Sample Size Calculations

Practical Methods for Engineers and Scientists (Software solutions to selected example problems, Version: 17 August 2010)

Sample Size Calculations

Practical Methods for Engineers and Scientists

(Software solutions to selected example problems, Version: 17 August 2010)

Paul Mathews

Sample Size Calculations: Practical Methods for Engineers and Scientists

Paul Mathews

paul@mmbstatistical.com

Copyright ©2010 Paul Mathews

All rights reserved. No part of this publication may be reproduced or stored in any form or by any means without the prior written permission of the publisher.

Published by:
Mathews Malnar and Bailey, Inc.
217 Third Street, Fairport Harbor, OH 44077
Phone: 440-350-0911
Fax: 440-350-7210
Web: www.mmbstatistical.com

ISBN 978-0-615-32461-6

Contents

1 Fundamentals 7
1.1 Motivation for Sample Size Calculations 7
1.2 Rationale for Sample Size and Power Calculations 7
1.3 Rationale for Hypothesis Tests. 12
1.4 Practical Considerations 16
1.5 Problems and Solutions 22
1.6 Software 22
2 Means 23
2.1 Assumptions 23
2.2 One Mean 23
2.3 Two Independent Means 35
2.4 Equivalence Tests 47
2.5 Contrasts 51
2.6 Multiple Comparisons Tests 52
3 Standard Deviations 57
3.1 One Standard Deviation 57
3.2 Two Standard Deviations 63
3.3 Coefficient of Variation 68
4 Proportions 71
4.1 One Proportion (Large Population) 71
4.2 One Proportion (Small Population) 85
4.3 Two Proportions 88
4.4 Equivalence Tests 98
4.5 Chi-square Tests 102
5 Poisson Counts 107
5.1 One Poisson Count 107
5.2 Two Poisson Counts 115
5.3 Tests for Many Poisson Counts 119
5.4 Correcting for Background Counts 120
6 Regression 121
6.1 Linear Regression 121
6.2 Logistic Regression 128
7 Correlation and Agreement 131
7.1 Pearson's Correlation. 131
7.2 Intraclass Correlation 135
7.3 Cohen's Kappa 137
7.4 Receiver Operating Characteristic (ROC) Curves 139
7.5 Bland-Altman Plots 142
8 Designed Experiments 145
8.1 One-Way Fixed Effects ANOVA 145
8.2 Randomized Block Design 152
8.3 Balanced Full Factorial Design with Fixed Effects 153
8.4 Random and Mixed Models 159
8.5 Nested Designs 161
8.6 Two-Level Factorial Designs 162
8.7 Two-Level Factorial Designs with Centers 171
8.8 Response Surface Designs 172
9 Reliability and Survival 175
9.1 Reliability Parameter Estimation 175
9.2 Reliability Demonstration Tests 181
9.3 Two-Sample Reliability Tests 189
9.4 Interference 192
10 Statistical Quality Control 195
10.1 Statistical Process Control 195
10.2 Process Capability 197
10.3 Tolerance Intervals 199
10.4 Acceptance Sampling 200
10.5 Gage R\&R Studies. 211

11 Resampling Methods 213
11.1 Software Requirements . 213
11.2 Monte Carlo . 213
11.3 Bootstrap.

The purpose of this document is to present solutions to selected example problems from the book using PASS (2005), MINITAB (V15 and V16), Piface (V1.72), and R. (This version of the document, compiled on 17 August 2010, does not yet contain solutions using R.) All of the programs have more sample size and power calculation capabilities than what is included in the book. Some packages are particularly strong in certain areas. For example, PASS has the broadest scope, Piface offers an unmatched collection of ANOVA methods involving fixed, random, mixed, and nested designs and supports custom ANOVA models, and MINITAB has special methods for quality engineers including attribute and variables sampling plan design and reliability study design.

The following figures show screen captures of some of the methods available in Piface, PASS, and MINITAB.

MINITAB V15:

MINITAB V16:

Most of the programs emphasize sample size and power calculations for hypothesis tests but they can be tricked into performing approximate sample size calculations for

confidence intervals by setting the hypothesis test power to $\pi=0.50$. This trick is exact when the sampling distribution is normal because $z_{0.50}=0$ and it is reasonably accurate when the sampling distribution is other than normal but symmetric. Be more careful when the sampling distribution is asymmetric.

The solutions in the book don't use the continuity correction when discrete distributions are approximated with continuous ones, however, the software solutions often include the continuity correction so answers to problems may differ slightly. If you have access to software that provides more accurate methods, then definitely use the software.

Some software provides several analysis methods for the same problem. For example, PASS offers six different methods for the significance test for one proportion expressed in terms of the proportion difference. The different methods usually give similar answers.

This document will be revised occasionally. The current version was compiled on 17 August 2010.

Chapter 1

Fundamentals

1.1 Motivation for Sample Size Calculations

1.2 Rationale for Sample Size and Power Calculations

Example 1.1 Express the confidence interval $P(3.1<\mu<3.7)=0.95$ in words.
Solution: The confidence interval indicates that we can be 95% confident that the true but unknown value of the population mean μ falls between $\mu=3.1$ and $\mu=3.7$.
Apparently, the mean of the sample used to construct the confidence interval is $\bar{x}=3.4$ and the confidence interval half-width is $\delta=0.3$.

