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Abstract. Accurate estimates of forest biomass are essential for several purposes, ranging from
carbon accounting and ecological applications to sustainable forest management. There are,
however, critical steps for mapping aboveground forest biomass (AGB) based on optical satellite
data with an acceptable degree of accuracy, such as selecting the proper statistical modeling
method and deriving spectral information from imagery, at known field locations. We compare
nine modeling techniques including parametric, semiparametric, and nonparametric methods
for remotely estimating AGB based on various spectral variables derived from Landsat 8
Operational Land Imager (OLI). We conduct this research in Zagros oak forests on two sites
under different human disturbance levels: an undegraded (UD) forest site and a highly degraded
(HD) forest site. Based on cross-validation statistics, the UD site exhibited better results than the
HD site. Support vector machine (SVM) and Cubist regression (CR) were more precise in terms
of coefficient of determination (R2), root-mean-square error (RMSE), and mean absolute error
(MAE), though these approaches also result in more biased estimates compared to the other
methods. Our findings reveal that if the degree of under- or over-estimation is not problematic,
then SVM and CR are good modeling options (R2 ¼ 0.73; RMSE ¼ 31.5% of the mean, and
MAE ¼ 3.93 ton∕ha), otherwise, the other modeling methods such as linear model, k-nearest
neighbor, boosted regression trees, generalized additive model, and random forest may be better
choices. Overall, our work indicates that the use of freely available Landsat 8 OLI and proper
statistical modeling methods is a time- and cost-effective approach for accurate AGB estimates in
Zagros oak forests. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.
JRS.12.046026]
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1 Introduction

Accurate estimation of aboveground biomass (AGB) at broad scales is critical for understanding
forests’ contribution to the global carbon cycle.1–3 Therefore, developing robust, simple, reliable,
and cost-effective approaches to accurately estimate AGB is a critical task.1,4–6 AGB estimation
in forest ecosystems is commonly done by field survey, however, due to high data acquisition
costs and intensive field labour, this method is inefficient.4,5,7,8 Fortunately, the combination of
derived variables from remotely sensed data and statistical model-based techniques provides an
accurate means for quantifying AGB and AGB dynamics, particularly at broad scales.7–11 The
spectral information, recorded by remote sensing and vegetation indices, has been shown to
correlate with forest AGB estimation.
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There are the numerous studies of AGB estimation from local to global scales, based on
remotely sensed data, from passive optical sensors to active sensors such as synthetic aperture
radar and light detection and ranging.12,13 However, most of these efforts have focused on esti-
mation of biomass in dense forests (e.g., temperate, tropical, and boreal),14 and relatively few
studies have focused on remotely sensed AGB estimates in other regions, such as forests in arid
and semiarid climates.7,14,15 In these areas, sparse canopy vegetation often results in mixed spec-
tral reflectance that is strongly affected by bare soil or shadowing.1,7,16,17 One such ecosystem is
the six million hectare semiarid oak forests of the Zagros Mountains of Iran.18,19 Here traditional
human activities such as the conversion of forest to agricultural land20 and the cutting of branches
and sprouts to provide fuel and animal feed, continue to change forest structure and function.20,21

Estimates of the distribution and total AGB for these forests across different disturbance levels
have yet to be established. Therefore, cost-efficient methods are needed for wall-to-wall AGB
mapping. The freely available Landsat 8 Operational Land Imager (OLI) data are a practical
option for AGB estimation, because compared to earlier Landsat sensors, the OLI sensor
has several key improvements, including (i) narrower near-infrared wavebands, (ii) higher sig-
nal-to-noise ratio, and (iii) improved radiometric sensitivity.15,16,22

For AGB estimation using remotely sensed data, there are two important issues. The first
issue relates to remotely sensed derived spectral information,2,23,24 which are used as indepen-
dent variables in modeling methods. The second issue concerns appropriate statistical modeling
methods.8,25,26 Many previous studies have applied different Landsat-derived spectral informa-
tion (e.g., raw bands, vegetation indices, and linear transformation)11,27–31 and statistical model-
ing methods ranging from parametric to semiparametric and nonparametric for AGB estimates in
dense forests.1,8,9,11,13,16,28–32 However, the application of these approaches in sparse forests with
low-biomass density remains a challenge.1,7,22,33

As observed in many previous studies,8,11,13,15,29,31,32,34 the comparison of methods has been
faced with two primary challenges: (1) no single modeling method has been determined to be the
best and (2) the performance of these methods is affected by forest type, forest structure, and
sample size.8,11,35 Nonetheless, Fassnacht et al.8 concluded that the modeling method is as impor-
tant as the data type in deriving accurate AGB estimates.

