Time and Pulse Count in an interrupt routine or a
subroutine when using single segment PTO operation, follow these steps:

1. Load SMB67 with a value of 16#85 for PTO using microsecond increments (or
16#8D for PTO using millisecond increments). These values set the control
byte to enable the PTO/PWM function, select PTO operation, select either
microsecond or millisecond increments, and set the update cycle time and
pulse count values.

2. Load SMW68 (word size value) with the desired cycle time.

3. Load SMD72 (double word size value) with the desired pulse count.

4. Execute the PLS instruction so that the S7-200 programs the PTO/PWM
generator. The CPU must complete any PTO that is in process before output of
the waveform with the updated pulse count and cycle time begins.

5. Exit the interrupt routine or the subroutine.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-62
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

PTO Initialization - Multiple Segment Operation

To initialize the PTO, follow these steps:

1. Use the first scan memory bit (SM0.1) to initialize the output to 0, and call the
subroutine that you need to perform the initialization operations. This reduces
the scan time execution and provides a more structured program.

2. In the initialization subroutine, load SMB67 with a value of 16#A0 for PTO using
microsecond increments (or 16#A8 for PTO using millisecond increments).
These values set the control byte to enable the PTO/PWM function, select PTO
and multiple segment operation, and select either microsecond or millisecond
increments

3. Load SMW168 (word size value) with the starting V memory offset of the profile
table.

4. Set up the segment values in the profile table. Ensure that the Number of
Segment field (the first byte of the table) is correct.

5. This is an optional step. If you want to perform a related function as soon as the
PTO profile is complete, you can program an interrupt by attaching the pulse
train complete event (Interrupt Category 19) to an interrupt subroutine. Use the
ATCH instruction, and execute the global interrupt enable instruction ENI. Refer
to Section 9.16 for complete details on interrupt processing.

6. Execute the PLS instruction. The S7-200 programs the PTO/PWM generator.

7. Exit the subroutine.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-63
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Example of Pulse Width Modulation

Figure 9-21 shows an example of the Pulse Width Modulation.

Network 1
LD SM0.1
R Q0.1, 1
CALL 0

Network 2
LD M0.0
EU
CALL 1
.
.

Network 1
LD SM0.0
MOVB 16#DB, SMB77
MOVW 10000, SMW78
MOVW 1000, SMW80
PLS 1
MOVB 16#DA, SMB77

.

.

.

IN16#DB

MOV_B

OUT SMB77

EN
SM0.0

IN10000

MOV_W

OUT SMW78

EN

Set pulse width to
1,000 ms.

Set cycle time to
10,000 ms.

IN1000

MOV_W

OUT SMW80

EN

PLS
EN

Invoke PWM operation.
PLS 1 => Q0.1

Network 1

Start of subroutine 0.

Q0.x1

Set up control byte:
- select PWM operation
- select ms increments

synchronous updates
- set the pulse width and

cycle time values
- enable the PWM function

R

Network 1

SM0.1 On the first scan, set
image register bit low, and
call subroutine 0.

Q0.1

When pulse width change to
50% duty cycle is required,
M0.0 is set.

Network 2

End of main ladder.

Preload control byte for
subsequent pulse width
changes.

.

.

P

.

.

1

LAD STL

M0.0

IN OUT

EN

16#DA

MOV_B

SMB77

SBR0

SBR1

ENO

ENO

ENO

ENO

ENO

MAIN OB1

SUBROUTINE 0

Network 1
LD SM0.0
MOVW 5000, SMW80
PLS 1

SUBROUTINE 1

5000 SMW80

SM0.0

PLS
EN

Q0.X1

Assert pulse width change.

Set pulse width to 5000 ms
Start of subroutine 1

IN

MOV_W

OUT

EN ENO

ENO

Figure 9-21 Example of High-Speed Output Using Pulse Width Modulation

http://www.kontrolkalemi.com

SIMATIC Instructions

9-64
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

FBD

Network 1

SM0.1

Q0.1

Network 2

1

M0.0

MAIN OB1

SBR0
EN

SUBROUTINE 0

IN16#DB

MOV_B

OUT

ENSM0.0

IN
10000

MOV_W

OUT

EN

IN1000

MOV_W

OUT

EN

PLS

EN

Network 1

Q0.x1 IN OUT

EN

16#DA

MOV_B

ENO ENO ENO ENO ENO

RAND

SM0.0

EN

N

SBR1
EN

AND

SM0.0

IN OUT
P

SUBROUTINE 1

5000 SMW80

SM0.0
PLS

EN

Q0.X1IN

MOV_W

OUT

EN ENO ENO

Network 61

10% duty cycle

Timing Diagram

Q0.1

10% duty cycle 50% duty cycle 50% duty cycle

(cycle time = 10,000 ms)

Subroutine 1
executed here

SMW80SMB77 SMW78 SMB77

Figure 9-21 Example of High-Speed Output Using Pulse Width Modulation (continued)

http://www.kontrolkalemi.com

SIMATIC Instructions

9-65
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Example of Pulse Train Output Using Single Segment Operation

Define interrupt routine 3 to
be the interrupt for
processing PTO complete
interrupts.

Network 1
LD SM0.1
R Q0.0, 1
CALL 0

IN16#8D

MOV_B

OUT SMB67

EN
SM0.0

IN500

MOV_W

OUT SMW68

EN

Set pulse count to 4 pulses.

Set cycle time to 500 ms.

IN4

MOV_DW

OUT SMD72

EN

INT3

ATCH

EN

EVNT19

Global interrupt enable.

PLS
EN Invoke PTO operation.

PLS 0 => Q0.0
Q0.X0

Set up control byte:
- select PTO operation
- select ms increments
- set the pulse count and

cycle time values
- enable the PTO function

LAD STL

SM0.1
On the first scan,
reset image
register bit low, and
call subroutine 0.

Q0.0
R

ENI

Network 1

Network 1

1

Network 1
LD SM0.0
MOVB 16#8D, SMB67
MOVW 500, SMW68
MOVD 4, SMD72
ATCH 3, 19
ENI
PLS 0
MOVB 16#89, SMB67

MAIN OB1

SUBROUTINE 0

SBR0
EN

ENO

ENO

ENO

ENO

ENO

MAIN OB1

MOV_B
EN

Preload control byte for
subsequent cycle time
changes.

IN16#89

ENO

SMB67OUT

Figure 9-22 Example of a Pulse Train Output Using Single Segment Operation in
SM Memory

http://www.kontrolkalemi.com

SIMATIC Instructions

9-66
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

==I

SMW68

IN1000

MOV_W

OUT SMW68

EN

Q0

PLS
EN

SMW68

IN500

MOV_W

OUT SMW68

EN

Q0.X0

PLS
EN

If current cycle time
is 500 ms, then set
cycle time of 1000 ms
and output 4 pulses.

If current cycle time
is 1000 ms, then set
cycle time of 500 ms
and output 4 pulses.

==I

Network 1
LDW= SMW68, 500
MOVW 1000, SMW68
PLS 0
CRETI

Network 2
LDW= SMW68, 1000
MOVW 500, SMW68
PLS 0

500 ms
1 cycle

4 cycles or 4 pulses

1000 ms
1 cycle

4 cycles or 4 pulses

Timing Diagram

Q0.0

Interrupt 3
occurs

Interrupt 3
occurs

RETI

Network 1

Network 2

500

1000

LAD STL

ENO

ENO

ENO

ENO

INTERRUPT 3

Figure 9-22 Example of a Pulse Train Output Using Single Segment Operation (continued)

http://www.kontrolkalemi.com

SIMATIC Instructions

9-67
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

SM0.1

IN1

R

EN

Q0.X0

PLS
EN

IN500

MOV_W

OUT SMW68

EN

Network 1

Network 1

FBD

MAIN OB1

ENO

ENO

ENO

SUBROUTINE 0

Q0.0

SBR0
EN

IN16#8D

MOV_B

OUT SMB67

EN ENOSM0.0

IN

MOV_DW

OUT

EN ENO

SMD724

INT

ATCH

EN

EVNT

ENO

19

3

ENI

INTERRUPT 3

Network 1

Q0.x0

PLS
EN ENO

IN

MOV_W

OUT

EN ENO
RETI

SMW681000

==I
SMW68

500

Network 2

==I
SMW68

1000 IN500

MOV_W

OUT SMW68

EN ENO

Q0.X0

PLS
EN ENO

IN16#89

MOV_B

OUT SMB67

EN ENO

Figure 9-22 Example of a Pulse Train Output Using Single Segment Operation (continued)

http://www.kontrolkalemi.com

SIMATIC Instructions

9-68
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Example of Pulse Train Output Using Multiple Segment Operation

Network 1
LD SM0.1
R Q0.0, 1
CALL 0

IN16#AO

MOV_B

OUT SMB67

EN
SM0.0

IN500

MOV_W

OUT SMW168

EN

IN3

MOV_B

OUT VB500

EN

Set up control byte:
- select PTO operation
- select multiple segment

operation
select µs increments

- enable the PTO function

LAD STL

SM0.1
On the first scan,
reset image
register bit low, and
call subroutine 0.

Q0.0
R

Network 1

Network 1

1

Network 1
LD SM0.0
MOVB 16#A0, SMB67
MOVW 500, SMW168
MOVB 3, VB500
MOVW 500, VW501
MOVW -2, VD503
MOVD 200, VD505

MAIN OB1

SUBROUTINE 0

SBR0
EN

ENO

ENO

ENO

MAIN OB1

IN500

MOV_W

OUT

EN ENO

VW501

IN-2

MOV_W

OUT

EN ENO

VW503

IN200

MOV_D

OUT

EN ENO

VD505

Specify that the start address
of the profile table is V500.

Set number of profile
table segments to 3.

Set the initial cycle time for
segment #1 to 500 µs

Set the delta cycle time for
segment #1 to -2 µs

Set the number of pulses
in segment #1 to 200.

Figure 9-23 Example of a Pulse Train Output Using Multiple Segment Operation

http://www.kontrolkalemi.com

SIMATIC Instructions

9-69
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

IN

MOV_D

OUT VD521

EN

IN100

MOV_W

OUT

EN

VD513

INT2

ATCH

EN

EVNT19

PLS
EN

QO.X0

LAD

ENI

Network 1

ENO

ENO

ENO

ENO

Define interrupt routine 2 to
process PTO complete
interrupts.

Global interrupt enable.

Invoke PTO operation
PLS 0 => Q0.0.

IN100

MOV_W

OUT VW509

EN ENO

IN0

MOV_W

OUT VW511

EN ENO

IN3400

MOV_D

OUT

EN ENO

VW517

IN1

MOV_W

OUT

EN ENO

VW519

400

Set the initial cycle time for
segment #2 to 100 µs.

Set the delta cycle time for
segment #2 to 0 µs.

Set the number of pulses
in segment #2 to 3400.

Set the initial cycle time for
segment #3 to 100 µs.

Set the delta cycle time for
segment #3 to 1.

Set the number of pulses
in segment #3 to 400.

INTERRUPT 2

Q0.5SM0.0
Turn on output Q0.5 when
PTO output profile is complete.

STL

Network 1

LD SM0.0
= Q0.5

Network 1

MOVW 100, VW509
MOVW 0, VW511
MOVD 3400, VD513
MOVW 100, VW517
MOVW 1, VW519
MOVD 400, VD521
ATCH 2, 19
ENI
PLS 0

Figure 9-74 Example of Pulse Train Output Using Multiple Segment Operation (continued)

http://www.kontrolkalemi.com

SIMATIC Instructions

9-70
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

9.7 SIMATIC Clock Instructions

Read Real-Time Clock, Set Real-Time Clock

The Read Real-Time Clock instruction reads the current
time and date from the clock and loads it in an 8-byte
buffer (starting at address T).

The Set Real-Time Clock instruction writes the current
time and date loaded in an 8-byte buffer (starting at
address T) to the clock.

In STL, the TODR and TODW instructions are
represented as Time of Day Read (TODR) and Time of
Day Write (TODW).

TODR: Error conditions that set ENO = 0:
SM4.3 (run-time), 0006 (indirect address),
000C (clock cartridge not present)

TODW: Error conditions that set ENO = 0:
SM 4.3 (run-time), 0006 (indirect address),
0007 (TOD data error), 000C (clock cartridge not
present)

Inputs/Outputs Operands Data Types

T VB, IB, QB, MB, SMB, SB, LB, *VD, *AC, *LD BYTE

Figure 9-24 shows the format of the time buffer (T).

year month day hour minute second 0 day of
week

T T+1 T+2 T+3 T+4 T+6T+5 T+7

Figure 9-24 Format of the Time Buffer

L
A
D

S
T
L

TODR T

TODW T

READ_RTC
EN

T

SET_RTC
EN

T

F
B
D

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-71
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

The time-of-day clock initializes the following date and time after extended power
outages or memory has been lost:

Date: 01-Jan-90
Time: 00:00:00
Day of Week Sunday

The time-of-day clock in the S7-200 uses only the least significant two digits for the
year, so for the year 2000, the year will be represented as 00 (it will go from 99 to
00).

You must code all date and time values in BCD format (for example, 16#97 for the
year 1997). Use the following data formats:

Year/Month yymm yy - 0 to 99 mm - 1 to 12
Day/Hour ddhh dd - 1 to 31 hh - 0 to 23
Minute/Second mmss mm - 0 to 59 ss - 0 to 59
Day of week d d - 0 to 7 1 = Sunday

0 = disables day of week
(remains 0)

Note

The S7-200 CPU does not perform a check to verify that the day of week is
correct based upon the date. Invalid dates, such as February 30, may be
accepted. You should ensure that the date you enter is correct.

Do not use the TODR/TODW instruction in both the main program and in an
interrupt routine. A TODR/TODW instruction in an interrupt routine which attempts
to execute while another TODR/TODW instruction is in process will not be
executed. SM4.3 is set indicating that two simultaneous accesses to the clock
were attempted (non-fatal error 0007).

The S7-200 PLC does not use the year information in any way and will not be
affected by the century rollover (year 2000). However, user programs that use
arithmetic or compares with the year’s value must take into account the two-digit
representation and the change in century.

Leap year is correctly handled through year 2096.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-72
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

9.8 SIMATIC Integer Math Instructions

Add Integer and Subtract Integer

The Add Integer and Subtract Integer instructions add
or subtract two 16-bit integers and produce a 16-bit result
(OUT).

In LAD and FBD: IN1 + IN2 = OUT
IN1 - IN2 = OUT

In STL: IN1 + OUT = OUT
OUT - IN1 = OUT

Error conditions that set ENO = 0: SM1.1 (overflow),
SM4.3 (run-time), 0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.0 (zero); SM1.1 (overflow); SM1.2 (negative)

Inputs/Outputs Operands Data Types

IN1, IN2 VW, IW, QW, MW, SW, SMW, LW, AIW, T, C, AC, Constant, *VD,
*AC, *LD

INT

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *AC, *LD INT

L
A
D

S
T
L

+I IN1, OUT

-I IN1, OUT

OUT

ADD_I
EN

IN1

IN2

OUT

OUT

SUB_I
EN

IN1

IN2

OUT

ENO

ENO

F
B
D

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-73
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Add Double Integer and Subtract Double Integer

The Add Double Integer and Subtract Double Integer
instructions add or subtract two 32-bit integers, and
produce a 32-bit result (OUT).

In LAD and FBD: IN1 + IN2 = OUT
IN1 - IN2 = OUT

In STL: IN1 + OUT = OUT
OUT - IN1 = OUT

Error conditions that set ENO = 0: SM1.1 (overflow),
SM4.3 (run-time), 0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.0 (zero); SM1.1 (overflow); SM1.2 (negative)

Inputs/Outputs Operands Data Types

IN1, IN2 VD, ID, QD, MD, SMD, SD, LD, AC, HC, Constant, *VD, *AC, *LD DINT

OUT VD, ID, QD, MD, SM, SD, LD, AC, *VD, *AC, *LD DINT

L
A
D

S
T
L

+D IN1, OUT

-D IN1, OUT

OUT

ADD_DI
EN

IN1

IN2

OUT

OUT

SUB_DI
EN

IN1

IN2

OUT

F
B
D

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-74
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Multiply Integer and Divide Integer

The Multiply Integer instruction multiplies two 16-bit
integers and produces a 16-bit product.

The Divide Integer instruction divides two 16-bit integers
and produces a 16-bit quotient. No remainder is kept.

The overflow bit is set if the result is greater than a word
output.

In LAD and FBD: IN1�IN2 = OUT
IN1 / IN2 = OUT

In STL: IN1�OUT = OUT
OUT / IN1 = OUT

Error conditions that set ENO = 0: SM1.1 (overflow),
SM1.3 (divide-by-zero), SM4.3 (run-time), 0006 (indirect
address)

These instructions affect the following Special Memory
bits: SM1.0 (zero); SM1.1 (overflow); SM1.2 (negative);
SM1.3 (divide-by-zero)

If SM1.1 (overflow) is set during a multiply or divide operation, the output is not
written and all other math status bits are set to zero.

If SM1.3 (divide by zero) is set during a divide operation, then the other math
status bits are left unchanged and the original input operands are not altered.
Otherwise, all supported math status bits contain valid status upon completion of
the math operation.

Inputs/Outputs Operands Data Types

IN1, IN2 VW, IW, QW, MW, SW, SMW, LW, AIW, T, C, AC, Constant, *VD,
*AC, *LD

INT

OUT VW, QW, IW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC INT

L
A
D

S
T
L

OUT

MUL_I
EN

IN1

IN2

OUT

OUT

DIV_I
EN

IN1

IN2

OUT

*I IN1, OUT

/I IN1, OUT

F
B
D

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-75
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Multiply Double Integer and Divide Double Integer

The Multiply Double Integer instruction multiplies two
32-bit integers and produces a 32-bit product.

The Divide Double Integer instruction divides two 32-bit
integers and produces a 32-bit quotient. No remainder is
kept.

In LAD and FBD: IN1�IN2 = OUT
IN1 / IN2 = OUT

In STL: IN1�OUT = OUT
OUT / IN1 = OUT

Error conditions that set ENO = 0: SM1.1 (overflow),
SM1.3 (divide-by-zero), SM4.3 (run-time), 0006 (indirect
address)

These instructions affect the following Special Memory
bits: SM1.0 (zero); SM1.1 (overflow); SM1.2 (negative);
SM1.3 (divide-by-zero)

If SM1.1 (overflow) is set during a multiply or divide
operation, the output is not written and all other math
status bits are set to zero.

If SM1.3 (divide by zero) is set during a divide operation, then the other math
status bits are left unchanged and the original input operands are not altered.
Otherwise, all supported math status bits contain valid status upon completion of
the math operation.

Inputs/Outputs Operands Data Types

IN1, IN2 VD, ID, QD, MD, SMD, SD, LD, HC, AC, Constant, *VD, *AC, *LD DINT

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC DINT

L
A
D

S
T
L

OUT

MUL_DI
EN

IN1

IN2

OUT

OUT

DIV_DI
EN

IN1

IN2

OUT

*D IN1, OUT

/D IN1, OUT

F
B
D

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-76
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Multiply Integer To Double Integer and Divide Integer to Double Integer

The Multiply Integer to Double Integer instruction
multiplies two 16-bit integers and produces a 32-bit
product.

The Divide Integer to Double Integer instruction
divides two 16-bit integers and produces a 32-bit result
consisting of a 16-bit remainder (most-significant) and a
16-bit quotient (least-significant).

In the STL Multiply instruction, the least-significant word
(16 bits) of the 32-bit OUT is used as one of the factors.

In the STL Divide instruction, the least-significant word
(16 bits) of the 32-bit OUT is used as the dividend.

In LAD and FBD: IN1�IN2 = OUT
IN1 / IN2 = OUT

In STL: IN1�OUT = OUT
OUT / IN1 = OUT

Error conditions that set ENO = 0: SM1.1 (overflow),
SM1.3 (divide-by-zero), SM4.3 (run-time), 0006 (indirect
address)

These instructions affect the following Special Memory bits: SM1.0 (zero); SM1.1
(overflow); SM1.2 (negative); SM1.3 (divide-by-zero)

If SM1.3 (divide by zero) is set during a divide operation, then the other math
status bits are left unchanged and the original input operands are not altered.
Otherwise, all supported math status bits contain valid status upon completion of
the math operation.

Inputs/Outputs Operands Data Types

IN1, IN2 VW, IW, QW, MW, SW, SMW, LW, AC, AIW, T, C, Constant, *VD,
*AC, *LD

INT

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC DINT

L
A
D

S
T
L

OUT

MUL
EN

IN1

IN2

OUT

OUT

DIV
EN

IN1

IN2

OUT

MUL IN1, OUT

DIV IN1, OUT

F
B
D

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-77
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Math Examples

NETWORK 1
LD I0.0
+I AC1, AC0
MUL AC1, VD100
DIV VW10, VD200

Network 1

LAD STL

I0.0

Application

OUT

ADD_I
EN

IN1

IN2

OUT

OUT

MUL
EN

IN1

IN2

OUT

OUT

DIV
EN

IN1

IN2

OUT

AC1

AC0

AC1

VW102

VW202

VW10

AC0

VD100

VD200

AC1 4000

AC0 6000

AC0 10000

plus

equals

AC1 4000

200

800000

multiplied by

equals

VD100

VD100

4000

41

97

divided by

equals

VW10

VD200

VD200

23

quot.rem.
VW202VW200

VD100 contains VW100 and VW102.
VD200 contains VW200 and VW202.

Note:

Add Multiply Divide

FBD

ENO

ENO

ENO

Network 1

OUT

ADD_I
EN

IN1

IN2

OUTAC1

AC0

AC0

ENO

OUT

MUL
EN

IN1

IN2

OUTAC1

VW102

VD100

ENO

OUT

DIV
EN

IN1

IN2

OUTVW202

VW10

VD200

ENOI0.0

Figure 9-25 Examples of Integer Math Instructions for LAD, STL, and FBD

http://www.kontrolkalemi.com

SIMATIC Instructions

9-78
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Increment Byte and Decrement Byte

The Increment Byte and Decrement Byte instructions
add or subtract 1 to or from the input byte (IN) and place
the result into the variable specified by OUT.

Increment and decrement byte operations are unsigned.

In LAD and FBD: IN + 1 = OUT
IN - 1 = OUT

In STL: OUT+ 1 = OUT
OUT - 1 = OUT

Error conditions that set ENO = 0: SM1.1 (overflow),
SM4.3 (run-time), 0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.0 (zero); SM1.1 (overflow)

Inputs/Outputs Operands Data Types

IN VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD BYTE

OUT VB, IB, QB, MB, SB, SMB, LB, AC,*VD, *AC, *LD BYTE

Increment Word and Decrement Word

The Increment Word and Decrement Word instructions
add or subtract 1 to or from the input word (IN) and place
the result in OUT.