Example 1.2 Data are to be collected for the purpose of estimating the mean of a mechanical measurement. Data from a similar process suggest that the standard deviation will be $\sigma_{x}=0.003 \mathrm{~mm}$. Determine the sample size required to estimate the value of the population mean with a 95% confidence interval of half-width $\delta=0.002 \mathrm{~mm}$.
Solution: With $z_{\alpha / 2}=z_{0.025}=1.96$ in Equation 1.4, the required sample size is

$$
n=\left(\frac{1.96 \times 0.003}{0.002}\right)^{2}=8.64
$$

The sample size must be an integer; therefore, we round the calculated value of n up to $n=9$.
From MINITAB $>$ Stat $>$ Power and Sample Size $>$ 1-Sample Z:

MTB $>$ Power;SUBC>Zone;			
$\begin{array}{ll}\text { SUBC> } \\ \text { SUBC> } & \text { ZOne; } \\ \text { Difference } \\ \text { 0.002 }\end{array}$			
SUBC> Power 0.5;			
SUBC> Sigma 0.003;			
SUBC> GPCurve.			
Power and Sample Size			
1-Sample z Test			
Testing mean $=$ null (versus not $=$ null)			
Calculating power for mean $=$ null + difference			
Alpha $=0.05$ Assumed standard deviation $=0.003$			
	Sample	Target	
Difference	Size	Power	Actual Power
0.002	9	0.5	0.516005

From PASS $>$ Means $>$ One $>$ Confidence Interval of Mean:

Example 1.3 What is the new sample size in Example 1.2 if the process owner prefers a 99% confidence interval? Solution: With $z_{\alpha / 2}=z_{0.005}=2.575$ in Equation 1.4 the required sample size is

$$
n=\left(\frac{2.575 \times 0.003}{0.002}\right)^{2}=15
$$

From MINITAB $>$ Stat $>$ Power and Sample Size $>$ 1-Sample Z:

EPPASS: Mean: Confidence Interval Output
 Coefficient
Known standard deviation.
References
References
'Power Calculations for Matched Case-Control Studies', Biometrics, Volume 44, pages 1157-1168.
Report Definitions
Precision is the plus and minus value used to create the confidence interval.
Confidence Coefficient is probability value associated with the confidence interval.
N is the size of the sample drawn from the population.
The standard deviation of the population measures the variability in the population.
Summary Statements
A sample size of 15 produces a 99% confidence interval equal to the sample mean plus or minus 0.002 when the known standard deviation is 0.003 .

MTB $>$	Power;
SUBC	ZOne;
SUBC	Difference 0.002;
SUBC>	Power 0.5;
SUBC>	Sigma 0.003;
SUBC	Alpha 0.01;
SUBC>	GPCurve.

Power and Sample Size
1-Sample z Test
Testing mean $=$ null (versus not $=$ null)
Calculating power for mean $=$ null + difference Alpha $=0.01 \quad$ Assumed standard deviation $=0.003$

	Sample	Target	
Difference	Size	Power	Actual Power
0.002	15	0.5	0.502457

From PASS $>$ Means $>$ One $>$ Confidence Interval of Mean:
Example 1.4 What is the new sample size in Example 1.2 if the process owner prefers a 95% confidence level with $\delta=0.001 \mathrm{~mm}$ half-width? Solution: With $z_{0.025}=1.96$ and $\delta=0.001 \mathrm{~mm}$ in Equation 1.4 the required sample size is

$$
n=\left(\frac{1.96 \times 0.003}{0.001}\right)^{2}=35
$$

From MINITAB $>$ Stat $>$ Power and Sample Size $>$ 1-Sample Z:

$$
\begin{array}{ll}
\text { MTB }> & \text { Power; } \\
\text { SUBC> } & \text { ZOne; } \\
\text { SUBC } & \text { Difference 0.001; } \\
\text { SUBC } & \text { Power 0.5; } \\
\text { SUUC> } & \text { Sigma 0.003; } \\
\text { SUBC } & \text { GPCurve. }
\end{array}
$$

Power and Sample Size
1-Sample z Test
Testing mean $=$ null (versus not $=$ null)
Testing mean $=$ null (versus not $=$ null) Alpha $=0.05$ Assumed standard deviation $=0.00$

	Sample	Target	
Difference	Size	Power	Actual Power
0.001	35	0.5	0.504854

From PASS $>$ Means $>$ One $>$ Confidence Interval of Mean:

WPASS: Mean: Confidence Interval Outpu
Page/Date/Time $\quad 1$ 4/19:20102:22:52 PM Confidence Interval of A Mean

Numeric Results	C.C.	N	S
	Confidence	Sample	Standard Deviation
Precision	Coefficient	Size	
0.001	0.95000	35	0.003

Known standard deviation.

Referaces

References
'Power Calculations for Matched Case-Control Studies', Biometrics, Volume 44, pages 1157-1168.
Report Definitions
Precision is the plus and minus value used to create the confidence interval
Confidence Coefficient is probability value associated with the confidence interval
The standard deviation of the population measures the variabilty in the population.
Summary Statements
A sammary statements of 35 produces a 95% confidence interval equal to the sample mean plus or minus 0.001 when the known standard deviation is 0.003 .

Example 1.5 Determine the sample size required to estimate the mean of a population when $\sigma_{x}=30$ is known and the population mean must not exceed the sample mean by more than $\delta=10$ with 95% confidence.
Solution: A one-sided upper 95% confidence interval is required of the form

$$
P(\mu<\bar{x}+\delta)=0.95
$$

With $z_{0.05}=1.645$ in Equation 1.8 the necessary sample size is

$$
n=\left(\frac{1.645 \times 30}{10}\right)^{2}=25
$$

From MINITAB $>$ Stat $>$ Power and Sample Size $>$ 1-Sample Z:

MTB $>$	Power;
SUBC	ZOne;
SUBC	Difference 10;
SUCC	Power 0.5;
SUBC	Sigma 30;
SUBC	Alternative 1;
SUBC	GPCurve.

Power and Sample Size

1-Sample z Test
Testing mean $=$ null (versus $>$ null)
Calculating power for mean $=$ null + difference
Alpha $=0.05$ Assumed standard deviation $=30$

From PASS $>$ Means $>$ One $>$ Confidence Interval of Mean:

XPASS: Mean: Confidence Interval Output
Page/Date/Time $\quad 1$ 4/19/20102:25:00 PM Confidence Interval of A Mean
Pa

N	\mathbf{S}
Sample	Standard Size Deviation
25	30.000

References

'Power Calculations for Matched Case-Control Studies', Biometrics, Volume 44, pages 1157-1168.