The main objective of this study, therefore, was to compare different statistical modeling
methods for generating estimates of AGB in Zagros coppice oak forests with low-biomass den-
sity. Within this primary goal, there were two main objectives: (1) to determine the most suitable
set of predictor variables for the different modeling methods and (2) to assess the effect of
anthropogenic activities on Landsat-based estimates of AGB.

2 Materials and Datasets

2.1 Study Area

This study was conducted in dry oak forests located in the Zagros Mountains of western Iran.
These forests are mostly sparse and open park-like forests comprised of various oak species
(Quercus spp.).19 To evaluate the accuracy of AGB estimates in forest stands affected by
human activities, we selected two sites with different degrees of disturbance. The first site is
located in the Gahvareh region with undegraded (UD) forests, and the second site is located
in the Sarfiruz-Abad region with highly degraded (HD) forests (Fig. 1). Both of these sites
are dominated by coppice oak (Quercus brantii Lindle) trees. The UD and HD sites have semi-
humid and semiarid climates, respectively. At the HD site, forest lands have been converted to
farm lands and oak trees are mostly used to provide charcoal and fuel wood. Overgrazing is also
common at this site; however, at the UD site, only minor cattle grazing occurs.

2.2 Field Data

We stratified both test sites (UD and HD) by a Landsat-derived leaf area index (LAI) map based
on a developed global model,36 into three strata (low, moderate, and high LAI). Field sampling
was carried out using a systematically gridded design with a 200 m × 200 m grid in each stratum.
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In June and July of 2015, we measured 124 georeferenced plots (61 plots at the HD site and 63
plots at the UD site), each 30 m × 30 m (corresponding to a Landsat pixel). To reduce GPS hori-
zontal locational error (∼5 to 10 m), final plot positions were determined based on the criterion
that the forest structure and composition in a 10-m buffer around the plot be the same as within the
plot.7,37 The AGB per tree was calculated by applying species-specific allometric equations devel-
oped for Zagros dry oak trees.38 Then we calculated AGB in tons per plot by summing each tree’s
AGB in each plot and converting the per plot AGB values to tons/hectare (t/ha).

2.3 Satellite Image Acquisition and Preprocessing

Our test sites were covered by one Landsat 8 tile (path/row: 167/36), which was downloaded
from the USGS Earth Resources Observation and Science (EROS) Centre archive (http://
earthexplorer.usgs.gov/). This cloud-free image was acquired by Landsat 8 on August 10,
2015, which is in the peak of Zagros forests growing season and near the date of the forest
inventory. Image preprocessing involved georeferencing, radiometric calibration, and topo-
graphic correction. First, the image was geometrically corrected to a digital map. Then the digital
numbers were calibrated to at-sensor radiance via the orbital and sensor parameters. Atmospheric
corrections were not applied because: (1) the two test sites were covered by one single-image tile
and the atmospheric conditions were, therefore, assumed to be the same; (2) the absolute surface
reflectance is not required in empirical methods; and (3) if accurate atmospheric characteristics
are not known, the atmospheric correction may increase the uncertainties.11 The recorded radi-
ance by optical sensors in mountainous areas is strongly affected by topography and leads to
large uncertainties in remote sensing-based forest attribute retrieval.11,39,40 In this study, the
C-correction method was used to conduct topographic correction, which is recommended
for Landsat images.40

For each sample plot location, we extracted radiance values in four categories: raw bands,
simple band ratios, vegetation indices, and linear transformations [principle component analysis
(PCA) and tasseled cap (TC)]. In total, 50 explanatory variables were derived from the Landsat 8
image (see Table 1).

