
PHYSICAL REVIEW E 88, 012703 (2013)

Sacrificial bonds and hidden length in biomaterials: A kinetic constitutive description
of strength and toughness in bone
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Sacrificial bonds and hidden length in structural molecules account for the greatly increased fracture toughness
of biological materials compared to synthetic materials without such structural features by providing a molecular-
scale mechanism for energy dissipation. One example is in the polymeric glue connection between collagen fibrils
in animal bone. In this paper we propose a simple kinetic model that describes the breakage of sacrificial bonds
and the release of hidden length, based on Bell’s theory. We postulate a master equation governing the rates of
bond breakage and formation. This enables us to predict the mechanical behavior of a quasi-one-dimensional
ensemble of polymers at different stretching rates. We find that both the rupture peak heights and maximum
stretching distance increase with the stretching rate. In addition, our theory naturally permits the possibility of
self-healing in such biological structures.
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I. INTRODUCTION

Many biological, polymeric materials gain their strength
and toughness through the formation of sacrificial bonds and
hidden length. Examples include bone [1–7], abalone shells
[1,8,9], and diatoms [10–13]. Often, sacrificial bonds con-
nect two different sites on a molecular backbone, thereby
constraining part of the polymer from stretching. These
bonds are typically weaker than the covalent bonds on the
molecular backbone; they break and release “hidden length”
before the molecular backbone ruptures. This molecular-scale
mechanism has been found to greatly increase the total amount
of work needed to break the material.

An important example of sacrificial bonds and hidden
length occurs in the polymeric glue connection between
collagen fibrils in animal bone [1–7], illustrated schematically
in Fig. 1. Each intact sacrificial bond shields part of the glue
strand from contributing to its end-to-end distance. Given an
end-to-end distance, a glue strand of smaller apparent length
carries less entropy than one with more available length. In
other words, the presence of sacrificial bonds and hidden length
amplifies the amount of force that is necessary to stretch the
polymers and therefore accounts for the increase in fracture
toughness of the material. Following breakage of one sacrifi-
cial bond, the corresponding hidden length now unravels, caus-
ing a force drop as an immediate result of the spike in entropy.

We recently proposed a theoretical model that accounts
for this mechanism and captures the mechanical response of
the stretched polymer network in the quasistatic limit [14]. In
that model, we assume that the strength of sacrificial bonds
is a random variable, primarily to account for the apparent
variability of bond strength as observed in several stretching
experiments [1–5]. It is well known that the mechanical
behavior of stretched biological molecules depends on the
pulling velocity. In particular, Bell’s theory [15] implies that
the maximum force that a molecule can sustain varies as the
logarithm of the pulling speed, as is observed in experiments
[16]. Our earlier model, however, does not account for this rate
dependence unless we impose the assumption that the “random
bond strength” distribution itself varies as the logarithm

of the pulling velocity. Neither does our previous model
entail a recuperation of strength and toughness observed in
experiments [4].

An understanding of these velocity- and recovery-time-
dependent behaviors is of paramount importance in many
applications. For example, the propagation of cracks—often
caused by traumatic injuries in the case of bones—is a
dynamical process (as opposed to quasistatic). In contrast,
self-healing might impede the spread of microcracks in bone.
To account analytically for these behaviors, we borrow the
two-state model of protein unfolding due to Rief et al. [17].
Since breakage of sacrificial bonds and protein unfolding
both involve the forced breakage of noncovalent bonds and
the unraveling of compact structure and since formation
of sacrificial bonds and protein folding both result in the
formation of compact structure, we base our framework on
the assumption that the kinetics of sacrificial bond breakage
and formation can be described in a similar manner. The
two-state model enables us to obtain analytic expressions for
the transition rate in terms of the force-extension profile.

The rest of this paper is organized as follows. In Sec. II
we use the two-state kinetic model to derive conditions for the
breakage and formation of sacrificial bonds and show how the
pulling velocity relates to these processes. In Sec. III we apply
the model to a single polymer chain: a quasi-one-dimensional
chain of entangled polymer molecules in series. We show that
the model reproduces the logarithmic dependence of the peak
force on the pulling velocity and, with a judicious choice of
several adjustable parameters, yields force-extension profiles
that are qualitatively similar to what is observed in collagen
fibril separation experiments [1–5,16]. In Sec. IV we apply the
kinetic model to entangled polymers and examine the effect of
the delay time, i.e., the time that permits self-healing between
two successive pulling experiments, on the macroscopic
mechanical response of a pair of separating collagen fibrils.
Based on these results, we propose in Sec. V a constitutive
law that describes the macroscopic response of separating
collagen fibrils. In Sec. VI we discuss the applicability of
our kinetic model to the breakage and formation of sacrificial
bonds.
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FIG. 1. (Color online) Basic features of sacrificial bonds and
hidden length. (a) Hypothesized structure of polymeric glue strands,
with sacrificial bonds (blue circles) along the polymer chain backbone
resisting chain rupture as they are stretched during microcracking.
There are three types of sacrificial bonds: bonds within a polymer
chain, bonds between different chains, and bonds connecting the
polymer chain to the substrate (collagen fibrils in the case of animal
bone). Adapted from [4]. (b) Force change associated with sacrificial
bond breakage and hidden length release. (i) Before a sacrificial bond
is broken, only the black length of the molecule contributes to the
entropic configurations and to the force with which the molecule
resists stretching. The red length of the molecule is hidden from the
force by the sacrificial bond. (ii) When the bond breakage threshold
is reached, the bond breaks and the whole length of the polymer
(black plus red) contributes to its configurational entropy. This sudden
increase in entropy leads to an abrupt force drop. (iii) As the polymer
molecule is further stretched, the force it supports increases, until
the entire molecule detaches from the substrate and ruptures. The
gray area represents the extra work done in stretching a polymer with
sacrificial bonds and hidden lengths, relative to a polymer of the same
length but without such structural features. Reprinted with permission
from [14].