Report Definitions

Precision is the plus and minus value used to create the confidence interval.
Confidence Coefficient is probabilty value associated with the confidence interval
N is the size of the sample drawn from the population.
The standard deviation of the population measures the variability in the population.
Summary Statements
Summary Statements A sample size of 25 produces a 90% confidence interval equal to the sample mean plus or minus 9.869 when the known standard deviation is 30.000

1.3 Rationale for Hypothesis Tests

Example 1.6 An experiment is planned to test the hypotheses $H_{0}: \mu=3200$ versus $H_{A}: \mu \neq 3200$. The process is known to be normally distributed with standard deviation $\sigma_{x}=400$. What sample size is required to detect a practically significant shift in the process mean of $\delta=300$ with power $\pi=0.90$?
Solution: With $\beta=1-\pi=0.10$ and assuming $\alpha=0.05$ in Equation 1.12, the sample size required to detect a shift from $\mu=3200$ to $\mu=2900$ or $\mu=3500$ with 90% power is

$$
\begin{aligned}
n & =\left(\frac{\left(z_{0.025}+z_{0.10}\right) \sigma_{x}}{\delta}\right)^{2} \\
& =\left(\frac{(1.96+1.282) 400}{300}\right)^{2} \\
& =19
\end{aligned}
$$

where the calculated value of n was rounded up to the nearest integer value.
From MINITAB $>$ Stat $>$ Power and Sample Size $>$ 1-Sample Z:

MTB $>$	Power;
SUBC>	Zne;
SUBC>	Difference 300;
SUBC>	Power 0.9;
SUBC>	Sigma 400;
SUBC>	GPCurve.

subc Sigma 400;
Power and Sample Size
1-Sample z Test
Testing mean $=$ null (versus not $=$ null)
Calculating power for mean $=$ null + difference
Alpha $=0.05$ Assumed standard deviation $=400$

Difference $\begin{array}{rrr}\text { Sample } \\ \text { Size } & \begin{array}{r}\text { Target } \\ \text { Power }\end{array} \\ & \text { Actual Power }\end{array}$

ESASS: Mean: 1 or 2 Correlated (Paired) Output

Page/Date/Time $14 / 4920102.27 .57$ PM One-Sample T-Test Power Analysis

Numeric Results for One-Sample T-Tes

Null Hypothesis: Mean0=Mean1 Aternative Hypothesis: Mean0<>Mean1 Known standard deviation

| | | | | | | | Effect |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Power | N | Alpha | Beta | Mean0 | Mean1 | S | Size |
| 0.90477 | 19 | 0.05000 | 0.09523 | 3200.0 | 3500.0 | 400.0 | 0.750 |

eferences

Machin, D., Campbell, M., Fayers, P., and Pinol, A 1997. Sample Size Tables for Clinical Studies, 2nd Edition. Blackwell Science. Malden. MA
Zar, Jerrold H. 1984. Biostatistical Analysis (Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey.

Report Definitions

Power is the probability of rejecting a false null hypothesis. It should be close to one.
N is the size of the sample drawn from the population. To conserve resources, it should be small. Alpha is the probability of rejecting a true null hypothesis. It should be small.
Mean0 is the value of the population mean under the null hypothesis. It is arbitrary.
Mean1 is the value of the population mean under the alternative hypothesis. It is relative to Mean0
Sigma is the standard deviation of the population. It measures the variability in the population.
Effect Size, IMean0-Mean1/Sigma, is the relative magnitude of the effect under the alternative.
Summary Statements
A sample size of 19 achieves 90% power to detect a difference of -300.0 between the null
ypothesis mean of 3200.0 and the alternative hypothesis mean of 3500.0 with a known standard one-sample t-test.

Example 1.7 An experiment will be performed to test $H_{0}: \mu=8.0$ versus $H_{A}: \mu>8.0$. What sample size is required to reject H_{0} with 90% power when $\mu=8.2$? The process is known to be normally distributed with $\sigma_{x}=0.2$.
Solution: For the one-tailed hypothesis test with $\alpha=0.05, \delta=0.2$ and $\beta=1-\pi=0.10$ the required sample size is

$$
\begin{aligned}
n & =\left(\frac{\left(z_{\alpha}+z_{\beta}\right) \sigma_{x}}{\delta}\right)^{2} \\
& =\left(\frac{\left(z_{0.05}+z_{10}\right) \sigma_{x}}{\delta}\right)^{2} \\
& =\left(\frac{(1.645+1.282) 0.2}{0.2}\right)^{2} \\
& =9 .
\end{aligned}
$$

MTB $>$	Power;
SUBC>	ZOne;
SUBC>	Difference 0.2;
SUBC>	Power 0.9;
SUBC>	Sigma 0.2;
SUBC>	Alternative 1;
SUBC>	GPCurve.

Power and Sample Size

1-Sample z Test
Testing mean $=$ null (versus $>$ null)
Calculating power for mean $=$ null + difference alculating $=0.05$ issumed standard deviation $=0.2$

From PASS $>$ Means $>$ One $>$ Inequality (Normal):

3. PASS: Mean: 1 or 2 Correlated (Paired) Output

One-Sample T-Test Power Analysis

umeric Results for One-Sample T-Test

Null Hypothesis: Mean0=Mean1 Aternative Hypothesis: Mean0<Mean1 Known standard deviation.

						Effect	
Power	N	Alpha	Beta	Mean0	Mean1	S	Sise
0.91231	9	0.05000	0.08769	8.0	8.2	0.2	1.000

eferences
Machin, D.. Campbell, M. Fayers, P. and Pinol, A 1997 . Sample Size Tables for Clinical Studies, 2nd Edition. Blackwell Science. Malden, MA
Zar, Jerrold H. 1984. Biostatistical Analysis (Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey.

Report Definitions

Power is the probability of rejecting a false null hypothesis. It should be close to one
N is the size of the sample drawn from the population. To conserve resources, it should be small
Alpha is the probability of rejecting a true null hypothesis. It should be small
Mean0 is the value of the population mean under the null hypothesis. It is arbitrary
Mean1 is the value of the population mean under the alternative hypothesis. It is relative to Mean0.
Sigma is the standard deviation of the population. It measures the variability in the population.
Effect Size, IMean0-Mean1/Sigma, is the relative magnitude of the effect under the alternative.
Summary Statements
A sample size of 9 achieves 91% power to detect a difference of -0.2 between the null hypothesis mean of 8.0 and the atternative hypothesis mean of 8.2 with a known standard deviation of 0.2 and with a significance level (alpha) of 0.05000 using a one-sided one-sample t-test.