2.4 Predictor Variables

We followed four steps in selecting the best predictor variables for each modeling method, in an
approach similar to Görgens, Montaghi, and Rodriguez.44 First, we calculated a correlation

Fig. 1 Location map of the study areas subject to two different disturbance levels in Kermanshah
province, western Iran.
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matrix between the AGB and each of the derived remotely sensed variables in each category, and
variables with a correlation lower than the median were removed. Second, we constructed all
subset models with one, two, and three independent variables in each category and calculated
the adjusted coefficient of determination. Third, among all of the models from step 2, we selected
the best model based on the adjusted coefficient of determination, and the selected variables
in the best models were considered to be the most important variables in each category.
Finally, for the selected subset of independent variables, we repeated steps 1 to 3 to determine
the most important variables among all categories for the final modeling.

2.5 Modeling Methods

We tested nine different modeling methods for estimating AGB, including parametric, semipara-
metric, and nonparametric approaches. The methods we tested follow.

2.5.1 Parametric models

Linear modeling. Among parametric modeling methods, linear regression is the most
straightforward. We used ordinary least squares regression to predict AGB as it is commonly
used to estimate forest attributes using remotely sensed data.11

2.5.2 Semiparametric

Generalized additive models. A generalized additive model (GAM) is well-suited to
reveal complex curvilinear relationships without a predefined assumption of model shape.45

The framework is based on a simple approach: (i) the relationships between the explanatory
variables and the target variable follow a smooth pattern that can be linear or curvilinear
and (ii) the GAM can estimate these smooth relationships simultaneously and then construct
predictions by simply adding them up.

Table 1 Landsat 8 OLI derived spectral information used in aboveground biomass estimation

Categories Details References

Raw bands B, G, R, NIR, SWIR 1 and 2 30

Simple band ratios B/G, B/R, B/NIR, B/SWIR1, 13, 15, and 41
B/SWIR2, G/R, G/NIR, G/SWIR1,

G/SWIR2, R/NIR, R/SWIR1,

R/SWIR2, NIR/SWIR1,

NIRR/SWIR2, SWIR1/SWIR2

Vegetation indices ALBEDO, ARVI, EVI, MSAVI2, 13, 15, 30, and 42
NGDI, NDVI, OSAVI, PVI, RDVI,

SARVI, SAVI, TNDVI, TSAVI, DVI

Linear transformations:
principal component
analysis and tasseled cap

PC1, PC2, PC3, PC4, PC5, 6, 15, 24, 29,
41, and 43PC6, TCB,TCG, TCW, TCA, TCD

Note: B, blue; G, green; R, red; NIR, near-infrared; SWIR 1 and 2, shortwave-infrared 1 and 2; Albedo: total
shortwave, infrared, and visible; ARVI, atmospherically resistant vegetation index; EVI, enhanced vegetation
index; MSAVI2, modified soil adjusted vegetation index; NGDI, normalized green difference vegetation index;
NDVI, normalized difference vegetation index; OSAVI, optimized soil-adjusted vegetation index; PVI,
perpendicular vegetation index; RDVI, renormalized difference vegetation index; SARVI, soil and atmospheri-
cally resistant vegetation index; SAVI, soil adjusted vegetation index; TNDVI, transformed normalized differ-
ence vegetation index; DVI, difference vegetation index; TCB, tasseled cap brightness; TCG, tasseled cap
greenness; TCW, tasseled cap wetness; TCA, tasseled cap angle ½¼ arc tanðTCG∕TCBÞ�; and TCD, tasseled
cap distance ½¼ ðTCG2 þ TCB2Þ0.5�.
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2.5.3 Nonparametric

Random forest. A random forest (RF) model is a tree-based model that applies a collection
of rule-based decisions to evaluate the relationships between a target variable and its explanatory
variables.32,46 It generates a large number of small trees constructed by a different randomly
permuted sample from the input dataset.46,47 The target data are categorized through two off-
spring at each node split to maximize homogeneity, and the best split is selected. Finally, the
target data for each tree are achieved using bootstrap resampling.47,48 Applying unique tree bag-
ging and selection of a random subset of covariates results in minimization of within group
variance and overcoming the over-fitting problem.47 A comprehensive review of applications
of RF in the field of remote sensing can be found in Belgiu and Dragut.49