Increment and decrement word operations are signed
(16#7FFF > 16#8000).

In LAD and FBD: IN + 1 = OUT
IN - 1 = OUT

In STL: OUT + 1 = OUT
OUT - 1 = OUT

Error conditions that set ENO = 0: SM1.1 (overflow),
SM4.3 (run-time), 0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.0 (zero); SM1.1 (overflow); SM1.2 (negative)

Inputs/Outputs Operands Data Types

IN VW, IW, QW, MW, SW, SMW, AC, AIW, LW, T, C, Constant, *VD,
*AC, *LD

INT

OUT VW, IW, QW, MW, SW, SMW, LW, AC, T, C, *VD, *AC, *LD INT

L
A
D

S
T
L

INCB OUT

DECB OUT

INC_B
EN

IN OUT

DEC_B
EN

IN OUT

F
B
D

ENO

ENO

222 224
� ��

221

L
A
D

S
T
L

INCW OUT

DECW OUT

INC_W
EN

IN OUT

DEC_W
EN

IN OUT

F
B
D

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-79
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

 Increment Double Word and Decrement Double Word

The Increment Double Word and Decrement Double
Word instructions add or subtract 1 to or from the input
double word (IN) and place the result in OUT.

In LAD and FBD: IN + 1 = OUT
IN - 1 = OUT

Increment and decrement double word operations are
signed (16#7FFFFFFF > 16#80000000).

In STL: OUT + 1 = OUT
OUT - 1 = OUT

Error conditions that set ENO = 0: SM1.1 (overflow),
SM4.3 (run-time), 0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.0 (zero); SM1.1 (overflow); SM1.2 (negative)

Inputs/Outputs Operands Data Types

IN VD, ID, QD, MD, SD, SMD, LD, AC, HC, Constant, *VD, *AC, *LD DINT

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD DINT

L
A
D

S
T
L

INCD OUT

DECD OUT

INC_DW
EN

IN OUT

DEC_DW
EN

IN OUT

ENO

ENO

222 224
� ��

221

F
B
D

http://www.kontrolkalemi.com

SIMATIC Instructions

9-80
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Increment, Decrement Example

LAD STL

LD I4.0
INCW AC0
DECD VD100

INC_W
EN

INAC0 OUT AC0

DEC_DW
EN

INVD100 OUT VD100

125

increment

AC0

126AC0

128000

127999

Application

decrement

VD100

VD100

I4.0

Increment Word Decrement Double Word

FBD

ENO

ENO

INC_W
EN

INAC0 OUT AC0

ENOI4.0
DEC_DW

EN

INVD100 OUT VD100

ENO

Figure 9-26 Example of Increment/Decrement Instructions for LAD, STL, and FBD

http://www.kontrolkalemi.com

SIMATIC Instructions

9-81
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

9.9 SIMATIC Real Math Instructions

Add Real, Subtract Real

The Add Real and Subtract Real instructions add or
subtract two 32-bit real numbers and produce a 32-bit
real number result (OUT).

In LAD and FBD: IN1 + IN2 = OUT
IN1 - IN2 = OUT

In STL: IN1 + OUT = OUT
OUT - IN1 = OUT

Error conditions that set ENO = 0: SM1.1 (overflow),
SM4.3 (run-time), 0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.0 (zero); SM1.1 (overflow); SM1.2 (negative)

SM1.1 is used to indicate overflow errors and illegal
values. If SM1.1 is set, then the status of SM1.0 and
SM1.2 is not valid and the original input operands are not
altered. If SM1.1 is not set, then the math operation has
completed with a valid result and SM1.0 and SM1.2
contain valid status.

Inputs/Outputs Operands Data Types

IN1, IN2 VD, ID, QD, MD, SD, SMD, AC, LD, Constant, *VD, *AC, *LD REAL

OUT VD, ID, QD, MD, SD, SMD, AC, LD, *VD, *AC, *LD REAL

Note

Real or floating-point numbers are represented in the format described in the
ANSI/IEEE 754-1985 standard (single-precision). Refer to the standard for more
information.

L
A
D

S
T
L

OUT

ADD_R
EN

IN1

IN2

OUT

OUT

SUB_R
EN

IN1

IN2

OUT

+R IN1, OUT

-R IN1, OUT

F
B
D

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-82
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Multiply Real, Divide Real

The Multiply Real instruction multiplies two 32-bit real
numbers, and produces a 32-bit real number result
(OUT).

The Divide Real instruction divides two 32-bit real
numbers, and produces a 32-bit real number quotient.

In LAD and FBD: IN1�IN2 = OUT
IN1/ IN2 = OUT

In STL: IN1�OUT = OUT
OUT / IN1 = OUT

Error conditions that set ENO = 0: SM1.1 (overflow),
SM1.3 (divide-by-zero), SM4.3 (run-time), 0006 (indirect
address)

These instructions affect the following Special Memory
bits: SM1.0 (zero); SM1.1 (overflow or illegal value
generated during the operation or illegal input parameter
found); SM1.2 (negative); SM1.3 (divide-by-zero)

If SM1.3 is set during a divide operation, then the other math status bits are left
unchanged and the original input operands are not altered. SM1.1 is used to
indicate overflow errors and illegal values. If SM1.1 is set, then the status of SM1.0
and SM1.2 is not valid and the original input operands are not altered. If SM1.1
and SM1.3 (during a divide operation) are not set, then the math operation has
completed with a valid result and SM1.0 and SM1.2 contain valid status.

Inputs/Outputs Operands Data Types

IN1, IN2 VD, ID, QD, MD, SMD, SD, LD, AC, Constant, *VD, *AC, *LD REAL

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *AC, *LD REAL

Note

Real or floating-point numbers are represented in the format described in the
ANSI/IEEE 754-1985 standard (single-precision). Refer to the standard for more
information.

L
A
D

S
T
L

OUT

MUL_R
EN

IN1

IN2

OUT

OUT

DIV_R
EN

IN1

IN2

OUT

*R IN1, OUT

/R IN1, OUT

ENO

ENO

F
B
D

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-83
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Math Examples

NETWORK 1
LD I0.0
+R AC1, AC0
*R AC1, VD100
/R VD10, VD200

Network 1

LAD STL

I0.0

Application

OUT

ADD_R
EN

IN1

IN2

OUT

OUT

MUL_R
EN

IN1

IN2

OUT

OUT

DIV_R
EN

IN1

IN2

OUT

AC1

AC0

AC1

VD100

VD100

VD10

AC0

VD100

VD200

AC1 4000.0

AC0 6000.0

AC0 10000.0

plus

equals

AC1 400.00

200.0

800000.0

multiplied by

equals

VD100

VD100

4000.0

41.0

97.5609

divided by

equals

VD10

VD200

VD200

Add Multiply Divide

FBD

Network 1

OUT

ADD_R
EN

IN1

IN2

OUTAC1

AC0

AC0

I0.0

OUT

MUL_R
EN

IN1

IN2

OUTAC1

VD100

VD100 OUT

DIV_R
EN

IN1

IN2

OUTVD100

VD10

VD200

ENO

ENO

ENO

ENO ENO ENO

Figure 9-27 Examples of Real Math Instructions for LAD, STL, and FBD

http://www.kontrolkalemi.com

SIMATIC Instructions

9-84
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

PID Loop

The PID Loop instruction executes a PID loop
calculation on the referenced LOOP based on the input
and configuration information in Table (TBL).

Error conditions that set ENO = 0: SM1.1 (overflow),
SM4.3 (run-time), 0006 (indirect address)

This instruction affects the following Special Memory bits:
SM1.1 (overflow)

Inputs/Outputs Operands Data Types

TBL VB BYTE

LOOP Constant (0 to 7) BYTE

The PID loop instruction (Proportional, Integral, Derivative Loop) is provided to
perform the PID calculation. The top of the logic stack (TOS) must be ON (power
flow) to enable the PID calculation. The instruction has two operands: a TABLE
address which is the starting address of the loop table and a LOOP number which
is a constant from 0 to 7. Eight PID instructions can be used in a program. If two or
more PID instructions are used with the same loop number (even if they have
different table addresses), the PID calculations will interfere with one another and
the output will be unpredictable.

The loop table stores nine parameters used for controlling and monitoring the loop
operation and includes the current and previous value of the process variable, the
setpoint, output, gain, sample time, integral time (reset), derivative time (rate), and
the integral sum (bias).

To perform the PID calculation at the desired sample rate, the PID instruction must
be executed either from within a timed interrupt routine or from within the main
program at a rate controlled by a timer. The sample time must be supplied as an
input to the PID instruction via the loop table.

Using the PID Wizard in STEP 7-Micro/WIN 32

STEP 7-Micro/WIN 32 offers the PID Wizard to guide you in defining a PID
algorithm for a closed-loop control process. Select the menu command
Tools Instruction Wizard , and then select PID from the Instruction Wizard
window.

L
A
D

S
T
L

PID TBL, LOOP

PID
EN

TBL

LOOP

ENO

F
B
D

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-85
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

PID Algorithm

In steady state operation, a PID controller regulates the value of the output so as
to drive the error (e) to zero. A measure of the error is given by the difference
between the setpoint (SP) (the desired operating point) and the process variable
(PV) (the actual operating point). The principle of PID control is based upon the
following equation that expresses the output, M(t), as a function of a proportional
term, an integral term, and a differential term:

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

M(t)

ÁÁ
ÁÁ
ÁÁ
ÁÁ

=

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

KC * e

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

+

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

K C�

t

0

e dt�M initial

ÁÁ
ÁÁ
ÁÁ
ÁÁ

+

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

KC * de/dt

ÁÁÁÁ
ÁÁÁÁ

output ÁÁ
ÁÁ

=ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

proportional termÁÁÁ
ÁÁÁ

+ ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

integral term ÁÁ
ÁÁ

+ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

differential term

where:

M(t) is the loop output as a function of time
KC is the loop gain
e is the loop error (the difference between setpoint and process

variable)
Minitial is the initial value of the loop output

In order to implement this control function in a digital computer, the continuous
function must be quantized into periodic samples of the error value with
subsequent calculation of the output. The corresponding equation that is the basis
for the digital computer solution is:

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Mn
ÁÁ
ÁÁ
ÁÁ

=
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

K C� en

ÁÁ
ÁÁ
ÁÁ

+
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

K I ��
n

1

�M initial

ÁÁ
ÁÁ
ÁÁ

+
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

K D� (en–en–1)

ÁÁÁÁ
ÁÁÁÁ

output ÁÁ
ÁÁ

=ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

proportional termÁÁ
ÁÁ

+ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

integral term ÁÁ
ÁÁ

+ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

differential term

where:

Mn is the calculated value of the loop output at sample time n
KC is the loop gain
en is the value of the loop error at sample time n
en - 1 is the previous value of the loop error (at sample time n - 1)
KI is the proportional constant of the integral term
Minitial is the initial value of the loop output
KD is the proportional constant of the differential term

From this equation, the integral term is shown to be a function of all the error terms
from the first sample to the current sample. The differential term is a function of the
current sample and the previous sample, while the proportional term is only a
function of the current sample. In a digital computer it is not practical to store all
samples of the error term, nor is it necessary.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-86
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Since the digital computer must calculate the output value each time the error is
sampled beginning with the first sample, it is only necessary to store the previous
value of the error and the previous value of the integral term. As a result of the
repetitive nature of the digital computer solution, a simplification in the equation
that must be solved at any sample time can be made. The simplified equation is:

ÁÁÁÁ
ÁÁÁÁ

Mn
ÁÁÁ
ÁÁÁ

=ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

K C� en
ÁÁ
ÁÁ

+ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

K I� en�MX ÁÁ
ÁÁ

+ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

K D� (en–en–1)ÁÁÁÁ
ÁÁÁÁ

output
ÁÁÁ
ÁÁÁ

=
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

proportional term
ÁÁ
ÁÁ

+
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

integral term
ÁÁ
ÁÁ

+
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

differential term

where:

Mn is the calculated value of the loop output at sample time n
KC is the loop gain
en is the value of the loop error at sample time n
en - 1 is the previous value of the loop error (at sample time n - 1)
KI is the proportional constant of the integral term
MX is the previous value of the integral term (at sample time n - 1)
KD is the proportional constant of the differential term

The CPU uses a modified form of the above simplified equation when calculating
the loop output value. This modified equation is:

ÁÁÁÁ
ÁÁÁÁ

Mn
ÁÁ
ÁÁ

=
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MPn
ÁÁÁ
ÁÁÁ

+
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

MIn
ÁÁ
ÁÁ

+
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

MDnÁÁÁÁ
ÁÁÁÁoutput

ÁÁ
ÁÁ=
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁproportional term

ÁÁÁ
ÁÁÁ+

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁintegral term

ÁÁ
ÁÁ+
ÁÁÁÁÁÁ
ÁÁÁÁÁÁdifferential term

where:

Mn is the calculated value of the loop output at sample time n
MPn is the value of the proportional term of the loop output at sample time

n
MIn is the value of the integral term of the loop output at sample time n
MDn is the value of the differential term of the loop output at sample time n

http://www.kontrolkalemi.com

SIMATIC Instructions

9-87
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Proportional Term

The proportional term MP is the product of the gain (KC), which controls the
sensitivity of the output calculation, and the error (e), which is the difference
between the setpoint (SP) and the process variable (PV) at a given sample time.
The equation for the proportional term as solved by the CPU is:

MPn = KC * (SPn - PVn)

where:

MPn is the value of the proportional term of the loop output at sample time
n

KC is the loop gain
SPn is the value of the setpoint at sample time n
PVn is the value of the process variable at sample time n

Integral Term

The integral term MI is proportional to the sum of the error over time. The equation
for the integral term as solved by the CPU is:

MI n = KC * TS / TI * (SPn - PVn) + MX

where:

MIn is the value of the integral term of the loop output at sample time n
KC is the loop gain
TS is the loop sample time
TI is the integration period of the loop (also called the integral time or reset)
SPn is the value of the setpoint at sample time n
PVn is the value of the process variable at sample time n
MX is the value of the integral term at sample time n - 1 (also called the

integral sum or the bias)

The integral sum or bias (MX) is the running sum of all previous values of the
integral term. After each calculation of MIn, the bias is updated with the value of
MIn which may be adjusted or clamped (see the section “Variables and Ranges” for
details). The initial value of the bias is typically set to the output value (Minitial) just
prior to the first loop output calculation. Several constants are also part of the
integral term, the gain (KC), the sample time (TS), which is the cycle time at which
the PID loop recalculates the output value, and the integral time or reset (TI), which
is a time used to control the influence of the integral term in the output calculation.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-88
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Differential Term

The differential term MD is proportional to the change in the error. The equation for
the differential term:

MDn = KC * TD / TS * ((SPn - PVn) - (SPn - 1 - PVn - 1))

To avoid step changes or bumps in the output due to derivative action on setpoint
changes, this equation is modified to assume that the setpoint is a constant (SPn =
SPn - 1). This results in the calculation of the change in the process variable instead
of the change in the error as shown:

MDn = KC * TD / TS * (SPn - PVn - SPn + PVn - 1)

or just:

MDn = KC * TD / TS * (PVn - 1 - PVn)

where:

MDn is the value of the differential term of the loop output at sample time n
KC is the loop gain
TS is the loop sample time
TD is the differentiation period of the loop (also called the derivative time

or rate)
SPn is the value of the setpoint at sample time n
SPn - 1 is the value of the setpoint at sample time n - 1
PVn is the value of the process variable at sample time n
PVn - 1 is the value of the process variable at sample time n - 1

The process variable rather than the error must be saved for use in the next
calculation of the differential term. At the time of the first sample, the value of
PVn - 1 is initialized to be equal to PVn.

Selection of Loop Control

In many control systems it may be necessary to employ only one or two methods
of loop control. For example only proportional control or proportional and integral
control may be required. The selection of the type of loop control desired is made
by setting the value of the constant parameters.

If you do not want integral action (no “I” in the PID calculation), then a value of
infinity should be specified for the integral time (reset). Even with no integral action,
the value of the integral term may not be zero, due to the initial value of the integral
sum MX.

If you do not want derivative action (no “D” in the PID calculation), then a value of
0.0 should be specified for the derivative time (rate).

If you do not want proportional action (no “P” in the PID calculation) and you want I
or ID control, then a value of 0.0 should be specified for the gain. Since the loop
gain is a factor in the equations for calculating the integral and differential terms,
setting a value of 0.0 for the loop gain will result in a value of 1.0 being used for the
loop gain in the calculation of the integral and differential terms.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-89
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Converting and Normalizing the Loop Inputs

A loop has two input variables, the setpoint and the process variable. The setpoint
is generally a fixed value such as the speed setting on the cruise control in your
automobile. The process variable is a value that is related to loop output and
therefore measures the effect that the loop output has on the controlled system. In
the example of the cruise control, the process variable would be a tachometer
input that measures the rotational speed of the tires.

Both the setpoint and the process variable are real world values whose magnitude,
range, and engineering units may be different. Before these real world values can
be operated upon by the PID instruction, the values must be converted to
normalized, floating-point representations.

The first step is to convert the real world value from a 16-bit integer value to a
floating-point or real number value. The following instruction sequence is provided
to show how to convert from an integer value to a real number.

XORD AC0, AC0 //Clear the accumulator.
MOVW AIW0, AC0 //Save the analog value in the accumulator.
LDW>= AC0, 0 //If the analog value is positive,
JMP 0 //then convert to a real number.
NOT //Else,
ORD 16#FFFF0000, AC0 //sign extend the value in AC0.
LBL 0
DTR AC0, AC0 //Convert the 32-bit integer to a real number.

The next step is to convert the real number value representation of the real world
value to a normalized value between 0.0 and 1.0. The following equation is used to
normalize either the setpoint or process variable value:

RNorm = (RRaw / Span) + Offset)

where:

RNorm is the normalized, real number value representation of the real world
value

RRaw is the un-normalized or raw, real number value representation of the
real world value

Offset is 0.0 for unipolar values
is 0.5 for bipolar values

Span is the maximum possible value minus the minimum possible value
= 32,000 for unipolar values (typical)
= 64,000 for bipolar values (typical)

The following instruction sequence shows how to normalize the bipolar value in
AC0 (whose span is 64,000) as a continuation of the previous instruction
sequence:

/R 64000.0, AC0 //Normalize the value in the accumulator
+R 0.5, AC0 //Offset the value to the range from 0.0 to 1.0
MOVR AC0, VD100 //Store the normalized value in the loop TABLE

http://www.kontrolkalemi.com

SIMATIC Instructions

9-90
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Converting the Loop Output to a Scaled Integer Value

The loop output is the control variable, such as the throttle setting in the example
of the cruise control on the automobile. The loop output is a normalized, real
number value between 0.0 and 1.0. Before the loop output can be used to drive an
analog output, the loop output must be converted to a 16-bit, scaled integer value.
This process is the reverse of converting the PV and SP to a normalized value.
The first step is to convert the loop output to a scaled, real number value using the
formula given below:

RScal = (Mn - Offset) * Span

where:

RScal is the scaled, real number value of the loop output
Mn is the normalized, real number value of the loop output

Offset is 0.0 for unipolar values
is 0.5 for bipolar values

Span is the maximum possible value minus the minimum possible value
= 32,000 for unipolar values (typical)
= 64,000 for bipolar values (typical)

The following instruction sequence shows how to scale the loop output:

MOVR VD108, AC0 //Move the loop output to the accumulator.
-R 0.5, AC0 //Include this statement only if the value is

//bipolar.
*R 64000.0, AC0 //Scale the value in the accumulator.

Next, the scaled, real number value representing the loop output must be
converted to a 16-bit integer. The following instruction sequence shows how to do
this conversion:

ROUND AC0 AC0 //Convert the real number to a 32-bit integer.
MOVW AC0, AQW0 //Write the 16-bit integer value to the analog

//output.

Forward- or Reverse-Acting Loops

The loop is forward-acting if the gain is positive and reverse-acting if the gain is
negative. (For I or ID control, where the gain value is 0.0, specifying positive
values for integral and derivative time will result in a forward-acting loop, and
specifying negative values will result in a reverse-acting loop.)

http://www.kontrolkalemi.com

SIMATIC Instructions

9-91
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Variables and Ranges

The process variable and setpoint are inputs to the PID calculation. Therefore the
loop table fields for these variables are read but not altered by the PID instruction.

The output value is generated by the PID calculation, so the output value field in
the loop table is updated at the completion of each PID calculation. The output
value is clamped between 0.0 and 1.0. The output value field can be used as an
input by the user to specify an initial output value when making the transition from
manual control to PID instruction (auto) control of the output (see discussion in the
Modes section below).

If integral control is being used, then the bias value is updated by the PID
calculation and the updated value is used as an input in the next PID calculation.
When the calculated output value goes out of range (output would be less than 0.0
or greater than 1.0), the bias is adjusted according to the following formulas:

MX = 1.0 - (MPn + MDn) when the calculated output, Mn > 1.0

or

MX = - (MPn + MDn) when the calculated output, Mn < 0.0

where:

MX is the value of the adjusted bias
MPn is the value of the proportional term of the loop output at sample time n
MDn is the value of the differential term of the loop output at sample time n
Mn is the value of the loop output at sample time n

By adjusting the bias as described, an improvement in system responsiveness is
achieved once the calculated output comes back into the proper range. The
calculated bias is also clamped between 0.0 and 1.0 and then is written to the bias
field of the loop table at the completion of each PID calculation. The value stored in
the loop table is used in the next PID calculation.

The bias value in the loop table can be modified by the user prior to execution of
the PID instruction in order to address bias value problems in certain application
situations. Care must be taken when manually adjusting the bias, and any bias
value written into the loop table must be a real number between 0.0 and 1.0.

A comparison value of the process variable is maintained in the loop table for use
in the derivative action part of the PID calculation. You should not modify this
value.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-92
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Modes

There is no built-in mode control for S7-200 PID loops. The PID calculation is
performed only when power flows to the PID box. Therefore, “automatic” or “auto”
mode exists when the PID calculation is performed cyclically. “Manual” mode exists
when the PID calculation is not performed.