II. KINETIC MODEL

In this section we introduce a kinetic model that describes
the dynamics of formation and breakage of sacrificial bonds
and release of hidden length in a polymer network and
relate this to mechanical forces on the polymer network.
As a simplifying assumption, we propose that the network

of polymers—in the specific example of animal bone, glue
connections that hold the collagen fibrils together—can be
described as a quasi-one-dimensional ensemble of polymer
chains, regardless of whether sacrificial bonds are found within
a single polymer molecule or between adjacent polymers. Each
polymer chain may consist of one long polymer molecule
or multiple polymers entangled together; see Fig. 1(a). The
ensemble of these quasi-one-dimensional chains thus acquires
a distribution of total lengths.

In addition, we assume that each polymer chain is
semiflexible, so the force-extension relation is given by the
wormlike-chain model [18,19], in conformation with much of
the literature on the mechanics of proteins:

F = kBT

b

[
x

L
+ 1

4(1 − x/L)2
− 1

4

]
. (2.1)

Here the force F is entropic in nature, arising from the tendency
of the polymer chain to recoil and return to a state of higher
entropy as it is stretched. In Eq. (2.1), kB is the Boltzmann
constant, T is the temperature, b is the persistence length,
x is the end-to-end distance, and L is the contour length
available for stretching, i.e., the total contour length Lc of
each chain minus the hidden length shielded by sacrificial
bonds. Breakage of each sacrificial bond unveils hidden length,
resulting in a step jump in the available contour length L. This
results in an increase in the chain entropy, which causes abrupt
force drops. Stretching the chain without breaking sacrificial
bonds reduces the entropy, thereby dissipating a significant
amount of energy. We emphasize that for simplicity, we assume
no elasticity in the polymer chain. Thus any increase in the
available length L would be solely associated with the release
of hidden length and any increase in the end-to-end distance x

would be purely entropic.
A sacrificial bond breaks when the force on the polymer

chain exceeds the strength of that bond. As mentioned
in the Introduction, we assumed in our previous work [14]
that the bond strength is a uniform random variable, reflecting
the randomness of bond breakage events. One approach to
modeling the dependence of the mechanical behavior on
pulling rate in the context of the previous model would be
to represent the bond strength distribution itself directly as a
function of pulling rate. However, this crude approach neglects
the fundamental physics of rate dependence. Meanwhile,
Bell’s model [15] expresses the transition probability of bond
formation and breakage events as a Boltzmann factor that
involves the product of the force and a parameter with the
dimensions of length, interpreted as the distance from the
transition state of the conformational change. It has been
successful in accounting for the rate dependence of forced
protein unfolding, which in most cases involves breakage of
weak internal bonds [1–5]. How then are we to apply such
kinetic models to the breakage of sacrificial bonds and release
of hidden length?

We proceed by assuming that the breakage of sacrificial
bonds follows a two-state pathway so that we can apply
Bell’s theory. At large forces and pulling rates, the formation
of sacrificial bonds can be neglected. Motivated by Su and
Purohit [20], we propose that the rate of change of the number
of sacrificial bonds Nb is given by the first-order differential
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equation

dN∗
b

dt
= −kf Nb + kbNf . (2.2)

Here N∗
b is the continuous version of the integer Nb; it

represents the number of sacrificial bonds at a given instant of
time, averaged over an ensemble of many polymer chains. It
will be thresholded below [see Eq. (2.5)] to isolate individual
bond breakage and formation events and it coincides with
Nb whenever it is an integer. In addition, Nf is the number
of free sites, with N = Lc/b being the number of sites, or
persistence lengths, in the polymer. Each sacrificial bond
within a single polymer chain involves two sites on the
molecule, so Nf = N − 2Nb. Further, kf and kb are the rates
at which bond fragmentation and bond formation events occur;
according to Bell’s theory, they are given by

kf = α0 exp

(
F�xf

kBT

)
(2.3)

and

kb = β0 exp

(
−F�xb

kBT

)
, (2.4)

where F = F (x) is the force-extension relation given by
Eq. (2.1). Here �xf and �xb are the distances to the transition
state; α0 and β0 are, respectively, inverse time scales that
describe the rate at which bond breakage and formation
events occur at zero pulling force. We have mentioned in
the Introduction that the physics of sacrificial bond breakage
and protein unfolding are similar. Parameter estimates for the
unfolding of proteins [20] suggest that �xf , �xb, and b are to
be of the order of 0.1 nm, but no exact parameter values are
available at this time for the glue connections in bone.

