
Safety Assurance of Medical Cyber-Physical Systems
using Hybrid Automata: A Case Study on Analgesic

Infusion Pump∗

Priyanka Bagade, Ayan Banerjee, and Sandeep K.S. Gupta
IMPACT Lab

Arizona State University, Tempe, Az
{pbagade,abanerj3,sandeep.gupta}@asu.edu

ABSTRACT
Interactions between the medical devices and the human
body in Medical Cyber Physical Systems (MCPSes) are con-
sidered for verifying patient’s safety. The discrete and con-
tinuous dynamics of an MCPS require a hybrid approach
towards modeling and analysis. In this regard, hybrid au-
tomata is used to model analgesic infusion pumps, an ex-
emplary MCPS application. Excursions of unsafe states in
this model such as respiratory distress due to drug over-
dose, are analyzed by hybrid automata reachability anal-
ysis. However, given the time delayed dynamics of tradi-
tional reachability analysis using Zonotope approximations
of states is not feasible. Thus, we propose a zero order hold
approximation on the time delayed state variables and per-
form the reachability analysis on the resulting approximate
model. We also provide a bound on the maximum error of
the reachability analysis methodology.

Categories and Subject Descriptors
D.2.4 [Software Verification]: Formal methods

Keywords
Hybrid Automata, Reachability Analysis, Infusion Pump

1. INTRODUCTION
In recent years, technological advancement has enabled

embedding computing units in a human body which moni-
tor and control physiology as well as actuate critical life sav-
ing medical operations such as drug infusion. Such Medical
Cyber-Physical Systems (MCPSes) are by definition safety
critical [26] and guarantees the safety of the human body
e.g. drug concentration should not go over a threshold for
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Figure 1: Network controlled infusion pump.

normal operation before marketing. This paper deals with
the modeling, designing, and verification of such MCPSes
for their greater social acceptability.

An important aspect of MCPSes is the seamless and com-
plex interactions among the computing units and the hu-
man body, referred to as cyber-physical interactions. Such
interactions can be often un-intentional and hazardous to
the environment. For example, heat generated from a pulse
oximeter can burn the human skin [13] or the chemotherapy
drugs may kill normal cells apart from the cancer cells [17].
It is therefore imperative that an MCPS maintains such in-
teractions within the desired limits to ensure its safe opera-
tions.

Experimental evaluation of MCPSes can be intrusive and
hazardous when safety requirements are violated. As such,
automated verification through model checking, similar to
the verification of safety-critical systems [22], is required.
To this effect, development of proper models to character-
ize the interactions in MCPSes is imperative for analyzing
their safety. A Federal Networking and Information Tech-
nology Research & Development (NITRD) report has in-
deed identified the importance of new design abstractions
for MCPSes [26]. This paper is a step towards that.

Research advances in the formal methods world has pro-
posed hybrid automata (HA) [15] as a mathematical repre-
sentation to describe the operation of complex control sys-
tems. Such a representation, allows one to characterize both
continuous and discrete dynamics in a unified framework.
This feature is particularly useful in formalizing and ana-
lyzing MCPSes. Figure 1 shows an analgesic infusion pump
which is the example MCPS used in this paper. The infusion
pump software includes a discrete control algorithm that
samples the human physiology as feedback and decides on



the future infusion rates to control a steady level of analgesic
drug. Thus, on one hand, MCPSes such as analgesic infu-
sion pumps are software controlled, where the software op-
eration essentially implements certain discrete control logic.
On the other hand, continuous dynamics govern their me-
chanical/electrical actuation and their (continuous) interac-
tion with the patients and the environment. Intuitively HA
are most capable of expressing the dual nature of MCPSes.
The HA uses discrete states to model control operation while
it uses continuous variables to model the dynamics. The val-
ues that the continuous variables assume at any given time
is called the state of the HA. The set of all possible values
of the state is called the continuous state space.

The principal advantage of modeling MCPSes using HA
is that patient safety properties can be theoretically proven.
However, the safety violations in the systems might occur
due to random events which can not be captured by HA.
Finite state machine model checking is needed to address
these issues, but it does not represent continuous and dis-
crete dynamics of MCPS. For the analgesic infusion pump,
if the drug concentration increases beyond a certain pre-
scribed value then it causes respiratory distress in the pa-
tient. Safety properties such as drug concentration should
be below certain threshold, can be specified using simple re-
lational operators in an HA model e.g., greater than or less
than the threshold. Such relational specification of safety
properties implies that certain subset of the continuous state
space is unsafe. Given such an unsafe region, the reachability
analysis of the HA can be used to check whether the safety
properties are violated at any time. Reachability analysis
outputs the possible values that the continuous states of the
HA model of the MCPS can assume at any given time, also
called the reach set. Intersection of the set of possible values
with the unsafe set entails that there exists a time when the
physical parameters of the MCPS assumed unsafe values. In
such cases, it is clear that the MCPS design is unsafe.

