Sample Size and Considerations for Statistical Power

Vance Oas
Nick Garcia AFOTEC

Release Date: 28 March 17

BLUF

Power analysis using theoretical SNR is bound by and sensitive to assumptions.

Power should not be the only statistical characteristic considered when creating a test design.

Always consider the system.

Overview

- Definition of Power
- Variables
- Assumptions
- Pitfalls of SNR
- Examples
- Other Design Evaluation Statistics
- Conclusion

Disclaimer

- Although program-like issues may be used to illustrate the topic, this presentation will not cover:
-Power for specific programs
-Battlespace conditions for specific programs -Measures for specific programs
- This is not a workshop on probability theory

This is a series of parametric, theoretical case studies built to highlight potential issues with power estimation using SNR.

Definition of Power

- In its simplest form, power is nothing more than a probability
- It is the area under some curve
- Miss Distance: Weapons Testing Example
- Suppose the test team decides that they need to be confident that they will detect a difference in miss distance
- Assuming actual difference between Day and Night is at least 2.5 meters

Definition of Power

- Prior to the test, we set our significance level
- Assume it is 0.1 for this test
- Indicated by the black "stake"

Mean Miss

Distance

Definition of Power

- The area to the right of the stake and bounded by the red curve is power
- The area to the left of the stake and bounded by the red curve is called Type II error or $\boldsymbol{\beta}$ (beta)

Mean Miss

Distance

- If the sample mean falls anywhere to the left of the stake the test will not conclude that there is an effect (Fail to Reject Ho)

Definition of Power

- In this figure we have increased the difference we need to detect to 5 and increased the significance level to 0.2
- Notice that the two curves barely overlap now

- The area to the right of the stake is approximately the entire curve (power is close to 1)

Variables

- Independent Variables ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots$)
- Sample Size (n)
- Test Design

$$
\begin{aligned}
& \text { Standard Linear Model } \\
& Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{12} X_{12}+\varepsilon
\end{aligned}
$$

Response $=$ Intercept + Effect of $x_{1}{ }^{*}$ Setting of $x_{1}+$ Effect of $x_{2}{ }^{*}$ Setting of $x_{2}+$ Effect of $\mathrm{x}_{122}{ }^{*}$ Setting of $\mathrm{x}_{122}+$ Error

Assumptions

- Alpha
- $\alpha=0.2$ for Operational Test
- Signal-to-Noise Ratio (SNR, $\bar{\delta} / \sigma$)
- Presents the effect ($\overline{)}$) as a multiple of unknown standard deviation (σ)
- AFOTEC Heuristic: 80\% power @ 1.5 SNR
- Residuals come from an independent, identically distributed (i.i.d.), and normally distributed set
- Nuisance variables are controlled/minimized
- Blocking
- Length of test period

Pitfalls of SNR

- Changing Variance (noise)
- Impact to anticipated coefficients (signals)
- Number of independent variables (factors)
- Issues with underlying response distribution

Broken assumptions associated with SNR can create issues with properly characterizing the system performance

Examples (Changing Variance)

Example 1: SNR = 1.5/Small Random Noise

$$
\begin{aligned}
& 1.5 *: \mathrm{X} 1+1.5 *: \mathrm{X} 2+1.5 *: \mathrm{X} 3+ \\
& 1.5 *: \mathrm{X} 4+1.5 *: \mathrm{X} 5+1.5 *: \mathrm{X} 6+ \\
& 1.5 *: \mathrm{X} 1 *: \mathrm{X} 2+1.5 *: \mathrm{X} 1 *: \mathrm{X} 3+ \\
& 1.5 *: \mathrm{X} 1 *: \mathrm{X} 4+1.5 *: \mathrm{X} 1 *: \mathrm{X} 5+ \\
& 1.5 *: \mathrm{X} 1 *: \mathrm{X} 6+1.5 *: \mathrm{X} 2 *: \mathrm{X} 3+ \\
& 1.5 *: \mathrm{X} 2 *: \mathrm{X} 4+1.5 *: \mathrm{X} 2 *: \mathrm{X} 5+ \\
& 1.5 *: \mathrm{X} 2 *: \mathrm{X} 6+1.5 *: \mathrm{X} 3 *: \mathrm{X} 4+ \\
& 1.5 *: \mathrm{X} 3 *: \mathrm{X} 5+1.5 *: \mathrm{X} 3 *: \mathrm{X} 6+ \\
& 1.5 *: \mathrm{X} 4 *: \mathrm{X} 5+1.5 *: \mathrm{X} 4 *: \mathrm{X} 6+ \\
& 1.5 *: \mathrm{X} 5 *: \mathrm{X} 6+ \\
& \text { Random Normal }(0,1)
\end{aligned}
$$

