Regenerative Air Dryers

Methods of Regeneration

Types of Regenerative Air Dryers

How They Work

Regenerative Dryer Sizing Factors

How to Calculate Annual Operating Cost

Presented by

Sahara Air Products

A Div. of Henderson Engineering Company, Inc.

815-786-9471

Regenerative Air Dryer Terms

<u>Regenerate:</u>

Renew - restore.

Absorbent Desiccant:

Used in HP deliquescent dryers.

Adsorbent:

815-786-9471

To collect on and within the surface in condensed (liquid) form.

Adsorbent Desiccant:

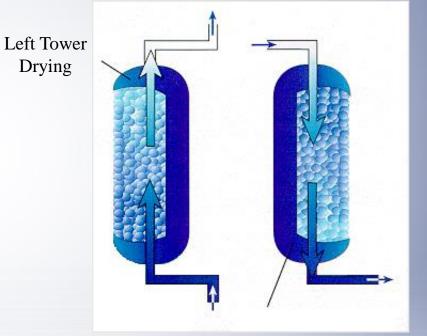
Used in regenerative dryers. The desiccant does not deliquesce. The liquid water collects on and within the surface of the desiccant. Adsorbent desiccant can be regenerated (renewed).

A<u>d</u>sorbent Desiccant is more hygroscopic than A<u>b</u>sorbent Desiccant

Types of Desiccant Dryers

For:

A continuous supply of compressed air at low dew points.


Operation:

One tower is online drying the air while the other tower is offline being regenerated.

Towers alternate so that the air stream is always exposed to dry desiccant.

815-786-9471

Dual Tower, Regenerative Type

Right Tower Regenerating

How They Work

Compressed air passes through a vessel filled with desiccant.

Water vapor is attached to the surface of the desiccant by the process called adsorption.

Dry air exits the dryer.

815-786-9471

Activated Alumina Desiccant

Why is it used?

Readily available and economical.

Performs well at saturated conditions.

Doesn't degrade in presence of liquid water.

High crush strength.

815-786-9471

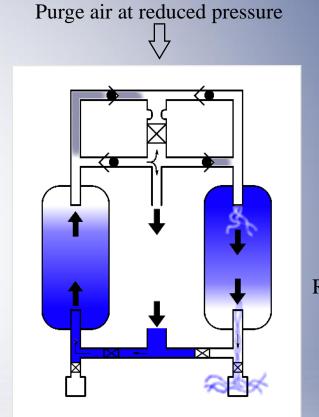
Types of Regenerative Dryers

Sahara manufactures all types of regenerative dryers, standards and specials, high pressure and low

- Heatless
- Exhaust Purge
- Blower Purge
- Heat-of-Compression SP
- Heat-of-Compression HC

815-786-9471

Closed System/Split Stream


Methods of Regeneration

Pressure-Swing (Heatless) Regeneration

Dried compressed air is expanded to near atmospheric pressure.

This low pressure, extremely dry air pulls water from the desiccant and carries it out of the dryer.

815-786-9471

↓ Tower 2 Regenerating

 \Box

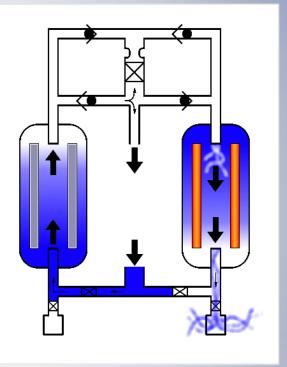
Tower 1

Drying

Methods of Regeneration

Heat Regeneration

Heat forces desiccant to release the adsorbed water.


Internally Heated

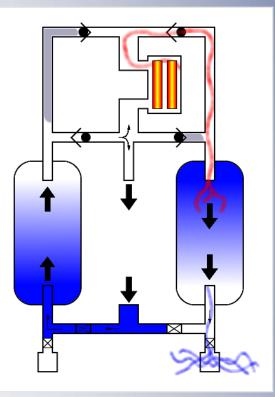
815-786-9471

Internal heaters warm desiccant.