The PID instruction has a power-flow history bit, similar to a counter instruction.
The instruction uses this history bit to detect a 0-to-1 power flow transition, which
when detected will cause the instruction to perform a series of actions to provide a
bumpless change from manual control to auto control. In order for change to auto
mode control to be bumpless, the value of the output as set by the manual control
must be supplied as an input to the PID instruction (written to the loop table entry
for Mn) before switching to auto control. The PID instruction performs the following
actions to values in the loop table to ensure a bumpless change from manual to
auto control when a 0-to-1 power flow transition is detected:

� Sets setpoint (SPn) = process variable (PVn)

� Sets old process variable (PVn-1) = process variable (PVn)

� Sets bias (MX) = output value (Mn)

The default state of the PID history bits is “set” and that state is established at
CPU startup and on every STOP-to-RUN mode transition of the controller. If power
flows to the PID box the first time that it is executed after entering RUN mode, then
no power flow transition is detected and the bumpless mode change actions will
not be performed.

Alarm Checking and Special Operations

The PID instruction is a simple but powerful instruction that performs the PID
calculation. If other processing is required such as alarm checking or special
calculations on loop variables, these must be implemented using the basic
instructions supported by the CPU.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-93
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Error Conditions

When it is time to compile, the CPU will generate a compile error (range error) and
the compilation will fail if the loop table start address or PID loop number operands
specified in the instruction are out of range.

Certain loop table input values are not range checked by the PID instruction. You
must take care to ensure that the process variable and setpoint (as well as the bias
and previous process variable if used as inputs) are real numbers between 0.0 and
1.0.

If any error is encountered while performing the mathematical operations of the
PID calculation, then SM1.1 (overflow or illegal value) will be set and execution of
the PID instruction will be terminated. (Update of the output values in the loop table
may be incomplete, so you should disregard these values and correct the input
value causing the mathematical error before the next execution of the loop’s PID
instruction.)

Loop Table

The loop table is 36 bytes long and has the format shown in Table 9-19.

Table 9-19 Format of the Loop Table

Offset Field Format Type Description

0 Process variable
(PVn)

Double word - real in Contains the process variable, which must be
scaled between 0.0 and 1.0.

4 Setpoint
(SPn)

Double word - real in Contains the setpoint, which must be scaled
between 0.0 and 1.0.

8 Output
(Mn)

Double word - real in/out Contains the calculated output, scaled between
0.0 and 1.0.

12 Gain
(KC)

Double word - real in Contains the gain, which is a proportional
constant. Can be a positive or negative number.

16 Sample time
(TS)

Double word - real in Contains the sample time, in seconds. Must be
a positive number.

20 Integral time or
reset (TI)

Double word - real in Contains the integral time or reset, in minutes.
Must be a positive number.

24 Derivative time
or rate (TD)

Double word - real in Contains the derivative time or rate, in minutes.
Must be a positive number.

28 Bias
(MX)

Double word - real in/out Contains the bias or integral sum value
between 0.0 and 1.0.

32 Previous
process variable
(PVn-1)

Double word - real in/out Contains the previous value of the process
variable stored from the last execution of the
PID instruction.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-94
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

PID Program Example

In this example, a water tank is used to maintain a constant water pressure. Water
is continuously being taken from the water tank at a varying rate. A variable speed
pump is used to add water to the tank at a rate that will maintain adequate water
pressure and also keep the tank from being emptied.

The setpoint for this system is a water level setting that is equivalent to the tank
being 75% full. The process variable is supplied by a float gauge that provides an
equivalent reading of how full the tank is and which can vary from 0% or empty to
100% or completely full. The output is a value of pump speed that allows the pump
to run from 0% to 100% of maximum speed.

The setpoint is predetermined and will be entered directly into the loop table. The
process variable will be supplied as a unipolar, analog value from the float gauge.
The loop output will be written to a unipolar, analog output which is used to control
the pump speed. The span of both the analog input and analog output is 32,000.

Only proportional and integral control will be employed in this example. The loop
gain and time constants have been determined from engineering calculations and
may be adjusted as required to achieve optimum control. The calculated values of
the time constants are:

KC is 0.25

TS is 0.1 seconds

TI is 30 minutes

The pump speed will be controlled manually until the water tank is 75% full, then
the valve will be opened to allow water to be drained from the tank. At the same
time, the pump will be switched from manual to auto control mode. A digital input
will be used to switch the control from manual to auto. This input is described
below:

I0.0 is manual/auto control; 0 is manual, 1 is auto

While in manual control mode, the pump speed will be written by the operator to
VD108 as a real number value from 0.0 to 1.0.

Figure 9-28 shows the control program for this application.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-95
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

LAD STL

Network 1
LD SM0.1 //On the first scan call
CALL 0 //the initialization

//subroutine.

Network 1

IN0.75

MOV_R

OUT VD104

EN
SM0.0

Network 1

ENI

IN0.25

MOV_R

OUT VD112

EN

IN0.10

MOV_R

OUT VD116

EN

IN30.0

MOV_R

OUT VD120

EN

IN0.0

MOV_R

OUT VD124

EN

IN100

MOV_B

OUT SMB34

EN

INT0

ATCH
EN

EVNT10

SM0.1

Network 1
LD SM0.0
MOVR 0.75, VD104 //Load the loop setpoint.

// = 75% full.
MOVR 0.25, VD112 //Load the loop gain=0.25.
MOVR 0.10, VD116 //Load the loop sample

//time = 0.1 seconds.
MOVR 30.0, VD120 //Load the integral time

//= 30 minutes.
//

MOVR 0.0, VD124 //Set no derivative action.
MOVB 100, SMB34 //Set time interval

//(100 ms) for timed
//interrupt 0.

ATCH 0, 10 //Set up a timed
//interrupt to invoke
//PID execution.

ENI //Enable interrupts.

//End of subroutine 0

SBR0
EN

MAIN OB1

SUBROUTINE 0

ENO

ENO

ENO

ENO

ENO

ENO

ENO

Figure 9-28 Example of PID Loop Control

http://www.kontrolkalemi.com

SIMATIC Instructions

9-96
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

LAD STL

NETWORK 1
//Convert PV to a
//normalized real
//number value - PV is
//a unipolar input and
//cannot be negative.

LD SM0.0

ITD AIW0, AC0 //Save the unipolar
//analog value in
//the accumulator.

DTR AC0, AC0 //Convert the 32-bit
//integer to a real
//number.

/R 32000.0, AC0 //Normalize the value
//in the
//accumulator.

MOVR AC0, VD100 //Store the normalized
//PV in the loop TABLE.

NETWORK 2
//Execute the loop when
//placed in auto mode.

LD I0.0 //When auto mode is
//entered,

PID VB100, 0 //invoke PID execution.

NETWORK 3
//Convert M n to a scaled,
//sixteen-bit integer.
//M n is a unipolar value
//and cannot be negative.

LD SM0.0
MOVR VD108, AC //Move the loop output

//to the accumulator.
*R 32000.0, AC0 //Scale the value in

//the accumulator.
ROUND AC0, AC0 //Convert the real

//number value to
//a 32-bit integer.

DTI AC0, AQW0 //Write the 16-bit
//integer value to
//the analog output.

//end of Interrupt
Routine 0

I0.0

Network 1

Network 2

ROUND
EN

IN OUT

I_DI
EN

IN OUT

DI_R
EN

IN OUT

DIV_R
EN

IN1

IN2

OUT

PID
EN

TBL

LOOP

MOV_R
EN

IN OUT

SM0.0

Network 3

SM0.0

OUT

MUL_R
EN

IN1

IN2

OUT

DI_I
EN

IN OUT

AC0

32000

AC0

AIW0 AC0

AC0 AC0

AC0 VD100

VB100

0

VD108

32000

AC0

AC0 AC0

AC0 AQW0

ENO

ENO

ENO

ENO

ENO

ENO

ENO

ENO

INTERRUPT 0

Figure 9-28 Example of PID Loop Control (continued)

http://www.kontrolkalemi.com

SIMATIC Instructions

9-97
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

FBD

MAIN OB1

SUBROUTINE 0

Network 1

SBR0
ENSM0.1

MOV_R
EN

IN OUT0.75

ENO
MOV_R

EN

IN OUT0.25

ENO
MOV_R

EN

IN OUT

ENO

MOV_R
EN

IN OUT30.0

ENO
MOV_R

EN

IN OUT

ENO
MOV_B

EN

IN OUT

ENO

MOV_R
EN

IN OUTAC0

ENO

INT

ATCH

EN

EVNT

ENO

10

0

ENI

SM0.0

VD104 VD112 VD1160.10

VD120 0.0 VD124 100 SMB34

INTERRUPT 0

Network 1

I_DI
EN

IN OUT

ENOSM0.0

AC0AIW0

DI_R
EN

IN OUT

ENO

AC0AC0 OUT

DIV_R
EN

IN1

IN2

OUT VD100AC0

32000

AC0

TBL

PID

EN

LOOP

ENOI0.0

0

Network 2

VB100

Network 3

OUT

MUL_R
EN

IN1

IN2

OUT

ROUND
EN

IN OUTAC0

ENO
DI_I

EN

IN OUT

ENO

AC0 AQW0AC0AC0

32000

VB108

SM0.0

ENO

ENO

Figure 9-28 Example of PID Loop Control (continued)

http://www.kontrolkalemi.com

SIMATIC Instructions

9-98
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Square Root

The Square Root instruction takes the square root of a
32-bit real number (IN) and produces a 32-bit real
number result (OUT) as shown in the equation:

√ IN = OUT

Error conditions that set ENO = 0: SM1.1 (overflow),
SM4.3 (run-time), 0006 (indirect address)

This instruction affects the following Special Memory bits:
SM1.0 (zero); SM1.1 (overflow); SM1.2 (negative).

SM1.1 is used to indicate overflow errors and illegal values. If SM1.1 is set, then
the status of SM1.0 and SM1.2 is not valid and the original input operands are not
altered. If SM1.1 is not set, then the math operation has completed with a valid
result and SM1.0 and SM1.2 contain valid status.

Inputs/Outputs Operands Data Types

IN VD, ID, QD, MD, SMD, SD, LD, AC, Constant, *VD, *AC, *LD REAL

OUT VD, ID, QD, MD, SMD, SD, LD,AC, *VD, *AC, *LD REAL

L
A
D

S
T
L

SQRT IN, OUT

SQRT
EN

IN OUT

ENO

F
B
D

L
A
D

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-99
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

9.10 SIMATIC Move Instructions

Move Byte, Move Word, Move Double Word, Move Real

The Move Byte instruction moves the input byte (IN) to
the output byte (OUT). The input byte is not altered by
the move.

The Move Word instruction moves the input word (IN) to
the output word (OUT). The input word is not altered by
the move.

The Move Double Word instruction moves the input
double word (IN) to the output double word (OUT). The
input double word is not altered by the move.

The Move Real instruction moves a 32-bit, real input
double word (IN) to the output double word (OUT). The
input double word is not altered by the move.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

Move... Inputs/Outputs Operands Data Types

Byte

IN VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD,
*AC, *LD

BYTE

Byte
OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD BYTE

Word

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW,
Constant, AC *VD, *AC, *LD

WORD, INT

Word
OUT VW, T, C, IW, QW, SW, MW, SMW, LW, AC, AQW,

*VD, *AC, *LD
WORD, INT

Double Word

IN VD, ID, QD, MD, SD, SMD, LD, HC, &VB, &IB, &QB,
&MB, &SB, &T, &C, AC, Constant, *VD, *AC, *LD

DWORD, DINT

Double Word
OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD DWORD, DINT

Real

IN VD, ID, QD, MD, SD, SMD, LD, AC, Constant, *VD,
*AC, *LD

REAL

Real
OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD REAL

L
A
D

S
T
L

MOVB IN, OUT

MOV_B
EN

IN OUT

ENO

F
B
D

MOV_W
EN

IN OUT

ENO

MOV_DW
EN

IN OUT

ENO

MOV_R
EN

IN OUT

ENO

MOVW IN, OUT

MOVD IN, OUT

MOVR IN, OUT

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-100
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Block Move Byte, Block Move Word, Block Move Double Word

The Block Move Byte instruction moves the number of
bytes (N) from the input address IN to the output address
OUT. N has a range of 1 to 255.

The Block Move Word instruction moves the number of
words (N), from the input address IN to the output
address OUT. N has a range of 1 to 255.

The Block Move Double Word instruction moves the
number of double words (N), from the input address IN,
to the output address OUT. N has a range of 1 to 255.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address), 0091 (operand out of range)

Block Move... Inputs/Outputs Operands Data Types

IN, OUT VB, IB, QB, MB,SB, SMB, LB, *VD, *AC, *LD BYTE

Byte N VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD,
*AC, *LD

BYTE

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, *VD,
*AC, *LD

WORD

Word
N VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD,

*AC, *LD
BYTE

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AQW, *VD,
*LD, *AC

WORD

IN, OUT VD, ID, QD, MD, SD, SMD, LD, *VD, *AC, *LD DWORD

Double Word N VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD,
*AC, *LD

BYTE

L
A
D

S
T
L

BMB IN, OUT, N

BLKMOV_B
EN

IN

N

OUT
F
B
D

BLKMOV_W
EN

IN

N

OUT

BLKMOV_DW
EN

IN

N

OUT

ENO

BMW IN, OUT, N

BMD IN, OUT, N

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-101
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Block Move Example

VB100

LAD STL

I2.1 BLKMOV_B
EN

N

INVB20

4

OUT

LD I2.1
BMB VB20, VB100, 4

Move
Array 1 (VB20 to VB23) to
Array 2 (VB100 to VB103)

Application

Array 1

Array 2

30
VB20

31
VB21

32
VB22

33
VB23

30
VB100

31
VB101

32
VB102

33
VB103

block move

FBD

IN

EN

N

ENO

BLKMOV_B

ENO

I2.1

VB20

4

VB100OUT

Figure 9-29 Example of Block Move Instructions for LAD, STL, and FBD

http://www.kontrolkalemi.com

SIMATIC Instructions

9-102
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Swap Bytes

The Swap Bytes instruction exchanges the most
significant byte with the least significant byte of the word
(IN).

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

Inputs/Outputs Operands Data Types

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *AC, *LD WORD

Move and Swap Examples

LAD STL

LD I2.1
MOVB VB50, AC0
SWAP AC0

I2.1 MOV_B

EN

OUT AC0VB50 IN

SWAP

EN

AC0 IN

 Application

AC0

AC0

swap

C3 D6

C3VB50

AC0

move

C3

D6 C3

Move Swap

FBD

ENO

ENO

MOV_B

EN

OUT AC0VB50 IN

ENO

SWAP

EN

AC0 IN

ENOI2.1

Figure 9-30 Example of Move and Swap Instructions for LAD, STL, and FBD

L
A
D

S
T
L

SWAP IN

SWAP
EN

INF
B
D

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-103
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Memory Fill

The Memory Fill instruction fills memory starting at the
output word (OUT), with the word input pattern (IN) for
the number of words specified by N. N has a range of 1
to 255.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address), 0091 (operand out of range)

Inputs/Outputs Operands Data Types

IN VW, IW, QW, MW, SW, SMW, LW, AIW, T, C, AC, Constant, *VD,
*AC, *LD

WORD

N VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD BYTE

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AQW, *VD, *AC, *LD WORD

Fill Example

VW200

LAD STL

I2.1

0

10

LD I2.1
FILL 0, VW200, 10

Clear VW200 to VW218

0

0
VW200

fill

. . .0
VW202

0
VW218

Application

FILL_N
EN

IN

N OUT

FBD

ENO

VW2000

10

FILL_N
EN

IN

N

OUT

ENOI2.1

Figure 9-31 Example of Fill Instructions for LAD, STL, and FBD

L
A
D

S
T
L

FILL IN, OUT, N

FILL_N
EN

IN

N

OUT
F
B
D

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-104
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

9.11 SIMATIC Table Instructions

Add to Table

The Add To Table instruction adds word values (DATA)
to the table (TBL).

The first value of the table is the maximum table length
(TL). The second value is the entry count (EC), which
specifies the number of entries in the table. (See
Figure 9-32.) New data are added to the table after the
last entry. Each time new data are added to the table, the
entry count is incremented. A table may have up to 100
data entries.

Error conditions that set ENO = 0: SM1.4 (table
overflow), SM4.3 (run-time), 0006 (indirect address),
0091 (operand out of range)

This instruction affects the following Special Memory bits:
SM1.4 is set to 1 if you try to overfill the table.

Inputs/Outputs Operands Data Types

DATA VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC, Constant, *VD,
*AC, *LD

WORD

TBL VW, IW, QW, MW, SW, SMW, LW, T, C, *VD, *AC, *LD WORD

L
A
D

S
T
L

ATT DATA, TABLE

AD_T_TBL
EN

DATA

TBL

F
B
D

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-105
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Add to Table Example

LAD STL

LD I3.0
ATT VW100, VW200

I3.0 AD_T_TBL
EN

DATA

TBL

VW100

VW200

FBD

0006
0002
5431
8942
xxxx
xxxx
xxxx
xxxx

VW200
VW202
VW204
VW206
VW208
VW210
VW212
VW214

TL (max. no. of entries)
EC (entry count)
d0 (data 0)
d1 (data 1)

1234VW100

0006
0003

1234

5431
8942

xxxx
xxxx
xxxx

VW200
VW202
VW204
VW206
VW208
VW210
VW212
VW214

d2 (data 2)

Before execution of ATT After execution of ATT

TL (max. no. of entries)
EC (entry count)
d0 (data 0)
d1 (data 1)

Application

ENO

AD_T_TBL
EN

DATA

TBL

VW100

VW200

ENOI3.0

Figure 9-32 Example of Add To Table Instruction

http://www.kontrolkalemi.com

SIMATIC Instructions

9-106
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Table Find

The Table Find instruction searches the table (SRC),
starting with the table entry specified by INDX, for the
data value (PTN) that matches the search criteria defined
by CMD. The command parameter (CMD) is given a
numeric value of 1 to 4 that corresponds to =, <>, <, and
>, respectively.

If a match is found, the INDX points to the matching
entry in the table. To find the next matching entry, the
INDX must be incremented before invoking the Table
Find instruction again. If a match is not found, the INDX
has a value equal to the entry count.

A table may have up to 100 data entries. The data
entries (area to be searched) are numbered from 0 to a
maximum value of 99.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address), 0091 (operand out of range)

Inputs/Outputs Operands Data Types

SRC VW, IW, QW, MW, SMW, LW, T, C, *VD, *AC, *LD WORD

PTN VW, IW, QW, MW, SW, SMW, AIW, LW, T, C, AC, Constant, *VD,
*AC, *LD

INT

INDX VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *AC, *LD WORD

CMD Constant BYTE

Note

When you use the Find instructions with tables generated with ATT, LIFO, and
FIFO instructions, the entry count and the data entries correspond directly. The
maximum-number-of-entries word required for ATT, LIFO, and FIFO is not
required by the Find instructions. Consequently, the SRC operand of a Find
instruction is one word address (two bytes) higher than the TBL operand of a
corresponding ATT, LIFO, or FIFO instruction, as shown in Figure 9-33.

0006
0006
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

VW200
VW202
VW204
VW206
VW208
VW210
VW212
VW214

TL (max. no. of entries)
EC (entry count)
d0 (data 0)
d1 (data 1)
d2 (data 2)

Table format for ATT, LIFO, and FIFO

d5 (data 5)

d3 (data 3)
d4 (data 4)

0006
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

VW202
VW204
VW206
VW208
VW210
VW212
VW214

EC (entry count)
d0 (data 0)
d1 (data 1)
d2 (data 2)

d5 (data 5)

d3 (data 3)
d4 (data 4)

Table format for TBL_FIND

Figure 9-33 Difference in Table Format between Find Instructions and ATT, LIFO, FIFO

L
A
D

S
T
L

FND= SRC, PATRN
INDX

FND<> SRC, PATRN,
INDX

FND< SRC, PATRN,
INDX

FND> SRC, PATRN,
INDX

TBL_FIND

EN

SRC

PTN

INDX

CMD

F
B
D

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-107
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Table Find Example

LAD STL

I2.1 TBL_FIND
EN

SRC

PTN

VW202

16#3130

LD I2.1
FND= VW202, 16#3130, AC1

INDXAC1

CMD1

When I2.1 is on,
search the table for a
value equal to
3130 HEX.

Application

0006VW202
3133VW204
4142
3130

VW206
VW208

3030VW210
3130
4541

VW212
VW214

EC (entry count)
d0 (data 0)
d1 (data 1)
d2 (data 2)
d3 (data 3)
d4 (data 4)
d5 (data 5)

This is the table you are searching. If the table was created using ATT, LIFO, and FIFO instructions,
VW200 contains the maximum number of allowed entries and is not required by the Find instructions.

0AC1 AC1 must be set to 0 to search from the top of table.

2AC1
AC1 contains the data entry number corresponding to the first
match found in the table (d2).

Execute table search

3AC1
Increment the INDX by one, before searching the remaining
entries of the table.

4AC1
AC1 contains the data entry number corresponding to the second
match found in the table (d4).

Execute table search

5AC1
Increment the INDX by one, before searching the remaining entries
of the table.

6AC1
AC1 contains a value equal to the entry count. The entire table has
been searched without finding another match.

Execute table search

0AC1
Before the table can be searched again, the INDX value must be
reset to 0.

FBD

I2.1
TBL_FIND

EN

SRC

PTN

VW202

INDXAC1

CMD1

ENO

ENO

16#3130

Figure 9-34 Example of Find Instructions for LAD, STL, and FBD

http://www.kontrolkalemi.com

SIMATIC Instructions

9-108
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

First-In-First-Out

The First-In-First-Out instruction removes the first entry
in the table (TBL), and outputs the value to a specified
location (DATA). All other entries of the table are shifted
up one location. The entry count in the table is
decremented for each instruction execution.

Error conditions that set ENO = 0: SM1.5 (empty table),
SM4.3 (run-time), 0006 (indirect address), 0091 (operand
out of range)

This instruction affects the following Special Memory bits:
SM1.5 is set to 1 if you try to remove an entry from an
empty table.

Inputs/Outputs Operands Data Types

TABLE VW, IW, QW, MW, SW, SMW, LW, T, C,*VD, *AC, *LD WORD

DATA VW, IW, QW, MW, SW, SMW, LW, AC, AQW, T, C, *VD, *AC, *LD WORD

First-In-First-Out Example

LAD STL

Application

LD I4.1
FIFO VW200, VW400

I4.1 FIFO
EN

DATA VW400VW200 TBL

5431VW400

After execution of FIFOBefore execution of FIFO

0006
0003
5431
8942
1234
xxxx
xxxx
xxxx

VW200
VW202
VW204
VW206
VW208
VW210
VW212
VW214

TL (max. no. of entries)
EC (entry count)
d0 (data 0)
d1 (data 1)

TL (max. no. of entries)
EC (entry count)
d0 (data 0)

d2 (data 2)

0006
0002
8942
1234
xxxx
xxxx
xxxx
xxxx

VW200
VW202
VW204
VW206
VW208
VW210
VW212
VW214

d1 (data 1)

FBD

FIFO
EN

DATA VW400VW200 TBL

I4.1

ENO

ENO

Figure 9-35 Example of First-In-First-Out Instruction

L
A
D

S
T
L

OUT

FIFO
EN

TBL DATA

FIFO TABLE, DATA

F
B
D

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-109
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Last-In-First-Out

The Last-In-First-Out instruction removes the last entry
in the table (TBL), and outputs the value to a location
specified by DATA. The entry count in the table is
decremented for each instruction execution.