A bond breakage event occurs when Nb decreases by unity,
that is, when N∗

b reaches an integer. Thus the condition for a
bond formation event to happen is∫

dN∗
b =

∫
(−kf Nb + kbNf )dt = 1, (2.5)

where the integral on the right-hand side is over the time
between successive bond formation events. Similarly, the
condition for a bond breakage event to happen is∫

dN∗
b =

∫
(−kf Nb + kbNf )dt = −1, (2.6)

where the integral on the right-hand side is over the time
between successive bond breakage events. In particular,
for pulling experiments at constant velocity v, under the
assumption that the probing spring is stiff compared to the
polymer compliance, the preceding equation gives∫ x2

x1

[kf (F (x))Nb − kb(F (x))Nf ]dx = v, (2.7)

where x1 and x2 are the chain end-to-end distances at
successive bond breakage events.

In mechanical experiments on stretched glue connection
in animal bone [2–4] it has been found that sacrificial bonds
mediated by ions such as calcium also form between the glue
strand backbone and the collagen fibrils. Breakage of these end
bonds causes the detachment of the entire glue strand from one

of the collagen fibrils, so the stretching force on the glue strand
immediately drops to zero. In addition, it has been found that
broken links may self-heal, in that some broken end bonds
would be restored if, after a particular pulling experiment, the
entire sample is left untouched for times as short as a few
seconds [4]. We propose that the breakage and restoration
of end bonds can be described within the same theoretical
framework. That is, the change in the number of end bonds Ne

is governed by the rate equation

dN∗
e

dt
= −kend

f Ne + kend
b (1 − Ne), (2.8)

where N∗
e , the continuous version of the integer Ne, varies

between zero and unity; it can be interpreted as the fraction of
end bonds that have yet to break. Notice that 1 − Ne appears
because each glue strand either attaches to the bone fibril or
does not anchor to it. Here kend

f and kend
b are the rates of end

bond breakage and formation, necessarily different from kf

and kb, given by

kend
f = αe exp

(
F�xend

f

kBT

)
(2.9)

and

kend
b = βe exp

(
− F�xend

b

kBT

)
. (2.10)

As before, αe and βe are, respectively, the rates at which end
bonds break and form when no external force is present and
�xend

f and �xend
b are the distances from the transition state for

end bond breakage and formation events. For a single polymer
chain, the end bond breaks when∫ xc

0
kend
f (F (x))dx = v, (2.11)

where xc is the chain end-to-end distance at which the end
bond breaks and the chain detaches.

We note in passing that for a collection of polymers stacked
in parallel, Eq. (2.8) should more properly be interpreted as
the governing equation for the fraction of polymer chains with
end bonds restored as a function of time t ; thus

dN∗
e

dt
= −kend

f N∗
e + kend

b (1 − N∗
e ). (2.12)

Suppose t = 0 marks the time at which all polymers detach
from the surface, after the previous stretching experiment.
Then the fraction N∗

e of polymers that adhere to the surface at
time t is given by

N∗
e = βe

αe + βe

[1 − e−(αe+βe)t ]. (2.13)

Equations (2.7) and (2.11) can be used to predict the force-
extension curve of a stretched polymer; in particular, they can
predict the chain end-to-end distance at which bond breakage
events occur, as well as the corresponding bond strengths.
Meanwhile, Eq. (2.13) is particularly useful for analyzing the
dependence of the mechanical behavior of multiple polymers
stacked in parallel on the delay time between pulls.

012703-3



LIEOU, ELBANNA, AND CARLSON PHYSICAL REVIEW E 88, 012703 (2013)

Note that our model represents an average over a large
ensemble of experiments; it is deterministic and does not
capture the randomness of bond breakage events as in [14]. The
applicability of this relatively simple model to the breakage
and formation of sacrificial bonds, in comparison to other
sophisticated models of protein folding, will be discussed in
Sec. VI.

III. PULLING A SINGLE POLYMER CHAIN:
THEORETICAL PREDICTIONS

We begin by considering the force-extension behavior of
a single polymer chain whose total length is Lc = 100 nm.
Let m denote the number of sacrificial bonds. For simplicity,
we assume that shielded lengths do not contain sacrificial
bonds and that the length Lj of each hidden loop is a uniform
random number less than Lc/m. Then the initial available
length is Li = Lc − ∑m

j=1 Lj . To locate bond breakage events,
we integrate Eq. (2.7) over the force-extension profile and
compute the end-to-end distance x2 at which each individual
bond breakage event occurs, assuming that bonds break in the
order of increasing shielded length. We integrate Eq. (2.11)
over the entire force-extension curve to locate the maximum
pulling distance before the polymer chain detaches from the
underlying material.

