SAMPLE CONTENT

Perfect

CHEMISTRY vall

Weathering of Rocks
Red-orange rock formations owe their colour to high concentration of iron(III) oxide resulied from chemical seaihering of the roc:

STD.XI Sal.

Target pulications prut Lta.

Written as per the latest textbook prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune.

PERFECT CHEMISTRY (volit) Std. XI Sci.

Salient Features

- Written as per the new textbook
- Subtopic-wise segregation for powerful concept building

C Complete coverage of Textual Exercise Questions, Intext Questions and Numericals
E Extensive coverage of New Type of Questions

- 'Solved Examples' guide you through every type of problem
- 'Apply Your Knowledge' section for application of concepts
- 'Quick Review' at the end of every chapter facilitates quick revision
- A compilation of all 'Important Formulae'
- 'Competitive Corner' presents questions from prominent competitive examinations

Reading Between the Lines, Enrich Your Knowledge, Gyan Guru, Connections, NCERT Corner are designed to impart holistic education

Printed at: Repro India Ltd., Mumbai
© Target Publications Pvt. Ltd.
No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

PREFACE

"I never teach my pupils; I only attempt to provide the conditions in which they can learn." - Albert Einstein
"Chemistry: Std. XI Volume - 1" forms a part of 'Target Perfect Notes' prepared as per the new textbook. It focuses on active learning along with making the process of education more interesting and builds up the students' knowledge quotient in the process.

The subtopic-wise classified format for each chapter of this book helps the students to comprehend concepts easily. Every chapter begins with the coverage of all textual content in the format of Objectives, QuestionAnswers, Give Reasons, Numericals, Short Notes, Diagram related questions and a host of other Objective and Subjective type of questions. The questions titled under 'Use your brain power', 'Can you tell', 'Can you recall', 'Problems' and various similar titles pave the way for a robust concept building. For the students to gain a better understanding of the concept lying behind the answer, 'Reading between the lines' (not a part of the answer) has been provided as deemed necessary. We have provided QR codes to access a video for a better understanding of the concept.

While ensuring complete coverage of the syllabus in an effortless and easy to grasp format, emphasis is also given on active learning. To achieve this, we have infused several sections such as, Gyan Guru, Enrich Your Knowledge, Connections, Reading between the lines and NCERT Corner, and additional sections such as, Apply Your Knowledge, Quick Review, Important Formulae, Exercise and Competitive Corner. The following screenshots will walk you through the core features of this book and elucidate how they have been carefully designed to maximize the student learning.

Connections

You studied in chapter 1 on calculating molar mass of a compound using atomic masses of constituent elements.

Connections enables students to interlink concepts covered in different chapters.
This is our attempt to enable students to comprehend the subject as a whole.

Reading between the lines provides for concept elaboration
This is our attempt to help students to understand the underlying concept behind an answer.

Reading between the lines

Many metals show variable oxidation numbers in their compounds. Therefore, in their molecular formulae, the oxidation numbers are often represented by Roman numbers in parentheses after the chemical symbol of the metal. e.g. $\mathrm{Au}(I I I) \mathrm{Cl}_{3}$, $\mathrm{Sn}(\mathrm{II}) \mathrm{Cl}_{2}, \mathrm{Hg}(\mathrm{II}) \mathrm{Cl}_{2}$, etc.

NCERT Corner

Ostwald's process

Ostwald's process is used to prepare nitric acid on a large scale.
i. This method is based upon catalytic oxidation of NH_{3} by atmospheric oxygen.

NCERT Corner covers additional information from NCERT textbook relevant to the topic
 This is our attempt to bridge the gap between NCERT and State Board textbook, thereby helping students to prepare for National level competitive examinations.

QR code provides access to videos that boost conceptual understanding.
This is our attempt to facilitate learning with visual aids.
[Note: Students can scan the adjacent $Q R$ code to get conceptual clarity with the aid of a relevant video.]

Apply Your Knowledge

Q.73. Chalcopyrite $\left(\mathrm{CuFeS}_{2}\right)$ is a common ore of copper. Since it has low concentration of copper, the ore is first concentrated through froth floatation process. The concentrated ore is then heated strongly with silicon dioxide (silica) and oxygen in a furnace. The product

Apply your knowledge includes challenging questions.
This is our attempt to take students one step further and challenge their conceptual understanding.

Quick Review

Quick review includes tables/ flow chart to summarize the key points in chapter. This is our attempt to help students to reinforce key concepts

Classical theory
Matter is composed of particles

Einstein Planck

Energy is Quantized.

1. Celsius to Fahrenheit: ${ }^{\circ} \mathrm{F}=\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32$
2. Celsius to Kelvin: $\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$
3. Average atomic mass $=$
$\underline{\text { Sumof (Isotopic mass } \times \% \text { Abundance) }}$
100

Important Formulae includes all of the key formulae in the chapter.
This is our attempt to enable students to see all the important formulae in the chapter at a glance.

Exercise includes subtopic-wise additional questions and problems
This is our attempt to provide additional practice questions that involve conceptual application from the topics across the entire chapter.

Exercise

8.1 Hydrogen

1. Name any two isotopes of hydrogen.

Ans: Refer Q. 52. (i)
2. Write the chemical equation for the preparation of Ans: Refer Q. 15.

Competitive Corner

1. Which among the following is correct for electrolysis of brine solution?
[MHT CET 2019]
(A) Cl_{2} gas is liberated at cathode
(B) Sodium metal is collected at anode
(C) $\quad \mathbf{H}_{2}$ gas is liberated at cathode

Competitive Corner presents questions
from prominent competitive exams
based entirely on the syllabus covered in the chapter.
This is our way of providing students a competitive edge

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.

Please write to us on: mail@targetpublications.org
A book affects eternity; one can never tell where its influence stops.

Best of luck to all the aspirants!

From,
Publisher

Edition: First

Disclaimer

This reference book is transformative work based on textbook Chemistry; First edition: 2019' published by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.
This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
© reserved with the Publisher for all the contents created by our Authors.
No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

CONTENTS

Chapter No.	Chapter Name	Page No.
1	Some Basic Concepts of Chemistry	1
2	Introduction to Analytical Chemistry	34
3	Basic Analytical Techniques	70
4	Structure of Atom	87
5	Chemical Bonding	126
6	Redox Reactions	173
7	Modern Periodic Table	221
8	Elements of Group 1 and Group 2	253
9	Elements of Group 13, 14 and 15	288
	Periodic Table	318
	Electronic Configuration of Elements	319

19
Note: 1. * mark represents Textual question.
2. \# mark represents Intext question.
3. +mark intext problems
4. 迄汽 symbol represents textual questions that need external reference for an answer

Some Basic Concepts of Chemistry

Contents and Concepts

1.1 Introduction

1.2 Nature of chemistry
1.3 Properties of matter and their measurement
1.4 Laws of chemical combination
1.5 Dalton's atomic theory
1.6 Atomic and molecular masses
1.7 Mole concept and molar mass
1.8 Moles and gases

1.1 Introduction

Q.1. Define chemistry.

Ans: Chemistry is the study of matter, its physical and chemical properties and the physical and chemical changes it undergoes under different conditions.
Q.2. Why is chemistry called a central science?

Ans:
i. Knowledge of chemistry is required in the studies of physics, biological sciences, applied sciences, and earth and space sciences.
ii. Chemistry is involved in every aspect of day-to-day life, i.e. the air we breathe, the food we eat, the fluids we drink, our clothing, transportation and fuel supplies, etc.
Hence, chemistry is called a central science.

Q.3. Give reason: Although chemistry has ancient roots, it has developed as a modern science.

Ans: Technological development in sophisticated instruments have expanded knowledge of chemistry which, now, has been used in applied sciences such as medicine, dentistry, engineering, agriculture and in daily home use products. Hence, due to development and advancement in science and technology, chemistry has developed as modern science.

1.2 Nature of chemistry

Q.4. How is chemistry traditionally classified?

Ans: Chemistry is traditionally classified into five branches:
i. Organic chemistry
ii. Inorganic chemistry
iii. Physical chemistry
iv. Biochemistry
v. Analytical chemistry
Q.5. Explain the following terms:
i. Organic chemistry
ii. Inorganic chemistry
iii. Physical chemistry

Ans:
i. Organic chemistry: It deals with properties and reactions of compounds of carbon.
ii. Inorganic chemistry: It deals with the study of all the compounds which are not organic.
iii. Physical chemistry: It deals with the study of properties of matter, the energy changes and the theories, laws and principles that explain the transformation of matter from one form to another. It also provides basic framework for all the other branches of chemistry.

*Q.6. Explain: Types of matter (on the basis of chemical composition)

Ans: Matter on the basis of chemical composition can be classified as follows:
i. Pure substances: They always have a definite chemical composition. They always have the same properties regardless of their origin.
e.g. Pure metal, distilled water, etc.

They are of two types:
a. Elements: They are pure substances, which cannot be broken down into simpler substances by ordinary chemical changes.

Elements are further classified into three types:

1. Metals:
i. They have a lustre (a shiny appearance).
ii. They conduct heat and electricity.
iii. They can be drawn into wire (ductile).
iv. They can be hammered into thin sheets (malleable).
e.g. Gold, silver, copper, iron. Mercury is a liquid metal at room temperature.
2. Nonmetals:
i. They have no lustre. (except diamond, iodine)
ii. They are poor conductors of heat and electricity. (except graphite)
iii. They cannot be hammered into sheets or drawn into wire, because they are brittle.
e.g. Iodine
3. Metalloids: Some elements have properties that are intermediate between metals and nonmetals and are called metalloids or semimetals.
e.g. Arsenic, silicon and germanium.
b. Compounds: They are the pure substances which are made up of two or more elements in fixed proportion. e.g. Water, ammonia, methane, etc.
ii. Mixtures: They have no definite chemical composition and hence no definite properties. They can be separated by physical methods.
e.g. Paint (mixture of oils, pigment, additive), concrete (a mixture of sand, cement, water), etc.

Mixtures are of two types:
a. Homogeneous mixture: In homogeneous mixture, constituents remain uniformly mixed throughout its bulk.
e.g. Solution, in which solute and solvent molecules are uniformly mixed throughout its bulk.
b. Heterogeneous mixture: In heterogeneous mixture, constituents are not uniformly mixed throughout its bulk.
e.g. Suspension, which contains insoluble solid in a liquid.
Q.7. Can you tell? (Textbook page no. 1)

Which are mixtures and pure substances from the following?
i. Sea water
v. A page of textbook

Ans:

No.	Material	Pure substance or mixture
i.	Sea water	Mixture
ii.	Gasoline	Mixture
iii.	Skin	Mixture
iv.	A rusty nail	Mixture
v.	A page of textbook	Mixture
vi.	Diamond	Pure substance

Q.8. Can you tell? (Textbook page no. 2)

Classify the following as element and compound.
i. Mercuric oxide
v. Iodine
$\begin{array}{ll}\text { ii. } & \text { Helium gas } \\ \text { vi. } & \text { Mercury }\end{array}$
iii. Water
vii. Oxygen

Ans:

No.	Material	Element or compound
i.	Mercuric oxide	Compound
ii.	Helium gas	Element
iii.	Water	Compound
iv.	Table salt	Compound
v.	Iodine	Element
vi.	Mercury	Element
vii.	Oxygen	Element
viii.	Nitrogen	Element

*Q.9. Give one example of each
i. Homogeneous mixture
iii. Element

Ans:
i. Homogeneous mixture: Solution
iii. Element: Gold
Q.10. Distinguish between
i. Mixtures and pure substances

Ans:

ii. Heterogeneous mixture

iv. Compound
ii. Heterogeneous mixture: Suspension
iv. Compound: Distilled water
ii. Mixtures and compounds
i.

Mixtures		Pure substances
a.	Mixtures have no definite chemical composition.	Pure substances have a definite chemical composition.
b.	Mixtures have no definite properties.	Pure substances always have the same properties regardless of their origin.
e.g.	Paint (mixture of oils, pigment, additive), concrete (a mixture of sand, cement, water), etc.	Pure metal, distilled water, etc.

ii.

	Mixtures	Compounds
a.	Mixtures have no definite chemical composition.	Compounds are made up of two or more elements in fixed proportion.
b.	The constituents of a mixture can be easily separated by physical method.	The constituents of a compound cannot be easily separated by physical method.
e.g.	Paint (mixture of oils, pigment, additive), concrete (a mixture of sand, cement, water), etc.	Water, table salt, sugar, etc.

Q.11. What is the difference between element and compound?

Ans: Elements cannot be broken down into simpler substances while compounds can be broken down into simpler substances by chemical changes.

Q.12. Explain: States of matter

Ans: There are three different states of matter as follows:
i. Solid: Particles are held tightly in perfect order. They have definite shape and volume.
ii. Liquid: Particles are close to each other but can move around within the liquid.
iii. Gas: Particles are far apart as compared to that of solid and liquid.

These three states of matter can be interconverted by changing the conditions of temperature and pressure.

1.3 Properties of matter and their measurement

Q.13. Explain: Physical and chemical properties

Ans:

i. Physical properties: These are properties which can be measured or observed without changing the identity or the composition of the substance.
e.g. Colour, odour, melting point, boiling point, density, etc.
ii. Chemical properties: These are properties in which substances undergo change in chemical composition.
e.g. Coal burns in air to produce carbon dioxide, magnesium wire burns in air in the presence of oxygen to form magnesium oxide, etc.

Q.14. How are properties of matter measured?

Ans:

i. Measurement involves comparing a property of matter with some fixed standard which is reproducible and unchanging.
ii. Properties such as mass, length, area, volume, time, etc. are quantitative in nature and can be measured.
iii. A quantitative measurement is represented by a number followed by units in which it is measured.
iv. These units are arbitrarily chosen on the basis of universally accepted standards.
e.g. Length of class room can be expressed as 10 m . Here, 10 is the number and ' m ' is the unit 'metre' in which the length is measured.
Q.15. Define: Units

Ans: The arbitrarily decided and universally accepted standards are called units.
e.g. Metre (m), kilogram (kg).
Q.16. What are the various systems in which units are expressed?

Ans: Units are expressed in various systems like CGS (centimetre for length, gram for mass and second for time), FPS (foot, pound, second) and MKS (metre, kilogram, second) systems, etc.

Q.17. What are SI units? Name the fundamental SI units.

