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BLUF

Power analysis using theoretical SNR is bound by and sensitive to 

assumptions. 

Power should not be the only statistical characteristic considered 

when creating a test design.

Always consider the system.
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Overview

•Definition of Power

•Variables 

•Assumptions

•Pitfalls of SNR

•Examples

•Other Design Evaluation Statistics

•Conclusion
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Disclaimer

•Although program-like issues may be used to 

illustrate the topic, this presentation will not 

cover:

−Power for specific programs

−Battlespace conditions for specific programs

−Measures for specific programs

•This is not a workshop on probability theory

This is a series of parametric, theoretical case studies built to highlight 

potential issues with power estimation using SNR.
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Definition of Power

• In its simplest form, power is nothing more than a probability

− It is the area under some curve

• Miss Distance:  Weapons Testing Example

− Suppose the test team decides that they need to be confident that they 

will detect a difference in miss distance

− Assuming actual difference between Day and Night is at least 2.5 meters

Night

Day

Mean Miss 

Distance

7.55
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Definition of Power

• Prior to the test, we set our significance level

− Assume it is 0.1 for this test

− Indicated by the black “stake”

Night

Day

Mean Miss 

Distance

7.55
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Definition of Power

• The area to the right of the stake and bounded by the red curve is 

power

• The area to the left of the stake and bounded by the red curve is 

called Type II error or 𝜷 (beta)

• If the sample mean falls anywhere to the left of the stake the test 

will not conclude that there is an effect (Fail to Reject Ho)

Night

Day

Mean Miss 

Distance

7.55
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• In this figure we have increased the difference we need to detect to 5 

and increased the significance level to 0.2 

• Notice that the two curves barely overlap now

• The area to the right of the stake is approximately the entire curve 

(power is close to 1)

Night

Day

Mean Miss 

Distance

Definition of Power
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Variables

• Independent Variables (x1, x2, x3…)

•Sample Size (n)

•Test Design

__________________________________________

Standard Linear Model

Y = β0 + β1x1 + β2x2 + β12x12 + ε

Response = Intercept + Effect of x1 * Setting of x1 + Effect of 

x2 * Setting of x2 + Effect of x1&2 * Setting of x1&2 + Error
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Assumptions

• Alpha 

− α = 0.2 for Operational Test

• Signal-to-Noise Ratio (SNR, δ/σ)

− Presents the effect (δ) as a multiple of unknown standard 

deviation (σ)

− AFOTEC Heuristic: 80% power @ 1.5 SNR 

• Residuals come from an independent, identically 

distributed (i.i.d.), and normally distributed set

• Nuisance variables are controlled/minimized

− Blocking

− Length of test period
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Pitfalls of SNR

• Changing Variance (noise)

• Impact to anticipated coefficients (signals)

• Number of independent variables (factors)

• Issues with underlying response distribution

Broken assumptions associated with SNR can create issues with 

properly characterizing the system performance
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Examples
(Changing Variance)

1.5 * :X1 + 1.5 * :X2 + 1.5 * :X3 + 

1.5 * :X4 + 1.5 * :X5 + 1.5 * :X6 + 

1.5 * :X1 * :X2 + 1.5 * :X1 * :X3 + 

1.5 * :X1 * :X4 + 1.5 * :X1 * :X5 + 

1.5 * :X1 * :X6 + 1.5 * :X2 * :X3 + 

1.5 * :X2 * :X4 + 1.5 * :X2 * :X5 + 

1.5 * :X2 * :X6 + 1.5 * :X3 * :X4 + 

1.5 * :X3 * :X5 + 1.5 * :X3 * :X6 + 

1.5 * :X4 * :X5 + 1.5 * :X4 * :X6 + 

1.5 * :X5 * :X6 + 

Random Normal(0, 1)

Example 1: SNR = 1.5/Small Random Noise

D-Optimal Design 26, 

Resolution V, 

28 runs

Example 2: SNR = 1.5/Large Random Noise 

1.5 * :X1 + 1.5 * :X2 + 1.5 * :X3 + 

1.5 * :X4 + 1.5 * :X5 + 1.5 * :X6 + 

1.5 * :X1 * :X2 + 1.5 * :X1 * :X3 + 

1.5 * :X1 * :X4 + 1.5 * :X1 * :X5 + 

1.5 * :X1 * :X6 + 1.5 * :X2 * :X3 + 

1.5 * :X2 * :X4 + 1.5 * :X2 * :X5 + 

1.5 * :X2 * :X6 + 1.5 * :X3 * :X4 + 

1.5 * :X3 * :X5 + 1.5 * :X3 * :X6 + 

1.5 * :X4 * :X5 + 1.5 * :X4 * :X6 + 

1.5 * :X5 * :X6 + 

Random Normal(0, 10)
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Examples
(Changing Variance)

Y = Main Effects * 1.5 + 

Interactions * 1.5 + 

Random Normal(0, 10)

Example 1: SNR = 1.5/Small Random Noise
Example 2: SNR = 1.5/Large Random Noise2

Y = Main Effects * 1.5 + 

Interactions * 1.5 + 

Random Normal(0, 1)

All showed statistical significance near a δ of 1.5  

Only 8/21 effects (after removing the majority of the 
effects) showed statistically significance or borderline

2 Montgomery, Douglas C. (2007), Design and Analysis of Experiments, John Wiley & Sons, Inc., New York.
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Examples
(Changing Anticipated Coef.)