Example 2: SNR = 1.5/Large Random Noise

$$
\begin{aligned}
& 1.5 *: \mathrm{X} 1+1.5 *: \mathrm{X} 2+1.5 *: \mathrm{X} 3+ \\
& 1.5 *: \mathrm{X} 4+1.5 *: \mathrm{X} 5+1.5 *: \mathrm{X} 6+ \\
& 1.5 *: \mathrm{X} 1 *: \mathrm{X} 2+1.5 *: \mathrm{X} 1 *: \mathrm{X} 3+ \\
& 1.5 *: \mathrm{X} 1 *: \mathrm{X} 4+1.5 *: \mathrm{X} 1 *: \mathrm{X} 5+ \\
& 1.5 *: \mathrm{X} 1 *: \mathrm{X} 6+1.5 *: \mathrm{X} 2 *: \mathrm{X} 3+ \\
& 1.5 *: \mathrm{X} 2 *: \mathrm{X} 4+1.5 *: \mathrm{X} 2 *: \mathrm{X} 5+ \\
& 1.5 *: \mathrm{X} 2 *: \mathrm{X} 6+1.5 *: \mathrm{X} 3 *: \mathrm{X} 4+ \\
& 1.5 *: \mathrm{X} 3 *: \mathrm{X} 5+1.5 *: \mathrm{X} 3 *: \mathrm{X} 6+ \\
& 1.5 *: \mathrm{X} 4 *: \mathrm{X} 5+1.5 *: \mathrm{X} 4 *: \mathrm{X} 6+ \\
& 1.5 *: \mathrm{X} 5 *: \mathrm{X} 6+
\end{aligned}
$$

$$
\text { Random Normal(} 0,10 \text {) }
$$

Examples (Changing Variance)

Example 1: SNR = 1.5/Small Random Noise

Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob> $>$ t \mid
Intercept	-0.000912	0.24661	-0.00	0.9972
X1	1.4281723	0.251228	5.68	0.0013*
X2	1.7073158	0.251228	6.80	0.0005^{*}
X3	1.3465355	0.24661	5.46	0.0016*
X4	1.5579553	0.251228	6.20	0.0008*
X5	1.6534084	0.251228	6.58	0.0006^{*}
X6	1.1800554	0.251228	4.70	0.0033*
X1*X2	1.7495098	0.256579	6.82	0.0005*
X1*X3	1.7150713	0.251228	6.83	0.0005^{*}
X1*X4	1.2474969	0.256579	4.86	0.0028*
X1*X5	1.4873403	0.256579	5.80	0.0012*
X1**6	1.5206268	0.256579	5.93	0.0010^{*}
X2*X3	1.169788	0.251228	4.66	0.0035*
X2**4	1.4238502	0.256579	5.55	0.0014^{*}
X2*X5	1.7499522	0.256579	6.82	0.0005*
X2*X6	1.4992837	0.256579	5.84	0.0011*
X3**4	1.6366822	0.251228	6.51	0.0006*
X3*X5	1.5987737	0.251228	6.36	0.0007*
X3**6	1.4814616	0.251228	5.90	0.0011*
X4**5	1.6296658	0.256579	6.35	0.0007*
X4**6	1.2902756	0.256579	5.03	0.0024*
X5*X6	1.5574534	0.256579	6.07	0.000

$$
\begin{aligned}
& \mathrm{Y}=\text { Main Effects } * 1.5+ \\
& \text { Interactions * } 1.5+ \\
& \text { Random Normal }(0,1)
\end{aligned}
$$