Formalizing MCPSes as mathematical representations like
HA models can thus: 1) allow manufacturers to reduce am-
biguity and understanding in the safe design of these devices;
2) enable one to consider the safety of MCPSes under the
context of device-human interaction; and 3) provides greater
confidence for approving agencies such as Food and Drugs
Administration on the marketability of the device.

The goal of this paper is to model the cyber-physical in-
teractions among the computing and physical entities in the
MCPSes and prove patient safety properties. The operating
modes of the software are represented using discrete states
while the human physiology is represented using differen-
tial equations. The transitions between states represents
the evolution of device-human interaction over time. Specif-
ically, we consider an analgesic infusion pump and model
its discrete control algorithm using discrete states in hybrid
automata and the drug diffusion dynamics using linear state
space equations.

Reachability analysis of HA is an undecidable problem [15].
Researchers have considered an over-approximation of states
to tractably compute the reachable states of HA. However,
such approximation is only applicable to linear dynamics.
Interestingly, the linear dynamics of the drug diffusion is
time delayed. For time delayed systems there has been lim-
ited research on reachability analysis. Several authors have
successfully attempted to solve the stability problem of hy-
brid systems with time delayed dynamics [21,28]. The stabil-

ity problem only proves that the hybrid automata will reach
a stage when the change in state variables will be within a
given upper and lower bound. As long as the upper bound
on error is an over-approximation of actual value (does not
have to be accurate), it is guaranteed that the actual model
is safe.

In this paper, we make a zero order hold approximation
for time delayed variables. It enables us to use existing lin-
ear HA algorithm. We introduce extra delay state variables
in the HA to model the time delayed version of a given
state variable. For a state variable with delay Ti, we en-
force a discrete transition every Ti time interval and reset
the values of the delay state variables to the most recent
value of the state variable. Such an approximation leads
to an error in state estimation. In this paper, we also pro-
vide an upper bound on the error of state estimation for
the infusion pump example. We use SpaceEx [10] reachabil-
ity analysis tool to perform the reachability analysis using
zonotopes on the analgesic infusion pump example and de-
rive the safe and unsafe states. Reachability Analysis of
pharmacokinetic model has been proposed [25], however it
only considers fixed time step and linear dynamics of the
system without considering transport delay. Our technique
allows usage of more accurate SpaceEX reachability analy-
sis algorithm which uses variable time steps and also enables
consideration of transport delay.

The rest of the paper is organized as follows. Section 2
discusses the analgesic infusion pump example in detail. Sec-
tion 3 discusses the hybrid modeling of the analgesic infusion
pump example, the safety properties that can be analyzed
and the reachability analysis technique. Section 4 provides
the error analysis of the reachability study. Section 5 demon-
strates the results of the reachability analysis and errors as-
sociated with it. Section 6 gives an overview of the related
works in the area of medical device safety analysis. Section
7 discusses the applicability of the hybrid system approach
and fundamental challenges faced in applying this technique
to other MCPSes and, finally section 8 concludes the paper.

2. ANALGESIC INFUSION PUMP
Consider the case of a wearable infusion pump on an user

delivering anesthetic as shown in the Figure 1. The operator
issues a constant anesthetic concentration in the blood as an
input, which is to be maintained by the infusion pump for a
given time. The infusion pump control algorithm takes this
as the reference input and uses feedback from the pharma-
cokinetic model of the diffusion process to control the infu-
sion rate so that the desired drug concentration is reached.
In this process, the infusion pump first infuses drug with an
initial rate. Then based on the estimation of the drug con-
centration level in the blood for this initial infusion, through
the pharmacokinetic model, the pump modifies its future in-
fusions until the drug concentration is stable and the desired
drug level is reached.

2.1 Discrete Control Algorithm
The control algorithm [18] of the pump is given in Algo-

rithm 1. The initial infusion rate is x0. Table 1 gives a list
of notations used in this paper. The control algorithm dis-
cretizes time and queries the pharmacokinetic model after
each discretized step δt for an estimation of the drug con-
centration. It then either increases the infusion rate by δx
or decreases it according to a linear approximation of the



Table 1: Notations for reachable states and over approx-
imations.

