

Sample Size and Considerations for Statistical Power

Vance Oas Nick Garcia AFOTEC Release Date: 28 March 17

Sample Size and Considerations for Statistical Power - "Approved for Public Release; Distribution Unlimited. AFOTEC Public Affairs Public Release Number 2017-03

Power analysis using theoretical SNR is bound by and sensitive to assumptions.

Power should not be the only statistical characteristic considered when creating a test design.

Always consider the system.

- Definition of Power
- Variables
- Assumptions
- Pitfalls of SNR
- Examples
- Other Design Evaluation Statistics
- Conclusion

- Although program-like issues may be used to illustrate the topic, this presentation will not cover:
 - -Power for specific programs
 - -Battlespace conditions for specific programs
 - -Measures for specific programs
- This is not a workshop on probability theory

This is a series of parametric, theoretical case studies built to highlight potential issues with power estimation using SNR.

- In its simplest form, power is nothing more than a probability
 - It is the area under some curve
- Miss Distance: Weapons Testing Example
 - Suppose the test team decides that they need to be confident that they will detect a difference in miss distance
 - Assuming actual difference between Day and Night is at least 2.5 meters

- Prior to the test, we set our significance level
 - Assume it is 0.1 for this test
 - Indicated by the black "stake"

- The area to the right of the stake and bounded by the red curve is power
- The area to the left of the stake and bounded by the red curve is called Type II error or β (beta)

 If the sample mean falls anywhere to the left of the stake the test will <u>not</u> conclude that there is an effect (Fail to Reject Ho)

- In this figure we have increased the difference we need to detect to 5 and increased the significance level to 0.2
- Notice that the two curves barely overlap now

• The area to the right of the stake is approximately the entire curve (power is close to 1)

- Independent Variables (x₁, x₂, x₃...)
- Sample Size (n)
- Test Design

Standard Linear Model $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_{12} + \varepsilon$

Response = Intercept + Effect of x_1^* Setting of x_1^+ Effect of x_2^* Setting of x_2^+ Effect of $x_{1\&2}^*$ Setting of $x_{1\&2}^+$ Error

Assumptions

- Alpha
 - $-\alpha = 0.2$ for Operational Test
- Signal-to-Noise Ratio (SNR, δ/σ)
 - Presents the effect (δ) as a multiple of unknown standard deviation (σ)
 - AFOTEC Heuristic: 80% power @ 1.5 SNR
- Residuals come from an independent, identically distributed (i.i.d.), and normally distributed set
- Nuisance variables are controlled/minimized
 - Blocking
 - Length of test period

- Changing Variance (noise)
- Impact to anticipated coefficients (signals)
- Number of independent variables (factors)
- Issues with underlying response distribution

Broken assumptions associated with SNR can create issues with properly characterizing the system performance

Examples (Changing Variance)

Power vs. Signal-to-Noise Ratio 1.2 Max Power, Main Effects Min Power, Main Effects Max Power, Interactions 1.1 Min Power, Interactions 1.0 0.9 0.8 0.7 0.6 1.5 * :X5 * :X6 + 0.5 Random Normal(0, 1)0.4 0.3 0.2 0.1 0.09-0.114-0.124-0.234-0.244-0.144-0 Signal-to-Noise Ratio D-Optimal Design 2⁶, Resolution V, 28 runs

Example 1: SNR = 1.5/Small Random Noise

1.5 * :X1 + 1.5 * :X2 + 1.5 * :X3 +1.5 * : X4 + 1.5 * : X5 + 1.5 * : X6 +1.5 * :X1 * :X2 + 1.5 * :X1 * :X3 +1.5 * :X1 * :X4 + 1.5 * :X1 * :X5 + 1.5 * :X1 * :X6 + 1.5 * :X2 * :X3 +1.5 * :X2 * :X4 + 1.5 * :X2 * :X5 + 1.5 * :X2 * :X6 + 1.5 * :X3 * :X4 + 1.5 * : X3 * : X5 + 1.5 * : X3 * : X6 +1.5 * : X4 * : X5 + 1.5 * : X4 * : X6 +