Example 2: $\mathrm{SNR}=1.5 /$ Large Random Noise ${ }^{2}$

Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob> $\|t\|$
Intercept	-2.012547	1.425876	-1.41	0.1743
X1	2.0683575	1.414193	1.46	0.1599
X2	3.9870283	1.413754	2.82	0.0109*
X3	3.5544782	1.425876	2.49	0.0221*
X5	4.0584983	1.411188	2.88	0.0097*
X1*X6	2.5741324	1.444434	1.78	0.0907
X2*X4	3.745176	1.424494	2.63	0.0165*
X2*X5	4.6327113	1.426766	3.25	0.0042*
X3*X6	4.331452	1.414193	3.06	0.0064^{*}

$\mathrm{Y}=$ Main Effects * $1.5+$ Interactions * 1.5 + Random $\operatorname{Normal}(0,10)$

Only $8 / 21$ effects (after removing the majority of the effects) showed statistically significance or borderline

All showed statistical significance near a δ of 1.5

Examples (Changing Anticipated Coef.)

Example 3: SNR = Mixed/Small Random Noise


```
5 *:X1 + 6 *:X2 + 2 *:X3 + 3*:X4 + 1*:X5 +
1*:X6 + 1*:X1 *:X2 + 1 *:X1 *:X3 + 1 *:X1
*:X4 + 1*:X1 *:X5 + 1*:X1 *:X6 + 1*:X2
*:X3 + 1 *:X2 *:X4 + 1 *:X2 *:X5 + 1 *:X2
*:X6 + 1 *:X3 *:X4 + 1 *:X3 *:X5 + 1 *:X3
*:X6 + 1 *:X4 *:X5 + 1 *:X4 * :X6 + 1 *:X5
* :X6 + Random Normal(0, 1)
```

Example 4: SNR = Mixed/Large Random Noise

```
5 *:X1 + 6 *:X2 + 2 *:X3 + 3 *:X4 + 1*:X5 +
1*:X6 + 1*:X1 *:X2 + 1*:X1 *:X3 + 1*:X1
*:X4 + 1 *:X1 *:X5 + 1 *:X1 *:X6 + 1 *:X2
*:X3 + 1 *:X2 *:X4 + 1 *:X2 * :X5 + 1 *:X2
*:X6 + 1 *:X3 *:X4 + 1 *:X3 *:X5 + 1 *:X3
*:X6 + 1 *:X4 *:X5 + 1 *:X4 * :X6 + 1 *:X5
* :X6 + Random Normal(0, 10)
```


Examples (Changing Anticipated Coef.)

Example 3: SNR = Mixed/Small Random Noise

Parameter Estimates

| Term | Estimate | Std Error | \mathbf{t} Ratio | Prob $>\|\mathbf{t}\|$ |
| :--- | ---: | :---: | ---: | ---: | ---: |
| Intercept | 0.3789268 | 0.216105 | 1.75 | 0.1301 |