Notation Definition

y1 state space variable
y2 state space variable
z1 drug concentration in blood
z2 arterial drug concentration
u infusion rate at time t
Ap a state matrix
As a state matrix
Bp a state matrix
Q̇ cardiac output
Cs a state matrix
Cp a state matrix
Ti infusion input delay
Tp cardio-pulmonary transport delay
Tr arterial, capillary and venous transport delays
Q discrete states in Hybrid Automata
V variables in Hybrid Automata
Init initial values of variables in Hybrid Automata
F set of differential equations for each state in Hybrid Au-

tomata
E set of discrete transition relations in Hybrid Automata
G guard conditions to state transitions in Hybrid Automata
ye1 error vector of y1 due to time delay
ye2 error vector of y2 due to time delay
ue error vector of u due to time delay
Ye error vector for state variables
Ue error vector for the input drug concentration
J Jordanian matrix
M Modal matrix
Ymax
e maximum error vector for state variables due to time delay

diffusion process. The initial infusion rate, time discretiza-
tion step and the infusion increment step are the variables
of the control system which can be tuned to obtain different
behaviors. Further, the infusion pump can get random bo-
lus requests. The magnitude of the bolus is also a variable
of the system.

Algorithm 1 Discrete Time Infusion Control(Desired Drug
Level Cpd,Initial Infusion(x0),Increment Step(δx),Time
Step(δt)).

1: NoOfSteps = Total Time / δt // time discretization
2: for i = 1 to NoOfSteps do
3: Infusion Rate xi = xi−1

4: Predicted Drug Level Cpp = Pharmacokinetic Simulation with infusion
rate xi

5: Increment Infusion Rate xincr = xi + δx
6: Predicted Future Drug Level Cpf = Pharmacokinetic Simulation with

infusion rate xincr

7: slope =
Cpf−Cpp

xincr−xi
// assume linear variation of drug concentration with

infusion rate
8: Cp0 = Cpp - slope × xi

9: if Cp0 ≥ Cpd then
10: New Infusion Rate xi+1 = Cp0−Cpd

slope

11: else
12: New Infusion Rate xi+1 = xincr

13: end if
14: end for

2.2 Analgesic Interactions
The pharmacokinetic model expresses the drug diffusion

process as a set of multi-variable linear differential equations
in state space form (Equation 1).

ẏ1 = Apy1 +BpQ̇z2 +Bpu(t− Ti), (1)

z1 = Cpy1(t− Tp),
ẏ2 = Asy2 +BsQ̇z1,

z2 = Csy2(t− Tr).

Here y1 and y2 are the state space variables of the equa-
tion. y1 consists of vectors of left heart, lung blood, lung
tissue and right heart compartments through which infused
drug passes. Newly infused drug merges with recirculated
drug from Vessel Rich Group, Muscle, Fat and Residual
drug which is represented by y2 state space variable vec-
tors. Ap, As, Bp, Q̇, Cs, and Cp are constants. z1 is the
drug concentration in the blood while z2 is the arterial drug
concentration. The initial infusion rate u = x0 is the in-
put to the model and the output is the drug concentration
in the blood. The differential equations in the model are
time-delayed. They consider time delays related to the in-
fusion input (Ti), cardio-pulmonary transport delay Tp and
the arterial, capillary and venous transport delays Tr. The
time-delayed nature of the physical process comes from the
consideration of the transport delays.

3. MODELING INFUSION PUMPS USING
HYBRID AUTOMATA

In general a hybrid dynamical system is defined as:

Definition 1. Hybrid Automata (HA): The HA [15] is a
tuple M = {Q,V, F, Init, E,G}, where:
- Q = ({q1, q2....qn}) ∪ b is a set of n+ 1 discrete states.
- V = {v1, v2, . . . , vm} is a set of m real numbered variables
in the real set R.
- Init : Q× V → R is a set of functions, which specifies the
initial values of the variables in V for each discrete state,
which are also the boundary conditions for solving the dif-
ferential equation.
- F : Q × V → Exp(Σ) denotes a mapping that maps each
variable for a given discrete state to a function of the form
F (v, v̇, Init(q, v)) = 0. F is typically a set of differential
equations for each state in Q, which governs the temporal
variation of the continuous variables in V . The set of all
functions F is denoted by Exp(Σ).
- E ⊆ Q × Q is a set of discrete transition relations in the
model. Presence of the ordered pair (qi, qj) indicates a tran-
sition from state qi to qj.
- G: E×2V → R OP R is a set of relations to specify guard
conditions to state transitions, where OP is the set of rela-
tional operations {<,>,≤,≥}. A member in G can be the
equation v1.v2 > α where α ∈ R is a constant.�

We apply this definition to the infusion pump example
and define a hybrid automata representation. The control
algorithm of the infusion pump is represented using finite
state automata (FSA) as shown in Figure 2. Each state
of the FSA representation is associated with the continuous
dynamics of analgesic diffusion. For the infusion, Definition
1 can be instantiated as follows -

• Q = {Normal,Off, PCA} is a set of discrete states.
In Normal state the infusion pump inserts drug with
specified infusion rate. When drug concentration at set
point goes above threshold value dhigh, infusion pump
stops working until drug concentration comes back to
normal. Patient might ask for bolus, in PCA state,
the extra drug gets infused depending on the request.