Support vector machine. Support vector machine (SVM) is a statistical learning algo-
rithm, which assumes that each set of explanatory variables has a unique relationship to the
target variable, and groupings of predictors can be applied to recognize the rules for predicting
a target from a set of explanatory variables.50 It transforms the input data into a multidimensional
hyperplane space using a kernel function to separate groups of input data with similar targets to
predict a target variable.48 Hyperplanes are a multidimensional space constructed from axes that
represent each predictor variables. Each response variable can be located in such a space by
plotting it according to its explanatory variable values. The SVM applies “support vectors”
to assign each target to a well-fragmented space.32,44,50 The main idea behind SVM is to min-
imize structural risk and moderate the overfitting problem.23,51 A comprehensive review of appli-
cations of SVM in field of remote sensing can be found in Mountrakis, Im, and Ogole.50

k-nearest neighbor. k-nearest neighbor (kNN) is a multivariate approach, which classifies
or predicts the response values using the information about the weighted mean of response values
of the most similar neighbor(s), where the similarity is identified in a feature space encompassed
by selected explanatory variables.31,51,52 The performance of kNN depends on “k,” which deter-
mines the number of neighbors used by the method.31 When k ¼ 1, a predicted target value is
estimated by the closest training value and when k > 1, prediction is estimated with a majority
vote. A comprehensive review of applications of kNN in the field of remote sensing can be found
in Chirici, Mura, McInerney, Py, Tomppo, Waser, Travaglini, and McRoberts.52

Boosted regression trees. Boosted regression trees (BRT) originated from decision
theory.46 It constructs additive regression models by successively fitting the selected base learner
to current “pseudo”-residuals by least squares regression at each iteration. BRT utilizes the inte-
gration of bagging (for improving the model stability and final predictive accuracy) and boosting
(to model the nonlinear relationships, to improve predictive performance of multiple single mod-
els, and to reduce the risk of over-fitting).30,53–56

Multivariate additive regression splines. Multivariate additive regression splines
(MARS) is an automated, multivariate, and adaptive nonparametric classification/regression
method introduced by Friedman.53 It is a flexible technique, which models conventional func-
tions through nonlinear regression models by fitting a weighted sum of multivariate spline basis
functions. With this method, it is easier to demonstrate variable interactions and relationships
between predictor variables and targets in high-dimensional space13,57,58 because the original
variables, as well as interactions between them, can be found directly in the results.

Cubist regression. Cubist regression (CR) is a hybrid tree-based regression approach,
which models the relationships between response and predictor variables based on linear
least square regression.13 It retrieves a set of rules associated with sets of multivariate linear
models, then a specific set of explanatory variables will select an actual prediction model
based on the rule that best fits the predictors.59,60 Cubist is a commercial product, and its
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algorithm documentation is unknown in comparison to other methods tested in this study.32,59

Nonetheless, it has been successfully utilized for estimating AGB when using remotely sensed
data.59,61 More details about CR model can be found by Walton.60

Gaussian processes regression. Gaussian processes regression (GPR) provides a prob-
abilistic method for learning generic regression problems with kernels.51 In GPR, there are three
components, including explanatory variables applied in the training stage, weight assigned to
each variable, and the function assessing the similarity between the predictor dataset from the
test data and the overall training samples.51 It has three major advantages: (i) it provides simul-
taneous pixel-wise predictions and confidence intervals; (ii) it overcomes the black-box problem
that is common to nonparametric regression methods; and (iii) it efficiently and automatically
generates model hyper-parameters and model weights by maximizing the marginal likelihood in
the training set.51,62 More details about GPR can be found in Verrelst, Muñoz, Alonso, Delegido,
Rivera, Camps-Valls, and Moreno.62

2.6 Statistical Measures for Evaluation of Models Performance

Given the number of field plots, we used leave-one-out cross validation (LOOCV) to avoid over-
fitting the model. The model performance was evaluated using four quality statistics:

1. The mean error (Bias) [Eqs. (1)and (2)].
2. The mean absolute error (MAE) [Eq. (3)].
3. The root-mean-square error (RMSE) [Eqs. (4)and (5)].
4. The coefficient of determination (R2) [Eq. (3)].