Ans: SI Units: In 1960, the general conference of weights and measures proposed revised metric system, called International system of Units i.e. SI system (abbreviated from its French name).
The seven fundamental SI units are as given below:

No.	Base physical quantity	SI unit	Symbol
i.	Length	Metre	m
ii.	Mass	Kilogram	kg
iii.	Time	Second	s
iv.	Temperature	Kelvin	K
v.	Amount of substance	Mole	mol
vi.	Electric current	Ampere	A
vii.	Luminous intensity	Candela	cd

[Note: Units for other quantities such as speed, volume, density, etc. can be derived from fundamental SI units.]
*Q.18. What is the SI unit of amount of a substance?
Ans: The SI unit for the amount of a substance is mole (mol).
Q.19. What is the basic unit of mass in the SI system?

Ans: The basic unit of mass in the SI system is kilogram (kg).
Q.20. Name the following:
i. Full form of CGS unit system
iii. The SI unit of length
v. SI unit of temperature

Ans:
i. Centimetre Gram Second
iii. Metre (m)
v. Kelvin (K)
ii. Full form of FPS unit system
iv. Symbol used for Candela unit
vi. SI unit of electric current
ii. Foot Pound Second
iv. Cd
vi. Ampere (A)

NCERT Corner

Prefixes used in the SI system

Multiple	Prefix	Symbol
10^{-24}	yocto	y
10^{-21}	zepto	z
10^{-18}	atto	a
10^{-15}	femto	f
10^{-12}	pico	p
10^{-9}	nano	n
10^{-6}	micro	μ
10^{-3}	milli	m
10^{-2}	centi	c
10^{-1}	deci	d

Multiple	Prefix	Symbol
10	deca	da
10^{2}	hecto	h
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G
10^{12}	tera	T
10^{15}	peta	P
10^{18}	exa	E
10^{21}	zeta	Z
10^{24}	yotta	Y

Q.21. Give reason: The mass of a body is more fundamental property than its weight.

Ans:
i. Mass is an inherent property of matter and is the measure of the quantity of matter of a body.
ii. The mass of a body does not vary with respect to its position.
iii. On the other hand, the weight of a body is a result of the mass and gravitational attraction
iv. Weight varies because the gravitational attraction of the earth for a body varies with the distance from the centre of the earth.
Hence, the mass of a body is more fundamental property than its weight.

Q.22. How is gram related to the SI unit kilogram?

Ans: The SI unit kilogram (kg) is related to gram (g) as $1 \mathrm{~kg}=1000 \mathrm{~g}=10^{3} \mathrm{~g}$.
[Note: 'Gram' is used for weighing small quantities of chemicals in the laboratories.
Other commonly used quantity is 'milligram'. $1 \mathrm{mg}=1000 \mathrm{~g}=10^{6} \mathrm{~kg}$]
Q.23. Why are fractional units of the SI units of length often used? Give two examples of the fractional units of length. How are they related to the SI unit of length?
Ans:
i. Some properties such as the atomic radius, bond length, wavelength of electromagnetic radiation, etc. are very small and therefore, fractional units of the SI unit of length are often used to express these properties.
ii. Fractional units of length: Nanometre (nm), picometre (pm), etc.
iii. Nanometre (nm) and picometre (pm) are related to the SI unit of length (m) as follows: $1 \mathrm{~nm}=10^{-9} \mathrm{~m}, 1 \mathrm{pm}=10^{-12} \mathrm{~m}$
Q.24. Define: Volume

Ans: Volume is the amount of space occupied by a three-dimensional object. It does not depend on shape.
Q.25. State the common unit used for the measurement of volume of liquids and gases.

Ans: The common unit used for the measurement of volume of liquids and gases is litre (L).
Q.26. How is the SI unit of volume expressed?

Ans: The SI unit of volume is expressed as (metre) ${ }^{3}$ or m^{3}.

Enrich Your Knowledge

The other units used to express volume are $\mathrm{dm}^{3}, \mathrm{~cm}^{3}, \mathrm{~mL}$, etc. These units are related as follows:
$1 \mathrm{~L}=1 \mathrm{dm}^{3}=1000 \mathrm{~mL}=1000 \mathrm{~cm}^{3}$ $1000 \mathrm{~cm}^{3}=10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$ of volume

Volume: $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$

Q.27. Name some glassware that are used to measure the volume of liquids and solutions.

Ans:

i. Graduated cylinder
ii. Burette
iii. Pipette

Q.28. What is a volumetric flask used for in laboratory?

Ans: A volumetric flask is used to prepare a known volume of a solution in laboratory.

Q.29. What is density of a substance? How is it measured?

Ans: Density:

i. Density of a substance is its mass per unit volume. It is the characteristic property of any substance.
ii. It is determined in the laboratory by measuring both the mass and the volume of a sample.
iii. The density is calculated by dividing mass by volume.

Q.30. How is the SI unit of density derived? State CGS unit of density.

Ans:

i. The SI unit of density is derived as follows:

$$
\begin{aligned}
\text { Density } & =\frac{\text { SI unit mass }}{\text { SI unit volume }} \\
& =\frac{\mathrm{kg}}{\mathrm{~m}^{3}} \\
& =\mathrm{kg} \mathrm{~m}^{-3}
\end{aligned}
$$

ii. CGS unit of density: $\mathrm{g} \mathrm{cm}^{-3}$
[Note: The CGS unit, $\mathrm{g} \mathrm{cm}^{-3}$ is equivalent to $\frac{\mathrm{g}}{\mathrm{mL}}$ or mL^{-1}.]
Q.31. State three common scales of temperature measurement.

Ans:

i. Degree Celsius (${ }^{\circ} \mathrm{C}$) ii. Degree Fahrenheit $\left({ }^{\circ} \mathrm{F}\right) \quad$ iii. Kelvin (K)
Q.32. State the temperatures in Fahrenheit scale that corresponds to $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$.

Ans: The temperature that corresponds to $0^{\circ} \mathrm{C}$ is $32^{\circ} \mathrm{F}$ and the temperature that corresponds to $100^{\circ} \mathrm{C}$ is $212^{\circ} \mathrm{F}$.

Q.33. Write the expression showing the relationship between:
i. Degree Fahrenheit and Degree Celsius
ii. Kelvin and Degree Celsius

Ans:
i. The relationship between degree Fahrenheit and degree Celsius is expressed as,
${ }^{\circ} \mathrm{F}=\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32$
ii. The relationship between Kelvin and degree Celsius is expressed as,
$\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$

Solved Examples

*Q.34. Convert the following degree Celsius temperature to degree Fahrenheit.
i. $\quad 40{ }^{\circ} \mathrm{C}$
ii. $\quad 30{ }^{\circ} \mathrm{C}$

Solution:
i. Given: \quad Temperature in degree Celsius $=40^{\circ} \mathrm{C}$

To find: Temperature in degree Fahrenheit
Formula: $\quad{ }^{\circ} \mathrm{F}=\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32$
Calculation: Substituting $40^{\circ} \mathrm{C}$ in the formula,

$$
\begin{aligned}
{ }^{\circ} \mathrm{F} & =\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32 \\
& =\frac{9}{5}(40)+32 \\
& =72+32 \\
& =\mathbf{1 0 4}{ }^{\circ} \mathbf{F}
\end{aligned}
$$

ii. Given: Temperature in degree Celsius $=30^{\circ} \mathrm{C}$

To find: \quad Temperature in degree Fahrenheit
Formula:

$$
{ }^{\circ} \mathrm{F}=\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32
$$

Calculation: Substituting $30{ }^{\circ} \mathrm{C}$ in the formula,

$$
\begin{aligned}
{ }^{\circ} \mathrm{F} & =\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32 \\
& =\frac{9}{5}(30)+32 \\
& =54+32 \\
& =\mathbf{8 6}^{\circ} \mathbf{F}
\end{aligned}
$$

Ans: i. The temperature $40^{\circ} \mathrm{C}$ corresponds to $104^{\circ} \mathbf{F}$.
ii. The temperature $30^{\circ} \mathrm{C}$ corresponds to $86^{\circ} \mathbf{F}$.
Q.35. Convert the following degree Fahrenheit temperature to degree Celsius.
i. $\quad 50{ }^{\circ} \mathbf{F}$
ii. $\quad 10{ }^{\circ} \mathrm{F}$

Solution:
$\begin{array}{lll}\text { i. Given: } & \text { Temperature in degree Fahrenheit }=50^{\circ} \mathrm{F} \\ \text { To find: } & \text { Temperature in degree Celsius }\end{array}$
Formula: $\quad{ }^{\circ} \mathrm{F}=\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32$
Calculation: Substituting $50^{\circ} \mathrm{F}$ in the formula,

$$
\begin{aligned}
{ }^{\circ} \mathrm{F} & =\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32 \\
50 & =\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32 \\
{ }^{\circ} \mathrm{C} & =\frac{(50-32) \times 5}{9} \\
& =10{ }^{\circ} \mathbf{C}
\end{aligned}
$$

ii. Given: \quad Temperature in degree Fahrenheit $=10^{\circ} \mathrm{F}$

To find: Temperature in degree Celsius
Formula: $\quad{ }^{\circ} \mathrm{F}=\frac{9}{5} \quad\left({ }^{\circ} \mathrm{C}\right)+32$
Calculation: Substituting $10^{\circ} \mathrm{F}$ in the formula,

$$
\begin{aligned}
{ }^{\circ} \mathrm{F} & =\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32 \\
10 & =\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32 \\
{ }^{\circ} \mathrm{C} & =\frac{(10-32) \times 5}{9} \\
& =-\mathbf{1 2 . 2}{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Ans: i. The temperature $50^{\circ} \mathrm{F}$ corresponds to $10^{\circ} \mathrm{C}$.
ii. The temperature $10^{\circ} \mathrm{F}$ corresponds to $-12.2^{\circ} \mathbf{C}$.

1.4 Laws of chemical combination

Q.36. What is a chemical combination?

Ans:
i. The process in which the elements combine with each other to form compounds is called chemical combination.
ii. The process of chemical combination is governed by five basic laws which were discovered before the knowledge of molecular formulae.

*Q.37. State and explain the law of conservation of mass.

Ans: Law of conservation of mass:
i. The law of conservation of mass states that, "Mass can neither be created nor destroyed" during chemical combination of matter.
ii. Antoine Lavoisier who is often referred to as the father of modern chemistry performed careful experimental studies for various combustion reactions, namely burning of phosphorus and mercury in the presence of air.
iii. Both his experiments resulted in increased weight of products.
iv. After several experiments, in burning of phosphorus, he found that the weight gained by the phosphorus was exactly the same as the weight lost by the air. Hence, total mass of reactants = total mass of products.
v. When hydrogen gas burns and combines with oxygen to form water, the mass of the water formed is equal to the mass of the hydrogen and oxygen consumed. Thus, this is in accordance with the law of conservation of mass.

Q.38. State and explain the law of definite proportions.

Ans: Law of definite proportions:

i. The law states that "A given compound always contains exactly the same proportion of elements by weight".
ii. French chemist, Joseph Proust worked with two samples of cupric carbonate; one of which was naturally occurring cupric carbonate and other was synthetic sample. He found the composition of elements present in both the samples was same as shown below:

Cupric carbonate	\% of copper	\% of carbon	\% of oxygen
Natural sample	51.35	9.74	38.91
Synthetic sample	51.35	9.74	38.91

iii. Thus, irrespective of the source, a given compound always contains same elements in the same proportion.

Reading between the lines

The validity of this law has been further supported by various experiments. This law is often called as Law of definite composition.

Enrich Your Knowledge

The law of definite composition is not true for all types of compounds. It is true for only those compounds which are obtained from one type of isotope.
e.g. Carbon exists in two common isotopes: ${ }^{12} \mathrm{C}$ and ${ }^{14} \mathrm{C}$. When it forms ${ }^{12} \mathrm{CO}_{2}$, the ratio of masses is $12: 32$ or 3:8. However, when it is formed from ${ }^{14} \mathrm{C}$ i.e., ${ }^{14} \mathrm{CO}_{2}$, the ratio will be $14: 32$ i.e., $7: 16$, which is not same as in the first case.

*Q.39. State the law of multiple proportions.

Ans: The law states that, "When two elements A and B form more than one compounds, the masses of element B that combine with a given mass of A are always in the ratio of small whole numbers".

Q.40. State and explain the law of multiple proportions.

Ans: Law of multiple proportions:
i. John Dalton (British scientist) proposed the law of multiple proportions in 1803.
ii. It has been observed that two or more elements may combine to form more than one compound.
iii. The law states that, "When two elements A and B form more than one compounds, the masses of element B that combine with a given mass of A are always in the ratio of small whole numbers".
e.g. Hydrogen and oxygen combine to form two compounds, water and hydrogen peroxide.

Here, the two masses of oxygen (16 g and 32 g) which combine with the fixed mass of hydrogen (2 g) in these two compounds bear a simple ratio of small whole numbers, i.e. 16:32 or 1:2.
Q.41. Verify the law of multiple proportions for the chemical reaction between nitrogen and oxygen.

Ans: Nitrogen and oxygen combine to form two compounds, nitric oxide and nitrogen dioxide.

Here, the two masses of oxygen (16 g and 32 g) which combine with the fixed mass of nitrogen (14 g) in these two compounds bear a simple ratio of small whole numbers, i.e. 16:32 or 1:2.
This is in accordance with the law of multiple proportions.
Q.42. Verify the law of multiple proportions for the chemical reaction between carbon and oxygen.

Ans: Chemical reaction of carbon with oxygen gives two compounds, carbon monoxide (CO) and carbon dioxide $\left(\mathrm{CO}_{2}\right)$.

Here, the two masses of oxygen (16 g and 32 g) which combine with the fixed mass of carbon $(12 \mathrm{~g})$ in these two compounds bear a simple ratio of small whole numbers, i.e. 16:32 or 1:2.
This is in accordance with the law of multiple proportions.
Q.43. Verify the law of multiple proportions for the chemical reaction between sulphur and oxygen.

Ans: Chemical reaction of sulphur with oxygen gives two compounds, sulphur dioxide $\left(\mathrm{SO}_{2}\right)$ and sulphur trioxide $\left(\mathrm{SO}_{3}\right)$.

Here, the two masses of oxygen (32 g and 48 g) which combine with the fixed mass of sulphur (32 g) in these two compounds bear a simple ratio of small whole numbers, i.e. 32:48 or 2:3.
This is in accordance with the law of multiple proportions.
Q.44. State and explain Gay Lussac's law of gaseous volume.