• V = { xLH ,xLB ,xLT ,xRH ,xV RG,xM ,xF ,xR,u,t } is a
set of variables, where x represents drug mass at differ-
ent components of the organ. LH,LB,LT and RH are



Figure 2: Hybrid Automata model for Infusion
Pump.

left heart, lung blood, lung tissue and right heart com-
partments of the cardiopulmonary subsystem. V RG,
M , F and R represents Vessel Rich Group, Muscle,
Fat, Residual from systematic subsystem. u represents
effective infused drug concentration.

• At each discrete state the Init mapping enables us to
specify the control decisions. The control decision of
the infusion pump is the future infusion rate u. Thus,
in the normal state the value of u is computed accord-
ing to Algorithm 1. In the PCA state, the value of u is
incremented by a constant bolus value. In the off state
the value of u is set to zero. In addition in each set the
value of variable t is set to zero in order to keep track
of the time spent in the state.

• The differential equations used in each state are similar
to the Equation 1. In addition to keep track of time
the equation ṫ = 1 is also included.

• E represents the transitions in the FSA. In infusion
pump FSA, total five transitions are possible, from
Normal to Off and reverse, Normal to PCA and re-
verse, and PCA to Off. These transitions are governed
by guard conditions defined in G.

• G are the guard conditions to decide transitions be-
tween the states of FSA. The OP defines the relational
condition of guard in terms of less than, greater than
or equal to. When drug concentration goes beyond
threshold dhigh, infusion pump hybrid automata model
goes in Off state. It stays in off state until drug con-
centration becomes normal. If the user or patient asks
for bolus and if drug concentration goes below dlow,
PCA state comes into picture to infuse extra drug.

3.1 Safety properties in MCPS
Safety is a property of an MCPS by virtue of which it can

be guaranteed that there will be no harm to the infrastruc-
ture and to the human body during normal or faulty opera-
tion of the system. The most generic definition of safety for
a MCPS can be found in the ISO 60601 standard for safety
of medical electrical equipment. ISO 60601 defines safety as
the avoidance of hazards due to the operation of a medical
device under normal or single fault condition [1]. One of the
unique features of an MCPS is the interaction of the comput-
ing unit with the physical environment. Hence, for MCPSes
the safety concerns are related to the interaction between the
computing device and the physical environment, interaction
safety.

Interaction safety: Traditionally, researchers have focused
on bypassing this interaction characterization and trans-
forming the safety assurance problem into a well understood
problem in computer science such as formal model reacha-
bility analysis. In this regard, several static assumptions
on the physical environment has been considered, which ab-
stract out the dynamic nature of the physical environment.
For example, in works such as [4, 19], infusion pump soft-
ware has been modeled using a timed automata. The dif-
fusion process is simplified so that the drug concentration
in the blood is incremented by the infusion rate instanta-
neously. The problem of safety assurance is consequently
reduced to developing bug free software or a control system
analysis problem. Such simplified notion of safety, however,
may not entirely capture the hazards resulting from the dy-
namic cyber-physical interactions. In essence more focus is
needed on the interaction safety.

Addressing interactions safety is a challenging task. Prin-
cipally, it requires exact understanding of the physical pro-
cesses of the environment and the properties of the comput-
ing unit that affect the physical processes. In this paper,
special focus is given on interaction safety of MCPSes. For
the specific case of analgesic infusion pump, the drug over-
dose is a result of faulty interaction of the discrete infusion
control algorithm with the physical dynamics of drug diffu-
sion.

3.2 Reachability analysis of HA
The reachability analysis of HA considers the computa-

tion of the states that the continuous variables can reach
at any point in time. The reachability analysis depends on
infinite precision computation of the solution of the state
space equations. For a given linear differential equation:
ẋ = ax(t) + bu(t), where a and b are constants and u(t)
is the input, the reachability analysis assumes that we can
compute x(t) for a time t using the Equation 2.

x(t) = eatx(t0) +

∫ t

t0

ea(t−τ)bu(τ)dτ. (2)

Such a computation of x(t) from x(0) is referred to as the
image computation from an initial state x(0) for a time t.
Given a set of continuous state V , as an initial state, the
reachability analysis starts by computing the image of the
initial state V and appending it to the reach set. An initial
state is generally specified using some form of initial condi-
tions, which may be satisfied by infinite number of states.
It is an intractable proposition to go through each state and
compute its image. Instead suitable approximation of the
states using convex polygonal cells are used. Such approx-
imations over estimate the reach set but enable tractable
execution of the reachability analysis algorithm. Thus, at
any point in its execution the reachability analysis algorithm
keeps track of a symbolic state S, which comprises of: a) a
reach set R, a collection of convex polygons and b) a discrete
state of the controller qi. The reachability analysis algorithm
uses the following steps: a) from this symbolic state S the
images of the vertices of the convex hull of R, Imag(Rv), is
computed using Equation 2, b) if no member of Imag(Rv)
satisfies a guard condition then S = {qi, Imag(Rv)} is the
new symbolic state and R