Example 1.8 Calculate the p value for the test performed under the conditions of Example 1.6 if the sample mean was $\bar{x}=3080$.

Solution: Figure 1.4 shows the contributions to the p value from the two tails of the \bar{x} distribution under H_{0}. The z test statistic that corresponds to \bar{x} is

$$
\begin{aligned}
z & =\frac{\bar{x}-\mu_{0}}{\sigma_{\bar{x}}} \\
& =\frac{\bar{x}-\mu_{0}}{\sigma_{x} / \sqrt{n}} \\
& =\frac{3080-3200}{400 / \sqrt{19}} \\
& =-1.31,
\end{aligned}
$$

so the p value is

$$
\begin{aligned}
p & =1-\Phi(-1.31<z<1.31) \\
& =0.19 .
\end{aligned}
$$

Because $(p=0.19)>(\alpha=0.05)$, the observed sample mean is statistically consistent with $H_{0}: \mu=3200$, so we can not reject H_{0}. From MINITAB $>$ Stat $>$ Power and Sample Size $>$ 1-Sample Z:

MTB $>$ OneZ 19 3080; SUBC> Sigma 400; SUBC> Test 3200.					
One-Sample Z					
Test of mu $=3200$ vs not $=3200$					
The assumed standard deviation $=400$					
	Mean	SE Mean	95\% CI	z	P
19	3080.0	91.8	(2900.1, 3259.9)	-1.31	0.191

Example 1.9 Calculate the p value for the test performed under the conditions of Example 1.7 if the sample mean was $\bar{x}=8.39$.
Solution: Figure 1.5 shows the single contribution to the p value from the right tail of the \bar{x} distribution under H_{0}. The z test statistic that corresponds to \bar{x} is

$$
\begin{aligned}
z & =\frac{8.39-8.2}{0.2 / \sqrt{9}} \\
& =2.85
\end{aligned}
$$

so the p value is

$$
\begin{aligned}
p & =\Phi(2.85<z<\infty) \\
& =0.0022
\end{aligned}
$$

Because ($p=0.0022$) < ($\alpha=0.05$), the observed sample mean is an improbable result under $H_{0}: \mu=8.2$, so we must reject H_{0}.
From MINITAB $>$ Stat $>$ Power and Sample Size $>$ 1-Sample Z:

```
итв > OneZ 9 8.39;
SUBC> Sigma 0.2;
SUBC> Test 8.2;
One-Sample Z
Test of mu = 8.2 vs > 8.2
The assumed standard deviation = 0.2
N Mean SE Mean 95% Lower round % & % P
```


1.4 Practical Considerations

Example 1.10 What sample size is required for a pilot study to estimate the standard deviation to be used in the sample size calculation for a primary experiment if the sample size for the primary experiment should be within 20% of the correct value with 90% confidence?
Solution: With $\delta=0.20$ and $\alpha=0.10$ in Equation 1.20, the required sample size for the preliminary experiment to estimate the standard deviation is

$$
n \simeq 2\left(\frac{1.645}{0.20}\right)^{2}
$$

$$
\simeq 136
$$

歪3 Pilot study				\times
Options Help				
Percent by which N is under-estimated				
Value		20		OK
Risk of exceeding this percentage				
Value		. 04937		OK
d.f. for error in pilot study				『
Value		124		OK,
Java Applet Window				

From PASS $>$ Variance $>$ Variance: 1 Group:

Example 1.11 An engineer must obtain approval from his manager to test a certain number of units to determine the mean response for a validation study. The standard deviation of the response is $\sigma_{x}=600$ and the smallest practically significant shift in the mean that the experiment should detect is understood to be $\delta=400$. What graph should the engineer use to present his case?

Solution: The value of the effect size of interest is firm at $\delta=400$. The sample size is going to affect the power of the test, so an appropriate graph is power versus sample size. The sample size required to obtain a specified value of power for the test of $H_{0}: \delta=0$ versus $H_{A}: \delta \neq 0$ is given by Equation 1.12. Figure 1.6 shows the resulting power curve. The sample size required to obtain 80% power is $n=18$ and the sample size required for 90% power is $n=24$.

From MINITAB $>$ Stat $>$ Power and Sample Size $>$ 1-Sample Z:

1-Sample 2 Test
Testing mean $=$ null (versus not $=$ null
Calculating power for mean $=$ null + difference Alpha $=0.05$ Assumed standard deviation $=600$

Sample Target
$\begin{array}{rrrr} & \text { Size } & \text { Power } & \text { Actual Power } \\ 400 & 18 & 0.8 & 0.807430\end{array}$ $\begin{array}{llll}400 & 24 & 0.9 & 0.904228\end{array}$

S. PASS: Mean: 1 or 2 Correlated (Paired) Output

Page/Date/Time $\quad 1 \quad 4 / 19 / 20103: 29: 01 \mathrm{PM}$ One-Sample T-Test Power Analysis
Numeric Results for One-Sample T-Test
Null Hypothesis: Mean0=Mean1 Atternative Hypothesis: Mean0 $<>$ Mean1 Known standard deviation

Power	N	Alpha	Beta	Mean0	Mean1	S	Effect
0.90423	24	0.05000	0.09577	0.0	400.0	. 0	667
0.80743	18	0.05000	0.19257	0.0	400.0	600.0	0.667
References							
Machin, D., Campbell, M., Fayers, P., and Pinol, A. 1997. Sample Size Tables for Clinical Studies, 2ndEdition. Elackwell Science. Malden, MA.							
Zar, Jerrol		tical A	(Seco	n). P	Hall.	d	

Report Definition

Power is the probability of rejecting a false null hypothesis. It should be close to one
N is the size of the sample drawn from the population. To conserve resources, it should be small. Alpha is the probability of rejecting a true null hypothesis. It should be small.
Mean0 is the value of the population a false null hypothesis. It should be smal
Mean1 is the value of the population mean under the alternative hypothesis. It is relative to Mean0. Sigma is the standard deviation of the population. It measures the variability in the population. Effect Size, |Mean0-Mean1/Sigma, is the relative magnitude of the effect under the alternative.
Summary Statements
A sample size of 24 achieves 90% power to detect a difference of -400.0 between the null hypothesis mean of 0.0 and the atternative hypothesis mean of 400.0 with a known standard deviation of 600.0 and with a significance level (alpha) of 0.05000 using a two-sided one-sample t-test.

