SAE Baja: Engineering Analysis Suspension and Steering

Benjamin Bastidos, Victor Cabilan, Jeramie Goodwin, William Mitchell, Eli Wexler

Wednesday, November 20, 2013

Overview

- Introduction
- Analysis of Suspension Components
 - o Geometry
 - o Body Forces
 - o Suspension Materials
- Analysis of Steering Components
 - o Rack and Pinion
 - Tie Rods
- Gantt Chart
- Conclusion

Introduction

Client: Professor John Tester

- Explain Suspension/Steering Analysis
 - o Dimensions
 - o Geometry
 - Body Forces acting on System

Eli 4

Front Suspension

- We started by assuming the following specs
- 20" front frame width
- About 12" A-arms
- 205-80-12 tire size

Ideal Scrub Radius

- The ideal scrub radius is zero
- This minimizes steering effort.
- This minimizes twisting forces from bumps and cornering forces.

King Pin Angle

- Typical Kingpin Angles are between 5-10 degrees.
- Excessive king pin angle causes the tire to flop from side to side as it is steered.

Other Considerations

- The general Compression to Droop ratio is about 60% to 40%
- We want moderate camber loss on compression.

Figure 2: Suspension Analysis

Figure 3: Suspension Analysis

Figure 4: Suspension Analysis

Drop Test Assumptions:

- Fi = Force of impact
- Fs=500 lb Weight
- h= 6 ft Drop Height
- K= 160 Ibin Spring rate constant (using shocks from Polaris RZR 570)

- Force assuming worst case landing on one wheel
- $Fi = Fs + ((Fs)^2 + 2 * K * 12 * FS * h)^{\frac{1}{2}}$ (Source SAE Brasil)
- Fi=1022.53 lb

Shock Mounting

- In order to keep from having an over engineered shock, the length away from the pivot and the angle away from vertical
- The longer lever arm on the shock, the stronger it has to be
- The larger the angle away from vertical the shock is mounted, the less effective it is

Figure 5: Shock Mounting

Shock Mounting (cont.)

- From Matlab code, from a given mounting distance, the angle away from vertical and the shock length are found
- Compromising between the mounting position and the angle away from vertical, the team decided on mounting 9 inches away from the frame
 - Shock length is 11.5 inches
 - \circ $\,$ The angle away from vertical will be 39 degrees
- Shock will have to be ~1.5 times stronger compared to a vertical shock

Suspension Materials:

Table 1: Suspension Material

	Properties					
Material	Sy (ksi)	Ts (ksi)	E (ksi)	ρ (lb/in³)	G (ksi)	V
AISI 1018 (CD)	54	64	29000	0.284	11600	0.292
AISI 4130 (normalized)	63	97	29700	0.284	11600	0.292

Why AISI 4130?

- High tensile strength
- High yield strength
- Meets SAE rules for approved materials
- Maintains physical properties after welding
- Widely used in off-road designs

3-link Trailing Arm

Figure 6: Trailing Arm

- Shown without additional links and knuckle
- Material: AISI 4130 normalized
- L = 28 in
- OD = 1.5 2.0
- t = 0.083
- End plate attaches to knuckle
- Assuming square shafts, attached to wall

William 17

Drop Test Results:

Table 2: Drop Test results

Force Location (in)	Force (lbf)	Yield Strength (ksi)	Deflection (in)
25	6600	97	0.000069
26.5	5543.34	97	0.125

Steering System

- Rack and Pinion
 - Calc. for designing
 - Most likely buy
 - Gives ideas of material selection
- Dimensions for Pinion
 - Several Assumptions (Driver 0.1-10 lbf)
 - Rack teeth => pinion turns 180 deg max

Ben 19

Table 3: Dimensions of Pinion and Rack

	teeth number	face width (in)	bending stress (kpsi)	radii for pitch circle (in)	radii for base circle (in)	Adden (in)	Dedden (in)
pinion	20	0.74	0.04 - 3.9	0.787	.739	0.078	0.098
rack	20	0.74	-	inf	inf	0.078	0.098

Steering Column: ~ 47.2 in Rack: ~ 3 in long 4 5 Figure 8: Rack & Pinion Ben 21 Source: wikipedia

- Analysis of Tie Rod (Chromoly AISI 4130)
 - Force exerted by environment
 - Force exerted by driver

- Force exertion by hubs and driver (Chromoly AISI 4130)
 - Tie-Rod radius increases as Driver and Hub Force increase together

Victor 23

Gantt Chart

● <> & ♥ 🖉 🕱		
GANTT project	\Rightarrow	>
Name	Begin date	End date
····· Finished Suspension/Steeting	12/9/13	12/9/13
Preliminary Suspension/Steering D	10/28/13	10/28/13
····· Order Material	11/6/13	11/6/13
Steering/Suspension Design	9/30/13	11/5/13
 Safety Considerations for Ste 	9/30/13	10/18/13
 Material Selection 	10/2/13	10/4/13
 Design Profile for Steering/Sus 	10/4/13	10/25/13
 Solidworks Suspension/Steerin 	10/14/13	10/28/13
 Stress Analysis 	10/28/13	11/5/13
 Constraints and Requirements 	9/30/13	10/7/13
🔍 Sponsorships	9/30/13	11/22/13
Suspension/Steering Construction	11/11/13	12/6/13

Victor 24

Conclusion

- Suspension Component Analysis
 - Spring & Joint Mounting Locations
 - Calculated Deflections at Maximum Drop Force
- Steering Component Analysis
 - Gearing of Rack and Pinion at given situations

Victor 25

• Tie rod thickness at given situations

References

- Shigley's Mechanical Engineering Design, Ninth Edition
- Adams, Herb. *Chassis Engineering*. Los Angeles: HP, 1993. Print.
- Millikin, Douglas. Race Car Vehicle Dynamics. SAE Inc., 2003. Print.
- http://en.wikipedia.org/wiki/File:Steer_system.jpg
- http://psas.pdx.edu/lv2cguidance/spur_gear_tooth_stress_44_strain_44_and_deflection_for_static_loading/
- Modeling Different Configurations for a FRont Suspension of an Off-Road Vehicle Mini-Baja, SAE Brasil, SAE Technical paper series 2004-01-3437