Example 2: SNR = 1.5/Large Random Noise

1.5 * :X1 + 1.5 * :X2 + 1.5 * :X3 + 1.5 * : X4 + 1.5 * : X5 + 1.5 * : X6 +1.5 * :X1 * :X2 + 1.5 * :X1 * :X3 + 1.5 * :X1 * :X4 + 1.5 * :X1 * :X5 +1.5 * : X1 * : X6 + 1.5 * : X2 * : X3 +1.5 * : X2 * : X4 + 1.5 * : X2 * : X5 +1.5 * : X2 * : X6 + 1.5 * : X3 * : X4 +1.5 * : X3 * : X5 + 1.5 * : X3 * : X6 +1.5 * : X4 * : X5 + 1.5 * : X4 * : X6 +1.5 * :X5 * :X6 + Random Normal(0, 10)

Examples (Changing Variance)

Example 1: SNR = 1.5/Small Random Noise

Parameter Estimates									
Term	Estimate	Std Error	t Ratio	Prob> t					
Intercept	-0.000912	0.24661	-0.00	0.9972					
X1	1.4281723	0.251228	5.68	0.0013*					
X2	1.7073158	0.251228	6.80	0.0005*					
X3	1.3465355	0.24661	5.46	0.0016*					
X4	1.5579553	0.251228	6.20	0.0008*					
X5	1.6534084	0.251228	6.58	0.0006*					
X6	1.1800554	0.251228	4.70	0.0033*					
X1*X2	1.7495098	0.256579	6.82	0.0005*					
X1*X3	1.7150713	0.251228	6.83	0.0005*					
X1*X4	1.2474969	0.256579	4.86	0.0028*					
X1*X5	1.4873403	0.256579	5.80	0.0012*					
X1*X6	1.5206268	0.256579	5.93	0.0010*					
X2*X3	1.169788	0.251228	4.66	0.0035*					
X2*X4	1.4238502	0.256579	5.55	0.0014*					
X2*X5	1.7499522	0.256579	6.82	0.0005*					
X2*X6	1.4992837	0.256579	5.84	0.0011*					
X3*X4	1.6366822	0.251228	6.51	0.0006*					
X3*X5	1.5987737	0.251228	6.36	0.0007*					
X3*X6	1.4814616	0.251228	5.90	0.0011*					
X4*X5	1.6296658	0.256579	6.35	0.0007*					
X4*X6	1.2902756	0.256579	5.03	0.0024*					
X5*X6	1.5574534	0.256579	6.07	0.0009*					

Y = Main Effects * 1.5 + Interactions * 1.5 + Random Normal(0, 1)

All showed statistical significance near a δ of 1.5

Example 2: SNR = 1.5/Large Random Noise²

Parameter Estimates									
Term Estimate Std Error t Ratio Prob>									
Intercept	-2.012547	1.425876	-1.41	0.1743					
X1	2.0683575	1.414193	1.46	0.1599					
X2	3.9870283	1.413754	2.82	0.0109*					
X3	3.5544782	1.425876	2.49	0.0221*					
X5	4.0584983	1.411188	2.88	0.0097*					
X1*X6	2.5741324	1.444434	1.78	0.0907					
X2*X4	3.745176	1.424494	2.63	0.0165*					
X2*X5	4.6327113	1.426766	3.25	0.0042*					
X3*X6	4.331452	1.414193	3.06	0.0064*					

Y = Main Effects * 1.5 + Interactions * 1.5 + Random Normal(0, 10)

Only 8/21 effects (after removing the majority of the effects) showed statistically significance or borderline

Examples (Changing Anticipated Coef.)

5 * :X1 + **6** *:X2 + **2** *:X3 + **3** * :X4 + 1*:X5 + Power vs. Signal-to-Noise Ratio 1.2 Max Power, Main Effects 1*:X6 + 1*:X1 * :X2 + 1 * :X1 * :X3 + 1 * :X1 Min Power, Main Effects Max Power, Interactions 1.1 *:X4 + 1 *:X1 *:X5 + 1 *:X1 *:X6 + 1 *:X2 Min Power, Interactions * :X3 + 1 * :X2 * :X4 + 1 * :X2 * :X5 + 1 * :X2 1.0 * :X6 + 1 * :X3 * :X4 + 1 * :X3 * :X5 + 1 * :X3 0.9 * :X6 + 1 * :X4 * :X5 + 1 * :X4 * :X6 + 1 * :X5 0.8 * :X6 + Random Normal(0, 1) 0.7 0.6 0.5 0.4 Example 4: SNR = Mixed/Large Random Noise 0.3 0.2 5 * :X1 + 6 *:X2 + 2 *:X3 + 3 * :X4 + 1*:X5 + 1*:X6 + 1*:X1 * :X2 + 1 * :X1 * :X3 + 1 * :X1 0.1 *:X4 + 1 *:X1 *:X5 + 1 *:X1 *:X6 + 1 *:X20.0 * :X3 + 1 * :X2 * :X4 + 1 * :X2 * :X5 + 1 * :X2 Signal-to-Noise Ratio * :X6 + 1 * :X3 * :X4 + 1 * :X3 * :X5 + 1 * :X3 D-Optimal Design 2⁶, * :X6 + 1 * :X4 * :X5 + 1 * :X4 * :X6 + 1 * :X5 Resolution V, * :X6 + Random Normal(0, 10)28 runs