EQ-TARGET;temp:intralink-;e001;116;453Bias ¼
Xn
i¼1

ðŷi − yiÞ∕n; (1)

EQ-TARGET;temp:intralink-;e002;116;408Biasð%Þ ¼ Bias

y
× 100; (2)

EQ-TARGET;temp:intralink-;e003;116;373MAE ¼
Xn
i¼1

jŷi − yij∕n; (3)

EQ-TARGET;temp:intralink-;e004;116;329RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðŷi − yiÞ
n

s
; (4)

EQ-TARGET;temp:intralink-;e005;116;283RMSEð%Þ ¼ RMSE
y

× 100; (5)

EQ-TARGET;temp:intralink-;e006;116;245R2 ¼ 1 −
P ðyi − ŷiÞ2P ðyi − yÞ2 ; (6)

where yi is the observed AGB on validation plots, ŷi is the predicted AGB, n is the num-
ber of validation plots, and y is the mean observed AGB.

All statistical computing was implemented using open-source R software.63

3 Results

3.1 Field-Measurement of Aboveground Biomass

The descriptive statistics for the field-measured AGB values, calculated from 124 sample plots
(TS) across the two study sites, is summarized in Table 2. The UD site had higher mean and
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Table 3 Modeling assessment using LOOCV for aboveground biomass estimation

Modeling methods Site R2 RMSE (RMSE%) Bias (Bias%) MAE

LM HD 0.47 3.47 (27.99) 0.01 (0.05) 2.77

UD 0.73 6.07 (29.65) 0.03 (0.15) 5.08

TS 0.70 5.44 (32.87) 0.01 (0.04) 4.16

GAM HD 0.49 3.42 (27.63) 0.09 (0.77) 2.71

UD 0.73 6.10 (29.59) 0.00 (−0.01) 4.89

TS 0.70 5.44 (32.85) −0.01 (−0.05) 4.16

RF HD 0.45 3.56 (28.70) 0.06 (0.46) 2.87

UD 0.74 5.98 (29.18) −0.11 (−0.54) 4.57

TS 0.71 5.32 (32.16) −0.14 (−0.87) 4.15

SVM HD 0.48 3.54 (28.53) −0.67 (−5.40) 2.87

UD 0.77 5.66 (27.62) −0.72 (−3.52) 4.47

TS 0.73 5.21 (31.45) −0.62 (−3.74) 3.93

kNN HD 0.47 3.50 (28.18) −0.02 (−0.17) 2.82

UD 0.77 5.64 (27.49) −0.40 (−1.95) 4.46

TS 0.70 5.42 (32.71) −0.08 (−0.50) 4.22

BRT HD 0.42 3.66 (29.50) 0.04 (0.34) 3.04

UD 0.74 5.99 (29.26) 0.13 (0.64) 4.58

TS 0.70 5.41 (32.65) 0.02 (0.12) 4.09

MARS HD 0.45 3.53 (28.46) −0.10 (−0.83) 2.91

UD 0.72 6.24 (30.45) −0.05 (−0.24) 4.81

TS 0.70 5.51 (33.27) 0.09 (0.55) 4.14

CR HD 0.56 3.17 (25.60) 0.03 (0.25) 2.52

UD 0.74 6.07 (29.44) −0.88 (−4.26) 4.95

TS 0.73 5.19 (31.32) −0.42 (−2.56) 3.93

GPR HD 0.44 3.59 (28.88) 0.02 (0.19) 2.93

UD 0.69 6.60 (32.17) −0.22 (−1.11) 5.06

TS 0.71 5.38 (32.46) −0.02 (−015) 4.13

Note: HD, highly degraded; UD, un-degraded; and TS, total surveyed sample plots across two test sites; best
results are shown in bold format.

Table 2 Summary statistics of aboveground biomass (tons/ha) based on field data from the two
different study sites.