5 * :X1 + 6 *:X2 + 2 *:X3 + 3 * :X4 + 1*:X5 + 

1*:X6 + 1*:X1 * :X2 + 1 * :X1 * :X3 + 1 * :X1 

* :X4 + 1 * :X1 * :X5 + 1 * :X1 * :X6 + 1 * :X2 

* :X3 + 1 * :X2 * :X4 + 1 * :X2 * :X5 + 1 * :X2 

* :X6 + 1 * :X3 * :X4 + 1 * :X3 * :X5 + 1 * :X3 

* :X6 + 1 * :X4 * :X5 + 1 * :X4 * :X6 + 1 * :X5 

* :X6 + Random Normal(0, 1)

Example 3: SNR = Mixed/Small Random Noise

D-Optimal Design 26, 

Resolution V, 

28 runs

Example 4: SNR = Mixed/Large Random Noise

5 * :X1 + 6 *:X2 + 2 *:X3 + 3 * :X4 + 1*:X5 + 

1*:X6 + 1*:X1 * :X2 + 1 * :X1 * :X3 + 1 * :X1 

* :X4 + 1 * :X1 * :X5 + 1 * :X1 * :X6 + 1 * :X2 

* :X3 + 1 * :X2 * :X4 + 1 * :X2 * :X5 + 1 * :X2 

* :X6 + 1 * :X3 * :X4 + 1 * :X3 * :X5 + 1 * :X3 

* :X6 + 1 * :X4 * :X5 + 1 * :X4 * :X6 + 1 * :X5 

* :X6 + Random Normal(0, 10)
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Examples
(Changing Anticipated Coef.)

Y = 5*X1 + 6*X2 + 2*X3 + 3*X4 + 1*X5 + 1*X6 

+ Interactions * 1 + Random Normal(0, 10)

Example 3: SNR = Mixed/Small Random Noise Example 4: SNR = Mixed/Large Random Noise

Y = 5*X1 + 6*X2 + 2*X3 + 3*X4 + 1*X5 + 1*X6 

+ Interactions * 1 + Random Normal(0, 1)

All showed statistical significance near a δ of 1.5  

Only 7/21 effects (after removing the majority of the 
effects) showed statistically significance or borderline

Larger effects are easier to estimate  
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Examples
(Number of Variables)

5 * :X1 + 6 *:X2 + 2 *:X3 + 3 * :X4 + 1*:X5 + 

1*:X6 + 5 * :X7 + 1*:X8 + 1*:X9 + 

1*:Interactions + Random Normal(0, 1)

Example 5: SNR = Mixed/Small Random Noise

D-Optimal Design 29, 

Resolution V, 

48 runs

Example 6: SNR = Mixed/Small(er) Random Noise

5 * :X1 + 6 *:X2 + 2 *:X3 + 3 * :X4 + 1*:X5 + 

1*:X6 + 5 * :X7 + 1*:X8 + 1*:X9 + 

1*:Interactions + Random Normal(0, 0.5)
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Examples
(Number of Variables)

Example 5: SNR = Mixed/Small Random Noise Example 6: SNR = Mixed/Smaller Random Noise

Y = 5*X1 + 6*X2 + 2*X3 + 3*X4 + 1*X5 + 1*X6 + 5*X7 + 

1*X8 + 1*X9 + Interactions * 1 + Random Normal(0, 1)

Estimated larger effects 

very well (X1, X2, X4, 

and X7), and no returned 

p-value higher than 

0.1573, and only 4 

higher than 0.10 

Y = 5*X1 + 6*X2 + 2*X3 + 3*X4 + 1*X5 + 1*X6 + 5*X7 + 

1*X8 + 1*X9 + Interactions * 1 + Random Normal(0, 0.5)

Estimated every effect 

with a p-value of less 

than 0.05 
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Examples
(Number of Variables)

1 * :X1 + 1 *:X2 + 1 *:X3 + 1 * :X4 + 1 * :X7 

+ 1*:X1*:X2 + 1*:X1*:X3 + 1*:X2*:X3 + 

Random Normal(0, 1)