Examples (Changing Anticipated Coef.)

Example 3: SNR = Mixed/Small Random Noise

Parameter Estimates								
Term	erm Estimate Std Error t Ratio							
Intercept	0.3789268	0.216105	1.75	0.1301				
X1	4.6654884	0.220151	21.19	<.0001*				
X2	5.5645574	0.220151	25.28	<.0001*				
X3	1.817613	0.216105	8.41	0.0002*				
X4	2.699293	0.220151	12.26	<.0001*				
X5	1.5287799	0.220151	6.94	0.0004*				
X6	1.0059115	0.220151	4.57	0.0038*				
X1*X2	1.1431812	0.22484	5.08	0.0023*				
X1*X3	1.3970103	0.220151	6.35	0.0007*				
X1*X4	1.1499705	0.22484	5.11	0.0022*				
X1*X5	1.0811429	0.22484	4.81	0.0030*				
X1*X6	0.9361872	0.22484	4.16	0.0059*				
X2*X3	1.2357017	0.220151	5.61	0.0014*				
X2*X4	1.0308738	0.22484	4.58	0.0038*				
X2*X5	0.5397632	0.22484	2.40	0.0532				
X2*X6	0.8964636	0.22484	3.99	0.0072*				
X3*X4	0.7441731	0.220151	3.38	0.0149*				
X3*X5	1.0335791	0.220151	4.69	0.0033*				
X3*X6	0.9646004	0.220151	4.38	0.0047*				
X4*X5	1.0215228	0.22484	4.54	0.0039*				
X4*X6	1.0400882	0.22484	4.63	0.0036*				
X5*X6	0.8796928	0.22484	3.91	0.0079*				

Y = 5*X1 + 6*X2 + 2*X3 + 3*X4 + 1*X5 + 1*X6+ Interactions * 1 + Random Normal(0, 1)

All showed statistical significance near a δ of 1.5

Example 4: SNR = Mixed/Large Random Noise

Parameter Estimates								
Term	Estimate	Std Error	t Ratio	Prob> t				
Intercept	0.9606652	1.20811	0.80	0.4358				
X1	5.9764693	1.207979	4.95	<.0001*				
Х2	6.0195669	1.208242	4.98	<.0001*				
X4	2.635605	1.207979	2.18	0.0412*				
X6	-2.185199	1.208242	-1.81	0.0856				
X1*X4	2.8194321	1.20811	2.33	0.0302*				
X1*X5	2.6514972	1.20811	2.19	0.0402*				
X4*X5	3.5645839	1.20811	2.95	0.0079*				

Y = 5*X1 + 6*X2 + 2*X3 + 3*X4 + 1*X5 + 1*X6+ Interactions * 1 + Random Normal(0, 10)

Only 7/21 effects (after removing the majority of the effects) showed statistically significance or borderline