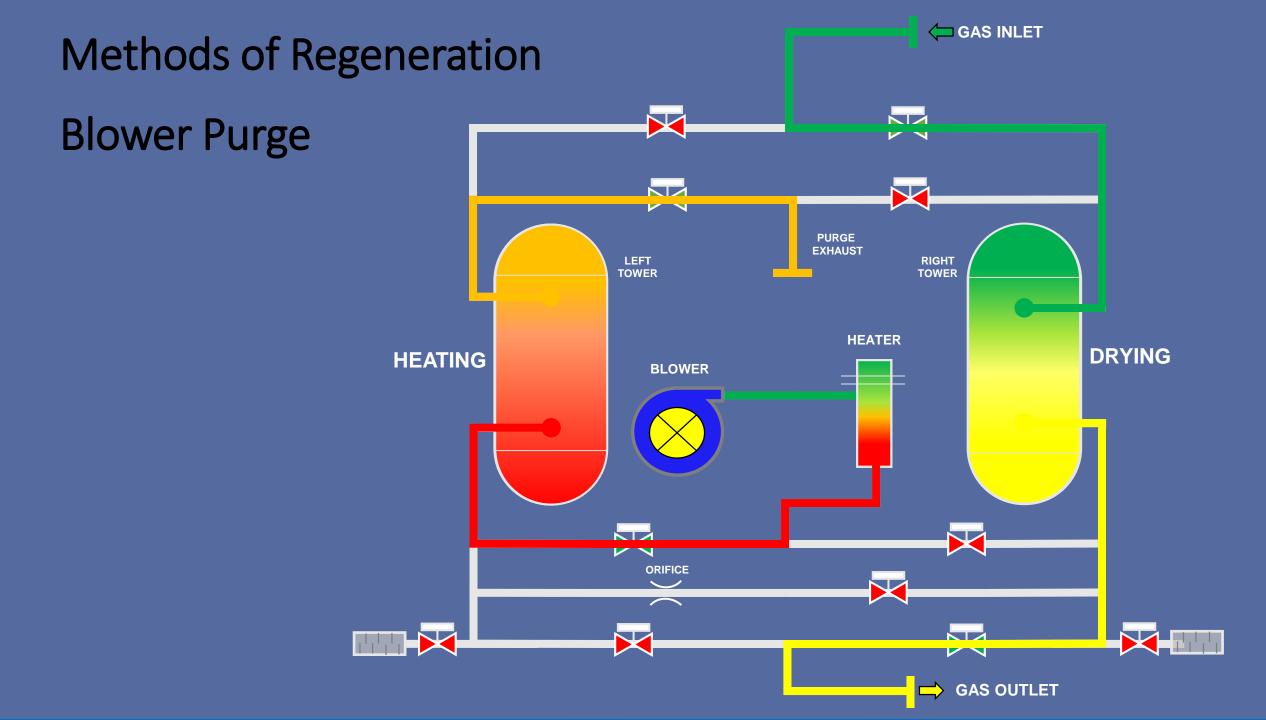
Purge air circulates heat and carries off water vapor.