Ans: Gay Lussac's law:
i. Gay Lussac proposed the law of gaseous volume in 1808.
ii. Gay Lussac's law states that, "When gases combine or are produced in a chemical reaction, they do so in a simple ratio by volume, provided all gases are at same temperature and pressure".
e.g. a. Under identical conditions of temperature and pressure, 100 mL of hydrogen gas combine with 50 mL of oxygen gas to produce 100 mL of water vapour.

$$
\begin{array}{ccc}
\text { Hydrogen }_{(\mathrm{g})}+\text { Oxygen }_{(\mathrm{g})} & \longrightarrow & \text { Water }_{(\mathrm{g})} \\
{[100 \mathrm{~mL}]} & {[50 \mathrm{~mL}]} & {[100 \mathrm{~mL}]} \\
{[2 \mathrm{vol}]} & {[1 \mathrm{vol}]} & {[2 \mathrm{vol}]}
\end{array}
$$

Thus, the simple ratio of volumes is $2: 1: 2$.
b. Under identical conditions of temperature and pressure, 1 L of nitrogen gas combine with 3 L of hydrogen gas to produce 2 L of ammonia gas.

Nitrogen $_{(\mathrm{g})}$	+ Hydrogen $_{(\mathrm{g})} \longrightarrow$		
$[1 \mathrm{~L}]$	$[3 \mathrm{~L}]$		
$[1 \mathrm{vol}]$	$[3 \mathrm{vol}]$	\quad	$[2 \mathrm{~L}]$
:---:	:---:		
$[2 \mathrm{vol}]$			

Thus, the simple ratio of volumes is 1:3:2.

Gay Lussac's discovery of integer ratio in volume relationship is actually the law of definite proportion by gaseous volumes. Diagrammatic representation of Gay Lussac's law of gaseous volume is as shown below:

1 volume of hydrogen

1 volume of oxygen

2 volumes of water
Q.45. Can you tell? (Textbook page no. 6)

If 10 volumes of dihydrogen gas react with 5 volumes of dioxygen gas, how many volumes of water vapour would be produced?
Ans: If 10 volumes of dihydrogen gas react with 5 volumes of dioxygen gas, then 10 volumes of water vapour would be produced.

Q.46. Give two examples which support the Gay Lussac's law of gaseous volume.

Ans:
i. Under identical conditions of temperature and pressure, 1 L of hydrogen gas reacts with 1 L of chlorine gas to produce 2 L of hydrogen chloride gas.

Hydrogen + Chlorine \longrightarrow Hydrogen chloride

$[1 \mathrm{~L}]$	$[1 \mathrm{~L}]$	$[2 \mathrm{~L}]$
$[1 \mathrm{vol}]$	$[1 \mathrm{vol}]$	$[2 \mathrm{vol}]$

Thus, the ratio of volumes is $1: 1: 2$
This is in accordance with Gay Lussac's law.
ii. Under identical conditions of temperature and pressure, 200 mL sulphur dioxide combine with 100 mL oxygen to form 200 mL sulphur trioxide.
$\begin{array}{ccc}\text { Sulphur dioxide } & + \text { Oxygen } \longrightarrow & \text { Sulphur trioxide } \\ {[200 \mathrm{~mL}]} & {[100 \mathrm{~mL}]} & {[200 \mathrm{~mL}]} \\ {[2 \mathrm{vol}]} & {[1 \mathrm{vol}]} & {[2 \mathrm{vol}]}\end{array}$
Thus, the ratio of volumes is $2: 1: 2$.
This is in accordance with Gay Lussac's law.

Enrich Your Knowledge

i. Gay Lussac's law of combining volumes is applicable only to reactions involving gases and not to solids i and liquids.
ii. The volumes of gases in the chemical reaction are not additive. For example, in case of reaction between hydrogen and chlorine gases it appears to be additive. However, in case of reaction between sulphur dioxide and oxygen, 2 volumes of sulphur dioxide and 1 volume of oxygen, that is, total 3 volumes of reactants get converted into 2 volumes of the product, sulphur trioxide.
iii. Similarly, in case of formation of ammonia, 1 volume of nitrogen and three volumes of hydrogen, that is, । total 4 volumes of reactants, react to get converted into 2 volumes of the product, ammonia.

*Q.47. State and explain Avogardro's law.

Ans:

i. In the year 1811, Avogadro made a distinction between atoms and molecules and thereby proposed Avogadro's law.
ii. Avogadro proposed that, "Equal volumes of all gases at the same temperature and pressure contain equal number of molecules".
e.g. Hydrogen gas combines with oxygen gas to produce water vapour as follows:

$$
\begin{aligned}
& \text { Hydrogen }_{(\mathrm{g})}+\text { Oxygen }_{(\mathrm{g})} \longrightarrow \quad \text { Water }_{(\mathrm{g})} \\
& {[100 \mathrm{~mL}] \quad[50 \mathrm{~mL}] \quad[100 \mathrm{~mL}]} \\
& {\left[\begin{array}{lll}
2 \mathrm{vol}] & {[1 \mathrm{vol}]} & {[2 \mathrm{vol}]}
\end{array}\right.}
\end{aligned}
$$

According to Avogadro's law, if 1 volume contains n molecules, then 2 n molecules of hydrogen combine with n molecules of oxygen to give 2 n molecules of water, i.e., 2 molecules of hydrogen gas combine with 1 molecule of oxygen to give 2 molecules of water vapour as represented below:
Hydrogen $_{(\mathrm{g})}$
[2n molecules] [2 molecules]

Water $_{(\mathrm{g})}$
$[2 \mathrm{n}$ molecules $]$
$[2$ molecules $]$

Reading between the lines

Avogadro could explain the above result by assuming the molecules to be polyatomic that is quite understandable today as hydrogen and oxygen are diatomic molecules.
Q.48. Match the following:

Law								Statement
	i.	Law of definite proportions	a.	When two elements A and B form more than one compounds, the masses of element B that combine with a given mass of A are always in the ratio of small whole numbers				
	ii.	Gay Lussac's law	b.	Equal volumes of all gases at the same temperature and pressure contain equal number of molecules				
iii.	Law of multiple proportions	c.	When gases combine or are produced in a chemical reaction they do so in a simple ratio by volume, provided all gases are at same temperature and pressure					
iv.	Avogardro's law	d.	A given compound always contains exactly the same proportion of elements by weight					

Ans: $\mathrm{i}-\mathrm{d}, \mathrm{ii}-\mathrm{c}, \mathrm{iii}-\mathrm{a}, \mathrm{iv}-\mathrm{b}$

Solved Examples

*Q.49. 2.0 g of a metal burnt in oxygen gave 3.2 g of its oxide. 1.42 g of the same metal heated in steam gave 2.27 g of its oxide. Which law is verified by these data?

Solution:

Here, metal oxide is obtained by two different methods; reactions of metal with oxygen and reaction of metal with water vapour (steam).
In first reaction (reaction with oxygen),
The mass of oxygen in metal oxide $=3.2-2.0=1.2 \mathrm{~g}$

$$
\begin{aligned}
& \% \text { of oxygen }=\frac{1.2}{3.2} \times 100=37.5 \% \\
& \% \text { of metal }=\frac{2.0}{3.2} \times 100=62.5 \%
\end{aligned}
$$

In second reaction (reaction with steam),
The mass of oxygen in metal oxide $=2.27-1.42=0.85 \mathrm{~g}$

$$
\begin{aligned}
& \% \text { of oxygen }=\frac{0.85}{2.27} \times 100=37.44 \approx 37.5 \% \\
& \% \text { of metal }=\frac{1.42}{2.27} \times 100=62.56 \approx 62.5 \%
\end{aligned}
$$

Therefore, irrespective of the source, the given compound contains same elements in the same proportion. The law of definite proportions states that "A given compound always contains exactly the same proportion of elements by weight". Hence, the law of definite proportions is verified by these data.
Ans: The law of definite proportions is verified by given data.
*Q.50. 24 g of carbon reacts with some oxygen to make 88 grams of carbon dioxide. Find out how much oxygen must have been used.

Solution:

Given: \quad Mass of carbon (reactant) $=24 \mathrm{~g}$, mass of carbon dioxide (product) $=88 \mathrm{~g}$
To find: Mass of oxygen (reactant)
Calculation: $\quad 12 \mathrm{~g}$ of carbon combine with 32 g oxygen to form 44 g of carbon dioxide as follows:
$\begin{gathered}\text { Carbon } \\ 12 \mathrm{~g}\end{gathered}+\underset{32 \mathrm{~g}}{\text { Oxygen }} \longrightarrow \begin{gathered}\text { Carbon dioxide } \\ 44 \mathrm{~g}\end{gathered}$

Hence, $(2 \times 12=24 \mathrm{~g})$ of carbon will combine with $(2 \times 32=\mathbf{6 4} \mathbf{g})$ of oxygen to give $(2 \times 44=88 \mathrm{~g})$ carbon dioxide.
Ans: Mass of oxygen used $=\mathbf{6 4} \mathbf{g}$
Q.51. 32 g of oxygen reacts with some carbon to make 56 grams of carbon monoxide. Find out how much mass must have been used.

Solution:

Given: \quad Mass of oxygen (reactant) $=32 \mathrm{~g}$, mass of carbon monoxide (product) $=56 \mathrm{~g}$
To find: Mass of oxygen (reactant)
Calculation: $\quad 12 \mathrm{~g}$ of carbon combine with 16 g oxygen to form 28 g of carbon monoxide as follows:
Carbon + Oxygen \longrightarrow Carbon monoxide
$12 \mathrm{~g} \quad 16 \mathrm{~g} \quad 28 \mathrm{~g}$
Hence, $(2 \times 12=\mathbf{2 4} \mathbf{g})$ of carbon will combine with $(2 \times 16=32 \mathrm{~g})$ of oxygen to give $(2 \times 28=56 \mathrm{~g})$ carbon monoxide.
Ans: Mass of carbon used $=\mathbf{2 4} \mathbf{g}$
*Q.52. Calculate the mass of sulphur dioxide produced by burning 16 g of sulphur in excess of oxygen in contact process. (Average atomic mass: $S=32 \mathbf{u}, \mathbf{O}=\mathbf{1 6} \mathbf{u}$).

Solution:

Given: \quad Mass of sulphur (reactant) $=16 \mathrm{~g}$
To find: \quad Mass of sulphur dioxide (product)
Calculation: $\quad 32 \mathrm{~g}$ of sulphur combine with 32 g oxygen to form 64 g of sulphur dioxide as follows:
Sulphur + Oxygen \longrightarrow Sulphur dioxide
$32 \mathrm{~g} \quad 32 \mathrm{~g} \quad 64 \mathrm{~g}$
Hence, $(0.5 \times 32=16 \mathrm{~g})$ of sulphur will combine with $(0.5 \times 32=16 \mathrm{~g})$ of oxygen to give ($0.5 \times 64=\mathbf{3 2} \mathbf{g}$) sulphur dioxide.
Ans: Mass of sulphur dioxide produced $=\mathbf{3 2} \mathbf{g}$
Q.53. Calculate the mass of sulphur trioxide produced by burning 64 g of sulphur in excess of oxygen. (Average atomic mass: $\mathrm{S}=\mathbf{3 2} \mathbf{u}, \mathbf{O}=\mathbf{1 6} \mathbf{u}$).

Solution:

Given: \quad Mass of sulphur $($ reactant $)=64 \mathrm{~g}$
To find: \quad Mass of sulphur dioxide (product)
Calculation: $\quad 32 \mathrm{~g}$ of sulphur combine with 48 g oxygen to form 80 g of sulphur trioxide as follows:
Sulphur + Oxygen \longrightarrow Sulphur trioxide

$$
32 \mathrm{~g} \quad 48 \mathrm{~g} \quad 80 \mathrm{~g}
$$

Hence, $(2 \times 32=64 \mathrm{~g})$ of sulphur will combine with $(2 \times 48=96 \mathrm{~g})$ of oxygen to give $(2 \times 80=\mathbf{1 6 0} \mathbf{g})$ sulphur trioxide.
Ans: Mass of sulphur trioxide produced $=\mathbf{1 6 0} \mathbf{g}$

1.5 Dalton's atomic theory

Q.54. State and explain Dalton's atomic theory.

Ans: John Dalton published "A New System of chemical philosophy" in the year of 1808. He proposed the following features, which later became famous as Dalton's atomic theory.
i. Matter consists of tiny, indivisible particles called atoms.
ii. All the atoms of a given elements have identical properties including mass. Atoms of different elements differ in mass.
iii. Compounds are formed when atoms of different elements combine in a fixed ratio.
iv. Chemical reactions involve only the reorganization of atoms. Atoms are neither created nor destroyed in a chemical reaction.
Dalton's atomic theory could explain all the laws of chemical combination.

Q.55. Give reason: Dalton's atomic theory explains the law of conservation of mass.

Ans:

i. The law of conservation of mass states that, "Mass can neither be created nor destroyed" during chemical combination of matter.
ii. According to Dalton's atomic theory, chemical reactions involve only the reorganization of atoms. Therefore, the total number of atoms in the reactants and products should be same and mass is conserved during a reaction.
Hence, Dalton's atomic theory explains the law of conservation of mass.
Q.56. Give reason: Dalton's atomic theory explains the law of multiple proportion.

Ans:
i. The law of multiple proportion states that, "When two elements A and B form more than one compounds, the masses of element B that combine with a given mass of A are always in the ratio of small whole numbers".
ii. According to Dalton's atomic theory, compounds are formed when atoms of different elements combine in fixed ratio.
Hence, Dalton's atomic theory explains the law of multiple proportion.

1.6 Atomic and molecular masses

Q.57. Can you recall? (Textbook page no. 6)

What is an atom and molecule? What is the order of magnitude of mass of one atom? What are isotopes?
Ans:
i. The smallest indivisible particle of an element is called an atom.
ii. A molecule is an aggregate of two or more atoms of definite composition which are held together by chemical bonds.
iii. Every atom of an element has definite mass. The order of magnitude of mass of one atom is $10^{-27} \mathrm{~kg}$.
iv. Isotopes are the atoms of the same element having same atomic number but different mass number.
Q.58. Define: Atomic mass unit (amu)

Ans: Atomic mass unit or amu is defined as a mass exactly equal to one twelth of the mass of one carbon-12 atom.
*Q.59. How many grams does an atom of hydrogen weigh?
Ans: The mass of a hydrogen atom is $1.6736 \times 10^{-24} \mathrm{~g}$.
Q.60. How is relative atomic mass of an atom measured?