Example 1.12 Suppose that the manager in Example 1.11 approves the use of $n=24$ units in the validation study. What power does the study have to reject H_{0} when the effect size is $\delta=200,400$, and 600 ?
Solution: The power is given by

$$
\pi=\Phi\left(-z_{\beta}<z<\infty\right)
$$

where z_{β} is determined from Equation 1.12:

$$
z_{\beta}=\sqrt{n} \frac{\delta}{\sigma_{x}}-z_{\alpha / 2}
$$

Figure 1.7 shows the power as a function of effect size. The power to reject H_{0} when $\delta=200$ is $\pi \simeq 0.37$, when $\delta=400$ is $\pi \simeq 0.90$, and when $\delta=600$ is $\pi \simeq 1$.

Power and Sample Size
1-Sample z Test
Testing mean $=$ null (versus not $=$ null) Calculating power for mean $=$ null + difference Alpha $=0.05$ Assumed standard deviation $=600$
iffere sample
$\begin{array}{rrr} & \text { Size } & \text { Power } \\ 400 & 24 & 0.904228\end{array}$

Power Curve for 1-Sample Z Test
MTB >
§ Power Curve for 1-Sample Z Test
-

From PASS $>$ Means $>$ One $>$ Inequality (Normal):

SPASS: Mean: 1 or 2 Correlated (Paired) Output Chart Section

1.5 Problems and Solutions

1.6 Software

Chapter 2

Means

2.1 Assumptions

2.2 One Mean

Example 2.1 Find the sample size required to estimate the unknown mean of a population to within ± 3 with 95% confidence if the population standard deviation is known to be $\sigma=5$.
Solution: With $\alpha=0.05, z_{0.025}=1.96$, and $\delta=3$ in Equation ??, the required sample size is

$$
\begin{aligned}
n & \geq\left(\frac{1.96 \times 5}{3}\right)^{2} \\
& \geq 11
\end{aligned}
$$

```
MTB > Power;
SUBC> Difference 3
UBC> Power 0.5
SUBC> GPCurve
```


Power and Sample Size

1-Sample z Test
Testing mean $=$ null (versus not $=$ null
alculating power for mean $=$ null + differenc Alph $=0.05$ issumed standard deviation $=5$

Sample Target
$\begin{array}{rrrr}\text { Difference } & \text { Size } & \text { Power } & \text { Actual Power } \\ 3 & 11 & 0.5 & 0.512010\end{array}$
 standard deviation is $\widehat{\sigma}=5$
Solution: From Equation 2.7 with $t_{0.025} \simeq\left(z_{0.025}=1.96\right)$ in the first iteration,

$$
n \geq\left(\frac{1.96 \times 5}{3}\right)^{2}=11
$$

In the second iteration with $t_{0.025,10}=2.228$,

$$
n \geq\left(\frac{2.228 \times 5}{3}\right)^{2}=14
$$

Another iteration indicates that $n=13$ is the smallest sample size that satisfies the sample size condition.

From Piface $>$ CI for one mean:

［象 Cl for a mean		$\square \times$
Options Help		
「 Finite population		
Confidence	0.95	\checkmark
Sigma		
Value $\vee 5$		OK
Margin of Error		
Value $\vee 3$		OK
n 四		
Value $\checkmark 12.98$		ok
Java Applet Window		

From MINITAB $>$ Stat $>$ Power and Sample Size $>$ 1－Sample \mathbf{t} ：

Margin Sample
of Error Size
From PASS $>$ Means $>$ One $>$ Confidence Interval of Mean:

SPASS: Mean: Confidence Interval Output

Page/Date/Time $\quad 1$ 4/26R0107:05:45 PM Confidence Interval of A Mean

Numeric Results	C.C.	N	S
	Confidence	Sample	Standard Srecision
Coefficient	Size	Deviation	
2.887	0.95000	14	5.000

Prem
Unknown standard deviation.
References
References
'Power Calculations for Matched Case-Control Studies', Biometrics, Volume 44 , pages 1157-1168.

Report Definitions

Precision is the plus and minus value used to create the confidence interval.
Confidence Coefficient is probability value associated with the confidence interval.
N is the size of the sample drawn from the population.
The standard deviation of the population measures the variability in the population.
Summary Statements
A sample size of 14 produces a 95% confidence interval equal to the sample mean plus or minus 2.887 when the estimated standard deviation is 5.000 .

Example 2.3 For the one-sample test of $H_{0}: \mu=30$ versus $H_{A}: \mu \neq 30$ when the population is known to be normal with $\sigma=3$, what sample size is required to detect a shift to $\mu=32$ with 90% power?
Solution: By Equation 2.16 with $\delta=2, z_{0.025}=1.96$, and $z_{0.10}=1.28$, the necessary sample size is

$$
n \geq(1.96+1.28)^{2}\left(\frac{3}{2}\right)^{2}=24
$$

From PASS $>$ Means $>$ One $>$ Inequality (Normal):

EPASS: Mean: 1 or 2 Correlated (Paired) Output

Numeric Results for One-Sample T-Test

One-Sample T-Test Power Analysis
Null Hypothesis: Mean0=Mean1 Atternative Hypothesis: Mean0<>Mean1 Known standard deviation

Power	N	Alpha	Beta	Mean0	Mean1	S	Effect Size
0.90423	24	0.05000	0.09577	30.0	32.0	3.0	0.667