Larger effects are easier to estimate

Example 5: SNR = Mixed/Small Random Noise

48 runs

Example 5: SNR = Mixed/Small Random Noise

Parameter Estimates										
Term	Estimate	Std Error	t Ratio	Prob> t						
Intercept	0.097319	0.218682	0.45	0.6998						
X1	4.8962435	0.253134	19.34	0.0027*						
X2	5.9411824	0.251165	23.65	0.0018*						
X3	1.9309866	0.27034	7.14	0.0190*						
X4	3.0421026	0.291519	10.44	0.0091*						
X5	0.897182	0.281217	3.19	0.0858						
X6	0.9799089	0.265362	3.69	0.0661						
X7	5.2015701	0.30444	17.09	0.0034*						
X8	0.9081694	0.264593	3.43	0.0754						
X9	0.9277789	0.255349	3.63	0.0681						
X1*X2	0.9358782	0.249983	3.74	0.0645						
X1*X3	1.016537	0.273787	3.71	0.0655						
X1*X4	0.9181712	0.257387	3.57	0.0704						
X1*X5	1.0970939	0.265284	4.14	0.0538						
X1*X6	0.8843252	0.251435	3.52	0.0722						
X1*X7	1.1432184	0.249165	4.59	0.0444*						
X1*X8	0.9067534	0.244477	3.71	0.0656						
X1*X9	1.1950772	0.259278	4.61	0.0440*						
X2*X3	1.2168388	0.252652	4.82	0.0405*						
X2*X4	1.0927994	0.272563	4.01	0.0569						
X2*X5	1.0387566	0.270286	3.84	0.0615						
X2*X6	0.8327738	0.284242	2.93	0.0994						
X2*X7	0.7807718	0.276971	2.82	0.1062						
X2*X8	0.7804882	0.270245	2.89	0.1019						
X2*X9	1.0780366	0.267109	4.04	0.0563						
X3*X4	1.0420093	0.271558	3.84	0.0617						
X3*X5	1.2872822	0.266693	4.83	0.0403*						
X3*X6	1.2710508	0.277411	4.58	0.0445*						
X3*X7	1.2538295	0.256781	4.88	0.0395*						
X3*X8	1.1289033	0.255121	4.42	0.0475*						
X3*X9	1.2543037	0.260294	4.82	0.0405*						
X4*X5	0.9704309	0.316281	3.07	0.0918						
X4*X6	1.102279	0.302661	3.64	0.0678						
X4*X7	0.6591063	0.297805	2.21	0.1573						
X4*X8	1.0755143	0.274835	3.91	0.0595						
X4*X9	0.6647368	0.272675	2.44	0.1350						
X5*X6	1.2154463	0.277191	4.38	0.0483*						
X5*X7	1.1773664	0.288252	4.08	0.0550						
X5*X8	0.8636515	0.259808	3.32	0.0798						
X5*X9	0.8913691	0.243732	3.66	0.0673						
X6*X7	1.0616675	0.282864	3.75	0.0642						
X6*X8	1.1923147	0.26635	4.48	0.0465*						
X6*X9	1.3669269	0.271129	5.04	0.0372*						
X7*X8	1.0989721	0.2669	4.12	0.0542						
X7*X9	1.0759148	0.279492	3.85	0.0613						
X8*X9	0.9722652	0.240876	4.04	0.0562						

Estimated larger effects
very well (X1, X2, X4,
and X7), and no returned
p-value higher than
0.1573, and only 4
higher than 0.10