Ans:
i. The mass of a single atom is extremely small, i.e. the mass of a hydrogen atom is $1.6736 \times 10^{-24} \mathrm{~g}$. Hence, it is not possible to weigh a single atom.
ii. In the present system, mass of an atom is determined relative to the mass of an atom of carbon-12 as the standard. This was decided in 1961 by international agreement.
iii. The atomic mass of carbon-12 is assigned as 12.00000 atomic mass unit (amu).
iv. The masses of all other elements are determined relative to the mass of an atom of carbon-12 (C-12).
v. The atomic masses are expressed in amu which is exactly equal to one twelth of the mass of one carbon-12 atom.
vi. The value of 1 amu is equal to $1.6605 \times 10^{-24} \mathrm{~g}$.

Reading between the lines

The exact value of amu was experimentally determined as shown below:
1 amu $=\frac{1}{12} \times$ mass of one $C-12$

$$
=\frac{1}{12} \times 1.992648 \times 10^{-23} g
$$

$$
=1.66056 \times 10^{-24} \mathrm{~g}
$$

Q.61. What is meant by Unified Mass unit?

Ans:
i. Presently, instead of amu, Unified Mass has now been accepted as the unit of atomic mass.
ii. It is called Dalton and its symbol is ' u ' or ' Da '.
Q.62. What is average atomic mass?

Ans: The atomic mass of an element which exists as mixture of two or more isotopes is the average of atomic masses of its isotopes. This is called average atomic mass.

*Q.63. Explain: The need of the term average atomic mass.

Ans:
i. Several naturally occurring elements exist as a mixture of two or more isotopes.
ii. Isotopes have different atomic masses.
iii. The atomic mass of such an element is the average of atomic masses of its isotopes.
iv. For this purpose, the atomic masses of isotopes and their relative percentage abundances are considered.

Hence, the term average atomic mass is needed to express atomic mass of elements containing mixture of two or more isotopes.

Reading between the lines

Carbon has three isotopes. The relative abundance and atomic masses of the isotopes of carbon are as shown in the table below:

Isotopes	Atomic mass (u)	Relative abundance (\%)
${ }^{12} \mathrm{C}$	12.00000	98.892
${ }^{13} \mathrm{C}$	13.00335	1.108
${ }^{14} \mathrm{C}$	14.00317	2×10^{-10}

$\begin{aligned} \text { Average atomic mass of carbon } & =(12.00000 \times 98.892 / 100)+(13.00335 \times 1.108 / 100)+\left(14.00317 \times 2 \times 10^{-10} / 100\right) \\ & =(11.86704)+(0.144077)+(0.00000)=12.01112=12.011 \mathrm{u}\end{aligned}$
[Note: The relative abundance of ${ }^{14} \mathrm{C}$ is very small and hence, its contribution to average atomic mass of carbon is negligible.]

Enrich Your Knowledge

In the periodic table of elements, the atomic masses mentioned for different elements are actually their average atomic masses. For practical purpose, the average atomic mass is rounded off to the nearest whole number when it differs from it by a very small fraction.

Element	Isotopes	Average atomic mass	Rounded off atomic mass
Carbon	${ }^{12} \mathrm{C},{ }^{13} \mathrm{C},{ }^{14} \mathrm{C}$	12.011 u	12.0 u
Nitrogen	${ }^{14} \mathrm{~N},{ }^{15} \mathrm{~N}$	14.007 u	14.0 u
Oxygen	${ }^{16} \mathrm{O},{ }^{17} \mathrm{O},{ }^{18} \mathrm{O}$	15.999 u	16.0 u
Chlorine	${ }^{35} \mathrm{Cl},{ }^{37} \mathrm{Cl}$	35.453 u	35.5 u
Bromine	${ }^{79} \mathrm{Br},{ }^{81} \mathrm{Br}$	79.904 u	79.9 u

GG-Gyan Guru

Isotopes as Detective!!

If an athlete takes a synthetic steroid to enhance performance, how would scientist find out whether the steroid (testosterone) is normally occurring in body or that it has synthetic origin? The naturally occurring steroid in athletes in most countries will have a different ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ ratio than synthetic steroid. A scientist with a mass spectrometer can easily detect the difference and thus catch up the illegal drug abuse among athletes!!!

Q.64. Define: Molecular mass

Ans: Molecular mass of a substance is the sum of average atomic masses of the atoms of the elements which constitute the molecule.

OR

Molecular mass of a substance is the mass of one molecule of that substance relative to the mass of one carbon-12 atom.
Q.65. How is molecular mass of a substance calculated? Give example.

Ans: Molecular mass is calculated by multiplying average atomic mass of each element by the number of its atoms and adding them together.
e.g. Molecular mass of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is calculated as follows:

Molecular mass of $\mathrm{CO}_{2}=(1 \times$ average atomic mass of C$)+(2 \times$ average atomic mass of O$)$

$$
\begin{aligned}
& =(1 \times 12.0 u)+(2 \times 16.0 u) \\
& =44.0 \mathrm{u}
\end{aligned}
$$

Q.66. Define: Formula mass

Ans: The formula mass of a substance is the sum of atomic masses of the atoms present in the formula.

*Q.67. Explain: Formula mass with an example

Ans:

i. In substances such as sodium chloride, positive (sodium) and negative (chloride) entities are arranged in a three-dimensional structure in a way that one sodium $\left(\mathrm{Na}^{+}\right)$ion is surrounded by six chloride $\left(\mathrm{Cl}^{-}\right)$ions, all at the same distance from it and vice versa. Thus, sodium chloride do not contain discrete molecules as the constituent units.
ii. Therefore, NaCl is just the formula which is used to represent sodium chloride though it is not a molecule.
iii. In such compounds, the formula (i.e., NaCl) is used to calculate the formula mass instead of molecular mass. e.g. Formula mass of sodium chloride $=$ atomic mass of sodium + atomic mass of chlorine

$$
\begin{aligned}
& =23.0 \mathrm{u}+35.5 \mathrm{u} \\
& =58.5 \mathrm{u}
\end{aligned}
$$

Q.68. Complete the following table:

Column A	Column B
The mass of one hydrogen atom in gram	
The exact value of 1 atomic mass unit (amu) in gram	--------
Isotopes of carbon	---------
Formula mass of NaCl	--------
Column A	Column B
The mass of one hydrogen atom in gram	$1.6736 \times 10^{-24} \mathrm{~g}$
The exact value of atomic mass unit (amu) in gram	$1.66056 \times 10^{-24} \mathrm{~g}$
Isotopes of carbon	${ }^{12} \mathrm{C},{ }^{13} \mathrm{C},{ }^{14} \mathrm{C}$
Formula mass of NaCl	58.5 u

Q.69. State TRUE or FALSE. If false, correct the statement.

i. An atom of carbon-12 is assigned a mass of exactly $1.00 \mathbf{u}$.
ii. Recently, amu has been replaced by unified mass unit called Dalton.
iii. Isotopes have same atomic mass.
iv. Molecular mass of a substance is the mass of one molecule of that substance relative to the mass of one carbon-12 atom.
Ans:
i. False

An atom of carbon-12 is assigned a mass of exactly 12.00000 u .
ii. True
iii. False

Isotopes have different atomic masses.
iv. True

Solved Examples

Q.70. Mass of an atom of oxygen in gram is $26.56896 \times 10^{-24} \mathrm{~g}$. What is the atomic mass of oxygen in u?

Solution:

$$
\begin{array}{ll}
& \text { Mass of an atom of oxygen in gram is } 26.56896 \times 10^{-24} \mathrm{~g} . \\
& 1.66056 \times 10^{-24} \mathrm{~g}=1 \mathrm{u} \\
\therefore \quad & 26.56896 \times 10^{-24} \mathrm{~g}=x \\
\therefore \quad & x=\frac{26.56896 \times 10^{-24} \mathrm{~g}}{1.66056 \times 10^{-24} \mathrm{~g} / \mathrm{u}}=\mathbf{1 6 . 0} \mathbf{u}
\end{array}
$$

Ans: The atomic mass of oxygen in $u=\mathbf{1 6 . 0} \mathbf{u}$
Q.71. Mass of an atom of hydrogen in gram is $1.6736 \times 10^{-24} \mathrm{~g}$. What is the atomic mass of hydrogen in \mathbf{u} ?

Solution:

$$
\begin{array}{ll}
& \text { Mass of an atom of hydrogen in gram is } 1.6736 \times 10^{-24} \mathrm{~g} . \\
& 1.66056 \times 10^{-24} \mathrm{~g}=1 \mathrm{u} \\
\therefore \quad & 1.6736 \times 10^{-24} \mathrm{~g}=x \\
\therefore \quad & x=\frac{1.6736 \times 10^{-24} \mathrm{~g}}{1.66056 \times 10^{-24} \mathrm{~g} / \mathrm{u}}=\mathbf{1 . 0 0 8} \mathbf{~ u}
\end{array}
$$

Ans: The atomic mass of hydrogen in $u=1.008 \mathbf{u}$
*Q.72. The mass of an atom of hydrogen is 1.008 u . What is the mass of 18 atoms of hydrogen?

Solution:

$$
\text { Mass of } 1 \text { atom of hydrogen }=1.008 u
$$

$\therefore \quad$ Mass of 18 atoms of hydrogen $=18 \times 1.008 \mathbf{u}=\mathbf{1 8 . 1 4 4} \mathbf{u}$
Ans: The mass of 18 atoms of hydrogen $=\mathbf{1 8 . 1 4 4} \mathbf{u}$
Q.73. The mass of an atom of one carbon atom is $\mathbf{1 2 . 0 1 1} \mathbf{u}$. What is the mass of 20 atoms of the same isotope?

Solution:

Mass of 1 atom of carbon $=12.011 \mathrm{u}$
$\therefore \quad$ Mass of 20 atoms of same carbon isotope $=20 \times 12.011 \mathbf{u}=\mathbf{2 4 0 . 2 2 0} \mathbf{u}$
Ans: The mass of 20 atoms of same carbon isotope $=\mathbf{2 4 0 . 2 2 0} \mathbf{u}$

+ Q.74. Calculate the average atomic mass of neon using the following data:

Isotope	Atomic mass	Natural Abundance
${ }^{20} \mathrm{Ne}$	19.9924 u	90.92%
${ }^{21} \mathrm{Ne}$	20.9940 u	0.26%
${ }^{22} \mathrm{Ne}$	21.9914 u	8.82%

Solution:

Average atomic mass of Neon (Ne)
$=\frac{\left(\text { At. mass of }{ }^{20} \mathrm{Ne} \times \% \text { Abundance }\right)+\left(\text { At. mass of }{ }^{21} \mathrm{Ne} \times \% \text { Abundance }\right)+\left(\text { At. mass of }{ }^{22} \mathrm{Ne} \times \% \text { Abundance }\right)}{100}$
$=\frac{(19.9924 \mathrm{u} \times 90.92)+(20.9940 \mathrm{u} \times 0.26)+(21.9914 \mathrm{u} \times 8.82)}{100}=\mathbf{2 0 . 1 7 0 7} \mathbf{u}$
Ans: Average atomic mass of neon $=\mathbf{2 0 . 1 7 0 7} \mathbf{u}$
*Q.75. The natural isotopic abundance of ${ }^{10} \mathrm{~B}$ is $\mathbf{1 9 . 6 0 \%}$ and ${ }^{11} \mathrm{~B}$ is $\mathbf{8 0 . 4 0 \%}$. The exact isotopic masses are $\mathbf{1 0 . 1 3}$ and $\mathbf{1 1 . 0 0 9}$ respectively. Calculate the average atomic mass of boron.

Solution:

Average atomic mass of Boron (B)

$$
\begin{aligned}
& =\frac{\left(\text { At. mass of }{ }^{10} \mathrm{~B} \times \% \text { Abundance }\right)+\left(\text { At. mass of }{ }^{11} \mathrm{~B} \times \% \text { Abundance }\right)}{100} \\
& =\frac{(10.13 \mathrm{u} \times 19.60)+(11.009 \mathrm{u} \times 80.40)}{100}=\mathbf{1 0 . 8 4} \mathbf{u}
\end{aligned}
$$

Ans: Average atomic mass of boron $=\mathbf{1 0 . 8 4} \mathbf{u}$
Q.76. Calculate the average atomic mass of argon from the following data:

Isotope	Isotopic mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	Abundance
${ }^{36} \mathrm{Ar}$	$\mathbf{3 5 . 9 6 7 5 5}$	$\mathbf{0 . 3 3 7 \%}$
${ }^{38} \mathrm{Ar}$	$\mathbf{3 7 . 9 6 2 7 2}$	$\mathbf{0 . 0 6 3 \%}$
${ }^{40} \mathrm{Ar}$	$\mathbf{3 9 . 9 6 2 4}$	$\mathbf{9 9 . 6 0 0 \%}$

Solution:

Average atomic mass of argon (Ar)

$$
\begin{aligned}
& =\frac{\left(\text { At. } \text { mass of }{ }^{36} \mathrm{Ar} \times \% \text { Abundance }\right)+\left(\text { At. mass of }{ }^{38} \mathrm{Ar} \times \% \mathrm{Abundance}\right)+\left(\text { At. mass of }{ }^{40} \mathrm{Ar} \times \% \text { Abundance }\right)}{100} \\
& =\frac{(35.96755 \mathrm{u} \times 0.337)+(37.96272 \mathrm{u} \times 0.063)+(39.9624 \mathrm{u} \times 99.60)}{100}=\mathbf{3 9 . 9 4 7} \mathbf{g ~ m o l}^{\mathbf{- 1}}
\end{aligned}
$$

Ans: Average atomic mass of argon $=39.947 \mathbf{g ~ m o l}^{-1}$

Q.77. Calculate the molecular mass of the following in u :

i. $\quad \mathrm{H}_{2} \mathrm{O}$
ii. $\quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
iii. $\quad \mathrm{H}_{2} \mathrm{SO}_{4}$