⋃
Imag(Rv) is the new reach set,

c) otherwise if a guard condition is satisfied then the corre-
sponding transition is processed and the new discrete state
qj is obtained, and d) for this state qj the Init function



S1 S2 

it T

it T

S3 S4 

it T

it T
rt T

rt T

1

1

( , ( )) ( )

( , ( )) ( )

p i p

s s s

Init S x t T x t

Init S x t T x t

S0 S5 

it T it T

0

0

0

( , ( )) ( )

( , ( )) ( )

( , ( )) ( )

p i p

s s s

s r s

Init S x t T x t

Init S x t T x t

Init S x t T x t

Figure 3: Each state of Figure 2 is further repre-
sented using six states and transitions between them
in order to represent transport delays.

is applied on the Imag(Rv) to obtain the new symbolic
state S = {qj , Init(qj , Imag(Rv))} and the new reach set
is R

⋃
Init(qj , Imag(Rv)).

3.3 Implementation in SpaceEx
Proving safety properties of hybrid systems is a well es-

tablished research topic. Reachability analysis of hybrid au-
tomata is an undecidable problem for any general linear dy-
namics. Nevertheless several tools are being proposed for
reachability analysis of hybrid automata with a restricted
set of continuous dynamics. Tools such as HyTech [16] fo-
cused on relatively simple continuous dynamics in each dis-
crete state, where the derivative of the continuous variables
does not depend on any external inputs. For such hybrid au-
tomata, the computation of reachability to different states
can be realized using linear algebra. However, in such meth-
ods one can easily find cases which were undecidable and
could not be solved.

Hybrid verification tools proposed in [2,5,8] focus on com-
puting approximations of the reachable states for systems
having linear continuous dynamics with external inputs. How-
ever, these tools cannot handle systems with more than tens
of continuous variables. Only recently there has been efforts
to over-approximate reach sets using Zonotopes [12], which
has led to a dramatical increase in the number of variables
that can be handled. Tools that support such analysis are
SpaceEx [10], HybridSAL [27], and PHaver [9]. Among the
three, SpaceEx uses variable time steps in simulating time
and provides reach sets within a lower error bound. It uses
an improved approximation model by combining polyhedra
and support function representations of the continuous state
space to provide better accuracy. Thus, in this paper we use
SpaceEx to specify and analyze our hybrid automata model.

SpaceEx however does not support time delays in the dif-
ferential equations. To model time delays in SpaceEx we
consider an approximation strategy. We see that there are
two sets of time delays: a) Ti = Tp = Ts = 5s and b) Tr =
30s. We represent each state of the infusion pump hybrid
automata as a collection of six states as shown in Figure 3.
We consider two types of transitions one of which occurs ev-
ery Ti seconds and the other occurs every Tr seconds. Now
in each state we keep separate variables y′1(t) and y′2(t) for
storing the value of y1(t − Ti) and y2(t − Tr), respectively.

During each transition the parameters y′1 and y′2 are reset
to the current values of y1 and y2 using the Init functions
of the HA definition as shown in Figure 3. This means that
whenever the HA is in state S1 it resets the value of y′1 to
the current value of y1(t) and does not change it for Ti sec-
onds after which it transits to S2. On transition to S2 the
value of y′1 is again set to the current value of y1(t). Thus,
every Ti seconds the parameter y′1 gets the correct value of
y1(t − Ti). Same thing happens with y′2 every Tr seconds.
Such an approximation allows us to use SpaceEx for time
delayed systems albeit with a cost of inaccuracy. In Section
4, we analyze the error of such an approach.

4. ERROR ANALYSIS OF THE TIME DE-
LAY APPROXIMATION

In our hybrid system specification we assume a zero order
hold approximation for the delayed state variables i.e., y1(t−
Ti) = y1(t), y2(t − Tr) = y2(t), and u(t − Ti) = u(t). This
will introduce error in valuation of the state variables. Let
us consider that the error in y1, y2, and u is denoted by
ye1, ye2, and ue, respectively. Due to these errors there will
be errors in the differentials as well and the errors will be
governed by the state space equations as shown in Equation
3.

ẏe1 = Apy
e
1 +BpQ̇Csy

e
2 +Bpu

e, and (3)

ẏe2 = Asy
e
2 +BsQ̇Cpy

e
1.