Machin, D., Campbell, M., Fayers, P., and Pinol, A. 1997. Sample Size Tables for Clinical Studies, 2n Edition. Elackwell Science. Malden, MA
Zar, Jerrold H. 1984. Biostatistical Analysis (Second Edition). Prentice-Hall. Englewood Clifis, New Jersey
Eation. Blachwel Science. Malden,
Report Definitions
Power is the probability of rejecting a false null hypothesis. It should be close to one
N is the size of the sample drawn from the population. To conserve resources, it should be small. Apha is the probability of rejecting a true null hypothesis. It should be small. Beta is the probability of accepting a false null hypothesis. It should be smal
Mean0 is the value of the population mean under the null hypothesis. It is arbitrary
Mean1 is the value of the population mean under the alternative hypothesis. It is relative to Mean0.
Sigma is the standard deviation of the population. It measures the variability in the population.
Effect Size, |Mean0-Mean1/Sigma, is the relative magnitude of the effect under the atternative
Summary Statements
A sample size of 24 achieves 90% power to detect a difference of -2.0 between the null hypothesis mean of 30.0 and the atternative hypothesis mean of 32.0 with a known standard deviation of 3.0 and with a significance level (alpha) of 0.05000 using a two-sided one-sample t-test.
 deviation is unknown but expected to be $\sigma \simeq 1.5$.
 $z_{0.10}=1.282$, and

$$
n=(1.96+1.282)^{2}\left(\frac{1.5}{2}\right)^{2}=6
$$

Then with $d f_{\epsilon}=5, t_{0.025,5}=2.571$, and $t_{0.10,5}=1.476$ the new sample size estimate is

$$
n \geq(2.571+1.476)^{2}\left(\frac{1.5}{2}\right)^{2}=9.21
$$

Further iterations are required because $(n=6) \nsupseteq 9.21$. Another iteration indicates that $n=9$ delivers the desired power
From Piface $>$ One-sample t test (or paired \mathbf{t})

From MINITAB $>$ Stat $>$ Power and Sample Size $>$ 1-Sample $t:$

From PASS $>$ Means $>$ One $>$ Inequality (Normal):

EPASS: Mean: 1 or 2 Correlated (Paired) Output

One-Sample T-Test Power Analysis

Numeric Results for One-Sample T-Tes

Null Hypothesis: Mean0=Mean1 Atternatve Hypothesis: Mean0 $>$ Mean 1 Unknown standard deviation

Power	N	Alpha	Beta	Mean0	Mean1	S	Effect
Size							

eferences

Machin, D., Campbell, M., Fayers, P., and Pinol, A. 1997. Sample Size Tables for Clinical Studies, 2nd Edition. Blackwell Science. Malden, MA
Zar, Jerrold H. 1984. Biostatistical Analysis (Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey

Report Definitions

Power is the probability of rejecting a false null hypothesis. It should be close to one
N is the size of the sample drawn from the population. To conserve resources, it should be small. Alpha is the probability of rejecting a true null hypothesis. It should be small.
Beta is the probability of accepting a false null hypothesis. It should be smal
Mean0 is the value of the population mean under the null hypothesis. It is arbitrary
Mean1 is the value of the population mean under the alternative hypothesis. It is relative to Meand.
Sigma is the standard deviation of the population. It measures the variability in the population.
Effect Size |Mean0-Mean1/Sigma is the relative magnitude of the effect under the alternative.
Summary Statements
A sample size of 9 achieves 94% power to detect a difference of -2.0 between the null hypothesis mean of 30.0 and the alternative hypothesis mean of 32.0 with an estimated standard deviation of 1.5 and with a significance level (alpha) of 0.05000 using a two-sided one-sample t-test.

Example 2.5 Find the approximate and exact power for the solution obtained for Example 2.4
Solution: With $n=9$ and $t_{0.025,8}=2.306$ the approximate power by Equation 2.19 is

$$
\begin{aligned}
\pi & =P\left(-\infty<t<\frac{\delta}{\hat{\sigma} / \sqrt{n}}-t_{\alpha / 2}\right) \\
& =P\left(-\infty<t<\frac{2}{1.5 / \sqrt{9}}-2.306\right) \\
& =P(-\infty<t<1.694) \\
& =0.9356 .
\end{aligned}
$$

From Equation 2.23 the t distribution noncentrality parameter is

$$
\phi=\frac{2}{1.5 / \sqrt{9}}=4.00,
$$

so, from Equation 2.22,

$$
t_{0.025}=2.306=t_{\beta, 4.0}
$$

which is satisfied by $\beta=0.0633$ and power $\pi=1-\beta=0.9367$. This value is in excellent agreement with the value obtained by the approximate method even though the sample size is relatively small.

From Piface $>$ One-sample \mathbf{t} test (or paired \mathbf{t}):

Example 2.6 Compare the sample sizes for the two-independent-samples experiment and the paired-sample experiment if they must detect a bias between two treatments of $\Delta \mu=2$ with 90% power when the standard deviation of individual units is $\widehat{\sigma}_{x}=2$ and the measurement precision error is $\widehat{\sigma}_{\epsilon}=0.5$.
Solution: For the two-independent-sample t test the characteristic standard deviation for each treatment is (from Equation 2.27)

$$
\widehat{\sigma}_{i n d e p e n d e n t}=\sqrt{2^{2}+0.5^{2}}=2.062
$$

Then, from Equation 2.62, the required sample size for each treatment is

$$
\begin{aligned}
n & \geq 2\left(t_{0.025}+t_{0.10}\right)^{2}\left(\frac{\widehat{\sigma}_{\text {independent }}}{\Delta \mu}\right)^{2} \\
& \geq 2\left(t_{0.025}+t_{0.10}\right)^{2}\left(\frac{2.062}{2}\right)^{2} \\
& \geq 24
\end{aligned}
$$

From Piface $>$ Two-sample \boldsymbol{t} test (pooled or Satterthwaite):

From MINITAB $>$ Stat $>$ Power and Sample Size $>$ 2-Sample t :

2-Sample t Test
Testing mean $1=$ mean 2 (versus not $=$ Calculating power for mean $1=$ mean $2+$ differenc Alpha $=0.05$ Assumed standard deviation $=2.062$

Difference Sample $\begin{gathered}\text { Size } \\ \text { Power } \\ \text { Actual Power }\end{gathered}$

The sample size is for each group.