Example 6: SNR = Mixed/Smaller Random Noise

Parameter Estimates								
Term	Estimate	Std Error	t Ratio	Prob>Itl				
Intercept	0.0067494	0.081306	0.08	0.9414				
X1	4.8180578	0.094116	51.19	0.0004*				
X2	6.0556487	0.093383	64.85	0.0002*				
X3	1.9598361	0.100513	19.50	0.0026*				
X4	3.0019059	0.108387	27.70	0.0013*				
X5	0.9744163	0.104557	9.32	0.0113*				
X6	0.9382834	0.098662	9.51	0.0109*				
X7	4.9532937	0.113191	43.76	0.0005*				
X8	0.9119056	0.098376	9.27	0.0114*				
X9	1.0152702	0.094939	10.69	0.0086*				
X1*X2	0.9972663	0.092944	10.73	0.0086*				
X1*X3	1.0017163	0.101794	9.84	0.0102*				
X1*X4	1.033529	0.095697	10.80	0.0085*				
X1*X5	0.8704556	0.098633	8.83	0.0126*				
X1*X6	1.0950582	0.093484	11.71	0.0072*				
X1*X7	0.9761633	0.09264	10.54	0.0089*				
X1*X8	1.0171688	0.090897	11.19	0.0079*				
X1*X9	1.1867969	0.0964	12.31	0.0065*				
X2*X3	0.9740676	0.093936	10.37	0.0092*				
X2*X4	0.9430883	0.101339	9.31	0.0114*				
X2*X5	1.0774138	0.100492	10.72	0.0086*				
X2*X6	0.9197031	0.105681	8.70	0.0129*				
X2*X7	1.1460805	0.102978	11.13	0.0080*				
X2*X8	1.0025513	0.100478	9.98	0.0099*				
X2*X9	1.00424	0.099312	10.11	0.0096*				
X3*X4	1.0435044	0.100966	10.34	0.0092*				
X3*X5	0.8264563	0.099157	8.33	0.0141*				
X3*X6	1.1868903	0.103142	11.51	0.0075*				
X3*X7	1.0753211	0.095471	11.26	0.0078*				
X3*X8	1.0251548	0.094854	10.81	0.0085*				
X3*X9	1.2012949	0.096778	12.41	0.0064*				
X4*X5	1.0869078	0.117594	9.24	0.0115*				
X4*X6	1.0526171	0.11253	9.35	0.0112*				
X4*X7	0.8892908	0.110724	8.03	0.0152*				
X4*X8	0.9880957	0.102184	9.67	0.0105*				
X4*X9	0.8602498	0.101381	8.49	0.0136*				
X5*X6	1.028198	0.10306	9.98	0.0099*				
X5*X7	1.0227952	0.107172	9.54	0.0108*				
X5*X8	0.8867394	0.096597	9.18	0.0117*				
X5*X9	0.94109	0.09062	10.39	0.0091*				
X6*X7	0.8558807	0.105169	8.14	0.0148*				
X6*X8	1.1260782	0.099029	11.37	0.0076*				
X6*X9	0.9806254	0.100806	9.73	0.0104*				
X7*X8	0.8394987	0.099234	8.46	0.0137*				
X7*X9	1.0770816	0.103915	10.36	0.0092*				
X8*X0	1 0047705	0.089558	11 22	0.0079*				

Estimated every effect with a p-value of less than 0.05

Y = 5*X1 + 6*X2 + 2*X3 + 3*X4 + 1*X5 + 1*X6 + 5*X7 + 1*X8 + 1*X9 + Interactions * 1 + Random Normal(0, 1)

Y = 5*X1 + 6*X2 + 2*X3 + 3*X4 + 1*X5 + 1*X6 + 5*X7 + 1*X8 + 1*X9 + Interactions * 1 + Random Normal(0, 0.5)

Example 7: SNR = 1/Small Noise, Fewer active effects Power vs. Signal-to-Noise Ratio Max Power, Main Effects 1 * : X1 + 1 * : X2 + 1 * : X3 + 1 * : X4 + 1 * : X71.2 Min Power, Main Effects Max Power, Interactions + 1*:X1*:X2 + 1*:X1*:X3 + 1*:X2*:X3 +1.1 Min Power, Interactions Random Normal(0, 1) 1.0 0.9 0.8 0.7 Power 0.6 0.5 0.4 Example 8: SNR = 1/Large Noise Fewer Active Effects 0.3 0.2 1 * :X1 + 1 *:X2 + 1 *:X3 + 1 * :X4 + 1 * :X7 0.1 + 1*:X1*:X2 + 1*:X1*:X3 + 1*:X2*:X3 +Random Normal(0, 2)0.0 Signal-to-Noise Ratio D-Optimal Design 2⁹, Resolution V,