Note that the errors in y1 and y2 themselves form a linear
time invariant system. The equation set 3 can be converted
to a single equation of the form: Ẏe = AYe + BUe, where

A =

(
Ap BpQ̇Cs

BsQ̇Cp As

)
and B =

(
Bp
0

)
, Ye is the error

vector for state variables, and Ue is the error vector for the
input. Such a state space equation can be solved using the
modal decomposition method [14]. The solution is of the
form given in Equation 4.

Ye = eATiYe(0) +

∫ Ti

0

eA(Ti−τ)BUedτ. (4)

We find the Jordanian J of the matrix ATi and the modal
matrix M and compute eATi as eATi = MJM−1. The max-
imum value of the error in state estimation Ye is then given
by Equation 5.

Y maxe = max(MJM−1)Ye(0) +max(MJM−1)TiBUe. (5)

Since the error is an over approximation of state variables’
rate of change systems deemed unsafe are truly unsafe. How-
ever, some safe configurations can also be considered unsafe.
The values of the error for the analgesic infusion pump is
given in Section 5.3.

5. REACHABILITY ANALYSIS RESULTS
Reachability analysis of hybrid automata is to calculate

the reach set of variable values staring from initial set over
the time. We have applied this method to calculate the reach
set of drug concentration at different points on the human
body using hybrid automata of analgesic infusion pump de-
scribed in above section. If the drug concentration goes
above threshold, we have considered that as unsafe state.
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Figure 4: Reachable states for analgesic infusion pump configuration discussed in Section 5.2

5.1 SpaceEx setup
SpaceEx [10] tool is used to do the reachability analysis

of analgesic infusion pump hybrid automata. The param-
eter values for the system equations are obtained from the
case study on analgesic infusion conducted by [30]. Initial
values of variables are set to 0.52 liters and the initial drug
concentration is considered as 0.3 liters. We are monitoring
the drug concentration at left heart(xLH), lung blood(xLB),
lung tissue(xLT ) and right heart(xRH) parts of the human
body. For the reachability analysis, we have assumed that
drug concentration at monitored points should not go above
dhigh = 2.5 liters and below dlow = 0.6 liters. If it goes
beyond these threshold values, we say that the system is in
unsafe state.

5.2 Reachability results
Figure 4 illustrates the reachable set for monitored points.

The shaded region indicates the possible values that state
variable of monitored points can take. The state variable
values are obtained by using system Equation 1. It can be
expressed as, xLH = cd × VLH , where xLH is the state vari-
able for left heart, cd is the infused drug concentration and
VLH is the volume of the blood into which drug is infused.
From this formula, the highest drug concentration becomes
0.65 liters, using cd = dhigh = 2.5 liters and VLH = 0.26
liters. The bold line is marked at threshold value, 0.65
liters which is the maximum allowable drug concentration.
These reach sets show state variable of lung tissue reaches
above this threshold and system reaches in unsafe state for
lung tissue point over the time. Left heart, lung blood and
right heart monitored points always remain in safe state.
We also logged the runtime of the reachability analysis us-

ing SpaceEx. The time taken to perform the reachability
analysis with 13 state variables was 4.9 seconds on a regular
Intel dual core desktop.

5.3 Error analysis results
Equation 5 is used for computing the maximum error of

the zero order hold approximation for time delayed systems.
We consider a transition every Ti seconds as discussed in
Section 3.3 and an initial maximum error of 0.26 * 2.5 per
min for the state variable y1 and y2, which corresponds to
a maximum error of 2.5 liters in the actual drug concen-
tration. Further, we assume a maximum error of 0.6 liters
in U which corresponds to a bolus input. Then from Equa-
tion 5 we obtain the maximum error to be 0.034 per min in
the state vector. From the reachability analysis results in
Figure 4, we see that the maximum value of the state vari-
ables is around 0.75. It gives a maximum percentage error
of 4.5% which is acceptable based on value of discretization
step. To get better accuracy, discretization step size should
be decreased which will increase computations required for
reachability analysis.

6. RELATED WORK
The past research in MCPS safety analysis can be classi-

fied according to the type of safety addressed.
Scenario safety: It considers the safety of the MCPS and
its environment from a the high level decision making per-
spective. It considers how the MCPS handles random haz-
ardous events occurring in the environment potentially caus-
ing harm to life and infrastructure if not mitigated called
criticalities. Example research in this regard includes the
criticality response planning, evaluation, and actuation [23,



29] framework developed at the IMPACT Lab, Arizona State
University.
Network safety: MCPS can involve a network of comput-
ing units communicating with each other through wireless
or wired channels to achieve mission critical and smart op-
erations. The wireless channel is prone to errors such as bit
errors, burst errors, and multi-path fading errors. Under this
circumstances the network safety ensures that information
transferred from one device to the other is not corrupted,
reaches within a given amount of time, and is not lost due
to errors in the channel. Evaluation of network safety in
medical device networks has been performed by Gehlot et
al. in Villanova University [11].
Software safety: This is a broad area of research and is
related to the operation of the software of the MCPS com-
puting devices. It includes:

1. Code safety, which considers safety from coding errors
such as infinite while loops, unreachable conditions etc.
as performed in the project at the University of Penn-
sylvania [24].