Error conditions that set ENO = 0: SM1.5 (empty table),
SM4.3 (run-time), 0006 (indirect address), 0091 (operand
out of range)

This instruction affects the following Special Memory bits:
SM1.5 is set to 1 if you try to remove an entry from an
empty table.

Inputs/Outputs Operands Data Types

TABLE VW, IW, QW, MW, SW, SMW, LW, T, C,*VD, *AC, *LD WORD

DATA VW, IW, QW, MW, SW, SMW, LW, AQW, T, C, AC, *VD, *AC, *LD WORD

Last-In-First-Out Example

LAD STL

LD I4.0
LIFO VW200, VW300I4.0 LIFO

EN

DATA VW300VW200 TBL

Application

1234VW300
After execution of LIFOBefore execution of LIFO

0006
0003
5431
8942
1234
xxxx
xxxx
xxxx

VW200
VW202
VW204
VW206
VW208
VW210
VW212
VW214

TL (max. no. of entries)
EC (entry count)
d0 (data 0)
d1 (data 1)

0006
0002

xxxx

5431
8942

xxxx
xxxx
xxxx

VW200
VW202
VW204
VW206
VW208
VW210
VW212
VW214

d2 (data 2)

TL (max. no. of entries)
EC (entry count)
d0 (data 0)
d1 (data 1)

FBD
ENO

LIFO
EN

DATA VW300TBL

ENO

VW200

I4.0

Figure 9-36 Example of Last-In-First-Out Instruction

L
A
D

S
T
L

OUT

LIFO
EN

TBL DATA

LIFO TABLE, DATA

F
B
D

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-110
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

9.12 SIMATIC Logical Operations Instructions

And Byte, Or Byte, Exclusive Or Byte

The And Byte instruction ANDs the corresponding bits of
two input bytes and loads the result (OUT) in a byte.

The Or Byte instruction ORs the corresponding bits of
two input bytes and loads the result (OUT) in a
byte.

The Exclusive Or Byte instruction XORs the
corresponding bits of two input bytes and loads the result
(OUT) in a byte.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.0 (zero)

Inputs/Outputs Operands Data Types

IN1, IN2 VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD BYTE

OUT VB, IB, QB, MB,SB, SMB, LB, AC, *VD, *AC, *LD BYTE

L
A
D

S
T
L

ANDB IN1, OUT

WAND_B
EN

IN1

IN2

OUT

WOR_B
EN

IN1

IN2

OUT

WXOR_B
EN

IN1

IN2

OUT

ORB IN1, OUT

XORB IN1, OUT

F
B
D

ENO

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-111
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

And Word, Or Word, Exclusive Or Word

The And Word instruction ANDs the corresponding bits
of two input words and loads the result (OUT) in a word.

The Or Word instruction ORs the corresponding bits of
two input words and loads the result (OUT) in a
word.

The Exclusive Or Word instruction XORs the
corresponding bits of two input words and loads the
result (OUT) in a word.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.0 (zero)

Inputs/Outputs Operands Data Types

IN1, IN2 VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC, Constant, *VD,
*AC, *LD

WORD

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *AC, *LD WORD

L
A
D

S
T
L

ANDW IN1, OUT

WAND_W
EN

IN1

IN2

OUT

WOR_W
EN

IN1

IN2

OUT

WXOR_W
EN

IN1

IN2

OUT

ORW IN1, OUT

XORW IN1, OUT

ENO

ENO

ENO

F
B
D

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-112
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

And Double Word, Or Double Word, Exclusive Or Double Word

The And Double Word instruction ANDs the
corresponding bits of two double word inputs and loads
the result (OUT) in a double word.

The Or Double Word instruction ORs the corresponding
bits of two double word inputs and loads the result (OUT)
in a double word.

The Exclusive Or Double Word instruction XORs the
corresponding bits of two double word inputs and loads
the result (OUT) in a double word.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.0 (zero)

Inputs/Outputs Operands Data Types

IN1, IN2 VD, ID, QD, MD, SMD, AC, LD, HC, Constant, *VD, *AC, SD, *LD DWORD

OUT VD, ID, QD, MD, SMD, LD, AC, *VD, *AC, SD, *LD DWORD

L
A
D

S
T
L

ANDD IN1, OUT

WAND_DW
EN

IN1

IN2

OUT

WOR_DW
EN

IN1

IN2

OUT

WXOR_DW
EN

IN1

IN2

OUT

ORD IN1, OUT

XORD IN1, OUT

ENO

F
B
D

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-113
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

And, Or, and Exclusive Or Instructions Example

LD I4.0
ANDW AC1, AC0
ORW AC1, VW100
XORW AC1, AC0

I4.0 WAND_W
EN

IN1

IN2

AC1

AC0

OUT AC0

WOR_W
EN

IN1

IN2

AC1

VW100

OUT VW100

WXOR_W
EN

IN1

IN2

AC1

AC0

OUT AC0

0001 1111 0110 1101AC1

1101 0011 1110 0110AC0

0001 0011 0110 0100AC0

AND

equals

0001 1111 0110 1101AC1

1101 0011 1010 0000VW100

1101 1111 1110 1101VW100

OR

equals

0001 1111 0110 1101AC1

AC0

0000 1100 0000 1001AC0

XOR

equals

0001 0011 0110 0100

LAD STL

FBD

And Word Or Word Exclusive Or Word

Application

WAND_W
EN

IN1

IN2

AC1

AC0

OUT AC0

WOR_W
EN

IN1

IN2

AC1

VW100

OUT VW100

WXOR_W
EN

IN1

IN2

AC1

AC0

OUT AC0

I4.0 ENO

ENO

ENO

ENO

ENO ENO

Figure 9-37 Example of the Logical Operation Instructions

http://www.kontrolkalemi.com

SIMATIC Instructions

9-114
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Invert Byte, Invert Word, Invert Double Word Instructions

The Invert Byte instruction forms the ones complement
of the input byte IN, and loads the result into byte value
OUT.

The Invert Word instruction forms the ones complement
of the input word IN, and loads the result in word value
OUT.

The Invert Double Word instruction forms the ones
complement of the input double word IN, and loads the
result in double word value OUT.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

This instruction affects the following Special Memory bits:
SM1.0 (zero)

Invert... Inputs/Outputs Operands Data Types

Byte

IN VB, IB, QB, MB,SB, SMB, LB, AC, Constant, *VD,
*AC, *LD

BYTE

Byte
OUT VB, IB, QB, MB, SB, SMB, LB, AC,*VD, *AC, *LD BYTE

Word

IN VW, IW, QW, MW, SW, SMW, T, C, AIW, LW, AC,
Constant, *VD, *AC, *LD

WORD

Word
OUT VW, IW, QW, MW,SW, SMW, T, C, LW, AC, *VD, *AC,

*LD
WORD

Double
Word

IN VD, ID, QD, MD, SD, SMD, LD, HC, AC, Constant,
*VD, *AC, *LD

DWORD

Word
OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD DWORD

L
A
D

S
T
L

INVB OUT

INV_B
EN

IN OUT

ENO

INV_W
EN

IN OUT

ENO

INV_DW
EN

IN OUT

ENO

F
B
D

INVW OUT

INVD OUT

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-115
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Invert Example

LAD STL

LD I4.0
INVW AC0

I4.0 INV_W
EN

INAC0 OUT AC0

1101 0111 1001 0101AC0

complement

0010 1000 0110 1010AC0

Application

Invert Word

FBD

ENO

INV_W
EN

INAC0 OUT AC0

ENOI4.0

Figure 9-38 Example of Invert Instruction for LAD and STL

http://www.kontrolkalemi.com

SIMATIC Instructions

9-116
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

9.13 SIMATIC Shift and Rotate Instructions

Shift Right Byte, Shift Left Byte

The Shift Right Byte and Shift Left Byte instructions
shift the input byte (IN) value right or left by the shift
count (N), and load the result in the output byte
(OUT).

The Shift instructions fill with zeros as each bit is shifted
out. If the shift count (N) is greater than or equal to 8, the
value is shifted a maximum of 8 times.

If the shift count is greater than 0, the overflow memory
bit (SM1.1) takes on the value of the last bit shifted out.
The zero memory bit (SM1.0) is set if the result of the
shift operation is zero.

Shift right and shift left byte operations are unsigned.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.0 (zero); SM1.1 (overflow)

Inputs/Outputs Operands Data Types

IN, OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD BYTE

N VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD BYTE

L
A
D

S
T
L

OUT

SHR_B
EN

IN

N

OUT

OUT

SHL_B
EN

IN

N

OUT

SRB OUT, N

SLB OUT, N

ENO

F
B
D

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-117
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Shift Right Word, Shift Left Word

The Shift Right Word and Shift Left Word instructions
shift the input word (IN) value right or left by the shift
count (N), and load the result in the output word (OUT).

The Shift instructions fill with zeros as each bit is shifted
out. If the shift count (N) is greater than or equal to 16,
the value is shifted a maximum of 16 times. If the shift
count is greater than 0, the overflow memory bit (SM1.1)
takes on the value of the last bit shifted out. The zero
memory bit (SM1.0) is set if the result of the shift
operation is zero.

Shift right and shift left word operations are unsigned.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.0 (zero); SM1.1 (overflow)

Inputs/Outputs Operands Data Types

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC, Constant, *VD,
*AC, *LD

WORD

N VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD BYTE

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *AC, *LD WORD

L
A
D

S
T
L

OUT

SHR_W
EN

IN

N

OUT

OUT

SHL_W
EN

IN

N

OUT

SRW OUT, N

SLW OUT, N

ENO

F
B
D

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-118
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Shift Right Double Word, Shift Left Double Word

The Shift Right Double Word and Shift Left Double
Word instructions shift the input double word value (IN)
right or left by the shift count (N), and load the result in
the output double word (OUT).

The Shift instructions fill with zeros as each bit is shifted
out. If the shift count (N) is greater than or equal to 32,
the value is shifted a maximum of 32 times. If the shift
count is greater than 0, the overflow memory bit (SM1.1)
takes on the value of the last bit shifted out. The zero
memory bit (SM1.0) is set if the result of the shift
operation is zero.

Shift right and shift left double word operations are
unsigned.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.0 (zero); SM1.1 (overflow)

Inputs/Outputs Operands Data Types

IN VD, ID, QD, MD, SD, SMD, LD, AC, HC, Constant, *VD, *AC, *LD DWORD

N VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD BYTE

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD DWORD

L
A
D

S
T
L

OUT

SHR_DW
EN

IN

N

OUT

OUT

SHL_DW
EN

IN

N

OUT

SRD OUT, N

SLD OUT, N

ENO

F
B
D

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-119
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Rotate Right Byte, Rotate Left Byte

The Rotate Right Byte and Rotate Left Byte
instructions rotate the input byte value (IN) right or left by
the shift count (N), and load the result in the output byte
(OUT).

If the shift count (N) is greater than or equal to 8, a
modulo-8 operation is performed on the shift count (N)
before the rotation is executed. This results in a shift
count of 0 to 7. If the shift count is 0, a rotate is not
performed. If the rotate is performed, the value of the last
bit rotated is copied to the overflow bit (SM1.1).

If the shift count is not an integer multiple of 8, the last bit
rotated out is copied to the overflow memory bit (SM1.1).
The zero memory bit (SM1.0) is set when the value to be
rotated is zero.

Rotate right byte and rotate left byte operations are
unsigned.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.0 (zero); SM1.1 (overflow)

Inputs/Outputs Operands Data Types

IN VB, IB, QB, MB, SMB, SB, LB, AC, *VD, *AC, *LD BYTE

N VB, IB, QB, MB, SMB, SB, LB, AC, Constant, *VD, *AC, *LD BYTE

OUT VB, IB, QB, MB, SMB, SB, LB, AC, *VD, *AC, *LD BYTE

L
A
D

S
T
L

OUT

ROR_B
EN

IN

N

OUT

OUT

ROL_B
EN

IN

N

OUT

RRB OUT, N

RLB OUT, N

F
B
D

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-120
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Rotate Right Word, Rotate Left Word

The Rotate Right Word and Rotate Left Word
instructions rotate the input word value (IN) right or left
by the shift count (N), and load the result in the output
word (OUT).

If the shift count (N) is greater than or equal to 16, a
modulo-16 operation is performed on the shift count (N)
before the rotation is executed. This results in a shift
count of 0 to 15. If the shift count is 0, a rotation is not
performed. If the rotation is performed, the value of the
last bit rotated is copied to the overflow bit (SM1.1).

If the shift count is not an integer multiple of 16, the last
bit rotated out is copied to the overflow memory bit
(SM1.1). The zero memory bit (SM1.0) is set when the
value to be rotated is zero.

Rotate right word and rotate left word operations are
unsigned.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.0 (zero); SM1.1 (overflow)

Inputs/Outputs Operands Data Types

IN VW, T, C, IW, MW, SMW, AC, QW, LW, AIW, Constant, *VD, *AC,
SW, *LD

WORD

N VB, IB, QB, MB, SMB, LB, AC, Constant, *VD, *AC, SB, *LD BYTE

OUT VW, T, C, IW, QW, MW, SMW, LW, AC, *VD, *AC, SW, *LD WORD

L
A
D

S
T
L

OUT

ROR_W
EN

IN

N

OUT

OUT

ROL_W
EN

IN

N

OUT

RRW OUT, N

RLW OUT, N

F
B
D

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-121
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Rotate Right Double Word, Rotate Left Double Word

The Rotate Right Double Word and Rotate Left
Double Word instructions rotate the input double word
value (IN) right or left by the shift count (N), and load the
result in the output double word (OUT).

If the shift count (N) is greater than or equal to 32, a
modulo-32 operation is performed on the shift count (N)
before the rotation is executed. This results in a shift
count of 0 to 31. If the shift count is 0, a rotation is not
performed. If the rotation is performed, the value of the
last bit rotated is copied to the overflow bit (SM1.1).

If the shift count is not an integer multiple of 32, the last
bit rotated out is copied to the overflow memory bit
(SM1.1). The zero memory bit (SM1.0) is set when the
value to be rotated is zero.

Rotate right double word and rotate left double word
operations are unsigned.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.0 (zero); SM1.1 (overflow)

Inputs/Outputs Operands Data Types

IN VD, ID, QD, MD, SMD, LD, AC, HC, Constant, *VD, *AC, SD, *LD DWORD

N VB, IB, QB, MB, SMB, LB, AC, Constant, *VD, *AC, SB, *LD BYTE

OUT VD, ID, QD, MD, SMD, LD, AC, *VD, *AC, SD, *LD DWORD

L
A
D

S
T
L

OUT

ROR_DW
EN

IN

N

OUT

OUT

ROL_DW
EN

IN

N

OUT

RRD OUT, N

RLD OUT, N

F
B
D

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-122
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Shift and Rotate Examples

LAD STL

LD I4.0
RRW AC0, 2
SLW VW200, 3

I4.0 ROR_W
EN

IN

N

AC0

2 OUT AC0

SHL_W

EN

IN

N

VW200

3

OUT VW200

Application

Before rotate

AC0

Zero Memory Bit (SM1.0) = 0
Overflow Memory Bit (SM1.1) = 0

x

Overflow

1010 0000 0000 0000

After first rotate

AC0 1

Overflow

0101 0000 0000 0000

After second rotate

AC0 0

Overflow

0100 0000 0000 0001

Before shift

VW200

Zero Memory Bit (SM1.0) = 0
Overflow Memory Bit (SM1.1) = 1

x

Overflow

1100 0101 0101 1010

After first shift

VW200 1

Overflow

1000 1010 1011 0100

After second shift

VW200 1

Overflow

1110 0010 1010 1101

0001 0101 0110 1000

After third shift

VW200 1

Overflow

Rotate Shift

FBD

ROR_W
EN

IN

N

AC0

2

OUT AC0

SHL_W
EN

IN

N

VW200

3

OUT VW200ENO

ENO

ENO ENOI4.0

Figure 9-39 Example of Shift and Rotate Instructions for LAD, STL, and FBD

http://www.kontrolkalemi.com

SIMATIC Instructions

9-123
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Shift Register Bit

The Shift Register Bit (SHRB) instruction shifts the
value of DATA into the Shift Register. S_BIT specifies the
least significant bit of the Shift Register. N specifies the
length of the Shift Register and the direction of the shift
(Shift Plus = N, Shift Minus = -N).

Each bit shifted out by the SHRB instruction is placed in
the overflow memory bit (SM1.1).

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address), 0091 (operand out of range),
0092 (error in count field)

This instruction affects the following Special Memory bit:
SM1.1 (overflow)

Inputs/Outputs Operands Data Types

DATA, S_BIT I, Q, M, SM, T, C, V, S, L BOOL

N VB, IB, QB, MB, SMB, LB, AC, Constant, *VD, *AC, SB, *LD BYTE

L
A
D

S
T
L

SHRB DATA, S_BIT, N

SHRB
EN

S_BIT

N

DATA
F
B
D

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-124
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Understanding the Shift Register Bit Instruction

The Shift Register Bit instruction provides an easy method for sequencing and
controlling product flow or data. Use the Shift Register Bit instruction to shift the
entire register one bit, once per scan. The Shift Register Bit instruction is defined
by both the least significant bit (S_BIT) and the number of bits specified by the
length (N). Figure 9-41 shows an example of the Shift Register Bit instruction.

The address of the most significant bit of the Shift Register (MSB.b) can be
computed by the following equation:

MSB.b = [(Byte of S_BIT) + ([N] - 1 + (bit of S_BIT)) / 8] . [remainder of the
division by 8]

You must subtract 1 bit because S_BIT is one of the bits of the Shift Register.

For example, if S_BIT is V33.4, and N is 14, then the MSB.b is V35.1, or:

MSB.b = V33 + ([14] - 1 +4)/8
= V33 + 17/8
= V33 + 2 with a remainder of 1
= V35.1

On a Shift Minus, indicated by a negative value of length (N), the input data shifts
into the most significant bit of the Shift Register, and shifts out of the least
significant bit (S_BIT).

On a Shift Plus, indicated by a positive value of length (N), the input data (DATA)
shifts into the least significant bit of the Shift Register, specified by the S_BIT, and
out of the most significant bit of the Shift Register.

The data shifted out is then placed in the overflow memory bit (SM1.1). The
maximum length of the shift register is 64 bits, positive or negative. Figure 9-40
shows bit shifting for negative and positive values of N.

7 4 0V33
MSB LSB

Shift Plus, Length = 14

S_BIT

7 0V34

7 0V35 1

MSB of Shift Register

7 4 0V33
MSB LSB

Shift Minus, Length = -14

S_BIT

7 0V34

7 0V35 1

MSB of Shift Register

Figure 9-40 Shift Register Entry and Exit for Plus and Minus Shifts

http://www.kontrolkalemi.com

SIMATIC Instructions

9-125
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Shift Register Bit Example

LAD STL

LD I0.2
EU
SHRB I0.3, V100.0, 4

I0.2 SHRB

DATAI0.3

P

S_BITV100.0

N4

I0.2

Timing Diagram

I0.3

7

1V100

MSB LSB

S_BIT
I0.3010

0

Overflow (SM1.1) x

1V100
S_BIT
I0.3101

Overflow (SM1.1) 0

0V100
S_BIT
I0.3110

Overflow (SM1.1) 1

First shift Second shift

Before first shift

After first shift

After second shift

Positive transition (P)

FBD

SHRB
EN

DATAI0.3

S_BITV100.0

N4

ENO

ENOEN

OUTINI0.2
P

Figure 9-41 Example of Bit Shift Register Instruction for LAD, STL, and FBD

http://www.kontrolkalemi.com

SIMATIC Instructions

9-126
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

9.14 SIMATIC Conversion Instructions

BCD to Integer, Integer to BCD

The BCD to Integer instruction converts the input
Binary-Coded Decimal (IN) to an integer value and loads
the result into the variable specified by OUT. The valid
range for IN is 0 to 9999 BCD.

The Integer to BCD instruction converts the input integer
value (IN) to a Binary-Coded Decimal and loads the
result into the variable specified by OUT. The valid range
for IN is 0 to 9999 integer.

Error conditions that set ENO = 0: SM1.6 (BCD error),
SM4.3 (run-time), 0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.6 (invalid BCD)

Inputs/Outputs Operands Data Types

IN VW, T, C, IW, QW, MW, SMW, LW, AC, AIW, Constant, *VD, *AC,
SW, *LD

WORD

OUT VW, T, C, IW, QW, MW, SMW, LW, AC, *VD, *AC, SW, *LD WORD

Double Integer to Real

The Double Integer to Real instruction converts a
32-bit, signed integer (IN) into a 32-bit real number and
places the result into the variable specified by OUT.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

Inputs/Outputs Operands Data Types

IN VD, ID, QD, MD, SMD, AC, LD, HC, Constant, *VD, *AC, SD, *LD DINT

OUT VD, ID, QD, MD, SMD, LD, AC, *VD, *AC, SD, *LD REAL

L
A
D

S
T
L

BCDI OUT

IBCD OUT

BCD_I
EN

IN OUT

I_BCD
EN

IN OUT

F
B
D

ENO

ENO

222 224
� ��

221

L
A
D

S
T
L

DTR IN, OUT

DI_R
EN

IN OUT
F
B
D

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-127
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Round

The Round instruction converts the real value (IN) to a
double integer value and places the result into the
variable specified by OUT. If the fraction portion is 0.5 or
greater, the number is rounded up.

Error conditions that set ENO = 0: SM1.1 (overflow),
SM4.3 (run-time), 0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.1 (overflow)

Inputs/Outputs Operands Data Types

IN VD, ID, QD, MD, SMD, AC, LD, HC, Constant, *VD, *AC, SD, *LD REAL

OUT VD, ID, QD, MD, SMD, LD, AC, *VD, *AC, SD, *LD DINT

Truncate

The Truncate instruction converts a 32-bit real number
(IN) into a 32-bit signed integer and places the result into
the variable specified by OUT. Only the whole number
portion of the real number is converted, and the fraction
is discarded.

If the value that you are converting is not a valid real
number or is too large to be represented in the output,
then the overflow bit is set and the output is not affected.