Solution:
i. Molecular mass of $\mathrm{H}_{2} \mathrm{O}=(2 \times$ Average atomic mass of H$)+(1 \times$ Average atomic mass of O$)$

$$
\begin{aligned}
& =(2 \times 1.0 \mathrm{u})+(1 \times 16.0 \mathrm{u}) \\
& =\mathbf{1 8} \mathbf{u}
\end{aligned}
$$

ii. Molecular mass of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}=(6 \times$ Average atomic mass of C$)+(5 \times$ Average atomic mass of H$)$ $+(1 \times$ Average atomic mass of Cl$)$

$$
\begin{aligned}
& =(6 \times 12.0 \mathrm{u})+(5 \times 1.0 \mathrm{u})+(1 \times 35.5 \mathrm{u}) \\
& =\mathbf{1 1 2 . 5} \mathbf{u}
\end{aligned}
$$

iii. Molecular mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=(2 \times$ Average atomic mass of H$)+(1 \times$ Average atomic mass of S$)$
$+(4 \times$ Average atomic mass of O$)$

$$
\begin{aligned}
& =(2 \times 1.0 \mathrm{u})+(1 \times 32.0 \mathrm{u})+(1 \times 16.0 \mathrm{u}) \\
& =\mathbf{9 8} \mathbf{u}
\end{aligned}
$$

Ans: i. The molecular mass of $\mathrm{H}_{2} \mathrm{O}=\mathbf{1 8} \mathbf{u}$
ii. The molecular mass of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}=\mathbf{1 1 2 . 5} \mathbf{u}$
iii. The molecular mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=\mathbf{9 8} \mathbf{u}$

*Q.78. Calculate the molecular mass of the following in u :

i. $\mathbf{N H}_{3}$
ii. $\quad \mathbf{C H}_{3} \mathbf{C O O H}$

iii. $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Solution:
i. Molecular mass of $\mathrm{NH}_{3}=(1 \times$ Average atomic mass of N$)+(3 \times$ Average atomic mass of H$)$

$$
\begin{aligned}
& =(1 \times 14.0 \mathrm{u})+(3 \times 1.0 \mathrm{u}) \\
& =\mathbf{1 7} \mathbf{u}
\end{aligned}
$$

ii. Molecular mass of $\mathrm{CH}_{3} \mathrm{COOH}=(2 \times$ Average atomic mass of C$)+(4 \times$ Average atomic mass of H$)$

$$
\begin{aligned}
& =(2 \times 12.0 \mathrm{u})+(4 \times 1.0 \mathrm{u})+(2 \times 16.0 \mathrm{u}) \\
& =\mathbf{6 0} \mathbf{u}
\end{aligned}
$$

iii. Molecular mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=(2 \times$ Average atomic mass of C$)+(6 \times$ Average atomic mass of H$)$

$$
\begin{aligned}
& =(2 \times 12.0 u)+(6 \times 1.0 u)+(1 \times 16.0 u) \\
& =46 u
\end{aligned}
$$

Ans: i. The molecular mass of $\mathrm{NH}_{3}=\mathbf{1 7} \mathbf{u}$
ii. The molecular mass of $\mathrm{CH}_{3} \mathrm{COOH}=\mathbf{6 0} \mathbf{u}$
iii. The molecular mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=\mathbf{4 6} \mathbf{u}$

+ Q.79. Find the mass of 1 molecule of oxygen $\left(\mathrm{O}_{2}\right)$ in amu (u) and in grams.

Solution:

Molecular mass of $\mathrm{O}_{2}=2 \times 16 \mathrm{u}$
$\therefore \quad$ Mass of 1 molecule $=\mathbf{3 2} \mathbf{u}$
$\therefore \quad$ Mass of 1 molecule of $\mathrm{O}_{2}=32 \times 1.66056 \times 10^{-24} \mathrm{~g}=\mathbf{5 3 . 1 3 7 9} \times \mathbf{1 0}^{\mathbf{- 2 4}} \mathbf{g}$
Ans: Mass of 1 molecule in $\mathrm{amu}=\mathbf{3 2} \mathbf{u}$
Mass of 1 molecule in grams $=\mathbf{5 3 . 1 3 7 9} \times \mathbf{1 0}^{-\mathbf{2 4}} \mathbf{g}$

+ Q.80. Find the formula mass of
 i. $\quad \mathbf{N a C l}$

Solution:
i. Formula mass of NaCl
$=$ Average atomic mass of $\mathrm{Na}+$ Average atomic mass of Cl
$=23.0 \mathrm{u}+35.5 \mathrm{u}=\mathbf{5 8 . 5} \mathbf{u}$
ii. Formula mass of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
$=$ Average atomic mass of $\mathrm{Cu}+2 \times$ (Average atomic mass of $\mathrm{N}+$ Average atomic mass of three O$)$
$=63.5+2 \times[14+(3 \times 16)]=\mathbf{1 8 7 . 5} \mathbf{u}$
Ans: i. \quad Formula mass of $\mathrm{NaCl}=\mathbf{5 8 . 5} \mathbf{u}$
ii. Formula mass of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}=\mathbf{1 8 7 . 5} \mathbf{u}$
Q.81. Find the formula mass of
i. KCl
ii. AgCl

Solution:

i. Formula mass of KCl
$=$ Average atomic mass of $\mathrm{K}+$ Average atomic mass of Cl
$=39 \mathrm{u}+35.5 \mathrm{u}=74.5 \mathrm{u}$
ii. Formula mass of AgCl
$=$ Average atomic mass of $\mathrm{Ag}+$ Average atomic mass of Cl
$=108+35.5=\mathbf{1 4 3 . 5} \mathbf{u}$
Ans: i. \quad Formula mass of $\mathrm{KCl}=\mathbf{7 4 . 5} \mathbf{u}$
ii. Formula mass of $\mathrm{AgCl}=\mathbf{1 4 3 . 5} \mathbf{u}$
Q.82. Try this (Textbook page no. 8)

Find the formula mass of CaSO_{4}, if atomic mass of $\mathrm{Ca}=40.1 \mathrm{u}, \mathrm{S}=\mathbf{3 2 . 1} \mathrm{u}$ and $\mathrm{O}=16.0 \mathrm{u}$.

Solution:

Formula mass of CaSO_{4}
$=$ Average atomic mass of $\mathrm{Ca}+$ Average atomic mass of $\mathrm{S}+$ Average atomic mass of four O
$=(40.1)+32.1+(4 \times 16.0)=\mathbf{1 3 6 . 2} \mathbf{u}$
Ans: Formula mass of $\mathrm{CaSO}_{4}=\mathbf{1 3 6 . 2} \mathbf{u}$

1.7 Mole concept and molar mass

Q.83. Can you recall? (Textbook page no. 8)
i. One dozen means how many items?

Ans:
i. One dozen means 12 items.
ii. One gross means how many items?
ii. One gross means 144 items.

*Q.84. Explain: Mole concept

Ans:

i. Even a small amount of any substance contains very large number of atoms or molecules. Therefore, a quantitative adjective 'mole' is used to express the large number of sub-microscopic entities like atoms, molecules, ions, electrons, etc. present in a substance.
ii. Thus, one mole is the amount of a substance that contains as many entities or particles as there are atoms in exactly 12 g (or 0.012 kg) of the carbon -12 isotope.
iii. One mole is the amount of substance which contains 6.0221367×10^{23} particles/entities.

Reading between the lines

Mass of one carbon-12 atom as determined by mass spectrometer is $1.992648 \times 10^{-23} \mathrm{~g}$.
Mass of one mole of carbon atoms is 12 g .
Hence, Number of atoms in 12 g of carbon-12

$$
\begin{aligned}
& =\frac{12 \mathrm{~g} / \mathrm{mol}}{1.992648 \times 10^{-23} \mathrm{~g} / \text { atom }} \\
& =6.02213 \times 10^{23} \text { atom } / \mathrm{mol}
\end{aligned}
$$

*Q.85. How many particles are present in 1 mole of a substance?

Ans: The number of particles in one mole is 6.0221367×10^{23}.

Enrich Your Knowledge

i. The name of the unit is mole and the symbol for the unit is mol.
ii. The number 6.0221367×10^{23} is known as 'Avogadro's Constant' in the honour of Amedo Avogadro.
iii. The number of atoms, molecules, ions or electrons, etc. present in 1 mole of a substance is found to be equal to 6.0221367×10^{23}, which is called Avogadro Number.
iv. The number 6.0221367×10^{23} is often rounded to three decimal point as 6.022×10^{23} in calculations.
v. In SI system, mole (Symbol mol) was introduced as seventh base quantity for the amount of a substance.

*Q.86. Explain: Molar mass

Ans:
i. \quad The mass of one mole of a substance (element/compound) in grams is called its molar mass.
ii. The molar mass of any element in grams is numerically equal to atomic mass of that element in u. e.g.

Element	Atomic mass (u)	Molar mass $\left(\mathbf{g ~ m o l}^{\mathbf{- 1}} \mathbf{)}\right.$
H	1.0	1.0
C	12.0	12.0
O	16.0	16.0

iii. Similarly, molar mass of polyatomic molecule, in grams is numerically equal to its molecular mass or formula mass in u.
e.g.

Polyatomic substance	Molecular/formula mass (u)	Molar mass $\left(\mathbf{g ~ m o l}^{\mathbf{- 1}}\right)$
O_{2}	32.0	32.0
$\mathrm{H}_{2} \mathrm{O}$	18.0	18.0
NaCl	58.5	58.5

*Q.87. Point out the difference between 12 g of carbon and 12 u of carbon.
Ans: 12 g of carbon is the molar mass of carbon while 12 u of carbon is the mass of one carbon atom.

Solved Examples

*Q.88. What is the ratio of molecules in 1 mole of NH_{3} and 1 mole of $\mathbf{H N O}_{3}$?
Solution:
One mole of any substance contains particles equal to 6.022×10^{23}.
1 mole of $\mathrm{NH}_{3}=6.022 \times 10^{23}$ molecules of NH_{3}
1 mole of $\mathrm{HNO}_{3}=6.022 \times 10^{23}$ molecules of HNO_{3}
$\therefore \quad$ Ratio $=\frac{6.022 \times 10^{23}}{6.022 \times 10^{23}}=1: 1$
Ans: The ratio of molecules is $=\mathbf{1 : 1}$
*Q.89. In two moles of acetaldehyde ($\mathrm{CH}_{3} \mathrm{CHO}$) calculate the following:
i. Number of moles of carbon
ii. Number of moles of hydrogen
iii. Number of moles of oxygen
iv. Number of molecules of acetaldehyde

Solution:
Molecular formula of acetaldehyde: $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
Moles of acetaldehyde $=2 \mathrm{~mol}$
i. Number of moles of carbon atoms $=$ Moles of acetaldehyde \times Number of carbon atoms

$$
\begin{aligned}
& =2 \times 2 \\
& =4 \text { moles of carbon atoms }
\end{aligned}
$$

ii. Number of moles of hydrogen atoms $=$ Moles of acetaldehyde \times Number of hydrogen atoms

$$
\begin{aligned}
& =2 \times 4 \\
& =\mathbf{8} \text { moles of hydrogen atoms }
\end{aligned}
$$

iii. Number of moles of oxygen atoms $=$ Moles of acetaldehyde \times Number of oxygen atoms

$$
\begin{aligned}
& =2 \times 1 \\
& =2 \text { moles of oxygen atoms }
\end{aligned}
$$

iv. Number of molecules of acetaldehyde $=$ Moles of acetaldehyde \times Avogadro number

$$
\begin{aligned}
& =2 \mathrm{~mol} \times 6.022 \times 10^{23} \text { molecules } / \mathrm{mol} \\
& =\mathbf{1 2 . 0 4 4} \times \mathbf{1 0}^{\mathbf{2 3}} \mathbf{~ m o l e c u l e s} \text { of acetaldehyde }
\end{aligned}
$$

*Q.90. Calculate the number of moles of magnesium oxide, MgO in
i. $\quad 80 \mathrm{~g}$ and
ii. $\quad 10 \mathrm{~g}$ of the compound.
(Average atomic masses of $\mathrm{Mg}=24$ and $\mathrm{O}=16$)

Solution:

Given:
i. Mass of $\mathrm{MgO}=80 \mathrm{~g}$
ii. Mass of $\mathrm{MgO}=10 \mathrm{~g}$

To find: \quad Number of moles of MgO
Formulae: \quad Number of moles $(n)=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}$
Calculation: i. Molecular mass of $\mathrm{MgO}=(1 \times$ Average atomic mass of Mg$)+(1 \times$ Average atomic mass of O$)$

$$
\begin{aligned}
& =(1 \times 24 \mathrm{u})+(1 \times 16 \mathrm{u}) \\
& =40 \mathrm{u}
\end{aligned}
$$

$\therefore \quad$ Molar mass of $\mathrm{MgO}=40 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of $\mathrm{MgO}=80 \mathrm{~g}$
Number of moles $(n)=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}$

$$
\begin{aligned}
& =\frac{80 \mathrm{~g}}{40 \mathrm{~g} \mathrm{~mol}^{-1}} \\
& =\mathbf{2} \mathbf{~ m o l}
\end{aligned}
$$

ii. Mass of $\mathrm{MgO}=10 \mathrm{~g}$, Molar mass of $\mathrm{MgO}=40 \mathrm{~g} \mathrm{~mol}^{-1}$

Number of moles $(\mathrm{n})=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}$
$=\frac{10 \mathrm{~g}}{40 \mathrm{~g} \mathrm{~mol}^{-1}}$
$=0.25 \mathrm{~mol}$
Ans: i. The number of moles in 80 g of magnesium oxide, $\mathrm{MgO}=\mathbf{2} \mathbf{~ m o l}$
ii. The number of moles in 10 g of magnesium oxide, $\mathrm{MgO}=\mathbf{0 . 2 5} \mathbf{~ m o l}$

+ Q.91. Calculate the number of moles and molecules of urea present in 5.6 g of urea.