X2	5.5645574	0.220151	25.28	$<.0001^{*}$
X3	1.817613	0.216105	8.41	0.0002^{*}

X 4	2.699293	0.220151	12.26	$<.0001^{*}$

X5	1.5287799	0.220151	6.94	0.0004^{*}
X6	1.059			
X1	1.143	0.2018	4.57	0.0033^{*}

$\mathrm{X} 1 * \mathrm{X} 2$	1.1431812	0.22484	5.08	0.0023^{*}

X1*X3	1.3970103	0.220151	6.35	0.0007^{*}

$\mathrm{X} 1^{*} \times 4$	1.1499705	0.22484	5.11	0.0022^{*}

X1*X5	1.0811429	0.22484	4.81	0.0030^{*}
X1*X6	0.9361872	0.22484	4.16	0.0059^{*}

$\mathrm{X}{ }^{\star} \mathrm{X} 3$	1.2357017	0.220151	5.61	0.0014

X2*X4	1.0308738	0.22484	4.58	0.0038^{*}

X2*X5	0.5397632	0.22484	2.40	0.0532

X2*X6	0.8964636	0.22484	3.99	0.0072^{*}

X3*X4	0.7441731	0.220151	3.38	0.0149

X3*X5	1.0335791	0.220151	4.69	0.0033^{*}

X3*X6	0.9646004	0.220151	4.38	0.0047^{*}

X4*X5	1.0215228	0.22484	4.54	0.0039^{*}
X4*X6	1.0400882	0.22484	4.63	0.0036^{*}

X5*X6	0.8796928	0.22484	3.91	$0.0079 *$

Example 4: SNR = Mixed/Large Random Noise

Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob> $>\mathbf{\| t \|}$
Intercept	0.9606652	1.20811	0.80	0.4358
X1	5.9764693	1.207979	4.95	$<.0001^{*}$
X2	6.0195669	1.208242	4.98	$<.0001^{*}$
X4	2.635605	1.207979	2.18	0.0412^{*}
X6	-2.185199	1.208242	-1.81	0.0856
X1*X4 *	2.8194321	1.20811	2.33	0.0302^{*}
X1*X5 *	2.6514972	1.20811	2.19	0.0402^{*}
X4*X5	3.5645839	1.20811	2.95	0.0079^{*}

$$
\begin{aligned}
\mathrm{Y}= & 5 * \mathrm{X} 1+6 * \mathrm{X} 2+2 * \mathrm{X} 3+3 * \mathrm{X} 4+1 * \mathrm{X} 5+1 * \mathrm{X} 6 \\
& + \text { Interactions } * 1+\operatorname{Random} \operatorname{Normal}(0,10)
\end{aligned}
$$

Only 7/21 effects (after removing the majority of the effects) showed statistically significance or borderline

Larger effects are easier to estimate

$$
\begin{aligned}
\mathrm{Y}= & 5 * \mathrm{X} 1+6 * \mathrm{X} 2+2 * \mathrm{X} 3+3 * \mathrm{X} 4+1 * \mathrm{X} 5+1 * \mathrm{X} 6 \\
& + \text { Interactions } * 1+\operatorname{Random} \operatorname{Normal}(0,1)
\end{aligned}
$$

All showed statistical significance near a δ of 1.5

Examples (Number of Variables)

Example 5: SNR = Mixed/Small Random Noise

- Max Power, Main Effects
- Min Power, Main Effects
- Max Power, Interactions
- Min Power, Interactions

5 *: X1 + 6 *: X2 + 2 *: X3 + 3*:X4 + 1*:X5 + 1*:X6 + 5 *:X7 + 1*:X8 + 1*:X9 +
$1 *:$ Interactions $+\operatorname{Random} \operatorname{Normal}(0,1)$

Example 6: SNR = Mixed/Small(er) Random Noise

$5 *: \mathrm{X} 1+6 *: \mathrm{X} 2+2 *: \mathrm{X} 3+3 *: \mathrm{X} 4+1 *: \mathrm{X} 5+$
$1^{*}: \mathrm{X} 6+5 *: X 7+1^{*}: \mathrm{X} 8+1^{*}: \mathrm{X} 9+$
$1 *:$ Interactions + Random $\operatorname{Normal}(0,0.5)$
D-Optimal Design 2^{9}, Resolution V, 48 runs

Examples (Number of Variables)