Error conditions that set ENO = 0: SM1.1 (overflow),
SM4.3 (run-time), 0006 (indirect address)

This instruction affects the following Special Memory bits:
SM1.1 (overflow)

Inputs/Outputs Operands Data Types

IN VD, ID, QD, MD, SMD, LD, AC, Constant, *VD, *AC, SD, *LD REAL

OUT VD, ID, QD, MD, SMD, LD, AC, *VD, *AC, SD, *LD DINT

L
A
D

S
T
L

ROUND IN, OUT

F
B
D

ROUND

EN ENO

IN OUT

222 224
� ��

221

L
A
D

S
T
L

TRUNC IN, OUT

TRUNC
EN

IN OUT

ENO

F
B
D

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-128
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Double Integer to Integer

The Double Integer to Integer instruction converts the
double integer value (IN) to an integer value and places
the result into the variable specified by OUT.

If the value that you are converting is too large to be
represented in the output, then the overflow bit is set and
the output is not affected.

Error conditions that set ENO = 0: SM1.1 (overflow),
SM4.3 (run-time), 0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.1 (overflow)

Inputs/Outputs Operands Data Types

IN VD, ID, QD, MD, SMD, AC, LD, HC, Constant, *VD, *AC, SD, *LD DINT

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC INT

Integer to Double Integer

The Integer to Double Integer instruction converts the
integer value (IN) to a double integer value and places
the result into the variable specified by OUT. The sign is
extended.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

Inputs/Outputs Operands Data Types

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC, Constant, *AC,
*VD, *LD

INT

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC DINT

L
A
D

S
T
L

DTI IN, OUT

F
B
D

DI_I

EN ENO

IN OUT

222 224
� ��

221

L
A
D

S
T
L

ITD IN, OUT

F
B
D

I_DI
EN ENO

IN OUT

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-129
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Byte to Integer

The Byte to Integer instruction converts the byte value
(IN) to an integer value and places the result into the
variable specified by OUT. The byte is unsigned,
therefore there is no sign extension.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

Inputs/Outputs Operands Data Types

IN VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *AC, *VD, *LD BYTE

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC INT

Integer to Byte

The Integer to Byte instruction converts the word value
(IN) to a byte value and places the result into the variable
specified by OUT.

Values 0 to 255 are converted. All other values result in
overflow and the output is not affected.

Error conditions that set ENO = 0: SM1.1 (overflow),
SM4.3 (run-time), 0006 (indirect address)

These instructions affect the following Special Memory
bits: SM1.1 (overflow)

Inputs/Outputs Operands Data Types

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC, Constant, *VD,
*LD, *AC

INT

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD BYTE

L
A
D

S
T
L

BTI IN, OUT

F
B
D

B_I
EN ENO

IN OUT

222 224
� ��

221

L
A
D

S
T
L

ITB IN, OUT

F
B
D

I_B
EN ENO

IN OUT

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-130
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Convert Example

LAD STL

Network 1
LD I0.0
ITD C10, AC1
DTR AC1, VD0
MOVR VD0, VD8
*R VD4, VD8
ROUND VD8, VD12

Network 2
LD I3.0
BCDI AC0

I0.0 I_DI
EN

IN OUT

DI_R

EN

IN OUT

MUL_R
EN

IN1

IN2

OUT

ROUND

EN

IN OUT

C10 AC1

AC1 VD0

VD0

VD4

VD8

VD8 VD12

Clear accumulator 1.

Load counter value
(number of inches)
into AC1.

Convert to a real number.

Multiply by 2.54 to change
to centimeters.

Convert back to an integer.

FBD

101

VD0

C10

101.0

VD4 2.54

VD8 256.54

V12 257

Count = 101 inches

2.54 constant (inches to centimeters)

256.54 centimeters as real number

257 centimeters as integer

I3.0 BCD_I
EN

IN OUTAC0 AC0

1234

BCDI

AC0

04D2AC0

Double Word Integer to Real and Round BCD to Integer

Application

ENO

ENO

ENO

ENO

ENO

I0.0
I_DI

EN

IN OUTC10 AC1

ENO

DI_R
EN

IN OUTAC1 VD0

ENO
MUL_R

EN

IN1
IN2

OUTVD0
VD4

VD8

ENO
ROUND

EN

IN OUTVD8 VD12

ENO

BCD_I

EN

IN OUTAC0 AC0

ENO

Network 2

Network 1

I3.0

Network 1

Network 2

Figure 9-42 Example of Conversion Instructions

http://www.kontrolkalemi.com

SIMATIC Instructions

9-131
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Decode

The Decode instruction sets the bit in the output word
(OUT) that corresponds to the bit number represented by
the least significant “nibble” (4 bits) of the input byte (IN).
All other bits of the output word are set to 0.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

Inputs/Outputs Operands Data Types

IN VB, IB, QB, MB, SMB, LB, SB, AC, Constant, *VD, *AC, *LD BYTE

OUT VW, IW, QW, MW, SMW, LW, SW, AQW, T, C, AC, *VD, *AC, *LD WORD

Encode

The Encode instruction writes the bit number of the least
significant bit set of the input word (IN) into the least
significant “nibble” (4 bits) of the output byte (OUT).

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

Inputs/Outputs Operands Data Types

IN VW, T, C, IW, QW, MW, SMW, AC, LW, AIW, Constant, *VD, *AC,
SW, *LD

WORD

OUT VB, IB, QB, MB, SMB, LB, AC, *VD, *AC, SB, *LD BYTE

L
A
D

DECO
EN

IN OUTF
B
D

 ENO

S
T
L

DECO IN, OUT

222 224
� ��

221

L
A
D

S
T
L

ENCO IN, OUT

ENCO
EN

IN OUTF
B
D

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-132
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Decode, Encode Examples

 3

VW40

DECO

IN OUTAC2

LAD STL

LD I3.1
DECO AC2, VW40

I3.1

EN

Application

AC2

DECO

0000 0000 0000VW40
15 3 0

Set the bit that corresponds
to the error code in AC2.

AC2 contains the error code 3. The DECO instruction
sets the bit in VW40 that corresponds to this error code.

FBD

ENO

VW40

DECO

IN OUTAC2

EN ENOI3.1

1000

Figure 9-43 Example of Setting an Error Bit Using Decode

 9

VB40

ENCO

IN OUTAC2

LAD STL

LD I3.1
ENCO AC2, VB40I3.1

EN

Application

VB40

ENCO

1000 0010 0000 0000AC2
15 9 0

Convert the error bit in AC2
to the error code in VB40.

AC2 contains the error bit. The ENCO instruction converts the
least significant bit set to an error code that is stored in VB40.

FBDENO

VB40

ENCO

IN OUTAC2

EN ENOI3.1

Figure 9-44 Example of Converting the Error Bit into an Error Code Using Encode

http://www.kontrolkalemi.com

SIMATIC Instructions

9-133
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Segment

The Segment instruction uses the character specified by
IN to generate a bit pattern (OUT) that illuminates the
segments of a seven-segment display. The illuminated
segments represent the character in the least significant
digit of the input byte (IN).

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address)

Figure 9-45 shows the seven segment display coding
used by the Segment instruction.

Inputs/Outputs Operands Data Types

IN VB, IB, QB, MB, SMB, LB, AC, Constant, *VD, *AC, SB, *LD BYTE

OUT VB, IB, QB, MB, SMB, LB, AC, *VD, *AC, SB, *LD BYTE

0 0 0 1 1 1 1 1 1

(IN)
LSD

Segment
Display

(OUT)

8 0 1 1 1 1 1 1 1

(IN)
LSD

Segment
Display

1 0 0 0 0 0 1 1 0 9 0 1 1 0 0 1 1 1

2 0 1 0 1 1 0 1 1 A 0 1 1 1 0 1 1 1

3 0 1 0 0 1 1 1 1 B 0 1 1 1 1 1 0 0

4 0 1 1 0 0 1 1 0 C 0 0 1 1 1 0 0 1

5 0 1 1 0 1 1 0 1 D 0 1 0 1 1 1 1 0

6 0 1 1 1 1 1 0 1 E 0 1 1 1 1 0 0 1

7 0 0 0 0 0 1 1 1 F 0 1 1 1 0 0 0 1

(OUT)
- g f e d c b a- g f e d c b a

a

b

c

d

e

f g

Figure 9-45 Seven Segment Display Coding

L
A
D SEG

EN

IN OUT
F
B
D

 ENO

S
T
L

SEG IN, OUT

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-134
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Segment Example

6D

AC1

SEG

IN OUTVB48

LAD STL

LD I3.3
SEG VB48, AC1

I3.3

EN

Application

AC1

SEG

05VB48

(display character)

FBDENO

AC1

SEG

IN OUTVB48

I3.3 EN ENO

Figure 9-46 Example of Segment Instruction

http://www.kontrolkalemi.com

SIMATIC Instructions

9-135
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

ASCII to HEX, HEX to ASCII

The ASCII to HEX instruction converts the ASCII string
of length (LEN), starting at IN, to hexadecimal digits
starting at OUT. The maximum length of the ASCII string
is 255 characters.

The HEX to ASCII instruction converts the hexadecimal
digits, starting with the input byte (IN), to an ASCII string
starting at OUT. The number of hexadecimal digits to be
converted is specified by length (LEN). The maximum
number of the hexadecimal digits that can be converted
is 255.

Legal ASCII characters are the hexadecimal values 30 to
39, and 41 to 46.

ASCII to Hex: Error conditions that set ENO = 0:
SM1.7 (illegal ASCII), SM4.3 (run-time),
0006 (indirect address), 0091 (operand out of range)

Hex to ASCII: Error conditions that set ENO = 0:
SM4.3 (run-time), 0006 (indirect address),
0091 (operand out of range)

These instructions affect the following Special Memory
bits: SM1.7 (illegal ASCII)

Inputs/Outputs Operands Data Types

IN, OUT VB, IB, QB, MB, SMB, LB, *VD, *AC, SB, *LD BYTE

LEN VB, IB, QB, MB, SMB, LB, AC, Constant, *VD, *AC, SB, *LD BYTE

ASCII to HEX Example

LAD STL

 3

ATH

LEN

OUT VB40

I3.2
EN

VB30 IN

Application

ATH

VB30 33 45 41

VB40 3E AX

Note: The X indicates that the “nibble” (half of a byte)
 is unchanged.

LD I3.2
ATH VB30, VB40, 3

FBD

ENO

 3

ATH

LEN

OUT VB40

EN

VB30 IN

ENOI3.2

Figure 9-47 Example of ASCII to HEX Instruction

L
A
D

S
T
L

ATH IN, OUT, LEN

HTA IN, OUT, LEN

ATH
EN

IN

LEN

OUT

HTA
EN

IN

LEN

OUT

F
B
D

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-136
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Integer to ASCII

The Integer to ASCII instruction converts an integer
word (IN) to an ASCII string. The format (FMT) specifies
the conversion precision to the right of the decimal, and
whether the decimal point is to be shown as a comma or
a period. The resulting conversion is placed in 8
consecutive bytes beginning with OUT. The ASCII string
is always 8 characters.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address), no output (illegal format)

Inputs/Outputs Operands Data Types

IN VW, IW, QW, MW, SW, SMW, LW, AIW, T, C, AC, Constant, *VD,
*AC, *LD

INT

FMT VB, IB, QB, MB, SMB, LB, AC, Constant, *VD, *AC, SB, *LD BYTE

OUT VB, IB, QB, MB, SMB, LB, *VD, *AC, SB, *LD BYTE

L
A
D

S
T
L

ITA IN, OUT, FMT

ITA
EN

IN

FMT

F
B
D

 ENO

 OUT

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-137
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

The format operand (FMT) for the ITA (Integer to ASCII) instruction is defined in
Figure 9-48. The size of the output buffer is always 8 bytes. The number of digits
to the right of the decimal point in the output buffer is specified by the nnn field.
The valid range of the nnn field is 0 to 5. Specifying 0 digits to the right of the
decimal point causes the value to be displayed without a decimal point. For values
of nnn bigger than 5, the output buffer is filled with ASCII spaces. The c bit
specifies the use of either a comma (c=1) or a decimal point (c=0) as the separator
between the whole number and the fraction. The upper 4 bits must be zero.

The output buffer is formatted in accord with the following rules:

1. Positive values are written to the output buffer without a sign.

2. Negative values are written to the output buffer with a leading minus sign (-).

3. Leading zeros to the left of the decimal point (except the digit adjacent to the
decimal point) are suppressed.

4. Values are right-justified in the output buffer.

Figure 9-48 gives examples of values that are formatted using a decimal point (c =
0) with three digits to the right of the decimal point (nnn = 011).

MSB LSB

in=12

in = -12345
in=1234
in=-123

Out OutOutOutOut Out Out
+1 +2 +3 +4 +5 +6 +7

Out

.

.

.

.

0 1 2

1

2

2 3

2 3 4
3 4 51

1

0

-

FMT

Example:

7 6 5 4 3 2 1 0
0 0 0 0 c n n n

0

-

c = comma (1) or decimal point (0)
nnn = digits to right of decimal point

Figure 9-48 FMT Operand for the ITA Instruction

http://www.kontrolkalemi.com

SIMATIC Instructions

9-138
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Double Integer to ASCII

The Double Integer to ASCII instruction converts a
double word (IN) to an ASCII string. The format (FMT)
specifies the conversion precision to the right of the
decimal. The resulting conversion is placed in 12
consecutive bytes beginning with OUT.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address), no output (illegal format)

Inputs/Outputs Operands Data Types

IN VD, ID, QD, MD, SD, SMD, LD, HC, Constant, AC, *VD, *AC, *LD DINT

FMT VB, IB, QB, MB, SMB, LB, AC, Constant, *VD, *AC, SB, *LD BYTE

OUT VB, IB, QB, MB, SMB, LB, *VD, *AC, SB, *LD BYTE

The format operand (FMT) for the DTA instruction is defined in Figure 9-49. The
size of the output buffer is always 12 bytes. The number of digits to the right of the
decimal point in the output buffer is specified by the nnn field. The valid range of
the nnn field is 0 to 5. Specifying 0 digits to the right of the decimal point causes
the value to be displayed without a decimal point. For values of nnn bigger than 5,
the output buffer is filled with ASCII spaces. The c bit specifies the use of either a
comma (c=1) or a decimal point (c=0) as the separator between the whole number
and the fraction. The upper 4 bits must be zero. The output buffer is formatted in
accord with the following rules:

1. Positive values are written to the output buffer without a sign.

2. Negative values are written to the output buffer with a leading minus sign (-).

3. Leading zeros to the left of the decimal point (except the digit adjacent to the
decimal point) are suppressed.

4. Values are right-justified in the output buffer.

L
A
D

S
T
L

DTA IN, OUT, FMT

DTA
EN

IN

FMT

F
B
D

 ENO

 OUT

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-139
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Figure 9-49 gives examples of values that are formatted using a decimal point (c =
0) with four digits to the right of the decimal point (nnn = 100).

in=-12
in=1234567

Out OutOutOutOut Out Out
+1 +2 +3 +4 +5 +6 +7

Out

.

.
0 1 2

1 2 3 4 5
-

FMT

Example:

Out Out OutOut

00
6 7

+8 +9 +10 +11

MSB

7 6 5 4 3 2 1 0

LSB

n n n00 0 0 c

c = comma (1) or decimal point (0)
nnn = digits to right of decimal point

Figure 9-49 FMT Operand for DTA Instruction

Real to ASCII

The Real to ASCI instruction converts a floating point
value (IN) to an ASCII string. The format (FMT) specifies
the conversion precision to the right of the decimal, and
whether the decimal point is shown as a decimal point or
a period, and the output buffer size. The resulting
conversion is placed in an output buffer beginning with
OUT. The length of the resulting ASCII string is the size
of the output buffer, and can be specified to a size
ranging from 3 to 15.

Error conditions that set ENO = 0: SM4.3 (run-time),
0006 (indirect address), no output (illegal format or buffer
too small)

Inputs/Outputs Operands Data Types

IN VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD REAL

FMT VB, IB, QB, MB, SMB, LB, AC, Constant, *VD, *AC, SB, *LD BYTE

OUT VB, IB, QB, MB, SMB, LB, *VD, *AC, SB, *LD BYTE

L
A
D

S
T
L

RTA IN, OUT, FMT

RTA
EN

IN

FMT

F
B
D

 ENO

 OUT

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-140
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

The format operand (FMT) for the RTA instruction is defined in Figure 9-50. The
size of the output buffer is specified by the ssss field. A size of 0, 1, or 2 bytes is
not valid. The number of digits to the right of the decimal point in the output buffer
is specified by the nnn field. The valid range of the nnn field is 0 to 5. Specifying 0
digits to the right of the decimal point causes the value to be displayed without a
decimal point. The output buffer is filled with ASCII spaces for values of nnn bigger
than 5 or when the specified output buffer is too small to store the converted value.
The c bit specifies the use of either a comma (c=1) or a decimal point (c=0) as the
separator between the whole number and the fraction. The output buffer is
formatted in accord with the following rules:

1. Positive values are written to the output buffer without a sign.

2. Negative values are written to the output buffer with a leading minus sign (-).

3. Leading zeros to the left of the decimal point (except the digit adjacent to the
decimal point) are suppressed.

4. Values to the right of the decimal point are rounded to fit in the specified
number of digits to the right of the decimal point.

5. The size of the output buffer must be a minimum of three bytes more than the
number of digits to the right of the decimal point.

6. Values are right-justified in the output buffer.

Figure 9-50 gives examples of values that are formatted using a decimal point
(c=0) with one digit to the right of the decimal point (nnn=001) and a buffer size of
six bytes (ssss=0110).

Out
+1 +2 +3 +4 +5

OutOutOut Out Out

in = 1234.5

in = -0.0004

in = -3.67526

in = 1.95

1 2 3 4 . 5

0 . 0

. 73-

2 . 0

MSB

7 6 5 4 3 2 1 0
s s s s c n n n

LSB

ssss = size of output buffer
c = comma (1) or decimal point (0)
nnn = digits to right of decimal point

Figure 9-50 FMT Operand for RTA Instruction

Note

The floating point format used by the S7-200 CPU supports a maximum of
7 significant digits. Attempting to display more than the 7 significant digits
produces a rounding error.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-141
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

9.15 SIMATIC Program Control Instructions

End

The Conditional END instruction terminates the main
user program based upon the condition of the preceding
logic.

Operands: None

Data Types: None

Note

You can use the Conditional END instruction in the main program, but you cannot
use it in either subroutines or interrupt routines.

Note

Micro/WIN 32 automatically adds an unconditional end to the main user program.

Stop

The STOP instruction terminates the execution of your
program immediately by causing a transition of the CPU
from RUN to STOP mode.

Operands: None

If the STOP instruction is executed in an interrupt
routine, the interrupt routine is terminated immediately,
and all pending interrupts are ignored. Remaining actions
in the current scan cycle are completed, including
execution of the main user program, and the transition
from RUN to STOP mode is made at the end of the
current scan.

L
A
D

S
T
L

END

END

F
B
D

END

222 224
� ��

221

L
A
D

S
T
L

STOP

STOP

F
B
D

STOP

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-142
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Watchdog Reset

The Watchdog Reset instruction allows the CPU system
watchdog timer to be retriggered. This extends the time
that the scan is allowed to take without getting a
watchdog error.

Operands: None

Considerations for Using the WDR Instruction to Reset the Watchdog Timer

You should use the Watchdog Reset instruction carefully. If you use looping
instructions either to prevent scan completion, or to delay excessively the
completion of the scan, the following processes are inhibited until the scan cycle is
completed.

� Communication (except Freeport Mode)

� I/O updating (except Immediate I/O)

� Force updating

� SM bit updating (SM0, SM5 to SM29 are not updated)

� Run-time diagnostics

� 10-ms and 100-ms timers will not properly accumulate time for scans exceeding
25 seconds

� STOP instruction, when used in an interrupt routine

Note

If you expect your scan time to exceed 300 ms, or if you expect a burst of interrupt
activity that may prevent returning to the main scan for more than 300 ms, you
should use the WDR instruction to re-trigger the watchdog timer.

Changing the switch to the STOP position will cause the CPU to transition to
STOP mode within 1.4 seconds.

L
A
D

S
T
L

WDR

WDR

F
B
D

WDR

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-143
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Stop, End, and WDR Example

SM5.0

.

.

.

M5.6

.

.

.

When an I/O error is detected,
force the transition to STOP mode.

When M5.6 is on, retrigger the
Watchdog Reset (WDR) to allow
the scan time to be extended.

When I0.0 is on,
terminate the main program.

Network 1
LD SM5.0
STOP
.
.
.
Network 15
LD M5.6
WDR
.
.
.
Network 78
LD I0.0
END

Network 1

Network 15

Network 78

STOP

WDR

END

LAD STL

FBD

.

.

.

I0.0

Network 1

Network 15

Network 78

STOP

WDR

SM5.0

M5.6

END
I0.0

When an I/O error is detected,
force the transition to STOP mode.

When M5.6 is on, retrigger the
Watchdog Reset (WDR) to allow
the scan time to be extended.

When I0.0 is on,
terminate the main program.

Figure 9-51 Example of Stop, End, and WDR Instructions for LAD, STL, and FBD

http://www.kontrolkalemi.com

SIMATIC Instructions

9-144
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Jump to Label, Label

The Jump to Label instruction performs a branch to the
specified label (n) within the program. When a jump is
taken, the top of stack value is always a logical 1.

The Label instruction marks the location of the jump
destination (n).

Operands: n: 0 to 255

Data Types: WORD

Both the Jump and corresponding Label must be in the
main program, a subroutine, or an interrupt routine. You
cannot jump from the main program to a label in either a
subroutine or an interrupt routine. Likewise, you cannot
jump from a subroutine or interrupt routine to a label
outside that subroutine or interrupt routine.

Jump to Label Example

LAD

SM0.2

.

.

.

/
If the retentive data has not been lost,
jump to LBL 4.

Network
LDN SM0.2
JMP 4
.
.
.

Network
LBL 4

You can use the JMP to LBL instruction
in the main program, in subroutines, or
in interrupt routines.The JMP and its
corresponding LBL must always be
located within the same segment of
code (either the main program, a
subroutine, or an interrupt routine).

Network 14

Network 33

LBL

JMP
4

STL

4

FBD

JMP
SM0.2

4

LBL
4

Network 14

Network 33

.

.

.

.

If the retentive data has not been lost,
jump to LBL 4.

You can use the JMP to LBL instruction
in the main program, in subroutines, or
in interrupt routines.The JMP and its
corresponding LBL must always be
located within the same segment of
code (either the main program, a
subroutine, or an interrupt routine).