Solution:

Given:
Mass of urea $=5.6 \mathrm{~g}$
To find:
The number of moles and molecules of urea
Formulae: i. \quad Number of moles $=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}$
ii. Number of molecules $=$ Number of moles \times Avogadro's constant

Calculation: Mass of urea $=5.6 \mathrm{~g}$
Molecular mass of urea, $\mathrm{NH}_{2} \mathrm{CONH}_{2}$
$=(2 \times$ Average atomic mass of N$)+(4 \times$ Average atomic mass of H$)+(1 \times$ Average atomic mass of C$)$ $+(1 \times$ average atomic mass of O$)$
$=(2 \times 14 u)+(4 \times 1 u)+(1 \times 12 u)+(1 \times 16 u)=60 u$
$\therefore \quad$ Molar mass of urea $=60 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles $=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}=\frac{5.6 \mathrm{~g}}{60 \mathrm{~g} \mathrm{~mol}^{-1}}$

$$
=0.0933 \mathrm{~mol}
$$

$$
\begin{aligned}
& \text { Now, } \\
& \begin{aligned}
\text { Number of molecules of urea } & =\text { Number of moles } \times \text { Avogadro's constant } \\
& =0.0933 \mathrm{~mol} \times 6.022 \times 10^{23} \text { molecules } / \mathrm{mol} \\
& =0.5619 \times 10^{23} \text { molecules } \\
& =\mathbf{5 . 6 1 9} \times \mathbf{1 0}^{\mathbf{2 2}} \text { molecules }
\end{aligned}
\end{aligned}
$$

Ans: Number of moles of urea $=\mathbf{0 . 0 9 3 3} \mathbf{~ m o l}$
Number of molecules of urea $=5.619 \times \mathbf{1 0}^{\mathbf{2 2}}$ molecules

*Q.92. Calculate the number of moles and molecules of acetic acid present in $\mathbf{2 2} \mathbf{g}$ of it.

Solution:

Given: \quad Mass of acetic acid $=22 \mathrm{~g}$
To find: \quad The number of moles and molecules of acetic acid
Formulae:
i. Number of moles $=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}$
ii. Number of molecules $=$ Number of moles \times Avogadro's constant

Calculation: \quad Mass of acetic acid $=22 \mathrm{~g}$
Molecular mass of acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$
$=(2 \times$ Average atomic mass of C$)+(4 \times$ Average atomic mass of H$)+(2 \times$ Average atomic mass of O$)$
$=(2 \times 12 u)+(4 \times 1 u)+(2 \times 16 u)=60 u$
$\therefore \quad$ Molar mass of acetic acid $=60 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles $=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}=\frac{22 \mathrm{~g}}{60 \mathrm{~g} \mathrm{~mol}^{-1}}=\mathbf{0 . 3 6 7} \mathbf{~ m o l}$
Now,
Number of molecules of acetic acid $=$ Number of moles \times Avogadro's constant $=0.367 \mathrm{~mol} \times 6.022 \times 10^{23}$ molecules $/ \mathrm{mol}$ $=\mathbf{2 . 2 1 0} \times \mathbf{1 0}^{\mathbf{2 3}}$ molecules
Ans: Number of moles $=\mathbf{0 . 3 6 7} \mathbf{~ m o l}$
Number of molecules of acetic acid $=\mathbf{2 . 2 1 0} \times \mathbf{1 0}^{\mathbf{2 3}}$ molecules
*Q.93. Calculate the number of atoms in each of the following (Given: Atomic mass of $I=127 \mathbf{u}$).
i. $\quad 254$ u of iodine (I)
ii. $\quad \mathbf{2 5 4} \mathbf{g}$ of iodine (I)

Solution:

i. $\quad 254 \mathrm{u}$ of iodine $(\mathrm{I})=x$ atoms

Atomic mass of iodine $(\mathrm{I})=127 \mathrm{u}$
$\therefore \quad$ Mass of one iodine atom $=127 \mathrm{u}$
$\therefore \quad x=\frac{254 \mathrm{u}}{127 \mathrm{u}}=\mathbf{2}$ atoms
ii. $\quad 254 \mathrm{~g}$ of iodine (I)

Atomic mass of iodine $=127 \mathrm{u}$
$\therefore \quad$ Molar mass of iodine $=127 \mathrm{~g} \mathrm{~mol}^{-1}$
Now,
Number of moles $=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}=\frac{254 \mathrm{~g}}{127 \mathrm{~g} \mathrm{~mol}^{-1}}=\mathbf{2} \mathbf{~ m o l}$

Now,
Number of atoms $=$ Number of moles \times Avogadro's constant

$$
\begin{aligned}
& =2 \mathrm{~mol} \times 6.022 \times 10^{23} \text { atoms } / \mathrm{mol} \\
& =12.044 \times 10^{23} \text { atoms } \\
& =\mathbf{1 . 2 0 4 4} \times \mathbf{1 0}^{\mathbf{2 4}} \text { atoms }
\end{aligned}
$$

Ans: i. Number of iodine atoms in $254 \mathrm{u}=\mathbf{2}$ atoms
ii. Number of iodine atoms in $254 \mathrm{~g}=\mathbf{1 . 2 0 4 4} \times \mathbf{1 0}^{\mathbf{2 4}}$ atoms
Q.94. Calculate the number of atoms in each of the following:
i. 64 u of oxygen (O)
ii. $\quad 42 \mathrm{~g}$ of nitrogen (N)

Solution:
i. $\quad 64 \mathrm{u}$ of oxygen $(\mathrm{O})=x$ atoms

Atomic mass of oxygen $(\mathrm{O})=16 \mathrm{u}$
$\therefore \quad$ Mass of one oxygen atom $=16 \mathrm{u}$
$\therefore \quad x=\frac{64 \mathrm{u}}{16 \mathrm{u}}=4$ atoms
ii. $\quad 42 \mathrm{~g}$ of nitrogen (N)

Atomic mass of nitrogen $=14 \mathrm{u}$
$\therefore \quad$ Molar mass of nitrogen $=14 \mathrm{~g} \mathrm{~mol}^{-1}$
Now,
Number of moles $=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}=\frac{42 \mathrm{~g}}{14 \mathrm{~g} \mathrm{~mol}^{-1}}=\mathbf{3} \mathbf{~ m o l}$
Now,
Number of atoms $=$ Number of moles \times Avogadro's constant

$$
\begin{aligned}
& =3 \mathrm{~mol} \times 6.022 \times 10^{23} \text { atoms } / \mathrm{mol} \\
& =18.07 \times 10^{23} \text { atoms } \\
& =\mathbf{1 . 8 0 7} \times \mathbf{1 0}^{\mathbf{2 4}} \text { atoms }
\end{aligned}
$$

Ans: i. Number of oxygen atoms in $64 \mathrm{u}=4$ atoms
ii. Number of nitrogen atoms in $42 \mathrm{~g}=\mathbf{1 . 8 0 7} \times \mathbf{1 0}^{\mathbf{2 4}}$ atoms

+ Q.95. Calculate the number of atoms in each of the following
i. 52 moles of Argon (Ar)

Solution:
i. 52 moles of Argon

1 mole Argon atoms $=6.022 \times 10^{23}$ atoms of Ar
$\therefore \quad$ Number of atoms $=52 \mathrm{~mol} \times 6.022 \times 10^{23}$ atoms $/ \mathrm{mol}$

$$
=313.144 \times 10^{23} \text { atoms of Argon }
$$

ii. $\quad 52 \mathrm{u}$ of Helium

Atomic mass of $\mathrm{He}=$ mass of 1 atom of $\mathrm{He}=4.0 \mathrm{u}$
$4.0 \mathrm{u}=1 \mathrm{He}$
$\therefore \quad 52 \mathrm{u}=x$
$\therefore \quad x=52 \mathrm{u} \times \frac{1 \text { atom of } \mathrm{He}}{4.0 \mathrm{u}}=\mathbf{1 3}$ atoms of He
iii. $\quad 52 \mathrm{~g}$ of He

Molar mass of $\mathrm{He}=4.0 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles $=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}=\frac{52 \mathrm{~g}}{4.0 \mathrm{~g} \mathrm{~mol}^{-1}}=13 \mathrm{~mol}$
Number of atoms of $\mathrm{He}=$ Number of moles \times Avogadro's constant

$$
\begin{aligned}
& =13 \mathrm{~mol} \times 6.022 \times 10^{23} \text { atoms } / \mathrm{mol} \\
& =\mathbf{7 8 . 2 8 6} \times \mathbf{1 0}^{\mathbf{2 3}} \text { atoms of } \mathbf{H e}
\end{aligned}
$$

Ans: i. \quad Number of argon atoms in 52 moles $=\mathbf{3 1 3 . 1 4 4} \times \mathbf{1 0}^{\mathbf{2 3}}$ atoms of Argon
ii. Number of helium atoms in $52 \mathrm{u}=\mathbf{1 3}$ atoms of $\mathbf{H e}$
iii. Number of helium atoms in $52 \mathrm{~g}=\mathbf{7 8 . 2 8 6} \times \mathbf{1 0}^{\mathbf{2 3}}$ atoms of $\mathbf{H e}$
*Q.96. Calculate number of atoms is each of the following. (Average atomic mass: $N=14 \mathbf{u}, \mathrm{~S}=32 \mathbf{u}$)
i. 0.4 mole of nitrogen
ii. $\quad 1.6 \mathrm{~g}$ of sulphur

Solution:
i. $\quad 0.4$ mole of nitrogen (N)

Number of atoms of $\mathrm{N}=$ Number of moles \times Avogadro's constant

$$
\begin{aligned}
& =0.4 \mathrm{~mol} \times 6.022 \times 10^{23} \text { atoms } / \mathrm{mol} \\
& =\mathbf{2 . 4 0 8 8} \times \mathbf{1 0}^{\mathbf{2 3}} \mathbf{a t o m s} \text { of } \mathbf{N}
\end{aligned}
$$

iii. $\quad 52 \mathrm{~g}$ of Helium (He)
ii. $\quad 1.6 \mathrm{~g}$ of Sulphur (S)

Molar mass of sulphur $=32 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles $=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}=\frac{1.6 \mathrm{~g}}{32 \mathrm{~g} \mathrm{~mol}^{-1}}=0.05 \mathrm{~mol}$
Number of atoms of $S=$ Number of moles \times Avogadro's constant

$$
\begin{aligned}
& =0.05 \mathrm{~mol} \times 6.022 \times 10^{23} \text { atoms } / \mathrm{mol} \\
& =0.3011 \times 10^{23} \text { atoms } \\
& =\mathbf{3 . 0 1 1} \times \mathbf{1 0}^{\mathbf{2 2}} \mathbf{a t o m s} \text { of } \mathbf{S}
\end{aligned}
$$

Ans: i. \quad Number of nitrogen atoms in 0.4 mole $=\mathbf{2 . 4 0 8 8} \times \mathbf{1 0}^{\mathbf{2 3}}$ atoms of \mathbf{N}
ii. Number of sulphur atoms in $1.6 \mathrm{~g}=\mathbf{3 . 0 1 1} \times \mathbf{1 0}^{\mathbf{2 2}}$ atoms of \mathbf{S}
*Q.97. A student used a carbon pencil to write his homework. The mass of this was found to be 5 mg . With the help of this calculate.
i. The number of moles of carbon in his homework writing.
ii. The number of carbon atoms in $\mathbf{1 2} \mathbf{~ m g}$ of his homework writing.

Solution:

i. $\quad 5 \mathrm{mg}$ carbon $=5 \times 10^{-3} \mathrm{~g}$ carbon

Atomic mass of carbon $=12 \mathrm{u}$
$\therefore \quad$ Molar mass of carbon $=12 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles $=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}=\frac{5 \times 10^{-3} \mathrm{~g}}{12 \mathrm{~g} \mathrm{~mol}^{-1}}=\mathbf{4 . 1 6 7} \times \mathbf{1 0}^{\mathbf{- 4}} \mathbf{~ m o l}$
ii. $\quad 12 \mathrm{mg}$ carbon $=12 \times 10^{-3} \mathrm{~g}$ carbon

Number of moles $=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}=\frac{12 \times 10^{-3} \mathrm{~g}}{12 \mathrm{~g} \mathrm{~mol}^{-1}}=1 \times 10^{-3} \mathrm{~mol}$
Number of atoms $=$ Number of moles \times Avogadro's constant
Number of atoms of carbon $=1 \times 10^{-3} \mathrm{~mol} \times 6.022 \times 10^{23}$ atoms $/ \mathrm{mol}$

$$
=6.022 \times 10^{20} \text { atoms }
$$

Ans: Number of moles of carbon in his homework writing $=\mathbf{4 . 1 6 7} \times \mathbf{1 0}^{-4} \mathbf{~ m o l}$
Number of atoms of carbon in 12 mg homework writing $=\mathbf{6 . 0 2 2} \times \mathbf{1 0}^{\mathbf{2 0}}$ atoms
*Q.98. Calculate the number of atoms of hydrogen present in 5.6 g of urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$. Also calculate the number of atoms of N, C and \mathbf{O}.

Solution:

Given: \quad Mass of urea $=5.6 \mathrm{~g}$
To find: The number of atoms of hydrogen, nitrogen, carbon and oxygen
Calculation: Molecular formula of urea: $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$
Molar mass of urea $=60 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles $=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}=\frac{5.6 \mathrm{~g}}{60 \mathrm{~g} \mathrm{~mol}^{-1}}=0.0933 \mathrm{~mol}$
$\therefore \quad$ Moles of urea $=0.0933 \mathrm{~mol}$
Number of atoms $=$ Number of moles \times Avogadro's constant
Now, 1 molecule of urea has total 8 atoms, out of which 4 atoms are of $\mathrm{H}, 2$ atoms are of $\mathrm{N}, 1$ of C and 1 of O .
Number of H atoms in 5.6 g of urea $=(4 \times 0.0933) \mathrm{mol} \times 6.022 \times 10^{23}$ atoms $/ \mathrm{mol}$

$$
=2.247 \times 10^{23} \text { atoms of hydrogen }
$$

$\therefore \quad$ Number of N atoms in 5.6 g of urea $=(2 \times 0.0933) \mathrm{mol} \times 6.022 \times 10^{23}$ atoms $/ \mathrm{mol}$

$$
=1.124 \times 10^{23} \text { atoms of nitrogen }
$$

$\therefore \quad$ Number of C atoms in 5.6 g of urea $=(1 \times 0.0933) \mathrm{mol} \times 6.022 \times 10^{23}$ atoms $/ \mathrm{mol}$

$$
=0.562 \times 10^{23} \text { atoms of carbon }
$$

$\therefore \quad$ Number of O atoms in 5.6 g of urea $=(1 \times 0.0933) \mathrm{mol} \times 6.022 \times 10^{23}$ atoms $/ \mathrm{mol}$

$$
=0.562 \times 10^{23} \text { atoms of oxygen }
$$

Ans: 5.6 g of urea contain $2.247 \times \mathbf{1 0}^{\mathbf{2 3}}$ atoms of $\mathbf{H}, \mathbf{1 . 1 2 4 \times 1 0 ^ { 2 3 }}$ atoms of $\mathrm{N}, \mathbf{0 . 5 6 2} \times \mathbf{1 0}^{\mathbf{2 3}}$ atoms of C and 0.562×10^{23} atoms of \mathbf{O}.
Q.99. Calculate the number of atoms of ' C ', ' H ' and ' O ' in 72.5 g of isopropanol, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ (molar mass = $60 \mathrm{~g} \mathrm{~mol}^{-1}$).