Example 5: SNR = Mixed/Small Random Noise

Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob> Itt
Intercept	0.097319	0.218682	0.45	0.6998
X1	4.8962435	0.253134	19.34	0.0027*
X2	5.9411824	0.251165	23.65	0.0018^{*}
X3	1.9309866	0.27034	7.14	0.0190*
X4	3.0421026	0.291519	10.44	0.0091*
X5	0.897182	0.281217	3.19	0.0858
X6	0.9799089	0.265362	3.69	0.0661
X7	5.2015701	0.30444	17.09	0.0034^{*}
X8	0.9081694	0.264593	3.43	0.0754
X9	0.9277789	0.255349	3.63	0.0681
X1*X2	0.9358782	0.249983	3.74	0.0645
X1*X3	1.016537	0.273787	3.71	0.0655
X1* $\times 4$	0.9181712	0.257387	3.57	0.0704
X1*X5	1.0970939	0.265284	4.14	0.0538
X1*X6	0.8843252	0.251435	3.52	0.0722
X1*X7	1.1432184	0.249165	4.59	0.0444^{*}
X1*X8	0.9067534	0.244477	3.71	0.0656
X1*X9	1.1950772	0.259278	4.61	0.0440^{*}
X2*X3	1.2168388	0.252652	4.82	0.0405^{*}
X2* ${ }^{\text {4 }}$	1.0927994	0.272563	4.01	0.0569
X2*X5	1.0387566	0.270286	3.84	0.0615
X2*X6	0.8327738	0.284242	2.93	0.0994
X2*X7	0.7807718	0.276971	2.82	0.1062
X2*X8	0.7804882	0.270245	2.89	0.1019
X2*X9	1.0780366	0.267109	4.04	0.0563
X3* ${ }^{\text {¢ }} 4$	1.0420093	0.271558	3.84	0.0617
X3*X5	1.2872822	0.266693	4.83	0.0403*
X3*X6	1.2710508	0.277411	4.58	0.0445^{*}
X3*X7	1.2538295	0.256781	4.88	0.0395*
X3*X8	1.1289033	0.255121	4.42	0.0475^{*}
X3*X9	1.2543037	0.260294	4.82	0.0405^{*}
X4*X5	0.9704309	0.316281	3.07	0.0918
X4*X6	1.102279	0.302661	3.64	0.0678
X4* $\times 7$	0.6591063	0.297805	2.21	0.1573
X4* $\times 8$	1.0755143	0.274835	3.91	0.0595
X4*X9	0.6647368	0.272675	2.44	0.1350
X5*X6	1.2154463	0.277191	4.38	0.0483^{*}
X5*X7	1.1773664	0.288252	4.08	0.0550
X5**8	0.8636515	0.259808	3.32	0.0798
X5**9	0.8913691	0.243732	3.66	0.0673
X6* ${ }^{\text {\% }}$	1.0616675	0.282864	3.75	0.0642
X6*X8	1.1923147	0.26635	4.48	0.0465^{*}
X6*X9	1.3669269	0.271129	5.04	0.0372*
X7* ${ }^{\text {8 }}$	1.0989721	0.2669	4.12	0.0542
X7* $\times 9$	1.0759148	0.279492	3.85	0.0613
X8*X9	0.9722652	0.240876	4.04	0.0562

Estimated larger effects very well (X1, X2, X4, and X 7), and no returned p -value higher than 0.1573 , and only 4 higher than 0.10

Example 6: SNR = Mixed/Smaller Random Noise

$$
\begin{gathered}
\mathrm{Y}=5^{*} \mathrm{X} 1+6^{*} \mathrm{X} 2+2 * \mathrm{X} 3+3^{*} \mathrm{X} 4+1 * \mathrm{X} 5+1^{*} \mathrm{X} 6+5^{*} \mathrm{X} 7+ \\
1^{*} \mathrm{X} 8+1^{*} \mathrm{X} 9+\text { Interactions } * 1+\operatorname{Random} \operatorname{Normal}(0,1)
\end{gathered}
$$

Examples (Number of Variables)

Example 7: SNR = 1/Small Noise, Fewer active effects

D-Optimal Design 2^{9}, Resolution V, 48 runs

- Max Power, Main Effects
- Min Power, Main Effects
- Max Power, Interactions
- Min Power, Interactions

Example 8: SNR = 1/Large Noise Fewer Active Effects
$1 *: \mathrm{X} 1+1 *: \mathrm{X} 2+1 *: \mathrm{X} 3+1 *: \mathrm{X} 4+1 *: \mathrm{X} 7$
$+1^{*}: \mathrm{X} 1 *: \mathrm{X} 2+1^{*}: \mathrm{X} 1 *: \mathrm{X} 3+1 *: \mathrm{X} 2 *: \mathrm{X} 3+$
Random $\operatorname{Normal}(0,2)$

Examples (Number of Variables)