Figure 9-52 Example of Jump to Label and Label Instructions for LAD, STL, and FBD

L
A
D

S
T
L

JMP n

JMP

LBL

LBL n

n

n

F
B
D

JMP

LBL

n

n

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-145
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Subroutine, Return from Subroutine

The Call Subroutine instruction transfers control to the
subroutine (n). You can use a Call Subroutine instruction
with or without parameters. To add a subroutine, select
Edit > Insert > Subroutine from the menu.

The Conditional Return from Subroutine instruction is
used to terminate a subroutine based upon the preceding
logic.

Operands: n: Constant

Data Types: BYTE

Once the subroutine completes its execution, control
returns to the instruction that follows the Call Subroutine.

Figure 9-55 shows an example of the Call Subroutine,
and Return from Subroutine instructions.

Error conditions that set ENO for Call Subroutine with
parameters = 0:

SM4.3 (run-time), 0008 (maximum subroutine nesting
exceeded)

Note

Micro/WIN 32 automatically adds a return from each subroutine.

You can nest subroutines (place a subroutine call within a subroutine), to a depth
of eight. Recursion (a subroutine that calls itself) is not prohibited, but you should
use caution when using recursion with subroutines.

When a subroutine is called, the entire logic stack is saved, the top of stack is set
to one, all other stack locations are set to zero, and control is transferred to the
called subroutine. When this subroutine is completed, the stack is restored with the
values saved at the point of call, and control is returned to the calling routine.

Accumulators are common to subroutines and the calling routine. No save or
restore operation is performed on accumulators due to subroutine use.

L
A
D

S
T
L

SBR n
CRET

L
A
D

F
B
D EN

SBRn

222 224
� ��

221

RET

RET

SBR

http://www.kontrolkalemi.com

SIMATIC Instructions

9-146
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Calling a Subroutine With Parameters

Subroutines may contain passed parameters. The parameters are defined in the
local variable table of the subroutine (Figure 9-53). The parameters must have a
symbol name (maximum of 8 characters), a variable type, and a data type. Sixteen
parameters can be passed to or from a subroutine.

The variable type field in the local variable table defines whether the variable is
passed into the subroutine (IN), passed into and out of the subroutine (IN_OUT),
or passed out of the subroutine (OUT). The characteristics of the parameter types
are as follows:

� IN: parameters are passed into the subroutine. If the parameter is a direct
address (such as VB10), the value at the specified location is passed into the
subroutine. If the parameter is an indirect address (such as *AC1), the value at
the location pointed to is passed into the subroutine. If the parameter is a data
constant (16#1234), or an address (VB100), the constant or address value is
passed into the subroutine.

� IN_OUT: the value at the specified parameter location is passed into the
subroutine and the result value from the subroutine is returned to the same
location. Constants (such as 16#1234) and addresses (such as &VB100) are
not allowed for input/output parameters.

� OUT: The result value from the subroutine is returned to the specified
parameter location. Constants (such as 16#1234) and addresses (such as
&VB100) are not allowed as output.

� TEMP:
Any local memory that is not used for passed parameters may be used for
temporary storage within the subroutine.

To add a parameter entry, place the cursor on the variable type field of the type
(IN, IN_OUT<OUT) that you want to add. Click the right mouse button to get a
menu of options. Select the Insert option and then the Row Below option. Another
parameter entry of the selected type appears below the current entry.

Name Var. Type CommentData Type

EN
IN1
IN2

IN3
IN4
IN/OUT1
OUT1

TEMP

IN

IN

IN
IN
IN
IN/OUT
OUT

BOOL

BOOL
BYTE

BOOL
DWORD
WORD
DWORD

L0.0

LB1

LB2.0

LD3

LW7

LD9

Figure 9-53 STEP 7-Micro/WIN 32 Local Variable Table

http://www.kontrolkalemi.com

SIMATIC Instructions

9-147
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

The data type field in the local variable table defines the size and format of the
parameter. The parameter types are:

� Power Flow: Boolean power flow is allowed only for bit (Boolean) inputs. This
declaration tells STEP 7-Micro/WIN 32 that this input parameter is the result of
power flow based on a combination of bit logic instructions. Boolean power flow
inputs must appear first in the local variable table before any other type input.
Only input parameters are allowed to be used this way. The enable input (EN)
and the IN1 inputs in Figure 9-54 use Boolean logic.

� Boolean - This data type is used for single bit inputs and outputs. IN2 in
Figure 9-54 is a Boolean input.

� Byte, Word, Dword - These data types identify an unsigned input or output
parameter of 1, 2, or 4 bytes respectively.

� INT, DINT - These data types identify signed input or output parameters of 2 or
4 bytes respectively.

� Real - This data type identifies a single precision (4 byte) IEEE floating point
value.

SBR10
EN

LAD STL

LD I0.0
CALL 10, I0.1, VB10,

I1.0, &VB100,
*AC1, VD200

IN1
IN2
IN3

IN4

IN/OUT

OUT1 VD200

I0.0

I0.1

VB10
I1.0

&VB100

*AC1

Figure 9-54 Subroutine Call in LAD and STL

Address parameters such as IN4 in Figure 9-54 (&VB100) are passed into a
subroutine as a Dword (unsigned double word) value. The type of a constant
parameter must be specified for the parameter in the calling routine with a constant
describer in front of the constant value. For example, to pass an unsigned double
word constant with a value of 12,345 as a parameter, the constant parameter must
be specified as DW#12345. If the constant describer is omitted from parameter,
the constant may be assumed to be a different type.

There are no automatic data type conversions performed on the input or output
parameters. For example, if the local variable table specifies that a parameter has
the data type Real, and in the calling routine a double word (Dword) is specified for
that parameter, the value in the subroutine will be a double word.

When values are passed to a subroutine, they are placed into the local memory of
the subroutine. The left-most column of the local variable table (see Figure 9-53)
shows the local memory address for each passed parameter. Input parameter
values are copied to the subroutine’s local memory when the subroutine is called.
Output parameter values are copied form the subroutine’s local memory to the
specified output parameter addresses when the subroutine execution is complete.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-148
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

The data element size and type are represented in the coding of the parameters.
Assignment of parameter values to local memory in the subroutine is as follows:

� Parameter values are assigned to local memory in the order specified by the
call subroutine instruction with parameters starting at L.0.

� One to eight consecutive bit parameter values are assigned to a single byte
starting with Lx.0 and continuing to Lx.7.

� Byte, word, and double word values are assigned to local memory on byte
boundaries (LBx, LWx, or LDx).

In the Call Subroutine instruction with parameters, parameters must be arranged in
order with input parameters first, followed by input/output parameters, and then
followed by output parameters.

If you are programming in STL, the format of the CALL instruction is:

CALL subroutine number, parameter 1, parameter 2, ... , parameter

Error conditions that set ENO for Call Subroutine with parameters = 0:
SM4.3 (run-time), 0008 (maximum subroutine nesting exceeded)

http://www.kontrolkalemi.com

SIMATIC Instructions

9-149
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Subroutine, and Return from Subroutine Example

SM0.1

.

.

.

On the first scan:
Call SBR10 for initialization.

A conditional return (RET) from
Subroutine 10 may be used.

Each subroutine is automatically
terminated by STEP 7 Micro/WIN 32
3.0. This terminates Subroutine 10.

Network 1
LD SM0.1
CALL 10
.

Network 1

M14.3
Network 6

.

.

.

.

.

.

Start of Subroutine 10

RET

LAD STL

FBD

MAIN

SUBROUTINE 10

.

.

.
Network 6
LD M14.3
CRET

.

.

.

MAIN

SBR10
ENSM0.1

SUBROUTINE 10

RET
M14.3

SBR10
EN

Figure 9-55 Example of Subroutine Instructions for LAD, FBD, and STL

http://www.kontrolkalemi.com

SIMATIC Instructions

9-150
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

For, Next

The FOR instruction executes the instructions between
the FOR and the NEXT. You must specify the index value
or current loop count (INDX), the starting value (INIT),
and the ending value (FINAL).

The NEXT instruction marks the end of the FOR loop,
and sets the top of the stack to 1.

For example, given an INIT value of 1 and a FINAL value
of 10, the instructions between the FOR and the NEXT
are executed 10 times with the INDX value being
incremented: 1, 2, 3, ...10.

If the starting value is greater than the final value, the
loop is not executed. After each execution of the
instructions between the FOR and the NEXT instruction,
the INDX value is incremented and the result is
compared to the final value. If the INDX is greater than
the final value, the loop is terminated.

For : Error conditions that set ENO = 0: SM4.3
(run-time), 0006 (indirect address)

Inputs/Outputs Operands Data Types

INDX VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *AC, *LD INT

INIT VW, IW, QW, MW, SW, SMW, T, C, AC, LW, AIW, Constant, *VD,
*AC, *LD

INT

FINAL VW, IW, QW, MW, SW, SMW, LW, T, C, AC, AIW, Constant, *VD,
*AC, *LD

INT

L
A
D

S
T
L

FOR

EN

INDX

INIT

FINAL

FOR INDX,
INIT
FINAL

NEXT

NEXT

F
B
D

FOR

EN

INDX

INIT

FINAL

NEXT

222 224
� ��

221

ENO

ENO

http://www.kontrolkalemi.com

SIMATIC Instructions

9-151
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Here are some guidelines for using the FOR/NEXT loop:

� If you enable the FOR/NEXT loop, it continues the looping process until it
finishes the iterations, unless you change the final value from within the loop
itself. You can change the values while the FOR/NEXT is in the looping
process.

� When the loop is enabled again, it copies the initial value into the index value
(current loop number). The FOR/NEXT instruction resets itself the next time it is
enabled.

Use the FOR/NEXT instructions to delineate a loop that is repeated for the
specified count. Each FOR instruction requires a NEXT instruction. You can nest
FOR/NEXT loops (place a FOR/NEXT loop within a FOR/NEXT loop) to a depth of
eight.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-152
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

For/Next Example

I2.0 FOR

EN
INDX

INIT

VW100

1

FINAL 100

I2.1 FOR

EN

INDX

INIT

VW225

1

FINAL2

Network
LD I2.0
FOR VW100, 1, 100
.
.

.
Network
LD I2.1
FOR VW225, 1, 2
.
.
.

Network
NEXT
.
.
Network
NEXT

When I2.0 comes on,
the outside loop
indicated by arrow 1 is
executed 100 times.

The inside loop
indicated by arrow 2 is
executed twice for each
execution of the outside
loop when I2.1 is on.

2

1

Network 1

Network 10

Network 15

Network 20

NEXT

NEXT

LAD STL

FBD

Network 1

Network 10

Network 15

Network 20

FOR

EN

INDX

INIT

VW100

1

FINAL 100

I2.0

FOR

EN

INDX

INIT

VW225

1

FINAL2

I2.1

NEXT

NEXT

ENO

ENO

ENO

ENO

Figure 9-56 Example of For/Next Instructions for LAD and STL

http://www.kontrolkalemi.com

SIMATIC Instructions

9-153
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Sequence Control Relay

The Load Sequence Control Relay instruction marks
the beginning of an SCR segment. When the S bit is on,
power flow is enabled to the SCR segment. The SCR
segment must be terminated with an SCRE instruction.

The Sequence Control Relay Transition instruction
identifies the SCR bit to be enabled (the next S bit to be
set). When power flows to the coil or FBD box, the
referenced S bit is turned on and the S bit of the LSCR
instruction (that enabled this SCR segment) is turned
off.

The Sequence Control Relay End instruction marks the
end of an SCR segment.

Inputs/Outputs Operands Data Types

n S BOOL

Understanding SCR Instructions

In LAD and STL, Sequence Control Relays (SCRs) are used to organize machine
operations or steps into equivalent program segments. SCRs allow logical
segmentation of the control program.

The LSCR instruction loads the SCR and logic stacks with the value of the S bit
referenced by the instruction. The SCR segment is energized or de-energized by
the resulting value of the SCR stack. The top of the logic stack is loaded to the
value of the referenced S bit so that boxes or output coils can be tied directly to the
left power rail without an intervening contact. Figure 9-57 shows the S stack and
the logic stack and the effect of executing the LSCR instruction.

L
A
D

S
T
L

LSCR S bit

SCRT S bit

SCRE

SCRT

SCR

S bit

S bit

SCRE

F
B
D

SCRE

SCR

SCRT

S bit

222 224
� ��

221

S bit

http://www.kontrolkalemi.com

SIMATIC Instructions

9-154
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

BEFORE

LSCR
Load the value of Sx.y onto the SCR and logic stacks.

iv0

iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv8

Sx.y

iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv8

Sx.y

AFTER

S stack Logic stack
initial value

of S S bitivs

S stack Logic stack

Figure 9-57 Effect of LSCR on the Logic Stack

The following is true of Sequence Control Relay instructions:

� All logic between the LSCR and the SCRE instructions make up the SCR
segment and are dependent upon the value of the S stack for its execution.
Logic between the SCRE and the next LSCR instruction have no dependency
upon the value of the S stack.

� The SCRT instruction sets an S bit to enable the next SCR and also resets the
S bit that was loaded to enable this section of the SCR segment.

Restrictions

Restrictions for using SCRs follow:

� You cannot use the same S bit in more than one routine. For example, if you
use S0.1 in the main program, do not use it in the subroutine.

� You cannot use the JMP and LBL instructions in an SCR segment. This means
that jumps into, within, or out of an SCR segment are not allowed. You can use
jump and label instructions to jump around SCR segments.

� You cannot use the FOR, NEXT, and END instructions in an SCR segment.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-155
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

SCR Example

Figure 9-58 shows an example of the operation of SCRs.

� In this example, the first scan bit SM0.1 is used to set S0.1, which will be the
active State 1 on the first scan.

� After a 2-second delay, T37 causes a transition to State 2. This transition
deactivates the State 1 SCR (S0.1) segment and activates the State 2 SCR
(S0.2) segment.

SCRT

SCR

S0.2

S0.1

SCRE

S

Q0.4

R

Q0.5

LAD STL

Network 1
LD SM0.1
S S0.1, 1

Network 2
LSCR S0.1

Network 3
LD SM0.0
S Q0.4, 1
R Q0.5, 2
TON T37, 20

Network 1

Network 3

Network 4

Network 5

On the first scan,
enable State 1.S

S0.1SM0.1

1

SM0.0

1

2

TONIN

PT

T37

20

Beginning of State 1
control region

Turn on the red light on
First Street.

Turn off the yellow and
green lights on First
Street.

Start a 2-second timer.

Transition to State 2
after a 2-second delay.

End of SCR region for
State 1

T37

Network 2

Network 4
LD T37
SCRT S0.2

Network 5
SCRE

(Program continued on next page)

Figure 9-58 Example of Sequence Control Relays (SCRs)

http://www.kontrolkalemi.com

SIMATIC Instructions

9-156
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

SCRT

SCR

S0.3

S0.2

SCRE

S

Q0.2

LAD STL

Network 6
LSCR S0.2

Network 7

Network 8

Network 9

SM0.0

1

TONIN

PT

T38

250

Beginning of State 2
control region

Turn on the green light
on Third Street.

Start a 25-second timer.

Transition to State 3
after a 25-second delay.

End of SCR region for
State 2

T38

Network 6

Network 8
LD T38
SCRT S0.3

Network 9
SCRE
.
.
.

Network 7
LD SM0.0
S Q0.2, 1
TON T38, 250

.

.

. FBD

S
EN

N

Network 1
S0.1

SM0.1

1

Network 2 S0.1

Network 3

AND
SM0.0

SM0.0

S
EN

N

Q0.4

1

R
EN

N

Q0.5

2

TONIN

PT

T37

20

On the first scan,
enable State 1.

Beginning of State 1
control region

Turn on the red light on
First Street.

Turn off the yellow and
green lights on First
Street.

Start a 2-second timer.

SCR

Network 4
S0.2
SCRT

T37
Transition to State 2
after a 2-second delay.

Figure 9-58 Example of Sequence Control Relays (SCRs), continued

http://www.kontrolkalemi.com

SIMATIC Instructions

9-157
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

FBD

Beginning of State 2
control region

Turn on the green light
on Third Street.

Start a 25-second timer.

Transition to State 3
after a 25-second delay.

End of SCR region for
State 2

Network 6
S0.2
SCRTSCR

AND
SM0.0

SM0.0

S
EN

N

Q0.2

1

TON
IN

PT

T38

250

Network 7

Network 8
S0.3
SCRT

T38
SCRT

Network 9

SCRE

Network 5

SCRE End of SCR region for
State 1

Figure 9-58 Example of Sequence Control Relays (SCRs), continued

Divergence Control

In many applications, a single stream of sequential states must be split into two or
more different streams. When a stream of control diverges into multiple streams,
all outgoing streams must be activated simultaneously. This is shown in
Figure 9-59.

State L

State M State N

Transition Condition

Figure 9-59 Divergence of Control Stream

http://www.kontrolkalemi.com

SIMATIC Instructions

9-158
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

The divergence of control streams can be implemented in an SCR program by
using multiple SCRT instructions enabled by the same transition condition, as
shown in Figure 9-60.

SCRT

SCR

S3.5

S3.4

SCRE

LAD STL

Network
LSCR S3.4

Network

Network

Network

Beginning of State L
control region

Transition to State M

End of SCR region for
State L

M2.3

Network

Network
LD M2.3
A I2.1
SCRT S3.5
SCRT S6.5

Network
SCRE

Network
.

I2.1

SCRT

S6.5
Transition to State N

FBD

Network
S3.4
SCR

AND
M2.3

I2.1

Network

SCRT
S3.5

SCRT
S6.5

Network

SCRE

Figure 9-60 Example of Divergence of Control Streams

http://www.kontrolkalemi.com

SIMATIC Instructions

9-159
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Convergence Control

A similar situation arises when two or more streams of sequential states must be
merged into a single stream. When multiple streams merge into a single stream,
they are said to converge. When streams converge, all incoming streams must be
complete before the next state is executed. Figure 9-61 depicts the convergence of
two control streams.

State N

State L State M

Transition Condition

Figure 9-61 Convergence of Control Streams

http://www.kontrolkalemi.com

SIMATIC Instructions

9-160
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

The convergence of control streams can be implemented in an SCR program by
making the transition from state L to state L’ and by making the transition from
state M to state M’. When both SCR bits representing L’ and M’ are true, state N
can the enabled as shown in Figure 9-62.

S

SCR

S5.0

S3.4

LAD STL

Network
LSCR S3.4

Network

Network

Beginning of State L
control region.

Enable State N.
S3.5

Network

Network
LD S3.5
A S6.5
S S5.0, 1
R S3.5, 1
R S6.5, 1

Network
.

S6.5

R
S3.5

Reset State L’.

SCRT

S3.5

Network

Transition to State L’.
V100.5 Network

LD V100.5
SCRT S3.5

Network
SCRE

SCRE
Network

End of SCR region for
State L.

SCR

S6.4
Network
LSCR S6.4

Beginning of State M
control region.

Network

Network Network
.

SCRT

S6.5

Network

Transition to State M’.
C50

Network
LD C50
SCRT S6.5

Network
SCRESCRE

Network
End of SCR region for
State M.

1

1

R
S6.5

Reset State M’.

1

Figure 9-62 Example of Convergence of Control Streams

http://www.kontrolkalemi.com

SIMATIC Instructions

9-161
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

S3.4

FBD

Network

Beginning of State L
control region.

Enable State N.
S3.5

Network

S6.5

Reset State L’.

Network

Transition to State L’.

End of SCR region for
State L.

S6.4

Beginning of State M
control region.

Network

Transition to State M’.

End of SCR region for
State M.

Reset State M’.

SCR

AND
S5.0

S3.5

SCRT
V100.5

SCRE

Network

Network
SCR

S6.5

SCRT
C50

SCRE

Network

S

1

EN

N

R
EN

N1

S3.5

R
EN

N1

S6.5

Figure 9-62 Example of Convergence of Control Streams, continued

http://www.kontrolkalemi.com

SIMATIC Instructions

9-162
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

In other situations, a control stream may be directed into one of several possible
control streams, depending upon which transition condition comes true first. Such
a situation is depicted in Figure 9-63.

State L

State M State N

Transition Condition Transition Condition

Figure 9-63 Divergence of Control Stream, Depending on Transition Condition

An equivalent SCR program is shown in Figure 9-64.

SCRT

SCR

S3.5

S3.4

SCRE

LAD STL

Network
LSCR S3.4

Network

Network

Network

Beginning of State L
control region.

Transition to State M.

End of SCR region for
State L.

M2.3

Network

Network
LD M2.3
SCRT S3.5

Network
LD I3.3
SCRT S6.5

Network
.

SCRT
S6.5

Transition to State N.
I3.3

Network
SCRE

Network

Figure 9-64 Example of Conditional Transitions

http://www.kontrolkalemi.com

SIMATIC Instructions

9-163
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Network

Network

Beginning of State L
control region.

Transition to State M.

End of SCR region for
State L.

M2.3

Network

S6.5

Transition to State N.
I3.3

Network

FBD

S3.4
SCR

S3.5
SCRT

SCRT

SCRE

Figure 9-64 Example of Conditional Transitions (continued)

http://www.kontrolkalemi.com

SIMATIC Instructions

9-164
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

ENO

ENO is a Boolean output for boxes in LAD and FBD. If a
box has power flow at the EN input and is executed
without error, the ENO output passes power flow to the
next element. ENO can be used as an enable bit that
indicates the successful completion of an
instruction.

The ENO bit is used with the top of stack to affect power
flow for execution of subsequent instructions.

STL instructions do not have an EN input; the top of the
stack must be a logic 1 for the instruction to be executed.

In STL there is no ENO output, but the STL instructions
that correspond to LAD and FBD instructions with ENO
outputs do set a special ENO bit. This bit is accessible
with the And ENO (AENO) instruction. AENO can be
used to generate the same effect as the ENO bit of a
box. The AENO instruction is only available in STL.

AENO will perform a logical AND of the ENO bit and the
top of stack. The result of the AND operation is the new
top of stack.

Operands: None

Data Types: None

S
T
L

AENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-165
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

9.16 SIMATIC Interrupt and Communications Instructions

Attach Interrupt, Detach Interrupt

The Attach Interrupt instruction associates an interrupt
event (EVNT) with an interrupt routine number (INT), and
enables the interrupt event.

The Detach Interrupt instruction disassociates an
interrupt event (EVNT) from all interrupt routines, and
disables the interrupt event.