Figure 2 show the force-extension curves of a polymer chain
with m = 6 sacrificial bonds, stretched at three representative
velocities v = 102, 103, and 104 nm s−1. In computing these
theoretical curves we have used the parameter estimates
α0 = 0.3 s−1, β0 = 0.003 s−1, αe = 0.1 s−1, b = 0.1 nm,
�xf = 0.25 nm, �xb = 0.1 nm, and �xe = 0.15 nm. The
magnitudes of these parameters are roughly consistent with
those in protein unfolding models (see, for example, [20]).
In particular, the smallness of the persistence length b is
consistent with the estimate of [5] and implies that each
polymer chain may consist of several entangled molecules, or
that these glue molecules have unusual force versus extension
properties, and that sacrificial bonds can form practically
anywhere along the molecule’s length. The average internal
bond strength varies from roughly 80 pN at v = 102 nm s−1

to 150 pN at v = 104 nm s−1, while the end bond strength
varies from roughly 150 to 300 pN over the same range
of pulling velocities. For comparison, Fig. 2 shows sample
experimental pulling curves of a polymer chain with sacrificial
bonds and hidden length. The force drops due to breakage of
sacrificial bonds and release of hidden length are also seen
in the gray curve here, which represents the behavior of a
typical polymer chain with sacrificial bonds, stretched by the
tip of an atomic force microscope. The black curve shows the
mechanical response of an otherwise identical polymer chain,
i.e., one with the same total length but with no sacrificial
bonds. In both figures, the shaded area between the two
curves represents the increase in toughness due to the presence
of sacrificial bonds and hidden length. Due to the inherent
variability of experimental parameters (ion concentration in
buffer, chain length, etc.) in different samples and the fact that
past experimental studies of sacrificial bonds [1–5] were aimed
primarily at exhibiting qualitative features, the available data
permit only rough estimates of, but not rigorous constraints
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FIG. 2. (Color online) (a) Force-extension curves of a polymer
with a total contour length of Lc = 100 nm and with m = 6 sacrificial
bonds, stretched at v = 102 nm s−1 (bottom blue curve), 103 nm s−1

(middle red curve), and 104 nm s−1 (top green curve). (b) Comparison
between sample experimental pulling curves of a polymer chain with
sacrificial bonds and hidden length (upper gray curve) and one without
(lower black curve). Adapted from [2]. In both figures, the shaded
area represents the extra energy dissipated through sacrificial bonds,
a measure of the increase in toughness of the material.

on, the values of kinetic parameters such as �xf , �xb, α0,
and β0. Therefore, the aim of this comparison with individual
chain pulling experiments is to seek qualitative, rather than
exact quantitative, agreement; qualitative agreement between
the theoretical and experimental results is clear.

Figure 3 shows the variation of the maximum stretch xc

as a function of the pulling velocity for two polymer chains
with 6 and 12 sacrificial bonds, respectively, but are otherwise
identical; the overlap of the curves indicates that this is
independent of the number of sacrificial bonds. Figure 3 is
a log-linear plot that displays the variation of the end bond
strength as a function of the pulling velocity v. The linearity
of the plot shows that the end bond strength, which equals the
maximum stretching force along the stretching profile, varies
logarithmically with the stretching velocity v, as is predicted
by Bell’s theory [15] and seen in experiments with dentin
matrix protein 1 [16], shown here in Fig. 3.

Figure 4 shows the total energy dissipation, a measure
of the toughness of the polymer chain given by the area
under the force-extension curve, as a function of the number
of sacrificial bonds m, for three representative stretching
velocities v = 102, 103, and 104 nm s−1 and averaged over
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FIG. 3. (Color online) (a) Maximum pulling distance and (b) end
bond strength as functions of pulling velocity v for m = 6 (blue
circles) and 12 (red squares) sacrificial bonds. The overlap of the
curves indicates that both quantities appear to be independent of
m. (c) Dynamic force spectrum of dentin matrix protein 1 strands
with sacrificial bonds mediated by sodium, calcium, and lanthanum
buffers, respectively. Adapted with permission from [16]. Our theory
predicts a log-linear dependence, as observed in experiments, of the
end bond strength on the pulling rate.

200 runs. While sacrificial bonds and hidden length constitute
a major toughening mechanism, increasing the number of
sacrificial bonds beyond m ≈ 15 fails to further stiffen the
chain, as is found in [14]. In addition, the importance of this
toughening mechanism becomes more pronounced at high
pulling velocities (of the order of 1000 nm s−1), providing
increased resistance against impact loading.
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FIG. 4. (Color online) Total energy dissipation over the entire
course of stretching, as a function of the number of sacrificial bonds
m, for stretching velocities v = 102 nm s−1 (blue), 103 nm s−1 (red),
and 104 nm s−1 (green), increasing from bottom to top. Results
are averaged over 200 runs. The vertical bars indicate one standard
deviation.

IV. STRETCHING MULTIPLE POLYMER CHAINS
IN PARALLEL: EFFECT OF DELAY TIME

BETWEEN PULLS

In this section we consider the dynamical behavior of
multiple polymers stretched in parallel. For simplicity, assume
that each polymer chain is independent of the others, with no
entanglement between the polymer strands, so that the total
force equals the sum of forces in each polymer chain.