From PASS $>$ Means $>$ Two $>$ Independent $>$ Inequality (Normal) [Differences]:

For the paired-sample t test, the characteristic standard deviation for the Δx_{i} can be estimated from Equation 2.28:

$$
\widehat{\sigma}_{\Delta x}=\sqrt{2} \widehat{\sigma}_{\epsilon}=\sqrt{2} \times 0.5=0.707
$$

Then, from Equation 2.21, the required sample size is approximately

$$
\begin{aligned}
n & \geq\left(t_{0.025}+t_{0.10}\right)^{2}\left(\frac{\widehat{\sigma}_{\Delta x}}{\Delta \mu}\right)^{2} \\
& \geq\left(t_{0.025}+t_{0.10}\right)^{2}\left(\frac{0.707}{2}\right)^{2} \\
& \geq 4
\end{aligned}
$$

and further iterations confirm that $n=4$. When the independent-samples design requires two samples of size $n=24$ units each, for a total of 48 measurements, the paired-sample design requires only $n=4$ units for a total of 8 measurements!

From Piface $>$ One-sample \boldsymbol{t} test (or paired \mathbf{t}):

From MINITAB (V16) $>$ Stat $>$ Power and Sample Size $>$ Paired \mathbf{t} :

$$
\begin{aligned}
& \text { TBE > } \\
& \text { SUBWer; } \\
& \text { SUBC } \\
& \text { SUBC }
\end{aligned} \text { TPaired; } \quad \text { Difference 2, }
$$

Power and Sample Size

Paired t Test
resting mean paired difference $=0$ (versus not $=0$)
Calculating power for mean paired difference = difference
Alpha $=0.05$ Assumed standard deviation of paired differences $=0.707$

$$
\begin{array}{crcc}
& \text { Sample } & \text { Target } \\
\text { Difference } & \text { Size } & \text { Power } & \text { Actual Power } \\
2 & 4 & 0.9 & 0.950211
\end{array}
$$

Power and Sample Size for Paired t			
Specify values for any two of the following:			
Sample sizes:			
Differences: 2			
Power values: 0.90			
Standard deviation of paired differences: 0.707			
	Options...	Graph...	
Help	OK	Cancel	

$\begin{array}{ll}\text { MTB }> & \text { Power; } \\ \text { SUBC> } & \text { TOne; } \\ \text { SUBC } & \text { Difference 2; } \\ \text { SUBC> } & \text { Power 0.90; } \\ \text { SBCC } & \text { Sigma 0.707; } \\ \text { SUBC } & \text { GPCurve. }\end{array}$

Power and Sample Size

1-Sample t Test
Testing mean $=$ null (versus not $=$ null)
Calculating power for mean $=$ null + difference
Alpha $=0.05$ Assumed standard deviation $=0.707$

Difference Size Power Actual Power $\begin{array}{rrrr}4 & 0.9 & 0.950211\end{array}$

Power and Sample Size for 1 -Sample t
Specify values for any two of the following:
Sample sizes:
Differences:
$\sqrt{2}$ \qquad
Power values: 0.90
Standard deviation: 0.707

From PASS $>$ Means $>$ One $>$ Inequality (Normal):

SPASS: Mean: 1 or 2 Correlated (Paired) Output

Page/Date/Time 1 4/26/20107:32:05 PM
Numeric Results for One-Sample T-Tes
Null Hypothesis: Mean0=Mean1 Aternative Hypothesis: Mean0 $>$ Mean1 Unknown standard deviation.

Power	N	Alpha	Beta	Mean0	Mean1	S	Effect Size
0.95021	4	0.05000	0.04979	0.0	2.0	0.7	2.829

References
Machin, D., Campbell, M., Fayers, P., and Pinol, A 1997. Sample Size Tables for Clinical Studies, 2 nd Edition. Elackwell Science. Malden, MA
Zar, Jerrold H. 1984. Biostatistical Analysis (Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey.
Report Definitions
Power is the probability of rejecting a false null hypothesis. It should be close to one
Nis the size of the sample drawn from the population. To conserve resources, it should be small.
Alpha is the probability of rejecting a true null hypothesis. It should be small.
Beta is the probability of accepting a false null hypothesis. It should be small
Mean0 is the value of the population mean under the null hypothesis. It is arbitrar
Mean1 is the value of the population mean under the atternative hypothesis. It is relative to Mean0. Sigma is the standard deviation of the population. It measures the variabilty in the population.

Summary Statements
A sample size of 4 achieves 95% power to detect a difference of -2.0 between the nul
hypothesis mean of 0.0 and the atternative hypothesis mean of 2.0 with an estimated standard
deviation of 0.7 and with a significance level (alpha) of 0.05000 using a two-sided one-sample t-test.

2.3 Two Independent Means

Example 2.7 Find the sample sizes required for the a) equal-allocation and b) optimal-allocation conditions if the 95% two-sided confidence interval for $\Delta \mu$ must have half-width $\delta=0.003$ when $\sigma_{1}=0.003$ and $\sigma_{2}=0.006$. Compare the total sample sizes required by the two methods.
Solution:
a) By Equation 2.32 the sample size required for equal allocation is

$$
n=(1.96)^{2} \frac{(0.003)^{2}+(0.006)^{2}}{(0.003)^{2}}=20 .
$$

From Piface $>$ Two-sample \boldsymbol{t} test (pooled or Satterthwaite):

EPASS: Means: 2: Inequality [Dififerences] 0utput E

Numeric Results for Two-Sample T-Test
Null Hypothesis: Mean1=Mean2. Atternative Hypothesis: Mean1 \gg Mean2
The standard deviations were assumed to be known and unequal.