Solution:

Given: \quad Mass of isopropanol $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\right)=72.5 \mathrm{~g}$
To find: \quad The number of atoms of C, H, O
Calculation: Molecular formula of isopropanol, is $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$.
Molar mass of $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}=60 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles $=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}=\frac{72.5 \mathrm{~g}}{60 \mathrm{~g} \mathrm{~mol}^{-1}}=1.208 \mathrm{~mol}$
$\therefore \quad$ Moles of isopropanol $=1.21 \mathrm{~mol}$
Number of atoms $=$ Number of moles \times Avogadro's constant
Now, 1 molecule of isopropanol has total 12 atoms, out of which 8 atoms are of $\mathrm{H}, 3$ of C and 1 of O .
$\therefore \quad$ Number of C atoms in 72.5 g isopropanol $=(3 \times 1.208) \mathrm{mol} \times 6.022 \times 10^{23}$ atoms $/ \mathrm{mol}$

$$
=2.182 \times 10^{24} \text { atoms of carbon }
$$

$\therefore \quad$ Number of ' H ' atoms in 72.5 g isopropanol $=(8 \times 1.208) \mathrm{mol} \times 6.022 \times 10^{23}$ atoms $/ \mathrm{mol}$

$$
=5.819 \times 10^{24} \text { atoms of hydrogen }
$$

$\therefore \quad$ Number of ' O ' atoms in 72.5 g isopropanol $=(1 \times 1.208) \mathrm{mol} \times 6.022 \times 10^{23}$ atoms $/ \mathrm{mol}$

$=7.274 \times 10^{23}$ atoms of oxygen

Ans: 72.5 g of isopropanol contain $\mathbf{2 . 1 8 2} \times \mathbf{1 0}^{\mathbf{2 4}}$ atoms of $\mathrm{C}, \mathbf{5 . 8 1 9} \times \mathbf{1 0}^{\mathbf{2 4}}$ atoms of \mathbf{H} and $7.274 \times 10^{\mathbf{2 3}}$ atoms of O .
*Q.100. Arjun purchased 250 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ for Rs 40 . Find the cost of glucose per mole.

Solution:

Given: \quad Mass of urea $=250 \mathrm{~g}$, cost for 250 g glucose $=$ Rs 40 , molecular formula of glucose $=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
To find: \quad Cost per mole of glucose
Calculation: Molecular formula of glucose is $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$.
Molecular mass of glucose
$=(6 \times$ Average atomic mass of C$)+(12 \times$ Average atomic mass of H$)+(6 \times$ Average atomic mass of O$)$
$=(6 \times 12 u)+(12 \times 1 u)+(6 \times 16 u)$
$=180$ u
$\therefore \quad$ Molar mass of glucose $=180 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles $=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}=\frac{250 \mathrm{~g}}{180 \mathrm{~g} \mathrm{~mol}^{-1}}=1.389 \mathrm{~mol}$
Now,
1.389 mol of glucose cost $=$ Rs 40

1 mol glucose cost $=x$
$\therefore \quad x=\frac{\text { Rs } 40}{1.389 \mathrm{~mol}}=$ Rs $28.8 / \mathrm{mol}$ of glucose
Ans: The cost of glucose per mole is Rs 28.8.

1.8 Moles and gases

*Q.101. Explain: Molar volume of gas
 Ans:

i. It is more convenient to measure the volume rather than mass of the gas.
ii. It is found from Avogadro law that "One mole of any gas occupies a volume of $22.4 \mathrm{dm}^{3}$ at standard temperature $\left(0^{\circ} \mathrm{C}\right)$ and pressure ($1 \mathbf{~ a t m}$) (STP).
iii. The volume of $22.4 \mathrm{dm}^{3}$ at STP is known as molar volume of a gas.
iv. The relationship between number of moles and molar volume can be expressed as follows:

Number of moles of a gas $(\mathrm{n})=\frac{\text { Volume of the gas at STP }}{\text { Molar volume of the gas }}$

$$
=\frac{\text { Volume of the gas at STP }}{22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}}
$$

[Note: IUPAC has recently changed the standard pressure to 1 bar. Under these new STP conditions the molar volume of a gas is $22.71 \mathrm{~L} \mathrm{~mol}^{-1}$]

Enrich Your Knowledge

One mole of various gas (of different molar masses) occupy 22.4 L at STP and contain Avogadro's number of molecules.

*Q.102. What is meant by molar volume of a gas?
Ans: The volume occupied by one mole of a gas at standard temperature $\left(0^{\circ} \mathrm{C}\right)$ and pressure (1 atm) (STP) is called as molar volume of a gas. The molar volume of a gas at STP is $22.4 \mathrm{dm}^{3}$.

*Q.103. Activity:
Collect information of various scientists and prepare charts of their contribution in chemistry.

Ans:

Scientists		Contributions
Joseph Louis Gay-Lussac (1778-1850) (French chemist and physicist)	i. ii.	Formulated the gas law. Collected samples of air at different heights and recorded temperatures and moisture contents. Discovered that the composition of atmosphere does not change with increasing altitude.
Amedeo Avogadro (1776-1856) (Italian scholar)	i.	Published article in French journal on determining the relative masses of elementary particles of bodies and proportions by which they enter combinations.
Published a research paper titled "New considerations on the		
theory of proportions and on determination of the masses of		
atoms."		

[Note: Students are expected to find out contributions of other scientists on their own.]

Solved Examples

*Q.104. Calculate number of moles of hydrogen in 0.448 litre of hydrogen gas at STP.

Solution:

Given: \quad Volume of hydrogen at STP $=0.448$ L
To find: \quad Number of moles of hydrogen
Formula: \quad Number of moles of a gas $(\mathrm{n})=\frac{\text { Volume of a gas at STP }}{\text { Molar volume of a gas }}$
Calculation: Molar volume of a gas $=22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}=22.4 \mathrm{~L}$ at STP
Number of moles of a gas $(n)=\frac{\text { Volume of a gas at STP }}{\text { Molar volume of a gas }}$

$$
\begin{aligned}
& =\frac{0.448 \mathrm{~L}}{22.4 \mathrm{~L} \mathrm{~mol}^{-1}} \\
& =\mathbf{0 . 0 2} \mathbf{~ m o l}
\end{aligned}
$$

Ans: Number of moles of hydrogen $=\mathbf{0 . 0 2} \mathbf{~ m o l}$

+ Q.105. Calculate the number of moles and molecules of ammonia $\left(\mathrm{NH}_{3}\right)$ gas in a volume $67.2 \mathrm{dm}^{3}$ of it measured at STP.

Solution:

Given: \quad Volume of ammonia at STP $=67.2 \mathrm{dm}^{3}$
To find: \quad Number of moles and molecules of ammonia
Formulae:
i. Number of moles of a gas $(\mathrm{n})=\frac{\text { Volume of a gas at STP }}{\text { Molar volume of a gas }}$
ii. Number of molecules $=$ Number of moles $\times 6.022 \times 10^{23}$ molecules mol^{-1}

Calculation: Molar volume of a gas $=22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at STP.
Number of moles $(n)=\frac{\text { Volume of the gas at STP }}{\text { Molar volume of gas }}$
Number of moles of $\mathrm{NH}_{3}=\frac{67.2 \mathrm{dm}^{3}}{22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}}=\mathbf{3 . 0} \mathbf{~ m o l}$
Number of molecules $=$ Number of moles $\times 6.022 \times 10^{23}$ molecules mol $^{-1}$

$$
=3.0 \mathrm{~mol} \times 6.022 \times 10^{23} \text { molecules } \mathrm{mol}^{-1}
$$

$$
=18.066 \times 10^{23} \text { molecules }
$$

Ans: Number of moles of ammonia $=\mathbf{3 . 0} \mathbf{~ m o l}$ Number of molecules of ammonia $=\mathbf{1 8 . 0 6 6} \times \mathbf{1 0}^{\mathbf{2 3}}$ molecules
*Q.106. What is volume of carbon dioxide, CO_{2} occupying by
i. 5 moles and
ii. $\quad 0.5$ mole of CO_{2} gas measured at STP.

Solution:
Given: i. Number of moles of $\mathrm{CO}_{2}=5 \mathrm{~mol}$
ii. Number of moles of $\mathrm{CO}_{2}=0.5 \mathrm{~mol}$

To find: Volume at STP
Formula: \quad Number of moles of a gas $(n)=\frac{\text { Volume of a gas at STP }}{\text { Molar volume of a gas }}$
Calculation: Molar volume of a gas $=22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at STP.
Number of moles of a gas $(\mathrm{n})=\frac{\text { Volume of a gas at STP }}{\text { Molar volume of a gas }}$
$\therefore \quad$ i. Volume of the gas at STP $=$ Number of moles of a gas $(n) \times$ Molar volume of a gas

$$
=5 \mathrm{~mol} \times 22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}=\mathbf{1 1 2} \mathbf{~ d m}^{3}
$$

ii. Volume of the gas at STP $=$ Number of moles of a gas (n) \times Molar volume of a gas

$$
=0.5 \mathrm{~mol} \times 22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}=\mathbf{1 1 . 2} \mathbf{~ d m}^{\mathbf{3}}
$$

Ans: i. Volume of 5 mol of $\mathrm{CO}_{2}=\mathbf{1 1 2} \mathbf{~ d m}^{\mathbf{3}}$
ii. Volume of 0.5 mol of $\mathrm{CO}_{2}=\mathbf{1 1 . 2} \mathbf{~ d m}^{\mathbf{3}}$
Q.107. Try this (Textbook page no. 10)

Calculate the volume in $\mathbf{d m}^{\mathbf{3}}$ occupied by 60.0 g of ethane at STP.

Solution:

Given: \quad Mass of ethane at $\mathrm{STP}=60.0 \mathrm{~g}$
To find: Volume of ethane
Formulae:
i. Number of moles $=\frac{\text { Mass of a substance }}{\text { Molar mass of the substance }}$
ii. \quad Number of moles $=\frac{\text { Volume of a gas at STP }}{\text { Molar volume of a gas }}$

Calculation: Molar volume of a gas $=22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at STP
Molecular mass of ethane $=30 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles $=\frac{\text { Mass of a substance }}{\text { Molar mass of the substance }}$

$$
=\frac{60.0 \mathrm{~g}}{30 \mathrm{~g} \mathrm{~mol}^{-1}}=2 \mathrm{~mol}
$$

Number of moles of a gas $(\mathrm{n})=\frac{\text { Volume of the gas at STP }}{\text { Molar volume of a gas }}$
$\therefore \quad$ Volume of the gas at STP $=$ Number of moles of a gas $(\mathrm{n}) \times$ Molar volume of a gas

$$
=2 \mathrm{~mol} \times 22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}=\mathbf{4 4 . 8} \mathrm{dm}^{3}
$$

Ans: Volume of ethane $=\mathbf{4 4 . 8} \mathbf{~ d m}^{\mathbf{3}}$
Q.108. 3.40 g of ammonia at STP occupies volume of $4.48 \mathrm{dm}^{3}$. Calculate molar mass of ammonia. Solution:

Let ' x ' grams be the molar mass of NH_{3}.
Molar volume of a gas $=22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at STP
Volume occupied by 3.40 g of NH_{3} at S.T.P $=4.48 \mathrm{dm}^{3}$
Volume occupied by ' x ' g of NH_{3} at S.T.P $=22.4 \mathrm{dm}^{3}$
$\therefore \quad x=\frac{22.4 \times 3.40}{4.48}=\mathbf{1 7 . 0} \mathbf{g ~ m o l}^{-1}$.
Ans: Molar mass of ammonia is $\mathbf{1 7 . 0} \mathbf{g ~ m o l}^{-1}$.
*Q.109. Calculate the mass of potassium chlorate required to liberate $6.72 \mathrm{dm}^{\mathbf{3}}$ of oxygen at STP. Molar mass of KClO_{3} is $122.5 \mathrm{~g} \mathrm{~mol}^{-1}$.

Solution:

The molecular formula of potassium chlorate is KClO_{3}.
Required chemical equation:
$\underset{[2 \text { moles] }}{2 \mathrm{KClO}_{3}} \longrightarrow 2 \mathrm{KCl}+\underset{[3 \text { moles] }}{3 \mathrm{O}_{2} \uparrow}$

2 moles of $\mathrm{KClO}_{3}=2 \times 122.5=245 \mathrm{~g}$
3 moles of O_{2} at STP occupy $=\left(3 \times 22.4 \mathrm{dm}^{3}\right)=67.2 \mathrm{dm}^{3}$
Thus, 245 g of potassium chlorate will liberate $67.2 \mathrm{dm}^{3}$ of oxygen gas.
Let ' x ' gram of KClO_{3} liberate $6.72 \mathrm{dm}^{3}$ of oxygen gas at S.T.P.
$\therefore \quad x=\frac{245 \times 6.72}{67.2}=\mathbf{2 4 . 5} \mathbf{~ g}$
Ans: Mass of potassium chlorate required $=\mathbf{2 4 . 5} \mathbf{g}$

Apply Your Knowledge

Q.110. Veg puffs from a particular bakery have an average mass of 27.0 g , whereas egg puffs from the same bakery have an average mass of 40 g .
i. Suppose a person buys 1 kg of veg puff from the bakery. Calculate the number of veg puffs he receives.
ii. Determine the mass of egg puffs (in kg) that will contain the same number of eggs puffs as in one kilogram of veg puffs.

Solution:

i. \quad Mass of a veg puff $=27.0 \mathrm{~g}=0.027 \mathrm{~kg}$
$\therefore \quad$ Number of veg puffs in $1 \mathrm{~kg}=1 / 0.027=\mathbf{3 7}$
ii. One kilogram of veg puffs contains 37 veg puffs. Mass of 37 egg puffs $=37 \times 0.040=\mathbf{1 . 4 8} \mathbf{~ k g}$
Ans: i. $\quad 37$ veg puffs in 1 kg of puff.
ii. Mass of 37 egg puffs is $\mathbf{1 . 4 8} \mathbf{~ k g}$

Quick Review

$>\quad$ Classification of matter (On basis of chemical composition):

$>$ Laws of chemical combination:

Law of conservation of mass
 Mass can neither be created nor destroyed.