2. Control system safety, which considers safety from un-
dershoot, overshoot, instability and long settling times
(investigated as part of the design of infusion pumps [7]).

Interaction safety: Interaction safety considers the coop-
eration of the software of a MCPS with the dynamic physical
environment. Formal methods has been used extensively
to verify interaction safety of MCPSes. However, most of
these works try to characterize the computational aspects
of the medical device or make simplifications to the physiol-
ogy of the human body. Formal models have been used [4]
to analyze infusion pump software hazards. The use of for-
mal models in medical device regulation has been proposed
[19]. However, none of these works consider formal repre-
sentation of the interactions of the medical device with the
human body. The physiology of heart has been modeled
using a timed automata [20]. The timed automata model
of the heart is a statistical model based on previously col-
lected heart rate data and can only prove properties related
to timing of events. Timed automata is also used to ver-
ify the control actions in a closed loop infusion system with
pulse oximeter signals as feedback [3]. However, according
to the authors the safety evaluation is often not accurate
for more complex interactions of the device with the human
body. Further, the authors have not considered the dynam-
ics of the drug diffusion process in the human body. In this
paper, we model the interaction of medical device with the
drug diffusion dynamics and perform a comprehensive reach-
ability analysis on it. The result of the reachability analysis
is an assessment on the safety of the patient. Further, we
also provide an error bound on the reachability study.

7. DISCUSSION
MCPSes are inherently complex systems and application

of existing hybrid automata theory necessitates a number
of simplifying assumptions. In the example, shown in this
paper we had to employ a zero order hold assumption on
the time delayed system in order to apply HA theory to
the analgesic infusion pump. The model that we used was
simple and not very accurate and still we had to make sim-
plifying assumptions to fit the existing theory of reachability
analysis. Several accurate models of drug diffusion are pro-
posed in recent literature which impose many more hurdles

on using the existing HA theory. A few of the challenges are
listed below:
Non-linear interaction: Non-linearities are inherent in
the human. The infused drug concentration variation over
time inside human body follows an error function curve.
Hence, MCPS models can be non-linear in nature. Non-
linearities can arise in many different forms in a model in-
cluding delays and multiplicative terms. Theoretical analy-
sis techniques for linear hybrid systems thus may not apply
to a large class of MCPSes.
Dynamic context changes: The human body in an MCPS
is constantly undergoing change in context, e.g. weather
changes, change in temperature, change in physiological con-
dition. Mobility, for example, is an primary cause of such
context changes in the system. These changes affect the op-
eration of the computing units in the MCPS, for example,
movement from indoor to an outdoor environment changes
the packet delivery rate (PDR) of the wireless medium, which
can lead to loss of control information between the controller
and the actuation device in an MCPS. Safety analysis of
MCPSes should consider such dynamic changes in the en-
vironment as a part of the model. Reachability analysis of
hybrid automata does not consider random events.
Spatio-temporal interactions: The interactions in an
MCPS, can often be spatio-temporal in nature. For example,
more accurate models of drug diffusion express the effects of
drug over space and time. Capturing spatio-temporal effects
requires multiple independent variables that determine the
evolution of the model. Researchers have extensively stud-
ied models that evolve over a single independent variable,
most commonly time. However, there exist limited efforts
to capture model evolution over both space and time.
Aggregate effects: Many MCPSes, such as network of
sensors on body, comprise of more than one computing enti-
ties distributed across the environment. They often perform
concurrent operations; thus causing aggregation of the detri-
mental impact on the environment from multiple nodes. For
example, in chemotherapy multiple drugs are infused simul-
taneously to achieve a desired cancer cell death ratio which
cannot be achieved if the same dosage of any one drug is
administered. Such effects have been very recently consid-
ered in the hybrid system analysis domain [6]. It requires
development of new theories far beyond the realms of linear
time dependent hybrid system analysis.

8. CONCLUSIONS
In this paper, we have used hybrid automata for formal

patient safety verification of analgesic infusion pumps. In
doing so we have outlined several challenges of hybrid mod-
eling and analysis of MCPSes in general. MCPSes often have
time delays which makes the reachability analysis of hybrid
automata intractable. We have proposed a zero order hold
approximation technique that allows reachability analysis of
time delayed hybrid models. The methodology is prone to
errors and we have also provided a bound on the error of
the reachability analysis. We have applied the technique
to analgesic infusion pumps and have obtained the unsafe
configurations that can cause respiratory distress.
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R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. Spaceex: Scalable verification of hybrid
systems. In Proc. 23rd International Conference on
Computer Aided Verification (CAV), LNCS. Springer,
2011.