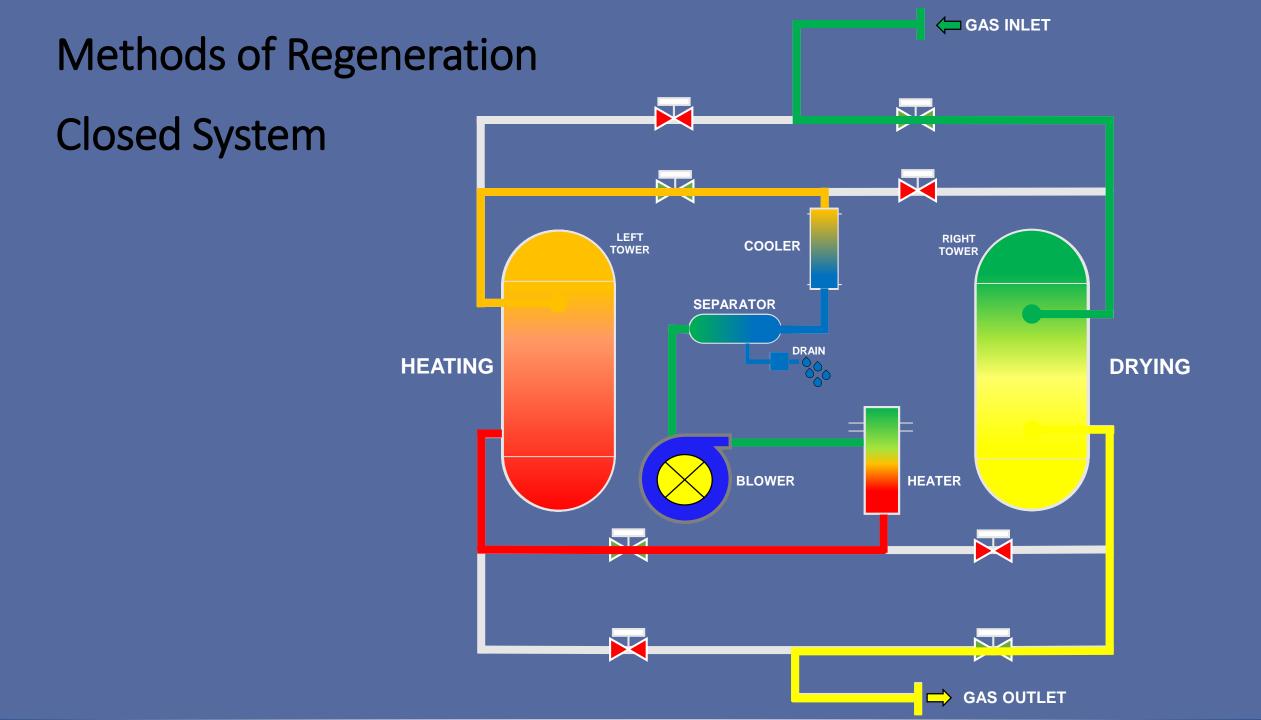
Internally Heated

Methods of Regeneration

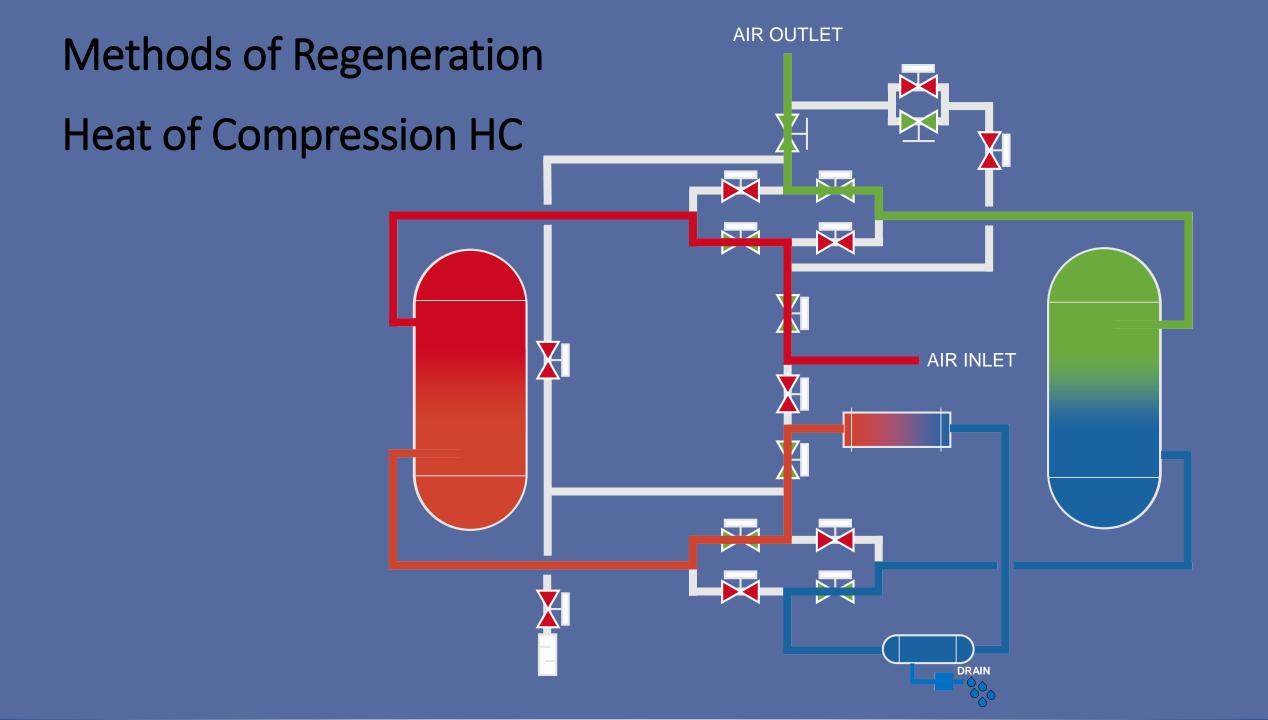

Externally Heated

815-786-9471


External heaters heat purge air (dried compressed air or atmospheric air).