Figure 5 shows the force-extension curves of Np = 200
parallel polymer chains, at pulling velocity v = 1000 nm s−1,
for delay times (the time between rupture of all end bonds
and the start of the next pulling experiment) ranging from 1
to 20 s. In computing these theoretical curves we have used
Eq. (2.13) to calculate the fraction of polymers with restored
end bond connections to the underlying substrate (for example,
mineralized collagen fibrils in the case of glue connection)
as a function of the delay time t . We assume that the total
contour length Lc of each polymer is uniformly and randomly
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FIG. 5. (Color online) Force-stretch curves for Np = 200 poly-
mer chains stacked in parallel. The delay times are t = 2 s (blue),
5 s (red), 10 s (green), and 20 s (orange) from bottom to top,
corresponding NpN∗

e = 8, 18, 28, and 36 polymer chains adhering
to both pieces of substrate (collagen fibril) at the beginning [see
Eq. (2.13) for an expression for N∗

e ].
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FIG. 6. (Color online) (a) Peak force and (b) displacement at
maximum force (blue, bottom curve) and maximum extension (red,
top curve), as functions of delay time, for Np = 200 polymers stacked
in parallel, pulled at v = 1000 nm s−1. Results are averaged over 100
runs and the error bars indicate one standard deviation.

distributed between 50 and 150 nm. We use Eq. (2.5) to
compute the number of internal sacrificial bonds that form as
a function of the delay time and assign random hidden lengths
to each of these sacrificial bonds as before. As before, we have
chosen α0 = 0.3 s−1, β0 = 0.003 s−1, and αe = 0.1 s−1. To
account for the relatively slow recovery of ruptured polymer
chains as a function of the delay time, as seen in [4], we choose
βe = 0.025 s−1. These sample pulling curves indicate that the
extension at maximum force and the maximum extension at
a given pulling velocity are independent of the delay time.
Also, the force peaks level off for large delay times. This
follows from Eq. (2.13), which shows that the fraction of
polymers with restored end bond connections approaches the
asymptotic limit βe/(αe + βe) as the delay time t becomes
large; only those polymers with restored end bonds carry
the pulling force and contribute to energy dissipation. In the
limit αe � βe, all end bonds are restored for large delay times
between successive pulling experiments. Our present choice
of parameters, however, stipulates that at most one-eighth of
all glue strands are attached to bone fibrils at both ends.

To verify these claims, Fig. 6 shows the peak force as a
function of delay time t between pulls, for Np = 200 parallel
polymers pulled at a velocity v = 1000 nm s−1, averaged
over 100 runs. The peak force increases in proportion to the
number of polymers that possess restored end connections and
therefore transmit the force, given by the largest integer not ex-
ceeding NpN∗

e = Np[βe/(αe + βe)](1 − e−(αe+βe)t ). Figure 6
shows the displacement at maximum stretching force, as well

a

0 5 10 15 20
0

50

100

150

200

Delay time t (s)

En
er
gy
di
ss
ip
at
io
n
(1
0
18
J)

b

FIG. 7. (Color online) (a) Total energy dissipation over the entire
course of stretching, as a function of delay time, for Np = 200
polymers stacked in parallel, pulled at v = 1000 nm s−1. Results
are averaged over 100 runs and the error bars indicate one standard
deviation. (b) Figure 2(c) from [4], reproduced here for comparison,
shows the energy dissipation involved in the separation of bone fibrils
in a buffer where calcium and sodium ions are present (red circles)
and in a buffer where only sodium ions are present (blue squares).
The authors there concluded that calcium ions lead to enhanced bond
strength; within our choice of parameters, our theoretical prediction
for the energy dissipation qualitatively matches that of [4] in the
presence of calcium ions.

as the maximum stretch, as a function of delay time between
pulls. Both quantities are roughly independent of the delay
time, except that the displacement at maximum stretching
force shows a slight decrease for small delay times. This
can be traced to the fact that the small number of internal
sacrificial bonds that restore for small delays times leads to
fewer cusps in the force-extension curve of each polymer
chain and reduces the extra energy dissipation brought by
these sacrificial structures (see below), thereby delaying the
occurrence of the maximum force.

Figure 7 shows the total energy dissipation, a measure of
the toughness of the glue connection between the two pieces
of underlying material, as a function of the delay time t

between pulls. For small delay times, the marked growth in
the number of restored end bond connections, the number of
restored internal sacrificial bonds, and the increase in energy
dissipation as a function of the number of internal sacrificial
bonds (see Fig. 4) all contribute to the fast increase of total
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FIG. 8. (Color online) Force per polymer chain that is attached at
both ends at the beginning of the experiments, as a function of pulling
distance, for Np = 200 polymers. Results are averaged over 100 runs,
thereby smoothing out abrupt force drops. The delay times are t = 5 s
(blue solid curves), 10 s (red dashed curves), and 20 s (green dotted
curves). The pulling rates are v = 100, 1000, and 10 000 nm s−1 for
the three sets of curves, from bottom to top.

energy dissipation as a function of the delay time. For large
delay times, however, these growths slow down gradually, so
the increase in energy dissipation flattens out. A comparison
to Fig. 7, which shows the experimental measurements for
the energy dissipation involved in the separation of two bone
fibrils [4], indicates that our theoretical prediction qualitatively
matches the experimental observations of bone fibrils in a
buffer of calcium and sodium ions. The result for a sodium
buffer corresponds to different choices for the rate parameters
such as kf , kb, α0, and β0.