Attach Interrupt: Error conditions that set ENO = 0:
SM4.3 (run-time), 0006 (indirect address)

Inputs/Outputs Operands Data Types

INT Constant (CPU 222: 0-12, 19-23, 27-33; CPU 224: 0-23, 27-33) BYTE

EVNT Constant (CPU 222: 0-12, 19-23, 27-33; CPU 224: 0-23, 27-33) BYTE

Understanding Attach and Detach Interrupt Instructions

Before an interrupt routine can be invoked, an association must be established
between the interrupt event and the program segment that you want to execute
when the event occurs. Use the Attach Interrupt instruction (ATCH) to associate an
interrupt event (specified by the interrupt event number) and the program segment
(specified by an interrupt routine number). You can attach multiple interrupt events
to one interrupt routine, but one event cannot be concurrently attached to multiple
interrupt routines. When an event occurs with interrupts enabled, only the last
interrupt routine attached to this event is executed.

When you attach an interrupt event to an interrupt routine, that interrupt is
automatically enabled. If you disable all interrupts using the global disable interrupt
instruction, each occurrence of the interrupt event is queued until interrupts are
re-enabled, using the global enable interrupt instruction.

You can disable individual interrupt events by breaking the association between the
interrupt event and the interrupt routine with the Detach Interrupt instruction
(DTCH). The Detach instruction returns the interrupt to an inactive or ignored state.

Table 9-20 lists the different types of interrupt events.

L
A
D

S
T
L

ATCH INT, EVENT

DTCH EVENT

ATCH
EN

INT

EVNT

DTCH
EN

EVNT

F
B
D

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-166
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Table 9-20 Interrupt Events

Event Number Interrupt Description CPU 221 CPU 222 CPU 224

0 Rising edge, I0.0 Y Y Y

1 Falling edge, I0.0 Y Y Y

2 Rising edge, I0.1 Y Y Y

3 Falling edge, I0.1 Y Y Y

4 Rising edge, I0.2 Y Y Y

5 Falling edge, I0.2 Y Y Y

6 Rising edge, I0.3 Y Y Y

7 Falling edge, I0.3 Y Y Y

8 Port 0: Receive character Y Y Y

9 Port 0: Transmit complete Y Y Y

10 Timed interrupt 0, SMB34 Y Y Y

11 Timed interrupt 1, SMB35 Y Y Y

12 HSC0 CV=PV (current value = preset value) Y Y Y

13 HSC1 CV=PV (current value = preset value) Y

14 HSC1 direction changed Y

15 HSC1 external reset Y

16 HSC2 CV=PV (current value = preset value) Y

17 HSC2 direction changed Y

18 HSC2 external reset Y

19 PLS0 pulse count complete interrupt Y Y Y

20 PLS1 pulse count complete interrupt Y Y Y

21 Timer T32 CT=PT interrupt Y Y Y

22 Timer T96 CT=PT interrupt Y Y Y

23 Port 0: Receive message complete Y Y Y

24 Port 1: Receive message complete

25 Port 1: Receive character

26 Port 1: Transmit complete

27 HSC0 direction changed Y Y Y

28 HSC0 external reset Y Y Y

29 HSC4 CV=PV (current value = preset value) Y Y Y

30 HSC4 direction changed Y Y Y

31 HSC4 external reset Y Y Y

32 HSC3 CV=PV (current value = preset value) Y Y Y

33 HSC5 CV=PV (current value = preset value) Y Y Y

http://www.kontrolkalemi.com

SIMATIC Instructions

9-167
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Return from Interrupt

The Conditional Return from Interrupt instruction may
be used to return from an interrupt, based upon the
condition of the preceding logic. To add an interrupt,
select Edit Insert � Interrupt from the menu.

Operands: None

Data Types: None

The Return from Interrupt routines are identified by
separate program tabs in the STEP 7-Micro/WIN 32
screen.

Interrupt Routines

The interrupt routine is executed in response to an associated internal or external
event. Once the last instruction of the interrupt routine has been executed, control
is returned to the main program. You can exit the routine by executing a conditional
return from interrupt instruction (CRETI).

Interrupt Use Guidelines

Interrupt processing provides quick reaction to special internal or external events.
You should optimize interrupt routines to perform a specific task, and then return
control to the main routine. By keeping the interrupt routines short and to the point,
execution is quick and other processes are not deferred for long periods of time. If
this is not done, unexpected conditions can cause abnormal operation of
equipment controlled by the main program. For interrupts, the axiom, ‘‘the shorter,
the better,’’ is definitely true.

Restrictions

You cannot use the DISI, ENI, HDEF, LSCR, and END instructions in an interrupt
routine.

System Support for Interrupt

Because contact, coil, and accumulator logic may be affected by interrupts, the
system saves and reloads the logic stack, accumulator registers, and the special
memory bits (SM) that indicate the status of accumulator and instruction
operations. This avoids disruption to the main user program caused by branching
to and from an interrupt routine.

L
A
D

S
T
L

RETI

F
B
D RETI

CRETI

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-168
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Calling Subroutine From Interrupt Routines

You can call one nesting level of subroutines from an interrupt routine. The
accumulators and the logic stack are shared between an interrupt routine and a
subroutine that is called.

Sharing Data Between the Main Program and Interrupt Routines

You can share data between the main program and one or more interrupt routines.
For example, a part of your main program may provide data to be used by an
interrupt routine, or vice versa. If your program is sharing data, you must also
consider the effect of the asynchronous nature of interrupt events, which can occur
at any point during the execution of your main program. Problems with the
consistency of shared data can result due to the actions of interrupt routines when
the execution of instructions in your main program is interrupted by interrupt
events.

There are a number of programming techniques you can use to ensure that data is
correctly shared between your main program and interrupt routines. These
techniques either restrict the way access is made to shared memory locations, or
prevent interruption of instruction sequences using shared memory locations.

� For an STL program that is sharing a single variable: If the shared data is a
single byte, word, or double-word variable and your program is written in STL,
then correct shared access can be ensured by storing the intermediate values
from operations on shared data only in non-shared memory locations or
accumulators.

� For a LAD program that is sharing a single variable: If the shared data is a
single byte, word, or double-word variable and your program is written in LAD,
then correct shared access can be ensured by establishing the convention that
access to shared memory locations be made using only Move instructions
(MOVB, MOVW, MOVD, MOVR). While many LAD instructions are composed
of interruptible sequences of STL instructions, these Move instructions are
composed of a single STL instruction whose execution cannot be affected by
interrupt events.

� For an STL or LAD program that is sharing multiple variables: If the shared data
is composed of a number of related bytes, words, or double-words, then the
interrupt disable/enable instructions (DISI and ENI) can be used to control
interrupt routine execution. At the point in your main program where operations
on shared memory locations are to begin, disable the interrupts. Once all
actions affecting the shared locations are complete, re-enable the interrupts.
During the time that interrupts are disabled, interrupt routines cannot be
executed and therefore cannot access shared memory locations; however, this
approach can result in delayed response to interrupt events.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-169
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Enable Interrupt, Disable Interrupt

The Enable Interrupt instruction globally enables
processing of all attached interrupt events.

The Disable Interrupt instruction globally disables
processing of all interrupt events.

Operands: None

Data Types: None

When you make the transition to the RUN mode,
interrupts are initially disabled. Once in RUN mode, you
can enable all interrupts by executing the global Enable
Interrupt instruction. The global Disable Interrupt
instruction allows interrupts to be queued, but does not
allow the interrupt routines to be invoked.

Communication Port Interrupts

The serial communications port of the programmable logic controller can be
controlled by the LAD or STL program. This mode of operating the
communications port is called Freeport mode. In Freeport mode, your program
defines the baud rate, bits per character, parity, and protocol. The receive and
transmit interrupts are available to facilitate your program-controlled
communications. Refer to the transmit/receive instructions for more information.

I/O Interrupts

I/O interrupts include rising/falling edge interrupts, high-speed counter interrupts,
and pulse train output interrupts. The CPU can generate an interrupt on rising
and/or falling edges of an input. See Table 9-21 for the inputs available for the
interrupts. The rising edge and the falling edge events can be captured for each of
these input points. These rising/falling edge events can be used to signify a
condition that must receive immediate attention when the event happens.

L
A
D

S
T
L

ENI

ENI

DISI

DISI

F
B
D

ENI

DISI

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-170
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Table 9-21 Rising/Falling Edge Interrupts Supported

I/O Interrupts S7-200 CPU

I/O Points I0.0 to I0.3

The high-speed counter interrupts allow you to respond to conditions such as the
current value reaching the preset value, a change in counting direction that might
correspond to a reversal in the direction in which a shaft is turning, or an external
reset of the counter. Each of these high-speed counter events allows action to be
taken in real time in response to high-speed events that cannot be controlled at
programmable logic controller scan speeds.

The pulse train output interrupts provide immediate notification of completion of
outputting the prescribed number of pulses. A typical use of pulse train outputs is
stepper motor control.

You can enable each of the above interrupts by attaching an interrupt routine to the
related I/O event.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-171
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Time-Based Interrupts

Time-based interrupts include timed interrupts and the Timer T32/T96 interrupts.
The CPU can support timed interrupts. You can specify actions to be taken on a
cyclic basis using a timed interrupt. The cycle time is set in 1-ms increments from
1 ms to 255 ms. You must write the cycle time in SMB34 for timed interrupt 0, and
in SMB35 for timed interrupt 1.

The timed interrupt event transfers control to the appropriate interrupt routine each
time the timer expires. Typically, you use timed interrupts to control the sampling of
analog inputs at regular intervals or to execute a PID loop at a timed interrupt.

A timed interrupt is enabled and timing begins when you attach an interrupt routine
to a timed interrupt event. During the attachment, the system captures the cycle
time value, so subsequent changes do not affect the cycle time. To change the
cycle time, you must modify the cycle time value, and then re-attach the interrupt
routine to the timed interrupt event. When the re-attachment occurs, the timed
interrupt function clears any accumulated time from the previous attachment, and
begins timing with the new value.

Once enabled, the timed interrupt runs continuously, executing the attached
interrupt routine on each expiration of the specified time interval. If you exit the
RUN mode or detach the timed interrupt, the timed interrupt is disabled. If the
global disable interrupt instruction is executed, timed interrupts continue to occur.
Each occurrence of the timed interrupt is queued (until either interrupts are
enabled, or the queue is full). See Figure 9-66 for an example of using a timed
interrupt.

The timer T32/T96 interrupts allow timely response to the completion of a specified
time interval. These interrupts are only supported for the 1-ms resolution on-delay
(TON) and off-delay (TOF) timers T32 and T96. The T32 and T96 timers otherwise
behave normally. Once the interrupt is enabled, the attached interrupt routine is
executed when the active timer’s current value becomes equal to the preset time
value during the normal 1-ms timer update performed in the CPU. You enable
these interrupts by attaching an interrupt routine to the T32/T96 interrupt events.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-172
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Understanding the Interrupt Priority and Queuing

Interrupts are prioritized according to the fixed priority scheme shown below:

� Communication (highest priority)

� I/O interrupts

� Time-based interrupts (lowest priority)

Interrupts are serviced by the CPU on a first-come-first-served basis within their
respective priority assignments. Only one user-interrupt routine is ever being
executed at any point in time. Once the execution of an interrupt routine begins,
the routine is executed to completion. It cannot be pre-empted by another interrupt
routine, even by a higher priority routine. Interrupts that occur while another
interrupt is being processed are queued for later processing.

The three interrupt queues and the maximum number of interrupts they can store
are shown in Table 9-22.

Table 9-22 Interrupt Queues and Maximum Number of Entries per Queue

Queue CPU 221 CPU 222 CPU 224

Communications queue 4 4 4

I/O Interrupt queue 16 16 16

Timed Interrupt queue 8 8 8

Potentially, more interrupts can occur than the queue can hold. Therefore, queue
overflow memory bits (identifying the type of interrupt events that have been lost)
are maintained by the system. The interrupt queue overflow bits are shown in
Table 9-23. You should use these bits only in an interrupt routine because they are
reset when the queue is emptied, and control is returned to the main program.

Table 9-23 Special Memory Bit Definitions for Interrupt Queue Overflow Bits

Description (0 = no overflow, 1 = overflow) SM Bit

Communication interrupt queue overflow SM4.0

I/O interrupt queue overflow SM4.1

Timed interrupt queue overflow SM4.2

http://www.kontrolkalemi.com

SIMATIC Instructions

9-173
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Table 9-24 shows the interrupt event, priority, and assigned event number.

Table 9-24 Interrupt Events in Priority Order

Event Number Interrupt Description Priority Group
Priority
in Group

8 Port 0: Receive character 0

9 Port 0: Transmit complete 0

23 Port 0: Receive message complete Communications 0

24 Port 1: Receive message complete
Communications

(highest) 1

25 Port 1: Receive character 1

26 Port 1: Transmit complete 1

19 PTO 0 complete interrupt 0

20 PTO 1 complete interrupt 1

0 Rising edge, I0.0 2

2 Rising edge, I0.1 3

4 Rising edge, I0.2 4

6 Rising edge, I0.3 5

1 Falling edge, I0.0 6

3 Falling edge, I0.1 7

5 Falling edge, I0.2 8

7 Falling edge, I0.3 9

12 HSC0 CV=PV (current value = preset value) 10

27 HSC0 direction changed
Discrete (middle)

11

28 HSC0 external reset
 Discrete (middle)

12

13 HSC1 CV=PV (current value = preset value) 13

14 HSC1 direction input changed 14

15 HSC1 external reset 15

16 HSC2 CV=PV 16

17 HSC2 direction changed 17

18 HSC2 external reset 18

32 HSC3 CV=PV (current value = preset value) 19

29 HSC4 CV=PV (current value = preset value) 20

30 HSC4 direction changed 21

31 HSC4 external reset 22

33 HSC5 CV=PV (current value = preset value) 23

10 Timed interrupt 0 0

11 Timed interrupt 1
Timed (lowest)

1

21 Timer T32 CT=PT interrupt
Timed (lowest)

2

22 Timer T96 CT=PT interrupt 3

http://www.kontrolkalemi.com

SIMATIC Instructions

9-174
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Interrupt Examples

Figure 9-65 shows an example of the Interrupt Routine instructions.

ATCH

INT

EVNT

SM0.1

4

0

On the first scan:
Define interrupt routine 4
to be a rising edge
interrupt routine for I0.0.

Disable all interrupts
when M5.0 is on.

Network 1
LD SM0.1
ATCH 4, 0
ENI

Network 2
LD SM5.0
DTCH 0

Network 3
LD M5.0
DISI

.

.

M5.0

Globally enable
interrupts.

I/0 rising edge interrupt
subroutine.

End of I0.0 rising edge
interrupt routine.

SM5.0

EVNT0

DTCH If an I/O error is detected,
disable the rising edge
interrupt for I0.0.
(This rung is optional.)

EN

EN

Network 1

Network 2

Network 3

.

.

.
Network 1

SM5.0

Conditional return based
on I/O error

DISI

RETI

ENI

LAD STL

ENO

ENO

Network 1
LD SM5.0
CRETI

RETI

MAIN OB1

INTERRUPT 4

ATCH

INT

EVNT

4

0

EN ENOSM0.1
ENI

EVNT0

DTCH

EN ENOSM5.0

MAIN OB1

DISI

INTERRUPT 4

M5.0

SM5.0

Network 1

FBD

Network 1

Network 2

Network 3

Figure 9-65 Example of Interrupt Instructions

http://www.kontrolkalemi.com

SIMATIC Instructions

9-175
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Figure 9-66 shows how to set up a timed interrupt to read the value of an analog
input.

Network 1
LD SM0.1
CALL 0

SM0.1

Network 1

IN100

MOV_B

OUT SMB34

EN

SM0.0

INT0

ATCH
EN

EVNT10

Network 1

INAIW4

MOV_W

OUT VW100

EN

ENI

LAD STL

MAIN PROGRAM

SUBROUTINE 0

INTERRUPT 0

First scan memory bit:
Call Subroutine 0.

Begin Subroutine 0.

Always on memory bit:
Set timed interrupt 0
interval to 100 ms.

Network 1
LD SM0.0
MOVB 100, SMB34

ATCH 0, 10

ENI

Global Interrupt Enable

Attach timed interrupt 0 to
Interrupt routine 0.

Begin Interrupt routine 0.

Sample AIW4.

Terminate Interrupt routine.

Network 1
LD SM0.0
MOVW AIW4, VW100

FBD

ENO

ENO

ENO

Network 1
SM0.0

MAIN PROGRAM

SUBROUTINE 0

SBR0
ENSM0.1

IN100

MOV_B

OUT SMB34

EN

INT0

ATCH
EN

EVNT10

ENOENO
ENISM0.0

INTERRUPT 0

INAIW4

MOV_W

OUT VW100

EN ENOSM0.0

Network 1

Network 1

Network 1

SBR0

Figure 9-66 Example of How to Set Up a Timed Interrupt to Read the Value of an Analog
Input

http://www.kontrolkalemi.com

SIMATIC Instructions

9-176
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Network Read, Network Write

The Network Read instruction initiates a communication
operation to gather data from a remote device through
the specified port (PORT), as defined by the table (TBL).

The Network Write instruction initiates a communication
operation to write data to a remote device through the
specified port (PORT), as defined by the table (TBL).

The NETR instruction can read up to 16 bytes of
information from a remote station, and the NETW
instruction can write up to 16 bytes of information to a
remote station. You may have any number of
NETR/NETW instructions in the program, but only a
maximum of eight NETR and NETW instructions may be
activated at any one time. For example, you can have
four NETRs and four NETWs, or two NETRs and six
NETWs active at the same time in a given S7-200.

Figure 9-67 defines the table that is referenced by the
TBL parameter in the NETR and NETW instructions.

NETR: Error conditions that set ENO = 0:
SM4.3 (run-time), 0006 (indirect address)

NETW: Error conditions that set ENO = 0:
SM4.3 (run-time), 0006 (indirect address)

Inputs/Outputs Operands Data Types

TBL I, Q, M, S, V, VB, MB, *VD, *AC, *LD BYTE

PORT Constant BYTE

L
A
D

S
T
L

NETR TABLE,PORT

NETW TABLE,PORT

NETR
EN

TBL

PORT

NETW
EN

TBL

PORT

F
B
D

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-177
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Remote station address

Pointer to the data

area in the

remote station

(I, Q, M, or V)

Data length

Data byte 0

Data byte 15

D A E 0 Error code

7 0Byte
Offset

0

1

2

3

4

5

6

7

8

22

D Done (function has been completed): 0 = not done 1 = done
A Active (function has been queued): 0 = not active 1 = active
E Error (function returned an error): 0 = no error 1 = error

0 No error
1 Time-out error; remote station not responding
2 Receive error; parity, framing or checksum error in the response
3 Offline error; collisions caused by duplicate station addresses or failed hardware
4 Queue overflow error; more than eight NETR/NETW boxes have been activated
5 Protocol violation; attempt execute NETR/NETW without enabling PPI+ in SMB30
6 Illegal parameter; the NETR/NETW table contains an illegal or invalid value
7 No resource; remote station is busy (upload or download sequence in process)
8 Layer 7 error; application protocol violation
9 Message error; wrong data address or incorrect data length

A-F Not used; (reserved for future use)

For NETR, this data area is where the values that are read
from the remote station are stored after execution of the
NETR.

For NETW, this data area is where the values to be sent to
the remote station are stored before execution of the NETW.

Error Code Definition

Remote station address: the address of the PLC whose data is
to be accessed.

Pointer to the data area in the remote station: an indirect
pointer to the data that is to be accessed.

Data length: the number of bytes of data that is to be accessed
in the remote station (1 to 16 bytes).

Receive or transmit data area: 1 to 16 bytes reserved for the
data, as described below:

Data byte 1

Figure 9-67 Definition of TABLE for NETR and NETW

http://www.kontrolkalemi.com

SIMATIC Instructions

9-178
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Example of Network Read and Network Write

Figure 9-68 shows an example to illustrate the utility of the NETR and NETW
instructions. For this example, consider a production line where tubs of butter are
being filled and sent to one of four boxing machines (case packers). The case
packer packs eight tubs of butter into a single cardboard box. A diverter machine
controls the flow of butter tubs to each of the case packers. Four CPU 221
modules are used to control the case packers and a CPU 222 module equipped
with a TD 200 operator interface is used to control the diverter. Figure 9-68 shows
the network setup.

Case
Packer #2
CPU 221
Station 3

Case
Packer #3
CPU 221
Station 4

Case
Packer #4
CPU 221
Station 5

TD 200
Station 1

Case
Packer #1
CPU 221
Station 2

Diverter
CPU 222
Station 6

VB100

VW101

Control

Status

VB100

VW101

Control

Status

VB100

VW101

Control

Status

VB100

VW101

VB200 VB300

VB200 Receive buffer
Station 2

VB300 Transmit buffer
Station 2

Rcv
Buffers

Xmt
Buffers

Control

Status

f fault indicator; f=1, the case packer has detected an error

g glue supply is low; g=1, must add glue in the next 30 minutes

b box supply is low; b=1, must add boxes in the next 30 minutes

t out of butter tubs to pack; t=1, out of butter tubs

eee error code identifying the type of fault experienced

VB230 Receive buffer
Station 5

VB210 Receive buffer
Station 3

VB221 Receive buffer
Station 4

VB330 Transmit buffer
Station

VB310 Transmit buffer
Station

VB320 Transmit buffer
Station 4

f e e e 0 g b t

Number of

cases packed

VB100

VB101

VB102

Control

Status
MSB

LSB

Figure 9-68 Example of NETR and NETW Instructions

http://www.kontrolkalemi.com

SIMATIC Instructions

9-179
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

The receive and transmit buffers for accessing the data in station 2 (located at
VB200 and VB300, respectively) are shown in detail in Figure 9-69.

The CPU 224 uses a NETR instruction to read the control and status information
on a continuous basis from each of the case packers. Each time a case packer
has packed 100 cases, the diverter notes this and sends a message to clear the
status word using a NETW instruction.

The program required to read the control byte, the number of cases packed and to
reset the number of cases packed for a single case packer (case packer #1) is
shown in Figure 9-70.