Example 7: SNR = 1, Fewer active effects

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> \mid \| \mid	
Intercept	-0.0138	0.058086	-0.24	0.8152	
X1	1.0555978	0.064126	16.46	<.0001*	
X2	1.1726213	0.060882	19.26	<.0001*	
X3	0.94467	0.062201	15.19	<.0001*	
X4	0.7937893	0.072106	11.01	<.0001*	
X7	0.8646491	0.072857	11.87	<.0001*	
X1**2	0.6092814	0.063184	9.64	<.0001*	
X1*X3	1.048496	0.064127	16.35	<.0001*	Excellent p-values
X1*X5	0.1689882	0.06247	2.71	0.0156*	
X1*X6	-0.13767	0.062341	-2.21	0.0422*	for our selected
X1**7	-0.282124	0.063277	-4.46	0.0004^{*}	effects 31/45
X1**8	0.1435384	0.062342	2.30	0.0351*	eflects.
X1**9	0.4798177	0.060814	7.89	<.0001*	variables remai
X2*X3	1.1555886	0.062483	18.49	<.0001*	variables remai
X2*X4	-0.22851	0.067688	-3.38	0.0039*	this model, other
X2*X5	0.2724824	0.061585	4.42	0.0004^{*}	this moder, other
X2*X8	0.1171309	0.065557	1.79	0.0929	14 removed and
X2**9	-0.194707	0.064915	-3.00	0.0085*	
X3*X5	-0.243616	0.061981	-3.93	0.0012^{*}	increased
X3*X6	0.3008849	0.064689	4.65	0.0003*	confidence in
X3*X8	0.2608889	0.064918	4.02	0.0010^{*}	confidence $1 n$
X3**9	-0.193055	0.063673	-3.03	0.0079*	
X4**5	0.2971485	0.076776	3.87	0.0014^{*}	remanning effects
X4**6	0.1824722	0.064503	2.83	0.0121*	

Example 8: $\mathrm{SNR}=0.5$, Fewer active effects

Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> $\|t\|$	
Intercept	0.0072438	0.137553	0.05	0.9586	
X1	0.7556947	0.149921	5.04	<.0001*	
X2	0.8974775	0.144324	6.22	<.0001*	
X3	1.273112	0.147554	8.63	<.0001*	
X4	0.9912152	0.147686	6.71	<.0001*	
X5	0.4992768	0.157548	3.17	0.0051*	
X7	1.9098324	0.169254	11.28	<.0001*	Excellent p-values
X1*X2	1.3404323	0.147771	9.07	<.0001*	for our selected
X1*X3	0.7301233	0.154315	4.73	0.0001*	
X1**8	0.8818146	0.151109	5.84	<.0001*	effects. 28/45
X2* ${ }^{\text {3 }}$	1.7738565	0.147244	12.05	<.0001*	variables remain in
X2**4	-0.505288	0.150738	-3.35	0.0033*	variables remain in
X2*X5	0.2882327	0.156464	1.84	0.0811	this model, other
X2*X7	-0.323246	0.145087	-2.23	0.0382^{*}	
X2**8	0.7541419	0.157193	4.80	0.0001^{*}	17 removed and
X3*X4	0.4911772	0.152114	3.23	0.0044*	17 removed and
X3*X5	-0.294001	0.152524	-1.93	0.0690	increased
X3*×6	0.6665825	0.158879	4.20	0.0005^{*}	confidence in
	-0.313113 0.5404511	0.144715 0.180644	$\begin{array}{r}-2.16 \\ \hline\end{array}$	0.0434^{*} 0.0075^{*}	confidence in
$\mathrm{X} 4{ }^{*} \times 5$ $\mathrm{X} 4 \times \mathrm{K} 6$	0.5404511 -0.509129	0.180644 0.152738	2.99 -3.33	0.0075^{*} 0.0035^{*}	remaining effects.
X4* ${ }^{\text {7 }}$	-0.438728	0.161607	-2.71	0.0137*	
X4* ${ }^{\text {8 }}$	1.0562294	0.156893	6.73	<.0001**	
X5*X8	-0.320377	0.155775	-2.06	0.0537	
X5*X9	-0.488048	0.145195	-3.36	0.0033^{*}	
X6* $\times 7$	-0.537179	0.158272	-3.39	0.0030^{*}	
X6*X8	0.2945943	0.156027	1.89	0.0744	
X7*X8	-0.55461	0.14508	-3.82	0.0011*	
X7*X9	0.5509539	0.157129	3.51	0.0024^{*}	

$$
\begin{aligned}
& \mathrm{Y}=\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4+\mathrm{X} 7+\mathrm{X} 1 * \mathrm{X} 2+\mathrm{X} 1 * \mathrm{X} 3+ \\
& \mathrm{X} 2 * \mathrm{X} 3+\operatorname{Random} \operatorname{Normal}(0,2)
\end{aligned}
$$

Examples (Underlying Response Dist.)