V. A CONSTITUTIVE LAW FOR FORCE AS
A FUNCTION OF DISTANCE

In multiscale simulations of bone fracture it is necessary to
incorporate a constitutive law for the separation of collagen
fibrils under tensile stress. More specifically, in realistic
situations where hundreds of glue strands are present between
each pair of collagen fibrils, we need, in a mean-field sense
(i.e., smoothing out all abrupt force drops due to bond breakage
or detachment), a force law F (x,v,t) for the force on the
polymeric system under stretch.

To this end, Fig. 8 shows sample force-extension curves
of Np = 200 polymer chains stacked in parallel, normalized
by the number of chains that are attached at both ends at
the beginning, ignoring all interactions between them, for
delay times ranging between 1 and 10 s. In computing
these theoretical curves we have averaged over 100 pulling
experiments and divided the total force F (x,v,t) by the
total number of polymer chains NpN∗

e that are attached to
the collagen fibrils at both ends at the beginning, where
N∗

e = [βe/(αe + βe)](1 − e−(αe+βe)t ), as given by Eq. (2.13).
As in Fig. 5, the total contour length Lc of each polymer is
uniformly distributed between 50 and 150 nm. Importantly,
for each pulling velocity v, the curves for different delay times
t collapse together. This implies that in the limit of long delay
times t , the total force in separating two pieces of collagen
fibril is given as a function of distance x and separation
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FIG. 9. (Color online) Force-stretch curves as in Fig. 5 for
Np = 200 polymers stacked in parallel, pulled at v = 1000 nm s−1,
normalized by the number of polymer chains that are attached at
the beginning of the experiment. The delay times are t = 2 s (blue
solid curve), 5 s (red dashed curve), 10 s (green dot-dashed curve),
and 20 s (orange dotted curve). The thick black curve represents the
fitting function (5.2) with parameter values given in the text. Note that
the blue curve for the short delay time t = 2 s is noticeably jagged,
owing to the fact that only eight polymer chains [see Eq. (2.13)]
adhere to the bone fibrils at the beginning. The quantities fp , xp , and
xc appearing in Eq. (5.2) are labeled in the figure.

velocity v by

F (x,v,t) = NpN∗
e (t)f (x,v). (5.1)

The delay time dependence comes in only through the fraction
N∗

e (t) of polymer chains attached to the bone fibrils at the
beginning. The average force on each of these polymer chains
f (x,v) is independent of the delay time t or the number of
polymer chains; it can be approximated by separate power
law fits to the increasing (strengthening) and decreasing
(weakening) portions of the curves:

f (x,v) =

⎧⎪⎨
⎪⎩

fp(v)
(

x
xp(v)

)s1 for x � xp(v)

fp(v)
(

xc(v)−x

xc(v)−xp(v)

)s2 for xp(v) < x < xc(v)

0 for x � xc(v).

(5.2)

Here fp(v), xp(v), and xc(v) are the velocity-dependent peak
force, end-to-end distance at peak force, and maximum pulling
distance, respectively. We find that s1 ≈ 1.35 and s2 ≈ 0.65
and, in the case v = 1000 nm s−1 shown in Fig. 8, that fp ≈
0.094 nN, xp ≈ 43.5 nm, and xc ≈ 115 nm. Figure 9 shows
how this function fits sample force-displacement profiles.

The quantity xp(v) marks the transition from a strength-
ening to a weakening behavior, associated with the gradual
detachment of polymer chains. To check this assertion, the
solid curves in Fig. 10 show the evolution of the fraction
of initially intact glue strands that remain attached to the
collagen fibrils at both ends (i.e., with end bonds being
intact), as a function of the displacement x, at the same
pulling velocity v = 1000 nm s−1. One sees immediately that
the onset of polymer chain detachment coincides with the
transition to weakening behavior at xp. In addition, under our
assumption of a uniform distribution of polymer chain lengths,
the number of polymer chains that have yet to rupture decreases
linearly with separation distance in the weakening regime. In

012703-7



LIEOU, ELBANNA, AND CARLSON PHYSICAL REVIEW E 88, 012703 (2013)

end bond breakage

internal bond breakage

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Pulling distance x (nm)