48 runs

Example 7: SNR = 1, Fewer active effects

Example 8: SNR = 0.5, Fewer active effects

Parameter Estimates					–	Darama	tor Ectim	ator				
Term	Estimate	Std Error	t Ratio	Prob> t			Farame	ter Estim	aus			
Intercept	-0.0138	0.058086	-0.24	0.8152			Term	Estimate	Std Error	t Ratio	Prob> t	
X1	1.0555978	0.064126	16.46	<.0001*			Intercept	0.0072438	0.137553	0.05	0.9586	
X2	1.1726213	0.060882	19.26	<.0001*			X1	0.7556947	0.149921	5.04	<.0001*	
X3	0.94467	0.062201	15.19	<.0001*			X2	0.8974775	0.144324	6.22	<.0001*	
X4	0.7937893	0.072106	11.01	<.0001*			X3	1.273112	0.147554	8.63	<.0001*	
X7	0.8646491	0.072857	11.87	<.0001*			X4	0.9912152	0.147686	6.71	<.0001*	
X1*X2	0.6092814	0.063184	9.64	<.0001*	Evallant n values		X5	0.4992768	0.157548	3.17	0.0051*	Excellent n volue
X1*X3	1.048496	0.064127	16.35	<.0001*	Excellent p-values		X7	1.9098324	0.169254	11.28	<.0001*	Excellent p-values
X1*X5	0.1689882	0.06247	2./1	0.0156*	for our selected		X1*X2	1.3404323	0.147771	9.07	<.0001*	for our selected
X1^X0	-0.13/6/	0.062341	-2.21	0.0422	101 Our selected		X1*X3	0.7301233	0.154315	4.73	0.0001*	for our selected
X1"X/ V1*V0	-0.282124	0.0032//	-4.40	0.0004*	effects. 31/45		X1*X8	0.8818146	0.151109	5.84	<.0001*	effects. 28/45
X1*X0 V1*V0	0.1433364	0.002342	2.30	< 0001*			X2*X3	1.7738565	0.147244	12.05	<.0001*	
X2*X3	1 1 5 5 5 8 8 6	0.000014	18/0	< 0001*	variables remain in		X2*X4	-0.505288	0.150738	-3.35	0.0033*	variables remain in
X2*X4	-0 22851	0.067688	-3.38	0.0039*	this was delined		X2*X5	0.2882327	0.156464	1.84	0.0811	41
X2*X5	0.2724824	0.061585	4.42	0.0004*	this model, other		X2*X7	-0.323246	0.145087	-2.23	0.0382*	this model, other
X2*X8	0.1171309	0.065557	1.79	0.0929	1/1 removed and		X2*X8	0.7541419	0.157193	4.80	0.0001*	17 removed and
X2*X9	-0.194707	0.064915	-3.00	0.0085*	14 ICHIOVCU allu		X3*X4	0.4911772	0.152114	3.23	0.0044*	
X3*X5	-0.243616	0.061981	-3.93	0.0012*	increased		X3*X5	-0.294001	0.152524	-1.93	0.0690	increased
X3*X6	0.3008849	0.064689	4.65	0.0003*			X3*X6	0.6665825	0.158849	4.20	0.0005*	
X3*X8	0.2608889	0.064918	4.02	0.0010*	confidence in		X3*X8	-0.313113	0.144715	-2.16	0.0434*	confidence in
X3*X9	-0.193055	0.063673	-3.03	0.0079*	nome in in a offersta		X4*X5	0.5404511	0.180644	2.99	0.0075*	noncoining offects
X4*X5	0.2971485	0.076776	3.87	0.0014*	remaining effects		X4*X6	-0.509129	0.152738	-3.33	0.0035*	remaining effects.
X4*X6	0.1824722	0.064503	2.83	0.0121*			X4*X7	-0.438728	0.161607	-2.71	0.0137*	
X5*X6	0.1402655	0.065625	2.14	0.0484*			X4*X8	1.0562294	0.156893	6.73	<.0001*	
X5*X/	0.182/83/	0.068581	2.6/	0.0169*			X5*X8	-0.320377	0.155775	-2.06	0.0537	
X5^X8	-0.193841	0.063906	-3.03	0.00/9*			X5*X9	-0.488048	0.145195	-3.36	0.0033*	
X0"X/ X6*X0	-0.208923	0.004895	-4.14	0.0008			X6*X7	-0.537179	0.158272	-3.39	0.0030*	
X0 X9 X7*X8	-0.28726	0.000023	-4.67	0.0040			X6*X8	0.2945943	0.156027	1.89	0.0744	
X7 × X0	-0.108210	0.061833	-4.07	0.00055*			X7*X8	-0.55461	0.14508	-3.82	0.0011*	
X8*X9	-0.247728	0.060714	-4.08	0.0009*			X7*X9	0.5509539	0.157129	3.51	0.0024*	
NO NO	01247720	0.000714	4.00							5.51	510 02 1	
V – 1	$\mathbf{V} = \mathbf{V}1 + \mathbf{V}2 + \mathbf{V}2 + \mathbf{V}4 + \mathbf{V}7 + \mathbf{V}1*\mathbf{V}2 + \mathbf{V}1*\mathbf{V}2 + \mathbf{V}1*\mathbf{V}2$						$\mathbf{V} - \mathbf{V}$	$1 + \mathbf{v}$	+ V2	⊥ V /	· V 7	V1*V2 V1*V2
1 - 1	$\mathbf{I} = \mathbf{X}\mathbf{I} + \mathbf{X}\mathbf{Z} + \mathbf{X}\mathbf{J} + \mathbf{X}\mathbf{J} + \mathbf{X}\mathbf{I} + $					$1 - \Lambda$	$1 \pm \mathbf{\Lambda} 2$	$\pm \Lambda J$	ΤΛ4	$\pm \Lambda / =$	$-\Lambda I \Lambda 2 + \Lambda I \Lambda 3 +$	
X2*X	X2*X3 + Random Normal(0, 1)				X2*X	3 + Rat	ndom N	Norm	al(0, 2))		