Purge air carries heat to desiccant and removes water vapor.

Externally Heated



Regenerative Air Dryer **Sources of** Regenerating Power

Compressed Air <u>SCFM</u>	Ambient <u>Air</u>	Additional <u>Power</u>	Type of <u>Dryer</u>	Cost (to purchase)
15%	None	None	HL Heatless	Lowest
7%	None	Heater	EP Exhaust Purge	Higher
None	All	Bigger Heater Blower	BP Blower Purge	Highest

SAHAR

Henderson Engineering Co

15% at 100 PSIG expands to atmospheric = super dry

7% at 100 PSIG expands - super dry + heat = super, super dry

Ambient at atmospheric blow/heat = same results

Sahara Electrical

815-786-9471

Electrical Controls

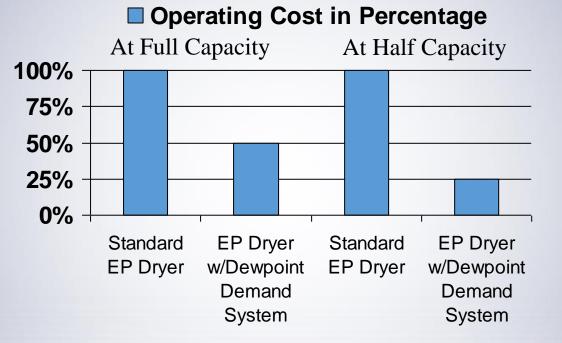
Programmable Logic Controller (PLC)

The optional Dew Point Demand System saves energy and allows the user to monitor exact outlet dew point

The optional Dew Point Demand System allows the dryer to utilize the full capacity of the desiccant regardless of inlet flow.

After a complete regeneration, the regeneration system is turned off and the dryer sits dormant, simply drying the air.

When the full capacity of the desiccant is used and the outlet dew point rises to a preset level, the dryer automatically switches towers.


The net result is a reduction in the operating cost of the dryer. With new desiccant, the operating cost will be reduced by at least 50%.

815-786-9471

Optional Dew Point Demand System Cuts Operating Costs

815-786-9471

SAHARA AIR PRODUCTS Henderson Engineering Co.

Regenerative Air Dryer Sizing Factors

815-786-9471

Three factors determine the proper size of a regenerative dryer:

• Maximum inlet flow rate

- Maximum inlet temperature
- Minimum inlet pressure

To Determine Correct Dryer Size Use Temperature & Pressure Modifiers

815-786-9471

Maximum	Multiplier	Minimum Pressure	Multiplier
Temperature			
120° F	1.78	150 PSIG	.70
115°	1.55	140	.74
110°	1.34	130	.79
105°	1.16	125	.82
100°	1.00	120	.85
95°	.86	110	.92
90°	.73	100	1.00
85°	.63	90	1.10
80°	.53	80	1.21
75°	.45	70	1.35
		60	1.54
		50	1.77
		40	2.10

Maximum flow x temperature multiplier x pressure multiplier = corrected flow

Note: For temperature lower than 80°F, consult Henderson Engineering Co., Inc.

Pressure Modifier

P1 =
$$\frac{114.7}{P+14.7}$$

P1 = Pressure ModifierP = Minimum Inlet Air Pressure

SAHARA

Henderson Engineering Co.