Fr
ac
tio
n
of
in
ta
ct
bo
nd
s

f
x,
v
f p

FIG. 10. (Color online) Microscopic mechanisms for macro-
scopic force laws. The colored curves represent the fraction of
sacrificial (dashed) and end (solid) bonds that remain intact as a
function of pulling distance. The pulling velocity is v = 1000 nm s−1

and the delay times are t = 2 s (blue), 5 s (red), 10 s (green), and
20 s (orange), in decreasing order of jaggedness for the solid curves
and from top to bottom for the dotted curves. The black dot-dashed
curve represents f (x,v) rescaled by its peak value fp; it shows that
the onset of polymer chain detachment coincides with the transition
to weakening behavior after reaching the maximum force fp . The
result is averaged over Np = 200 polymer strands in parallel.

contrast, the dashed curves show that breakage of sacrificial
bonds within individual polymer chains occurs continually
in both the strengthening and weakening regimes. Figure 10
thus demonstrates how microscopic physics (bond breakage),
characterized by the state variables Nb and Ne, accounts
for macroscopic behavior (displacement strengthening and
subsequent weakening) in biological structures that contain
sacrificial bonds and hidden length. In the context of dynamic
fracture, the strengthening regime corresponds to crack arrest
and the weakening regime corresponds to crack propagation
and catastrophic failure.

To extract the velocity dependence of the quantities
fp(v), xp(v), and xc(v) explicitly, we plot these quantities in
Figs. 11(a) and 11(b). They can be fit with the empirical forms

fp(v) = f1ln

(
v

v0

)
+ f0, (5.3)

xp(v) = p1ln

(
v

v0

)
+ p0, (5.4)

xc(v) = c2

[
ln

(
v

v0

)2]
+ c1ln

(
v

v0

)
+ c0. (5.5)

Within our choice of system parameters, we find v0 =
100 nm s−1, f0 = 0.064 nN, f1 = 0.013 nN, p0 = 41 nm,
p1 = 1.3 nm, c0 = 104 nm, c1 = 6.3 nm, and c2 = −0.57 nm.

We have thus shown that in the limit of long delay
times t , the total force F on the ensemble of polymers
can be factored into the product of the number NpN∗

e (t) of
polymer chains that are intact at the beginning of the pulling
experiment, times the average force f (x,v) per polymer
chain. Both the strengthening and weakening regimes—the
latter being associated with the rupture of polymer chains
and their detachment from the substrate—can be described
by power laws characterized by the velocity-dependent peak
force fp(v), the displacement at peak force xp(v), and the
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FIG. 11. (Color online) (a) Plot of the average peak force fp(v)
per polymer chain as defined in Eq. (5.2) versus the pulling speed v,
for Np = 200 polymers stacked in parallel. The blue data points are
average values from 100 runs and the red curve is the log-linear fit
given by Eq. (5.3). (b) Plots of the displacement at peak force xp(v)
(blue circles) and maximum pulling distance xc(v) (red squares) as
defined in Eq. (5.2) versus the pulling speed v. The data points are
average values from 100 runs. The black curves are the fits given by
Eqs. (5.4) and (5.5).

maximum pulling distance xc(v). Among these, the peak
force fp varies linearly with the logarithm of the pulling
velocity v, in conformity with experiments. This constitutive
approach enables us to describe the mean-field dynamics of
sacrificial bond breakage and hidden length release using
several adjustable parameters, without having to account for
the random breakage of individual bonds in detail.

VI. METHODOLOGICAL CONSIDERATIONS

In this section we make some remarks on the idealizations
employed in our theoretical model and how they compare with
other more sophisticated models.

Applicability of the two-state model. The two-state model
that we employ in this paper assumes that the breakage
and formation rates of sacrificial bonds are Boltzmann-
like functions of the product of the respective distances of
the transition state from the initial states and the force on
the molecule. It has been applied to a variety of situations in
which the unfolding of proteins follows a two-state pathway
[17,20]. As we have already seen, the present two-state model
is adequate to capture the most important features of the
dynamics of sacrificial bonds and hidden length under a
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loading force, at intermediate pulling velocities using atomic
force microscope spectroscopy, typical of most experiments.

In addition to the two-state model above, other more
sophisticated models based on Kramer’s theory [21–25] and
Langevin dynamics [26] have since been proposed to describe
protein folding trajectories. These models propose that the
folding and unfolding pathways are different and predict
various kinds of nonlinear behavior of the rupture force
as a function of the loading or pulling rate, not seen in
experiments on sacrificial bonds at typical pulling rates. We
have opted not to adopt these models for our present purposes
for the following reason. The dynamics of protein folding
involves the search for a native conformation. There is no
analog of such a process in the formation of sacrificial bonds;
compared with protein folding pathways, the bond breakage
and formation pathways are more symmetric and there is
stochasticity in where sacrificial bonds are formed along the
molecule. The differences between the bond breakage and
formation pathways in our case are already captured by the
different fundamental rates and distances from the transition
state in Eqs. (2.3) and (2.4) for bond breakage and formation
events.