Example 7: SNR = 1/Small Noise,
Fewer active effects

D-Optimal Design 29, 

Resolution V, 

48 runs

Example 8: SNR = 1/Large Noise
Fewer Active Effects

1 * :X1 + 1 *:X2 + 1 *:X3 + 1 * :X4 + 1 * :X7 

+ 1*:X1*:X2 + 1*:X1*:X3 + 1*:X2*:X3 + 

Random Normal(0, 2)
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Examples
(Number of Variables)

Example 7: SNR = 1, Fewer active effects

Y = X1 + X2 + X3 + X4 + X7 + X1*X2 + X1*X3 + 

X2*X3 + Random Normal(0, 1)

Excellent p-values 

for our selected 

effects.  31/45 

variables remain in 

this model, other 

14 removed and 

increased 

confidence in 

remaining effects

Example 8: SNR = 0.5, Fewer active effects

Y = X1 + X2 + X3 + X4 + X7 + X1*X2 + X1*X3 + 

X2*X3 + Random Normal(0, 2)

Excellent p-values 

for our selected 

effects.  28/45 

variables remain in 

this model, other 

17 removed and 

increased 

confidence in 

remaining effects.  
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• Issues with underlying response distribution

− Physical (e.g., a breaker on a circuit) or artificial (e.g., 

threshold on a measure) limits or constraints on response 

variables have an effect on our ability to differentiate 

effects

Examples
(Underlying Response Dist.)

Continuous Bimodal

Higher 

Threshold

Lower 

Threshold



21

Other Design Evaluation 
Statistics

• Correlation/Aliasing/Confounding

• Fraction of Design Space/Variance Inflation Factor



22

Other Design Evaluation 
Statistics

• Efficiency

 D−efficiency

• Minimizes maximum variance of parameter estimates1

 G−efficiency

• Minimizes the maximum prediction variance for predicted 

responses1

 A−efficiency

• Measure for independence, minimizes average variance of 

parameter estimates1

• Balance of Quality

1 Harman, Michael. (2014), Test Design Comparison and Selection Method Best Practice. STAT T&E COE.
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Conclusion

• Power only give us an idea of how well the test will be able 

to characterize the system, and is very sensitive to its 

constituent variables 

• Consider other Design Evaluation Metrics/Statistics

•Generate, generate, generate (and compare)!

Thinking through the system will always provide better power 

estimates, but may point a team towards additional metrics
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Questions

?
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Calculation of Power

• For a continuous response, to calculate power,

− First, calculate the NCP for an effect:

NCP𝒊 = 𝝀𝒊 = 𝐋𝐢𝐛
′ 𝐋𝐢 𝐗

′𝐗 −𝟏𝐋𝐢
′ −𝟏𝐋𝐢𝐛

 X is the coding table

 Li is the submatrix of rows from the Identity matrix 

corresponding to columns of the X matrix

• This serves to parse only the portions of the b and X’X 

matrices relevant to that effect

 b is the column matrix of anticipated coefficients

 Find corresponding Fcrit = F 1-α,df1,df2
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Calculation of Power

• For a continuous response, to calculate power,

− Next, feed this NCP into the Non-Central F CDF
CDF

= 

𝑖=0

∞ 𝜆
2

𝑖

𝑖!
× 𝑒−

𝜆
2

×  

𝑗=
𝑑𝑓1
2
+𝑖

∞ Γ
𝑑𝑓1
2 +
𝑑𝑓2
2 + i

𝑖! × Γ
𝑑𝑓1
2 +
𝑑𝑓2
2 + 𝑖 − 𝑗

×
𝑑𝑓1𝐹𝑐𝑟𝑖𝑡
𝑑𝑓2 + 𝑑𝑓1𝐹𝑐𝑟𝑖𝑡

𝑗
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Other Design Evaluation 
Statistics

• Correlation/Aliasing/Confounding

• 𝐀 = 𝐗′𝐗 −1𝐗′𝐙

• 𝐑 =
1

𝑛−1
𝐃−
1

2 𝐗′𝐗 −
1

𝑛
𝐗′𝟏 𝟏′𝐗 𝐃−

1

2

• Fraction of Design Space/Variance Inflation Factor

• VIF𝑖 = 𝑛 × 𝐗
′𝐗 𝑖𝑖
−1
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Other Design Evaluation 
Statistics

• Efficiency

 D−efficiency = 𝟏𝟎𝟎 ×
𝐗′𝐗
𝟏
𝒑

𝐍

• Uses the maximum determinant (X’X) available and minimizes 

maximum variance of parameter estimates

 G−efficiency = 𝟏𝟎𝟎 ×

𝒑

𝑵

𝝈𝑴

• minimizes the maximum prediction variance for predicted 

responses

 A−efficiency = 𝟏𝟎𝟎 ×
𝒑

𝑵× 𝐗′𝐗 −𝟏

• measure for independence, minimizes average variance of 

parameter estimates 

* p: number of columns in X matrix, N = number of runs