- Issues with underlying response distribution

Continuous

Bimodal

- Physical (e.g., a breaker on a circuit) or artificial (e.g., threshold on a measure) limits or constraints on response variables have an effect on our ability to differentiate effects

Other Design Evaluation Statistics

- Correlation/Aliasing/Confounding

- Fraction of Design Space/Variance Inflation Factor

Other Design Evaluation Statistics

- Efficiency
- D-efficiency
- Minimizes maximum variance of parameter estimates ${ }^{1}$
- G-efficiency
- Minimizes the maximum prediction variance for predicted responses ${ }^{1}$
- A-efficiency
- Measure for independence, minimizes average variance of parameter estimates ${ }^{1}$
- Balance of Quality

Conclusion

- Power only give us an idea of how well the test will be able to characterize the system, and is very sensitive to its constituent variables
- Consider other Design Evaluation Metrics/Statistics
- Generate, generate, generate (and compare)!

Thinking through the system will always provide better power estimates, but may point a team towards additional metrics

Questions

Calculation of Power

- For a continuous response, to calculate power,
- First, calculate the NCP for an effect:

$$
\operatorname{NCP}_{i}=\lambda_{i}=\left(\mathbf{L}_{\mathbf{i}} \mathbf{b}\right)^{\prime}\left(\mathbf{L}_{\mathbf{i}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{L}_{\mathbf{i}}^{\prime}\right)^{-1} \mathbf{L}_{\mathbf{i}} \mathbf{b}
$$

- X is the coding table
- L_{i} is the submatrix of rows from the Identity matrix corresponding to columns of the X matrix
- This serves to parse only the portions of the b and $X^{\prime} X$ matrices relevant to that effect
- b is the column matrix of anticipated coefficients
- Find corresponding $F_{\text {crit }}=F_{1-\alpha, d i f, d f 2}$

Calculation of Power

- For a continuous response, to calculate power,
- Next, feed this NCP into the Non-Central F CDF

CDF

$$
\begin{aligned}
& =\sum_{i=0}^{\infty}\left(\left(\frac{\left(\frac{\lambda}{2}\right)^{i}}{i!} \times e^{-\frac{\lambda}{2}}\right)\right. \\
& \times \sum_{j=\frac{d f_{1}}{2}+i}^{\infty}\left(\left(\frac{\Gamma\left(\frac{d f_{1}}{2}+\frac{d f_{2}}{2}+\mathrm{i}\right)}{i!\times \Gamma\left(\frac{d f_{1}}{2}+\frac{d f_{2}}{2}+i-j\right)}\right) \times\left(\frac{d f_{1} F_{c r i t}}{d f_{2}+d f_{1} F_{c r i t}}\right)^{j}\right.
\end{aligned}
$$

Other Design Evaluation Statistics

- Correlation/Aliasing/Confounding

$$
\text { - } \mathbf{A}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Z}
$$

- $\mathbf{R}=\frac{1}{n-1}\left(\mathbf{D}^{-\frac{1}{2}}\left(\mathbf{X}^{\prime} \mathbf{X}-\frac{1}{n}\left(\mathbf{X}^{\prime} \mathbf{1}\right)\left(\mathbf{1}^{\prime} \mathbf{X}\right)\right) \mathbf{D}^{-\frac{1}{2}}\right)$
- Fraction of Design Space/Variance Inflation Factor

$$
\text { - } \mathrm{VIF}_{i}=n \times\left(\mathbf{X}^{\prime} \mathbf{X}\right)_{i i}^{-1}
$$

Other Design Evaluation Statistics

- Efficiency
- D-efficiency $=100 \times\left(\frac{\left\lvert\, \mathrm{X}^{\prime} \mathbf{x}^{\frac{1}{p}}\right.}{\mathrm{~N}}\right)$
- Uses the maximum determinant ($X^{\prime} X$) available and minimizes maximum variance of parameter estimates
- G-efficiency $=100 \times \frac{\sqrt{\frac{p}{N}}}{\sigma_{M}}$
- minimizes the maximum prediction variance for predicted responses
- A-efficiency $=100 \times \frac{p}{\left(N \times\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}\right)}$
- measure for independence, minimizes average variance of parameter estimates
* p : number of columns in X matrix, $N=$ number of runs