Stiff-spring approximation. By using Eq. (2.1) for the force
in Eqs. (2.3) and (2.4), we are implicitly assuming a stiff probe.
If the probe has a spring constant κ , the energy term F�xf in
Eq. (2.3) for the bond breakage rate, for example, should be
replaced by F�xf − κ(�xf )2/2 [22,25] and this necessarily
leads to nonlinear force spectra. The dynamics of sacrificial
bonds when the probe is not stiff is beyond the scope of
the present paper. Nevertheless, the stiff-spring approximation
does not alter the key features of the force-extension curves
seen in experiments [1–5]. Moreover, in the intermediate
velocity regime, typical of most laboratory experiments, the
more sophisticated models such as that in [22] do recover a
logarithmic dependence of the force spectra on the pulling rate,
seen in [16] and predicted here.

VII. CONCLUSION

In this paper we have developed a simple quasi-one-
dimensional kinetic model, based on Bell’s theory, that
describes the breakage of sacrificial bonds and release of
hidden length in biological structures such as the linkage
between collagen fibrils in animal bone. The kinetic model
draws ideas from theories of protein unfolding, a process that
also involves the forced rupture of noncovalent bonds and the
exposure of folded structure. It tracks the evolution of the
number of sacrificial bonds Nb and the number of chains Ne

that adhere to the substrate—the only two molecular-state-
dependent variables in the theory—with the pulling distance
x and the total force F on the polymer network, according
to a velocity-dependent criterion that determines the times or
displacements at which bond breakage occurs. The force is
entropic in nature, given by the wormlike-chain model as a
function of the pulling distance x and the amount of available
contour length L, the latter of which is computed in terms of
the number of remaining sacrificial bonds Nb.

We have shown that sacrificial bonds and hidden length
lead to a marked increase in fracture toughness in materials
where they are present and that both the fracture toughness

and maximum displacement before complete rupture in a
pulling experiment increase with the pulling velocity v, which
drives the system away from equilibrium. In particular, the
peak force fp in the force-displacement profile varies linearly
with the logarithm of the pulling velocity v, in conformity
with various mechanical experiments on biological molecules
such as those described in [16]. In addition, our kinetic model
naturally incorporates self-healing, evidenced by the increase
in the number of attached polymer chains, rupture peak height,
and total fracture toughness with recovery time. Our simple
quasi-one-dimensional model, however, does not explicitly
account for the effect of cross-links and entanglements in
a network of glue strands. The extent to which a detailed
representation of these additional microscopic mechanisms
will impact the macroscopic behavior is beyond the scope of
the present paper.

Based on our theoretical calculations we have proposed
a phenomenological description for the force-displacement
profile of a collection of polymer chains with a distribution
of lengths. The force-displacement profile consists of a
strengthening regime for small displacements, where the force
increases with the displacement according to a power law. This
is followed by a weakening regime associated with the gradual
detachment of polymer chains that no longer contribute to
force transmission. Such a constitutive description will be of
utmost utility in future multiscale simulations of bone fracture.
The dynamical behavior of glue connection between collagen
fibrils has important implications on crack propagation, crack
arrest, strength recuperation, and collagenous diseases in bone.

The relationship between macroscopic forces and micro-
scopic features such as bond breakage in the present study
is reminiscent of the relationship between empirical rate-and-
state friction laws and the underlying plastic deformation in
tribology [27,28]. Our force law for the average behavior
of multiple parallel connections, Eq. (5.2), has apparent
simplicity. One might thus be tempted to ask if this empirical
force law and the size of rupture forces can be deduced
analytically from microscopic physics alone. However, the
single-chain force-displacement relationship represented in
Eq. (2.1), upon which our derivation is based, does not readily
simplify for that purpose.

There are a number of prior studies on the rupture of
multiple connections in parallel between substrates. Those
studies sought analytical methods to predict the rupture forces.
For example, Seifert [29] modeled the polymers as linear
Hookean springs and computed the rupture time and force
as functions of the pulling velocity v. Friddle et al. [25] and
Williams [30] investigated the force spectra of multiple iden-
tical connections under a constant loading rate r ≡ dF/dt .
Analytical or semianalytical solutions for rupture forces are
possible in those cases because those studies assume that no
additional dissipative mechanisms, such as the breakage of
sacrificial bonds and the release of hidden length that lower
the entropy, are present and that all connections are identical.
These simplifying assumptions are evidently not obeyed by
glue molecules between collagen fibrils. Moreover, [29] was
able to provide an analytical solution because of the simple
linear force law involved, as opposed to the wormlike-chain
model that we have employed, which is more physical and
highly nonlinear. Analytical expressions for the rupture forces
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were also possible in [25,30] because of the constant loading
rate assumption; tracking the increase in separation x via the
force law F (x) would not be necessary in those cases. The
inherent complexity and randomness of our system should be
contrasted with those simpler models.

Instead of following those simpler models, we focused
in this work on the microscopic features, namely, sacrificial
bonds and hidden length, which constitute the starting point
of our model. In this context, we have chosen to examine
the constitutive behavior by numerically averaging over a
large ensemble. The fact that the ensemble average results
in a relatively simple constitutive law, Eq. (5.2), suggests that
perhaps a lower resolution microscopic description may lead

to a similar functional description at the macroscopic level,
which is a subject left to future investigation.
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