Study area

Statistical parameters

No. sample plots Mean Minimum Maximum Range Standard deviation

HD 61 12.6 4.7 20.5 15.8 5.0

UD 63 20.5 0.0 53.0 53.0 11.9

TS 124 16.6 0.0 53.0 53.00 9.9

Note: HD, highly degraded; UD, undegraded; and TS, total surveyed sample plots across two test sites.
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standard deviation (20.5 and 11.8 ton∕ha, respectively) than the HD site (12.6 and 5:0 ton∕ha,
respectively). The mean AGB at the HD site was 39% lower than at the UD site.

3.2 Comparative Analysis of the Models

3.2.1 Comparative analysis of modeling methods by LOOCV

A comparative assessment of the nine tested modeling methods revealed differences among
these methods in terms of the accuracy of AGB estimates.

Evaluation of the level of agreement between observed and predicted values (R2) showed that
for each of the modeling methods tested, the UD (0.69 to 0.77) and TS sites (0.70 to 0.73) had
higher R2 values compared to the HD site (0.42 to 0.56). (Table 3, Figs. 2–4). For the HD site, the
CR method (R2 ¼ 0.56; RMSE% ¼ 25.60% of the mean; Bias% ¼ 0.25% of the mean; and
MAE% ¼ 20% of the mean) slightly outperformed all of the other methods (Table 3,
Fig. 2). For the UD site, the R2, RMSE%, and MAE% of the kNN method were slightly better
than the other methods (R2 ¼ 0.77; RMSE% ¼ 27.49% of the mean, andMAE ¼ 21.75% of the
mean, respectively). However, the CR yielded Bias and Bias% higher than other methods at the

Fig. 2 Observed AGB versus predicted AGB by LM, GAM, RF, SVM, KNN, BRT, MARS, CR, and
GPR via LOOCV for the HD site. The solid line indicates the optimal regression of observed versus
predicted AGB (the corresponding equation and coefficient of correlation are also represented)
and the dashed line indicates the 1:1 line of perfect agreement.
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HD site (Table 3, Fig. 3). Across all plots combined (TS), both the SVM and CR methods
resulted in R2 values of 0.73; RMSE of ∼5.2 ton∕ha (∼31% of the mean); and MAE of
3.93 ton∕ha (23.67% of the mean) (Table 3, Fig. 4).

Bias was only slightly different among methods, typically below 2% for each test site (which
equates to ∼0.25 and 0.41 ton∕ha for HD and UD, respectively). SVM and CR, however, did
yield more biased results (Table 3). The SVM CR models tended to under-estimate AGB by
more than 3.5% for some sites (Table 3). In most cases, however, the modeling methods yielded
unbiased predictions of AGB. (Table 3).

3.3 Predictor Variables

The results of the study indicated that the extracted Landsat spectral variables had different utility
in each of the modeling methods for AGB estimation across sample sites. Overall, the selected
variables included simple band ratios, raw bands, linear transformation (i.e., TC and PCA), and
vegetation indices (Table 4).

Fig. 3 Observed AGB versus predicted AGB by LM, GAM, RF, SVM, KNN, BRT, MARS, CR, and
GPR via LOOCV for the UD site. The solid line indicates the optimal regression of observed versus
predicted AGB (the corresponding equation and coefficient of correlation are also represented)
and the dashed line indicates the 1:1 line of perfect agreement.
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4 Discussion

Accurate and timely estimation of forest biomass has increasingly been highlighted as critical for
improved forest ecosystem management, considering the role of forests in the global carbon
cycle. AGB estimation using remotely sensed predictor variables faces several uncertainties,
and its accuracy is affected by the choice of modeling method, the selection of predictor var-
iables, and the inherent forest stand characteristics.2,8 In this paper, we assessed how these factors
influence AGB estimates in Zagros coppice oak forests. For each combination of factors, we
calculated R2, RMSE, Bias, and MAE diagnostics using LOOCV.