Remote station address

Pointer to the

data area

in the

Remote station = (&VB100)

Data length = 3 bytes

Control

Status (LSB)

D A E 0 Error code

7 0

VB200

VB201

VB202

VB203

VB204

VB205

VB206

VB207

VB208 Status (MSB)

Diverter’s Receive Buffer
for reading from Case Packer #1

Diverter’s Transmit Buffer
for clearing the count of Case Packer #1

VB209

Remote station address

Pointer to the

data area

in the

Remote station = (&VB101)

Data length = 2 bytes

0

D A E 0 Error Code

7 0

VB300

VB301

VB302

VB303

VB304

VB305

VB306

VB307

VB308 0

Figure 9-69 Sample TABLE Data for NETR and NETW Example

http://www.kontrolkalemi.com

SIMATIC Instructions

9-180
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Network 1
LD SM0.1
MOVB 2, SMB30

FILL 0, VW200, 68

Network 2
LD V200.7
AW= VW208, 100
MOVB 2, VB301
MOVD &VB101, VD302
MOVB 2, VB306
MOVW 0, VW307
NETW VB300, 0

Network 3
LD V200.7
MOVB VB207, VB400

Network 4
LDN SM0.1
AN V200.6
AN V200.5
MOVB 2, VB201

MOVD &VB100, VD202
MOVB 3, VB206
NETR VB200, 0

IN2

MOV_B

OUT VB301

EN

V200.7

IN2

MOV_B

OUT VB306

EN

IN0

MOV_W

OUT VW307

EN

TBLVB300

NETW
EN

PORT0

FILL_N

IN
N

0
68

Clear all receive
and transmit
buffers.

EN

On the first scan,
enable the PPI+
protocol.

IN2

MOV_B

OUT SMB30
EN

SM0.1
Network 1

VW200OUT

VW20
8==I

IN&VB101

MOV_D

OUT VD302

EN

INVB207

MOV_B

OUT VB400

EN
V200.7

When the NETR
Done bit is set and
100 cases have
been packed, load
the station address
of case packer #1.
Load a pointer to
the data in the
remote station.

Load the length of
the data to be
transmitted.

Load the data to
be transmitted.

Reset the number
of cases packed by
case packer #1.

When the NETR
is not active and
there is no error,
load the station
address of case
packer #1.

IN2

MOV_B

OUT VB201

EN

SM0.1

IN3

MOV_B

OUT

EN

TBLVB200

NETR
EN

V200.5

IN&VB100

MOV_D

OUT VD202

EN
Load a pointer to
the data in the
remote station.

Load the length of
the data to be
received.

Read the control
and status data in
case packer #1.

V200.6

VB206

PORT0

When the Done
bit is set, save the
control data from
case packer #1.

/ / /

100

Network 2

Network 4

Network 3

LAD STL

ENO

ENO

ENO

ENO

ENO

ENO

ENO

ENO

ENO

ENO

ENO

ENO

Figure 9-70 Example of NETR and NETW Instructions for LAD and STL

http://www.kontrolkalemi.com

SIMATIC Instructions

9-181
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

IN2

MOV_B

OUT VB301

EN

IN2

MOV_B

OUT VB306

EN

IN0

MOV_W

OUT VW307

EN

TBL

NETW
EN

PORT0

FILL_N

IN
N

0
68

EN

IN2

MOV_B

OUT SMB30

EN

VW200OUT

IN

MOV_D

OUT VD302

EN

IN

MOV_B

OUT VB400

EN

ENO

ENO ENO

ENO

ENO ENO ENO

ENO

Network 1

Network 2

Network 4

Network 3

FBD

SM0.1

==I

100

V200.7

VW208 &VB101

VB300

V200.7

VB207

AND
SM0.1

IN2

MOV_B

OUT

EN ENO

VB201 IN

MOV_D

OUT VD202

EN ENO

&VB101V200.6

V200.5

IN3

MOV_B

OUT

EN ENO

VB206 TBL

NETR
EN

PORT0

ENO

VB200

AND

SM0.0

Figure 9-71 Example of NETR and NETW instructions for FBD

http://www.kontrolkalemi.com

SIMATIC Instructions

9-182
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Transmit, Receive

The Transmit instruction invokes the transmission of the
data buffer (TBL). The first entry in the data buffer
specifies the number of bytes to be transmitted. PORT
specifies the communication port to be used for
transmission.

The XMT instruction is used in Freeport mode to transmit
data by means of the communication port(s).

The format of the XMT buffer is:

The Receive instruction initiates or terminates the
Receive Message service. You must specify a start and
an end condition for the Receive box to operate.
Messages received through the specified port (PORT)
are stored in the data buffer (TBL). The first entry in the
data buffer specifies the number of bytes received.

Transmit: Error conditions that set ENO = 0: SM4.3
(run-time), 0006 (indirect address),
0009 (simultaneous XMT/RCV on port 0),
000B (simultaneous XMT/RCV on port 1)

Receive: Error conditions that set ENO = 0: SM86.6 and SM186.6 (RCV
parameter error), SM4.3 (run-time), 0006 (indirect address), 0009 (simultaneous
XMT/RCV on port 0), 000B (simultaneous XMT/RCV on port 1)

Inputs/Outputs Operands Data Types

TABLE VB, IB, QB, MB, SB, SMB,

 *VD, *AC, *LD

BYTE

PORT Constant (0) BYTE

L
A
D

S
T
L

XMT TABLE, PORT
RCV TABLE, PORT

XMT
EN

TBL

PORT

F
B
D

RCV
EN

TBL

PORT

ENO

ENO

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-183
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Understanding Freeport Mode

You can select the Freeport mode to control the serial communication port of the
CPU by means of the user program. When you select Freeport mode, the LAD
program controls the operation of the communication port through the use of the
receive interrupts, the transmit interrupts, the transmit instruction (XMT), and the
receive instruction (RCV). The communication protocol is entirely controlled by the
ladder program while in Freeport mode. SMB30 (for port 0) and SMB130 (for port 1
if your CPU has two ports) are used to select the baud rate and parity.

The Freeport mode is disabled and normal communication is re-established (for
example, programming device access) when the CPU is in the STOP mode.

In the simplest case, you can send a message to a printer or a display using only
the Transmit (XMT) instruction. Other examples include a connection to a bar code
reader, a weighing scale, and a welder. In each case, you must write your program
to support the protocol that is used by the device with which the CPU
communicates while in Freeport mode.

Freeport communication is possible only when the CPU is in the RUN mode.
Enable the Freeport mode by setting a value of 01 in the protocol select field of
SMB30 (Port 0) or SMB130 (Port 1). While in Freeport mode, communication with
the programming device is not possible.

Note

Entering Freeport mode can be controlled using special memory bit SM0.7, which
reflects the current position of the operating mode switch. When SM0.7 is equal to
0, the switch is in TERM position; when SM0.7 = 1, the operating mode switch is
in RUN position. If you enable Freeport mode only when the switch is in RUN
position, you can use the programming device to monitor or control the CPU
operation by changing the switch to any other position.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-184
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Freeport Initialization

SMB30 and SMB130 configure the communication ports, 0 and 1, respectively, for
Freeport operation and provide selection of baud rate, parity, and number of data
bits. The Freeport control byte(s) description is shown in Table 9-25.

Table 9-25 Special Memory Bytes SMB30 and SMB130

Port 0 Port 1 Description

Format of
SMB30

Format of
SMB130 7

MSB LSB

Freeport mode control byte
p p d b b b m m

0

SM30.6
and
SM30.7

SM130.6
and
SM130.7

pp Parity select
00 = no parity
01 = even parity
10 = no parity
11 = odd parity

SM30.5 SM130.5 d Data bits per character
0 = 8 bits per character
1 = 7 bits per character

SM30.2 to
SM30.4

SM130.2
to
SM130.4

bbb Freeport Baud rate
000 = 38,400 baud
001 = 19,200 baud
010 = 9,600 baud
011 = 4,800 baud
100 = 2,400 baud
101 = 1,200 baud
110 = 600 baud
111 = 300 baud

SM30.0
and
SM30.1

SM130.0
and
SM130.1

mm Protocol selection
00 = Point-to-Point Interface protocol (PPI/slave mode)
01 = Freeport protocol
10 = PPI/master mode
11 = Reserved (defaults to PPI/slave mode)

Note: One stop bit is generated for all configurations.

Using the XMT Instruction to Transmit Data

The XMT instruction lets you send a buffer of one or more characters, up to a
maximum of 255. An interrupt is generated (interrupt event 9 for port 0 and
interrupt event 26 for port 1) after the last character of the buffer is sent, if an
interrupt routine is attached to the transmit complete event. You can make
transmissions without using interrupts (for example, sending a message to a
printer) by monitoring SM4.5 or SM4.6 to signal when transmission is complete.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-185
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

The XMT instruction can be used to generate a BREAK condition by setting the
number of characters to zero and then executing the XMT instruction. This
generates a BREAK condition on the line for 16-bit times at the current baud rate.
Transmitting a BREAK is handled in the same manner as transmitting any other
message, in that a XMT interrupt is generated when the BREAK is complete and
SM4.5 or SM4.6 signal the current status of the XMT.

The format of the XMT buffer is shown in Figure 9-72.

where: count the number of bytes to transmit (byte field)
M E ... the message characters

count EM S S EA G

Figure 9-72 XMT Buffer Format

Using the RCV Instruction to Receive Data

The RCV instruction lets you receive a buffer of one or more characters, up to a
maximum of 255. An interrupt is generated (interrupt event 23 for port 0 and
interrupt event 24 for port 1) after the last character of the buffer is received, if an
interrupt routine is attached to the receive message complete event.

You can receive messages without using interrupts by monitoring SMB86. SMB86
(or SMB186) will be non-zero when the RCV box is inactive or has been
terminated. It will be zero when a receive is in progress.

The RCV instruction allows you to select the message start and message end
conditions. See Table 9-26 (SM86 through SM94 for port 0, and SM186 through
SM194 for port 1) for descriptions of the start and end message conditions.The
format of the RCV buffer is shown in Figure 9-73.

Note

The Receive Message function is automatically terminated by an overrun or a
parity error. You must define a start condition (x or z), and an end condition (y, t, or
maximum character count) for the Receive Message function to operate.

count
start
char

end
charEM S S EA G

Figure 9-73 RCV Buffer Format

http://www.kontrolkalemi.com

SIMATIC Instructions

9-186
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Table 9-26 Special Memory Bytes SMB86 to SMB94, and SMB186 to SMB194

Port 0 Port 1 Description

SMB86 SMB186
7

MSB LSB

n r e 0 0 t c p
0

Receive message status byte

n: 1 = Receive message terminated by user disable command

r: 1 = Receive message terminated: error in input parameters
or

missing start or end condition

e: 1 = End character received

t: 1 = Receive message terminated: timer expired

c: 1 = Receive message terminated: maximum character count
achieved

p 1 = Receive message terminated because of a parity error

http://www.kontrolkalemi.com

SIMATIC Instructions

9-187
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Table 9-26 Special Memory Bytes SMB86 to SMB94, and SMB186 to SMB194

Port 0 DescriptionPort 1

SMB87 SMB187
7

MSB LSB

n x y z m t 0 0
0

Receive message control byte

n: 0 = Receive Message function is disabled.
1 = Receive Message function is enabled .
The enable/disable receive message bit is checked each time the
RCV instruction is executed.

x: 0 = Ignore SMB88 or SMB188.
1 = Use the value of SMB88 or SMB188 to detect start of
message.

y; 0 = Ignore SMB89 or SMB189.
1 = Use the value of SMB89 or SMB189 to detect end of
message.

z: 0 = Ignore SMW90 or SMB190.
1 = Use the value of SMW90 to detect an idle line condition.

m: 0 = Timer is an inter-character timer.
1 = Timer is a message timer.

t: 0 = Ignore SMW92 or SMW192.
1 = Terminate receive if the time period in SMW92 or SMW192

is exceeded.

The bits of the message interrupt control byte are used to define the
criteria by which the message is identified. Both start of message and
end of message criteria are defined. To determine the start of a
message, either of two sets of logically ANDed start of message
criteria must be true and must occur in sequence (idle line followed
by start character, or break followed by start character). To determine
the end of a message, the enabled end of the message criteria is
logically ORed. The equations for start and stop criteria are given
below:

Start of Message = il * sc + bk * sc

End of Message = ec + tmr + maximum character count
reached

Programming the start of message criteria for:

1. Idle line detection: il=1, sc=0, bk=0, SMW90>0

2. Start character detection: il=0, sc=1, bk=0, SMW90
is a don’t care

3. Break Detection: il=0, sc=0, bk=1, SMW90
is a don’t care

4. Any response to a request: il=1, sc=0, bk=0, SMW90=0
(Message timer can be used to terminate receive if there is no
response.)

5. Break and a start character: il=0, sc=1, bk=1, SMW90
is a don’t care

6. Idle line and a start character: il=1, sc=1, bk=0, SMW90 >0

7. Idle line and start character (Illegal): il=1, sc=1, bk=0, SMW90=0
Note: Receive will automatically be terminated by an overrun or a
parity error (if enabled).

SMB88 SMB188 Start of message character

SMB89 SMB189 End of message character

http://www.kontrolkalemi.com

SIMATIC Instructions

9-188
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Table 9-26 Special Memory Bytes SMB86 to SMB94, and SMB186 to SMB194

Port 0 DescriptionPort 1

SMB90
SMB91

SMB190
SMB191

Idle line time period given in milliseconds. The first character received
after idle line time has expired is the start of a new message. SM90
(or SM190) is the most significant byte and SM91 (or SM191) is the
least significant byte.

SMB92
SMB93

SMB192
SMB193

Inter-character/message timer time-out value given in milliseconds. If
the time period is exceeded, the receive message is terminated.
SM92 (or SM192) is the most significant byte, and SM93 (or SM193)
is the least significant byte.

SMB94 SMB194 Maximum number of characters to be received (1 to 255 bytes).

Note: This range must be set to the expected maximum buffer size,
even if the character count message termination is not used.

Using Character Interrupt Control to Receive Data

To allow complete flexibility in protocol support, you can also receive data using
character interrupt control. Each character received generates an interrupt. The
received character is placed in SMB2, and the parity status (if enabled) is placed in
SM3.0 just prior to execution of the interrupt routine attached to the receive
character event.

� SMB2 is the Freeport receive character buffer. Each character received while in
Freeport mode is placed in this location for easy access from the user program.

� SMB3 is used for Freeport mode and contains a parity error bit that is turned on
when a parity error is detected on a received character. All other bits of the byte
are reserved. Use this bit either to discard the message or to generate a
negative acknowledge to the message.

Note

SMB2 and SMB3 are shared between Port 0 and Port 1. When the reception of a
character on Port 0 results in the execution of the interrupt routine attached to that
event (interrupt event 8), SMB2 contains the character received on Port 0, and
SMB3 contains the parity status of that character. When the reception of a
character on Port 1 results in the execution of the interrupt routine attached to that
event (interrupt event 25), SMB2 contains the character received on Port 1 and
SMB3 contains the parity status of that character.

http://www.kontrolkalemi.com

SIMATIC Instructions

9-189
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Receive and Transmit Example
This sample program shows the use of Receive and Transmit. This program will
receive a string of characters until a line feed character is received. The message
is then transmitted back to the sender.

LAD STL

SMB30

SM0.1 MOV_B
EN

IN16#9 OUT

Network 1
LD SM0.1
MOVB 16#9, SMB30
MOVB 16#B0, SMB87
MOVB 16#0A, SMB89
MOVW +5, SMW90
MOVB 100, SMB94
ATCH 0, 23
ATCH 1, 9
ENI
RCV VB100, 0

On the first scan:
- Initialize freeport
- Select 9600 baud
- Select 8 data bits
- Select no parity

RCV

TBLVB100

EN

SMB87

MOV_B
EN

IN16#B0 OUT

Network 1

PORT0

Initialize RCV message
control byte
- RCV enabled
- Detect end of message

character
- Detect idle line condition

as message start
condition

SMB89

MOV_B
EN

IN16#A OUT

SMW90

MOV_W
EN

IN+5 OUT

SMB94

MOV_B
EN

IN100 OUT

ATCH

INT0

EN

EVNT23

ATCH

INT1

EN

EVNT9

Set end of message
character to hex 0A
(line feed)

Set idle line timeout to
5 ms.

Set maximum number of
characters to 100.

Attach interrupt to
receive complete event.

Attach interrupt to
transmit complete event.

ENI Enable user interrupts.

Enable receive box with
buffer at VB100 for port 0.

ENO

ENO

ENO

ENO

ENO

ENO

ENO

ENO

MAIN (OB1)

Figure 9-74 Example of Transmit Instruction

http://www.kontrolkalemi.com

SIMATIC Instructions

9-190
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Receive complete
interrupt.

If receive complete for
any other reason, then
start a new receive.

Timer interrupt.

Network 1
LDB= SMB86, 16#20
MOVB 10, SMB34
ATCH 2, 10
CRETI
NOT
RCV VB100, 0

Network 1
LD SM0.0
DTCH 10
XMT VB100, 0

MOV_B

IN

SMB86

10

EN

RETI

Network 1

TBL

PORT

VB100

0

ENNOT

Detach timer interrupt.
DTCH

EVNT

SM0.0

10

EN

XMT

TBL

PORT

VB100

0

EN

Network 1

==B
16#20

If receive status shows
receive of end character,
then attach a 10 ms timer
to trigger a transmit, then
return.

Transmit message back
to user on port 0.

ATCH

INT

EVNT

1

10

EN

OUT SMB34

INTERRUPT 0

INTERRUPT 1

ENO

ENO

ENO
RCV

ENO

ENO

Network 10
LD SM0.0
RCV VB100, 0

Transmit complete
interrupt.

Enable another receive.

RCV

TBL

PORT

VB100

0

EN
SM0.0

Network 10

INTERRUPT 2

ENO

Figure 9-74 Example of Transmit Instruction (continued)

http://www.kontrolkalemi.com

SIMATIC Instructions

9-191
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

IN

SM0.1

16#9

MOV_B
EN

IN OUT

ENO

RCV

TBL

PORT

VB100

0

EN

Network 1

FBD

MOV_B
EN

OUT

MOV_W
EN

IN+5 OUT

ENO

ENO

SMB30 SMB8716#B0 SMB8916#A

MOV_B
EN

IN OUT

ENO
MOV_B

EN

IN OUT

ENO

SMW90 SMB94100

ATCH

INT

EVNT

0

23

EN ENO

ATCH

INT

EVNT

2

9

EN ENO

ENO

ENI

INTERRUPT 0

Network 1

==B

16#20

SMB86
MOV_B

EN

IN OUT

ENO

10 SMB34 1

10

ATCH

INT

EVNT

EN ENO RETI

RCV

TBL

PORT

VB100

0

EN ENO

INTERRUPT 1

DTCH

EVNT10

EN
XMT

TBL

PORT

VB100

0

ENENO ENOSM0.0

INTERRUPT 2

RCV

TBL

PORT

VB100

0

EN ENOSM0.0

Figure 9-74 Example of Transmit Instruction (continued)

http://www.kontrolkalemi.com

SIMATIC Instructions

9-192
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

9.17 SIMATIC Logic Stack Instructions

And Load

The And Load instruction combines the values in the
first and second levels of the stack using a logical And
operation. The result is loaded in the top of stack. After
the ALD is executed, the stack depth is decreased by
one.

Operands: none

Or Load

The Or Load instruction combines the values in the first
and second levels of the stack, using a logical Or
operation. The result is loaded in the top of stack. After
the OLD is executed, the stack depth is decreased by
one.

Operands: none

Logic Push

The Logic Push instruction duplicates the top value on
the stack and pushes this value onto the stack. The
bottom of the stack is pushed off and lost.

Operands: none

Logic Read

The Logic Read instruction copies the second stack
value to the top of stack. The stack is not pushed or
popped, but the old top of stack value is destroyed by the
copy.

Operands: none

S
T
L

ALD

222 224
� ��

221

S
T
L

OLD

222 224
� ��

221

S
T
L

LPS

222 224
� ��

221

S
T
L

LRD

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-193
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

Logic Pop

The Logic Pop instruction pops one value off of the
stack. The second stack value becomes the new top of
stack value.

Operands: none

Load Stack

The Load Stack instruction duplicates the stack bit n on
the stack and places this value on top of the stack. The
bottom of the stack is pushed off and lost.

Operands: n (1 to 8)

Logic Stack Operations

Figure 9-75 illustrates the operation of the And Load and Or Load instructions.

 ALD
AND the top two stack values

iv0

iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv8

Before

S0

iv2

iv3

iv4

iv5

iv6

iv7

iv8

x

After

S0 = iv0 AND iv1

Note: x means the value is unknown (it may be either a 0 or a 1).

 OLD
OR the top two stack values

iv0

iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv8

Before

S0

iv2

iv3

iv4

iv5

iv6

iv7

iv8

x

After

S0 = iv0 OR iv1

Figure 9-75 And Load and Or Load Instructions

S
T
L

LPP

222 224
� ��

221

S
T
L

LDS n

222 224
� ��

221

http://www.kontrolkalemi.com

SIMATIC Instructions

9-194
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

Figure 9-76 illustrates the operation of the Logic Push, Logic Read, and Logic Pop
instructions.

LPS
Logic Push

iv0

iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv8

Before
iv0

iv0

iv1

iv2

iv3

iv4

iv5

iv6

iv7

After

LRD
Logic Read

iv0

iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv8

Before
iv1

iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv8

After
iv0

iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv8

Before
iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv8

x

After

LPP
Logic Pop

Note: x means the value is unknown (it may be either a 0 or a 1).
Upon the LPS execution, iv8 is lost.

Figure 9-76 Logic Push, Logic Read, and Logic Pop Instructions

Figure 9-77 illustrates the operation of the Load Stack instructions.

LDS 3
Load Stack

iv0

iv1

iv2

iv3

iv4

iv5

iv6

iv7

iv8

Before
iv3

iv0

iv1

iv2

iv3

iv4

iv5

iv6

iv7

After

Figure 9-77 Load Stack Instructions

Logic Stack Example

http://www.kontrolkalemi.com

SIMATIC Instructions

9-195
S7-200 Programmable Controller System Manual
C79000-G7076-C233-01

LAD STL

NETWORK 1
LD I0.0
LD I0.1
LD I2.0
A I2.1
OLD
ALD
= Q5.0

I0.0 I0.1

I2.0 I2.1

NETWORK 2
LD I0.0
LPS
LD I0.5
O I0.6
ALD
= Q7.0
LRD
LD I2.1
O I1.3
ALD
= Q6.0
LPP
A I1.0
= Q3.0

I0.0 I0.5

I0.6

Q6.0I2.1

I1.3

Q3.0I1.0

Q7.0

Network 1

Network 2

Q5.0

Figure 9-78 Example of Logic Stack Instructions for LAD and STL

OR

Network 1
AND ANDOR

I2.0

I2.1 I0.1 I0.0 Q5.0

Network 2
AND

OR

I0.0

SM0.0

I0.5

I0.6

I2.1

I1.3

I1.0

Q7.0
AND

Q6.0
AND

Q3.0
AND

FBD

Figure 9-79 Example of Logic Stack Instructions for FBD

http://www.kontrolkalemi.com

SIMATIC Instructions

9-196
S7-200 Programmable Controller System Manual

C79000-G7076-C233-01

http://www.kontrolkalemi.com