[11] V. Gehlot and E. B. Sloane. Ensuring patient safety in
wireless medical device networks. Computer, 39:54–60,
April 2006.

[12] A. Girard and C. Guernic. Zonotope/hyperplane
intersection for hybrid systems reachability analysis.
In Proceedings of the 11th international workshop on
Hybrid Systems: Computation and Control, HSCC ’08,
pages 215–228, Berlin, Heidelberg, 2008.
Springer-Verlag.

[13] D. G. M. Greenhalgh et al. Temperature threshold for
burn injury: An oximeter safety study. Journal of
Burn Care and Rehabilitation, 25(5):411–415, 2004.

[14] E. Hendricks, O. Jannerup, and P. Sørenson. Linear
Systems Control: Deterministic and Stochastic
Methods. Springer-Verlag, 2008. The book is used in
the Elektro-Automation Course Linear Control Design
2 (Reguleringsteknik 2).

[15] T. A. Henzinger. The theory of hybrid automata. Logic
in Computer Science, Symposium on, 0:278, 1996.

[16] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi.
HYTECH: A model checker for hybrid systems. In
Proceedings of the 9th International Conference on
Computer Aided Verification, volume 1254 of LNCS,
pages 460–463. Springer, 1997.

[17] T. L. Jackson and H. M. Byrne. A mathematical
model to study the effects of drug resistance and
vasculature on the response of solid tumors to
chemotherapy. Mathematical Biosciences, 164(1):17 –
38, 2000.

[18] J. R. Jacobs. Algorithm for optimal linear model-based
control with application to pharmacokinetic
model-driven drug delivery. Biomedical Engineering,
IEEE Transactions on, 37(1):107 –109, 1990.

[19] R. Jetley, S. P. Iyer, and P. L. Jones. A formal
methods approach to medical device review.
Computer, 39(4):61–67, 2006.

[20] Z. Jiang, M. Pajic, A. Connolly, S. Dixit, and
R. Mangharam. Real-time heart model for implantable
cardiac device validation and verification. Real-Time
Systems, Euromicro Conference on, 0:239–248, 2010.

[21] X. Liu and J. Shen. Stability theory of hybrid
dynamical systems with time delay. Automatic
Control, IEEE Transactions on, 51(4):620 – 625, april
2006.

[22] L. E. Moser et al. Formal verification of safety-critical
systems. Softw. Pract. Exper., 20(9):799–811, 1990.

[23] T. Mukherjee, K. Venkatasubramanian, and S. K. S.
Gupta. Performance modeling of critical event
management for ubiquitous computing applications. In
MSWiM ’06: Proceedings of the 9th ACM
international symposium on Modeling analysis and
simulation of wireless and mobile systems, pages
12–19, New York, NY, USA, 2006. ACM.

[24] U. of Pensylvannia. Generic infusion pump project.
http://rtg.cis.upenn.edu/gip.php3.

[25] S. Sankaranarayanan, H. Homaei, and C. Lewis.
Model-based dependability analysis of programmable
drug infusion pumps. Formal Modeling and Analysis
of Timed Systems, pages 317–334, 2011.

[26] The Networking Information Research and
Development.
http://www.nitrd.gov/about/blog/white_papers/

16-Importance_of_Cyber-Physical_Systems.pdf.

[27] A. Tiwari. Hybridsal relational abstracter. In
P. Madhusudan and S. Seshia, editors, Computer
Aided Verification, volume 7358 of Lecture Notes in
Computer Science, pages 725–731. Springer Berlin
Heidelberg, 2012.

[28] Q.-Y. Tong, G.-f. Yan, and G.-Z. Zhao. Stability
analysis of hybrid systems with time-varying delayed
perturbations via single lyapunov function. In
Machine Learning and Cybernetics, 2003 International
Conference on, volume 2, pages 919 – 922 Vol.2, nov.
2003.

[29] K. Venkatasubramanian, T. Mukherjee, and S. K. S.
Gupta. CAAC - an adaptive and proactive access
control approach for emergencies for smart
infrastructures. ACM Transactions on Autonomous
and Adaptive Systems Special Issue on Adaptive
Security, (To Appear).

[30] D. R. Wada and D. S. Ward. The hybrid model: a
new pharmacokinetic model for computer-controlled
infusion pumps. Biomedical Engineering, IEEE
Transactions on, 41(2):134 –142, feb. 1994.