Although it is difficult to compare our results to other studies with different forest conditions,
sampling designs, and modeling methods, the highest R2 and lowest RMSE% results from our
study (UD ∼ 0.77 and 27.5%, respectively; TS ∼ 0.73% and 31.1%, respectively) are generally
consistent with results from other Landsat-based forest AGB estimates.10,11,14,24,28,29,33,41,64 The
accuracy of the results in our study is likely attributable, in part, to the low-biomass density at our
study sites. In most studies of AGB estimation based on passive optical remote sensing, data
saturation has been reported as a major challenge or source of uncertainty in forests with closed
canopies and complex stand structure.11,12,22,23,28,35 The relatively low biomass in Zagros forests

Fig. 4 Observed AGB versus predicted AGB by LM, GAM, RF, SVM, KNN, BRT, MARS, CR, and
GPR via LOOCV for the TS site. The solid line indicates the optimal regression of observed versus
predicted AGB (the corresponding equation and coefficient of correlation are also represented)
and the dashed line indicates the 1:1 line of perfect agreement.
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resulted in fairly low-reflectance values recorded for the NIR band, therefore, data saturation was
not an issue.28

Another potential reason for the high accuracy of AGB estimates in our study might be
related to the allometric equations that we used to calculate tree-level AGB. Previous studies
have frequently used allometric functions for tree biomass based on characteristics such as
the diameter of the trunk or the height of the tree, but here we used allometric equations
that were based on crown canopy diameter. Optical-sensors such as Landsat 8 OLI record
the spectral reflectance of properties related to canopy cover, therefore, these datasets are effi-
cient for horizontal vegetation structure such as crown canopy rather than vertical vegetation
structure (e.g., diameter or height of tree).1,2,13,23

4.1 Predictive Performance of the Modeling Methods

The importance of modeling methods in remote sensing-based forest biomass estimates is a
complicated issue. Some studies have revealed that the method of prediction is not an issue
in AGB estimation,2,11,32,44 whereas other researchers have reported that the modeling method
plays a key role in remote sensing-based forest ecosystem biomass estimates.8,13,25

In this study, various modeling methods were used for remote sensing-based forest biomass
estimation, with no clear conclusion on what algorithms perform best. The accuracy estimates of
these methods depend upon the forest stand characteristics, the sample size, and the method of
accuracy evaluation.11 Here we investigated the effect of field sites (two cases) and validation
metric (four cases) on the accuracy of Landsat-based AGB prediction by nine different modeling
methods.

The results demonstrate that it is difficult to reach a solid conclusion as to which modeling
method is the most accurate. For instance, for the HD site, in terms of R2, RMSE, and MAE, the
results of LM, GAM, SVM, CR, and GPR methods were only slightly different. However, SVM
yielded the most biased prediction (−5.40% of the mean). We also documented only slightly
different results for the UD site for LM, RF, SVM, kNN, and CR. In terms of R2, RMSD, and
MAE, all of these methods except GPR yielded approximately the same values. All in all, con-
sidering the bias at the two test sites (and their combination) by LOOCV, the SVM and CR
methods were markedly poorer than the other tested models. This phenomenon can be explained
by the fact that SVM is strongly affected by parameterization, and it can yield the best results
only if its parameters are optimal.31

LM yielded acceptable results compared to semi- and nonparametric modeling methods,
which can be explained by the fact that the relationships between Landsat-derived predictors

Table 4 Predictor variables selected for each modeling method.

Modeling
method

Site

HD UD TS

LM N/R, R S1/S2, MSAVI2 N/R, GREENESS

GAM R, N G/S1, N/S2 N/R, S1/S2

RF N/R, R S1/S2, MSAVI2 N/R, GREENESS

SVM N/R, R S1/S2, MSAVI2 N/R, GREENESS

kNN R, NDVIC TCA, GREENESS N/R, G/N, S1/S2

BRT N/R, NDVI TCA, S1/S2 N/R, G/N, S1/S2

MARS N/R, B/R TCA, S1/S2 N/R, S1/S2

CR G, DVI, GREENESS S1, S2, GREENESS N, R, B

GPR N/R, R, NDVIC TCA, N/R PC5, GREENESS, S1/S2

Note: HD, highly degraded; UD, undegraded; and TS, total surveyed sample plots across two test sites
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and observed AGB are likely linear, and therefore, well modeled by LM. It might be a result of
canopy cover-based allometric equations that were used and also the fact that AGB did not reach
the spectral saturation point. Spectral reflectance is sensitive to forest crown canopies, therefore,
it can better predict canopy characteristics.13,23 The highest AGB values measured in sample
plots (HD and UD sites: 20.49 and 52.95 ton∕ha, respectively) are lower than saturation values,
such as 150 ton∕ha, reported elsewhere.22,35