Law of definite proportion

A given compound always contains exactly the same proportion of elements by weight.

Law of multiple proportion

Laws of chemical combination

Gay Lussac's law of gaseous volume
When gases combine or are produced in a chemical reaction, they do so in a simple ratio by volume, provided all gases are at same temperature and pressure.

Avogadro's law

Equal volumes of all gases at the same temperature and pressure contain equal number of molecules.

Important Formulae

1. Celsius to Fahrenheit: ${ }^{\circ} \mathrm{F}=\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32$
2. Celsius to Kelvin: $\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$
3. Average atomic mass $=$

Sumof (Isotopic mass $\times \%$ Abundance)
100
4. Number of moles (n$)=\frac{\text { Mass of a substance }}{\text { Molar mass of a substance }}$
5. Number of molecules
$=$ Number of moles \times Avogadro number
$=$ Number of moles $\times 6.022 \times 10^{23}$
6. Number of moles $(n)=\frac{\text { Volume of a gas at STP }}{\text { Molar volume of a gas }}$

$$
=\frac{\text { Volume of a gas at STP }}{22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}}
$$

Exercise

1.2 Nature of chemistry

1. What are pure substances? Give two examples.

Ans: Refer Q.6. (i)
2. What are metalloids?

Ans: Refer Q.6. (i-a-3)
3. What is a homogeneous mixture?

Ans: Refer Q.6. (ii-a)
4. Give one example of each:
i. Heterogeneous mixture
ii. Compound
iii. Element
iv. Homogeneous mixture

Ans: Refer Q. 6.
5. Explain classification of matter.

Ans: Refer Q.6.

1.3 Properties of matter and their measurement

6. Give SI unit of:
i. Temperature
ii. Mass
iii. Length

Ans: Refer Q. 17.

1.4 Laws of chemical combination

7. State and explain the law of definite proportion.

Ans: Refer Q.17. (ii)
*8. Give two examples to explain Gay-Lussac's law of gaseous volume.
Ans: Refer Q.44. (ii)
9. i. State the law of conservation of mass.
ii. Explain the law of multiple proportions with reference to carbon monoxide and carbon dioxide.
iii. Validate Gay Lussac's law of combining volume of gases using an example.

Ans:

i. Refer Q.37.
ii. Refer Q.42.
iii. Refer Q.46.
*10. State Avogadro's law.
Ans: Refer Q.47. (ii)

1.5 Dalton's atomic theory

11. What were the basic assumptions of Dalton's theory?
Ans: Refer Q.54.
12. What happens during a chemical reaction according to Dalton's atomic theory?
Ans: Refer Q.54. (iv)

1.6 Atomic and molecular masses

13. Why is it impossible to measure the mass of a single atom?
Ans: Refer Q.60. (i)
14. Calculate the atomic mass (average) of chlorine using the following data:

	\% Natural abundance	Atomic mass
${ }^{35} \mathrm{Cl}$	75.77	34.9689
${ }^{37} \mathrm{Cl}$	24.23	36.9659

Ans: $35.4528 \mathrm{~g} \mathrm{~mol}^{-1}$
15. Calculate the molecular mass of the following in u :
i. $\quad \mathrm{CH}_{3} \mathrm{OH}$
ii. $\quad \mathrm{NO}_{2}$
iii. HNO_{3}

Ans:
i. 32 u ii. 46 u
iii. $\quad 63 \mathrm{u}$
16. Find the formula mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$. (Atomic mass of $\mathrm{Na}=23 \mathrm{u}, \mathrm{S}=32 \mathrm{u}, \mathrm{O}=16 \mathrm{u}$)
Ans. 142 u.

1.7 Mole concept and molar mass

17. Define one mole.

Ans: Refer Q.84. (ii)
18. How many atoms of sulphur are present in 0.1 mole of S_{8} molecules?

Ans: 4.82×10^{23} atoms
19. Calculate the mass of the following:
i. $\quad 0.25$ mole of iron
ii. $\quad 2.5$ moles of ammonia
iii. 250 molecules of sodium chloride

Ans: Iron: $1.4 \times 10^{-2} \mathrm{~kg}$; ammonia: $4.25 \times 10^{-2} \mathrm{~kg}$ and sodium chloride: $2.429 \times 10^{-23} \mathrm{~kg}$
20. Calculate the number of molecules in 28 g of nitrogen, 64 g of oxygen and 72 g of water.
Ans: Nitrogen -6.022×10^{23} molecules
Oxygen - 1.2044×10^{24} molecules
Water - 2.4088×10^{24} molecules
21. Calculate the number of moles of NaOH in
i. $\quad 60 \mathrm{~g}$ and
ii. $\quad 20 \mathrm{~g}$ of the compound.
(Average atomic masses of $\mathrm{Na}=23, \mathrm{O}=16$, $\mathrm{H}=1$)

Ans:

i. $\quad 1.5 \mathrm{~mol}$
ii. $\quad 0.5 \mathrm{~mol}$
22. Calculate the number of moles and molecules of urea present in 30 g of urea.
Ans:
i. $\quad 0.5 \mathrm{~mol}$
ii. $\quad 3.011 \times 10^{23}$ molecules

1.8 Moles and gases

23. Calculate the volume in litres of the following gases at STP:
i. $\quad 1.6 \mathrm{~g}$ of oxygen
ii. $\quad 3.5 \times 10^{-3} \mathrm{~kg}$ of nitrogen
iii. $85 \times 10^{-3} \mathrm{~kg}$ of hydrogen sulphide

Ans:
i. $\quad 1.12 \mathrm{~L}$
ii. $\quad 2.8 \mathrm{~L}$
iii. $\quad 56 \mathrm{~L}$

Multiple Choice Questions

1. The branch of chemistry which deals with carbon compounds is called chemistry.
(A) organic
(B) inorganic
(C) carbon
(D) bio
2. A / an \qquad is a simple combination of two or more substances in which the constituent substances retain their separate identities.
(A) compound
(B) mixture
(C) element
(D) All of these
3. Which one of the following is NOT a mixture?
(A) Paint
(B) Gasoline
(C) Liquefied Petroleum Gas (LPG)
(D) Distilled water

SI unit of the quantity electric current is \qquad .
(A) Volt
(B) Ampere
(C) Candela
(D) Newton
*5. Which of the following temperature will read the same value on celsius and Fahrenheit scales?
(A) -40°
(B) $+40^{\circ}$
(C) -80°
(D) -20°
6. The sum of the masses of reactants and products is equal in any physical or chemical reaction. This is in accordance with \qquad .
(A) law of multiple proportion
(B) law of definite composition
(C) law of conservation of mass
(D) law of reciprocal proportion
*7. A sample of pure water, whatever the source always contains \qquad by mass of oxygen and 11.1% by mass of hydrogen.
(A) 88.8
(B) 18
(C) 80
(D) 16
8. A sample of calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ has the following percentage composition: $\mathrm{Ca}=40 \% ; \mathrm{C}=12 \% ; \mathrm{O}=48 \%$
If the law of definite proportions is true, then the weight of calcium in 4 g of a sample of calcium carbonate from another source will be \qquad -
(A) 0.016 g
(B) 0.16 g
(C) 1.6 g
(D) 16 g
*9. Which of the following compounds CANNOT demonstrate the law of multiple proportions?
(A) $\mathrm{NO}, \mathrm{NO}_{2}$
(B) $\mathrm{CO}, \mathrm{CO}_{2}$
(C) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}_{2}$
(D) $\mathrm{Na}_{2} \mathrm{~S}, \mathrm{NaF}$
10. Two elements, A and B , combine to form two compounds in which ' a ' g of A combines with ' b_{1} ' and ' b_{2} 'g of B respectively. According to law of multiple proportion \qquad .
(A) $\mathrm{b}_{1}=\mathrm{b}_{2}$
(B) b_{1} and b_{2} bear a simple whole number ratio
(C) a and b_{1} bear a whole number ratio
(D) no relation exists between b_{1} and b_{2}
11. At constant temperature and pressure, two litres of hydrogen gas react with one litre of oxygen gas to produce two litres of water vapour. This is in accordance with \qquad -.
(A) law of multiple proportion
(B) law of definite composition
(C) law of conservation of mass
(D) law of gaseous volumes
*12. In the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$, the ratio by volume of $\mathrm{N}_{2}, \mathrm{H}_{2}$ and NH_{3} is $1: 3: 2$. This illustrates the law of \qquad .
(A) definite proportion
(B) reciprocal proportion
(C) multiple proportion
(D) gaseous volumes
13. One mole of oxygen molecule weighs \qquad .
(A) 8 g
(B) 32 g
(C) 16 g
(D) $6.022 \times 10^{23} \mathrm{~g}$
*14. How many g of $\mathrm{H}_{2} \mathrm{O}$ are present in 0.25 mol of it?
(A) 4.5
(B) 18
(C) 0.25
(D) 5.4
*15. Which of the following has the largest number of atoms?
(A) $1 \mathrm{~g} \mathrm{Au}_{(\mathrm{s})}$
(B) $1 \mathrm{~g} \mathrm{Na}_{(\mathrm{s})}$
(C) $\quad 1 \mathrm{~g} \operatorname{Li}_{(\mathrm{s})}$
(D) $1 \mathrm{~g} \mathrm{Cl}_{2(\mathrm{~g})}$
16. Which of the following is CORRECT?
(A) 1 mole of oxygen atoms contains 6.0221367×10^{23} atoms of oxygen.
(B) 1 mole of water molecules contains 6.0221367×10^{23} molecules of water.
(C) 1 mole of sodium chloride contains 6.0221367×10^{23} formula units of NaCl .
(D) All of these
17. The number of molecules present in 8 g of oxygen gas is \qquad .
(A) 6.022×10^{23}
(B) 3.011×10^{23}
(C) 12.044×10^{23}
(D) 1.505×10^{23}
*18. Which of the following has maximum number of molecules?
(A) $7 \mathrm{~g} \mathrm{~N}_{2}$
(B) $2 \mathrm{~g} \mathrm{H}_{2}$
(C) $8 \mathrm{~g} \mathrm{O}_{2}$
(D) $20 \mathrm{~g} \mathrm{NO}_{2}$
19. The number of molecules in $22.4 \mathrm{~cm}^{3}$ of ozone gas at STP is \qquad -.
(A) 6.022×10^{20}
(B) 6.022×10^{23}
(C) 22.4×10^{20}
(D) 22.4×10^{23}
*20. The number of molecules in $22.4 \mathrm{~cm}^{3}$ of nitrogen gas at STP is \qquad .
(A) 6.022×10^{20}
(B) 6.022×10^{23}
(C) 22.4×10^{20}
(D) 22.4×10^{23}
21. $11.2 \mathrm{~cm}^{3}$ of hydrogen gas at STP , contains \qquad moles
(A) 0.0005
(B) 0.01
(C) 0.029
(D) 0.5
22. $\quad 4.4 \mathrm{~g}$ of an unknown gas occupies 2.24 L of volume under STP conditions. The gas may be \qquad .
(A) CO_{2}
(B) CO
(C) $\quad \mathrm{O}_{2}$
(D) $\quad \mathrm{SO}_{2}$

Answers to Multiple Choice Questions

1. (A)
2. (B)
3. (D)
4. (B)
5. (A)
(C)
6. (C)
7. (D)
8. (B)
9. (D)
10. (D)
11. (B)
12. (A)
13. (C)
14. (D)
15. (D)
16. (B)
17. (B)
18. (B)
19. (D) 22. (A)

Competitive Corner

1. The number of moles of hydrogen molecules required to produce 20 moles of ammonia through Haber's process is \qquad .
[NEET (UG) 2019]
(A) 20
(B) 30
(C) 40
(D) 10

Hint: $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
$3 \mathrm{~mol} \mathrm{H}_{2}=2 \mathrm{~mol} \mathrm{NH}_{3}$
$\therefore \quad 30 \mathrm{~mol} \mathrm{H}_{2}=20 \mathrm{~mol} \mathrm{NH}_{3}$
2. The combining ratios of hydrogen and oxygen in water and hydrogen peroxide are $1: 8$ and $1: 16$. Which law is illustrated in this example?
[MHT CET 2019]
(A) Law of definite proportions
(B) Gay Lussac's law of combining volumes of gases
(C) Law of conservation of mass
(D) Law of multiple proportions
3. What is the SI unit of density?
[MHT CET 2018]
(A) $\mathrm{g} \mathrm{cm}^{-3}$
(B) $\mathrm{g} \mathrm{m}^{-3}$
(C) $\mathrm{kg} \mathrm{m}^{-3}$
(D) $\mathrm{kg} \mathrm{cm}^{-3}$

Hint: Density $=\frac{\text { SI unit mass }}{\text { SI unit volume }}=\frac{\mathrm{kg}}{\mathrm{m}^{3}}=\mathrm{kg} \mathrm{m}^{-3}$
4. Which symbol replaces the unit of atomic mass, amu?
[MHT CET 2018]
(A) \mathbf{u}
(B) A
(C) M
(D) n

The most abundant elements by mass in the body of a healthy human adult are:
Oxygen (61.4%), Carbon (22.9%), Hydrogen (10.0%) and Nitrogen (2.6%). The weight which a 75 kg person would gain if all ${ }^{1} \mathrm{H}$ atoms are replaced by ${ }^{2} \mathrm{H}$ atoms is \qquad .
[JEE (Main) 2017]
(A) 7.5 kg
(B) 10 kg
(C) 15 kg
(D) 37.5 kg

Hint: Total weight of person $=75 \mathrm{~kg}$
Mass due to ${ }^{1} \mathrm{H}$ atoms $=75 \times \frac{10}{100}=7.5 \mathrm{~kg}$
Mass of ${ }^{2} \mathrm{H}$ atom is twice that of ${ }^{1} \mathrm{H}$ atom.
All ${ }^{1} \mathrm{H}$ atoms are replaced by ${ }^{2} \mathrm{H}$ atoms.
Hence, mass increase is twice i.e., by 7.5 kg .

Std.XI Perfect Science

For students who want to excel in board exams and simultaneously study for entrance exams

Salient Features

BUY NOW

- Sub-topic wise segregation for powerful concept building
- Complete coverage of textual exercise questions, intext questions and numericals
- Extensive coverage of new type of questions
- NCERT Corner, Gyan Guru, Reading between the lines are designed to impact holistic education
- Competitive Corner presents questions from prominent competitive examinations

8879939712 / 13 / 14 / 15
(mail@targetpublications.org
www.targetpublications.org