 Physical (e.g., a breaker on a circuit) or artificial (e.g., threshold on a measure) limits or constraints on response variables have an effect on our ability to differentiate effects

Other Design Evaluation Statistics

Correlation/Aliasing/Confounding

Fraction of Design Space/Variance Inflation Factor

Other Design Evaluation Statistics

• Efficiency

- D—efficiency
 - Minimizes maximum variance of parameter estimates¹
- G—efficiency
 - Minimizes the maximum prediction variance for predicted responses¹
- A-efficiency
 - Measure for independence, minimizes average variance of parameter estimates¹
- Balance of Quality

Conclusion

- Power only give us an idea of how well the test will be able to characterize the system, and is very sensitive to its constituent variables
- Consider other Design Evaluation Metrics/Statistics
- Generate, generate, generate (and compare)!

Thinking through the system will always provide better power estimates, but may point a team towards additional metrics

- For a continuous response, to calculate power,
 - First, calculate the NCP for an effect:

 $\mathrm{NCP}_i = \lambda_i = (\mathrm{L}_i \mathrm{b})' \big(\mathrm{L}_i (\mathrm{X}'\mathrm{X})^{-1} \mathrm{L}_i' \big)^{-1} \mathrm{L}_i \mathrm{b}$

- X is the coding table
- L_i is the submatrix of rows from the Identity matrix corresponding to columns of the X matrix
 - This serves to parse only the portions of the b and X'X matrices relevant to that effect
- b is the column matrix of anticipated coefficients
- Find corresponding $F_{crit} = F_{1-\alpha, df_1, df_2}$

• For a continuous response, to calculate power,

- Next, feed this NCP into the Non-Central F CDF

$$= \sum_{i=0}^{\infty} \left(\left(\frac{\left(\frac{\lambda}{2}\right)^{i}}{i!} \times e^{-\frac{\lambda}{2}} \right) \right)$$
$$\times \sum_{j=\frac{df_{1}}{2}+i}^{\infty} \left(\left(\frac{\Gamma\left(\frac{df_{1}}{2} + \frac{df_{2}}{2} + i\right)}{i! \times \Gamma\left(\frac{df_{1}}{2} + \frac{df_{2}}{2} + i - j\right)} \right) \times \left(\frac{df_{1}F_{crit}}{df_{2} + df_{1}F_{crit}} \right)^{j}$$

Other Design Evaluation Statistics

Ζ

Correlation/Aliasing/Confounding

•
$$\mathbf{A} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$

•
$$\mathbf{R} = \frac{1}{n-1} \left(\mathbf{D}^{-\frac{1}{2}} \left(\mathbf{X}' \mathbf{X} - \frac{1}{n} (\mathbf{X}' \mathbf{1}) (\mathbf{1}' \mathbf{X}) \right) \mathbf{D}^{-\frac{1}{2}} \right)$$

• Fraction of Design Space/Variance Inflation Factor

$$VIF_i = n \times (\mathbf{X}'\mathbf{X})_{ii}^{-1}$$

Other Design Evaluation Statistics

- Efficiency
 - D-efficiency = $100 \times \left(\frac{|\mathbf{X}'\mathbf{X}|^{\frac{1}{p}}}{N}\right)$
 - Uses the maximum determinant (X'X) available and minimizes maximum variance of parameter estimates

• G-efficiency =
$$100 \times \frac{\sqrt{\frac{P}{N}}}{\sigma_M}$$

minimizes the maximum prediction variance for predicted responses

• A-efficiency =
$$100 \times \frac{p}{(N \times (X'X)^{-1})}$$

In

• measure for independence, minimizes average variance of parameter estimates

* p: number of columns in X matrix, N = number of runs