Our findings illustrate that the model performance depends on both field data and modeling
methods. Therefore, because of the low-biomass density in the HD site and the absence of spec-
tral saturation, AGB can be well-modeled linearly by spectral variables. However, for the HD
site, CR was the best prediction method (R2 ¼ 0.56, RMSE% ¼ 25.60%, and Bias% ¼ 0.25%).
Gleason and Im32 and Güneralpet al.13 reported weak performance of CR methods, whereas
Blackard et al.65 and Chenet al.66 selected CR as the best method for biomass modeling.
However, the modeling method is best selected based on the research goal. If the precision
of the prediction is the most important factor, then SVM and CR methods should be considered;
in contrast, if the degree of under- or over-prediction of the modeling method is the most impor-
tant factor, then other methods such as BRT, RF, kNN, and GAM should be considered.

4.2 Predictor Variables

It is essential to understand how remote sensing data are related to AGB. Different spectral data
sets are available for AGB estimation from remote sensing data such as original raw bands,
simple band ratios, vegetation indices, and linear transformations. In this study, we used a
large diversity of spectral information. Several researchers have shown that the original
raw bands and vegetation indices are efficient for remote sensing-based biomass
estimates.11,22,28,30,42,67 Our findings demonstrate that it is not possible to select specific variables
or variable groups as the best explanatory variables.

Among explanatory variables that we tested here, original raw bands and their simple ratio
combinations (e.g., red/near-infrared and shortwave-infrared 1/shortwave-infrared2) were com-
monly selected by different models. This is in agreement with other studies in dryland and low-
biomass forests.7,14,22,28,68 We rarely used NDVI and soil adjusted indices as the final variables in
the models. Sensitivity of NDVI to AGB is reduced by background soil reflectance and shadow
in low-biomass forests.7,64 Zandler et al.15 and Gasparriet al.28 found that soil adjusted indices
were not useful in AGB estimates because of the complexity of building a generalized soil line.
Many studies have identified shortwave-infrared bands as being critical variables for AGB esti-
mates for different forest types.7,14,69,70

4.3 Effect of Human-Activities on Aboveground Biomass Estimate Accuracies

Fragile ecosystems, such as Zagros forests, which are affected by traditional human activities,
require continuous monitoring. Since human activities create different forest structures and com-
position, different spectral data sets and modeling methods are needed. As this study demon-
strates, the accuracy of AGB estimates for the HD site was lower than for the UD site as well as
for all sites combined. The main reasons for this are the low canopy cover of degraded stands
and, therefore, a high likelihood of error for biomass calculations based on these field data. The
allometric equations used in this work were derived based on the assumption that trees have
symmetric crowns, but because of traditional rural harvesting practices such as pollarding of
trees at the HD site, this assumption was not always met, which resulted in higher error for
biomass calculation, as well as weaker relationships between tree crown parameters and bio-
mass. The low canopy cover at the HD site leads to mixed pixels containing background reflec-
tance from vegetation, soil and understory vegetation.14,15,35

5 Conclusion

Accurate estimation of AGB at broad scales is critical for understanding forests’ contribution to
the carbon cycle and the terrestrial carbon budget and for improving decision making processes.
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Constructing an accurate and cost-efficient model for AGB estimates in low-biomass forests is
an important task to meet these needs. This study explored a comparative analysis of nine mod-
eling methods and evaluation methods for AGB estimation in Zagros forests under different
levels of human activity. An extensive range of spectral information was derived from
Landsat 8 OLI imagery and used as input to parametric, semiparametric, and nonparametric
models. The following conclusions were drawn:

• It is possible to estimate AGB using Landsat 8 OLI data with relatively high accuracy.
• The accuracy of AGB estimates related to site conditions based on human disturbance

levels.
• If the research goal is to minimize prediction error, then SVM and CR should be consid-

ered; if the goal is to minimize bias, then LM, kNN, BRT, GAM, and RF should be
considered.

• The preferred models were derived based on different sets of predictor variables; therefore,
it was not possible to select the best variable or group of variables for all cases.
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