Temperature Modifier

815-786-9471

Max. Temperature (°F)	<u>Multiplier</u>
120°F	1.78
115	1.55
110	1.34
105	1.16
100	1.00
95	.86
90	.73
85	.63
80	.53
75	.45
85 80	.63 .53

Calculating Water Load

S x V x TC x 18

P x 379

S = inlet flow rate in SCFM
V = vapor pressure of water
TC = time cycle (hours and minutes)
P = absolute pressure; PSIG plus 14.7
18 = (constant) molecular weight of water
379 = (constant) molal volume

Example: 1000 SCFM, 125 PSIG, 100°F

 $\frac{1000 \text{ x } .950 \text{ x } 60 \text{ min. x } 24 \text{ hrs. x } 18}{139.7 \text{ x } 379} = 465$

465 lbs. of water per day

Henderson Engineering Co

Vener Dressure of Meter	Temperature	Absolute Pressure PSIG
Vapor Pressure of Water		
	120	1.693
	115	1.472
	110	1.275
	105	1.102
	100	.950
	95	.816
	90	.698
	85	.596
	80	.507
	75	.430
	70	.363
	65	.305
	60	.256
	55	.214
	50	.178
	45	.147
	40	.122
	35	.099
	-	

815-786-9471

SAHARA AR PRODUCTS Henderson Engineering Co.

Calculating Air Velocity through the Desiccant Bed

$$V = \frac{14.7 \text{ x S}}{(P + 14.7) \text{ A}}$$

V = velocity in feet per minute S = inlet air flow in SCFM P = inlet air pressure A = tower area in sq. ft.

815-786-9471

To find tower area: $A = \frac{TD^2 \times .785}{144}$

A = tower area in sq. ft. TD = tower diameter

Determining Air-to-Desiccant Contact Time

815-786-9471

$$CT = \frac{(P + 14.7) \ 60 \ x \ AA}{14.7 \ x \ S \ x \ 45}$$

CT = contact time in seconds P = inlet pressure in PSIG AA = pounds activated alumina per tower S = inlet air flow in SCFM

Calculating Pressure Drop through the Dryer

$$PD = \frac{\left(\frac{S}{M}\right)^2 \times 344.1}{P + 14.7}$$

PD = pressure drop in PSIG S = inlet air flow in SCFM M = maximum air flow at 3 lbs. drop P = inlet air pressure

SAHAR

Henderson Engineering Co

Determining Kilowatts Needed by the Heater on a Heat Reactivated Regenerative Air Dryer

$$KW = \frac{PR \times 1.08 \times TD}{3412}$$

KW = actual KW required
PR = purge rate in SCFM
TD = temperature differential between 375 and inlet air temperature

815-786-9471

Calculating Annual Operating Cost for a Heatless Dryer

815-786-9471

$$C = \frac{PR \times 525600}{1000} \times S$$

C = annual operating cost PR = purge rate in SCFM 525600 = constant, minutes in a year 1000 = constant, cost per 1000 cu. ft. S = cost of compressed air, normally \$.15 per 1000 SCF

Calculating Annual Operating Cost for an Exhaust Purge Dryer

815-786-9471

$$C = \frac{PR \times 525600}{1000} \times CA + (KW \times 6570 \times E)$$

C = annual operating cost PR = purge rate in SCFM CA = cost of compressed air per 1000 cu ft. KW = actual KW required E = cost of electricity

Calculating Annual Operating Cost for a Blower Purge Dryer

C = [(HP x 8760) + (KW x 6570)] x E

Henderson Engineering Co

C = annual operating cost HP = blower horsepower KW = calculated heater KW E = cost of electricity

Calculating Annual Operating Cost for a Closed System Dryer

$$C = [(HP \times 8760) + (KW \times 6570)] \times E +$$

$$\frac{\text{GPM x 525600 x WC}}{1000}$$

C = annual operating cost HP = blower horsepower KW = heater KW E = cost of electricity E = cost of electricity GPM = water rate WC = water cost/1000 gals. (typically \$.25/1000 gals.)

815-786-9471

Thank you...

Dryers are purchased to solve plant air problems. The decision to buy is complex and involves many variables; initial price, vendor qualifications, delivery, performance, and operating cost, just to name a few. The selection of a SAHARA air dryer is a safe choice. Our sales engineers will help you select the right system for your application. They have the expertise to review your plant air system and design the optimum engineered solution.

We can build a dryer to meet your strict performance requirements.

815-786-9471

Zero Operating Cost Lower Maintenance Cost Similar Performance