Power	N1	N2	Ratio	Alpha	Beta	Mean1	Mean2	S1	S2
0.51601	20	20	1.000	0.05000	0.48399	0.0	0.0	0.0	0.0

References
Machin, D. Campbell. M. Fayers, P. and Pinol, A. 1997 . Sample Size Tables for Clinical Studies, 2nd Edtion. Elackwell Science. Malden. MA
Zar, Jerrold H. 1984. Biostatistical Analysis (Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey.
Report Definitions
Power is the probability of rejecting a false null hypothesis. Power should be close to one.
N1 and N2 are the number of tems sampled from each population. To conserve resources, they should be small. Alpha is the probability of rejecting a true null hypothesis. It should be small.
Beta is the probabily of accepting a alse nul hypothesis. It should be small.
Mean1 1 is the mean of populations 1 and 2 under the null hypothesis of equalty
Mean2 is the mean of population 2 under the alternative hypothesis. The mean of population 1 is unchanged. $S 1$ and $S 2$ are the population standard deviations. They represent the variability in the populations.

Summary Statements
Group sample sizes of 20 and 20 achieve 52% power to detect a difference of 0.0 between the
null hypothesis that both group means are 0.0 and the alternative hypothesis that the mean of group 2 is 0.0 with known group standard deviations of 0.0 and 0.0 and with a significance level (alpha) of 0.05000 using a two-sided two-sample -test
b) By Equations 2.33a and b, the sample sizes required for optimal allocation are

$$
\begin{aligned}
n_{1} & =(1.96)^{2} \frac{(0.003)(0.003+0.006)}{(0.003)^{2}}=12 \\
n_{2} & =11.5\left(\frac{0.006}{0.003}\right)=24
\end{aligned}
$$

For the equal-allocation method, the total sample size is $2 n=40$, and for the optimal-allocation method, the total sample size is $n_{1}+n_{2}=36-$ a 10% savings in sample size.

Example 2.8 Determine the sample size required to obtain a confidence interval half-width $\delta=50$ when $\widehat{\sigma}_{1}=\widehat{\sigma}_{2}=80$. Solution: With $t_{0.025} \simeq z_{0.025}$ for the first iteration, the sample size is

$$
\begin{equation*}
n=2\left(\frac{1.96 \times 80}{50}\right)^{2}=20 \tag{2.1}
\end{equation*}
$$

Another iteration with $t_{0.025,38}=2.024$ gives

$$
\begin{equation*}
n=2\left(\frac{2.024 \times 80}{50}\right)^{2}=21 \tag{2.2}
\end{equation*}
$$

A third iteration (not shown) confirms that $n=21$ is the necessary sample size.

From Piface> Two-sample \boldsymbol{t} test (pooled or Satterthwaite):

From MINITAB $>$ Stat $>$ Power and Sample Size $>$ 2-Sample t :

MTB $>$	Power;
SUBC>	TTwo;
SUBC>	Difference $50 ;$
SUBC>	Power 0.5;
SUBC>	Sigma 80;
SUBC>	GPCurve.

Power and Sample Size
2-Sample t Test
Testing mean $1=$ mean 2 (versus not $=$
Calculating power for mean $1=$ mean $2+$ difference Calculating power for mean $1=$ mean $2+$ differ

$$
\begin{gathered}
\text { Sample Target } \\
\text { Size Power }
\end{gathered}
$$

Difference Size Power Actual Power

3. PASS: Means: 2: Inequality [Differences] 0utput

Two-Sample T-Test Power Analysi

Numeric Results for Two-Sample T-Test

Null Hypothesis: Mean1=Mean2. Aternative Hypothesis: Mean1 $>$ Mean2
The standard deviations were assumed to be unknown and equal.

Power	N1	N2	Allocation	Ratio	Alpha	Beta	Mean1	Mean2	S1
0.50664	21	21	1.000	0.05000	0.49336	0.0	50.0	80.0	80.0

References
Machin. D. Campbell. M. Fayers, P. and Pinol, A 1997 Sample Size Tables for Clinical Studies, 2nd Edition. Blackwell Science. Malden, MA
Zar, Jerrold H. 1984. Biostatistical Analysis (Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey

Report Definitions

Power is the probability of rejecting a false null hypothesis. Power should be close to one.
N 1 and N 2 are the number of tems sampled from each population. To conserve resources, they should be small.
Apha is the probability of rejecting a true null hypothesis. It should be small.
Beta is the probability of accepting a false null hypothesis. It should be small.
Meant is the mean of populations 1 and 2 under he tul hypothesis of equality
of population 1 is unchanged.
$S 1$ and $S 2$ are the population standard deviations. They represent the variability in the populations
Summary Statements
Group sample sizes of 21 and 21 achieve 51% power to detect a difference of -50.0 between the
null hypothesis that both group means are 0.0 and the alternative hypothesis that the mean of
group 2 is 50.0 with estimated group standard deviations of 80.0 and 80.0 and with a
significance level (alpha) of 0.05000 using a two-sided two-sample t-test.

Example 2.9 What optimal sample sizes are required to determine a confidence interval for the difference between two population means with confidence interval half-width $\delta=15$ when $\widehat{\sigma}_{1}=24$ and $\widehat{\sigma}_{2}=8$?

Solution: From Equations 2.33a and b, initial guesses for the sample sizes are

$$
n_{1} \simeq(1.96)^{2} \frac{24(24+8)}{15^{2}} \simeq 14
$$

and

$$
n_{2} \simeq 14\left(\frac{8}{24}\right) \simeq 5 .
$$

To obtain optimal sample size allocation n_{1} and n_{2} must be in the ratio

$$
\left(n_{1}: n_{2}\right)=\left(\widehat{\sigma}_{1}: \widehat{\sigma}_{2}\right)=(24: 8)=(3: 1),
$$

so reasonable choices for the sample sizes are $n_{1}=15$ and $n_{2}=5$. By Equation 2.41, the t distribution degrees of freedom will be

$$
d f_{\epsilon}=\frac{\left(\frac{24^{2}}{15}+\frac{8^{2}}{5}\right)^{2}}{\frac{24^{4}}{15^{2}(15+1)}+\frac{8^{4}}{5^{2}(5+1)}}-2=20
$$

With $t_{0.025,20}=2.086$ the next iteration on the sample sizes gives

$$
n_{1} \simeq(2.086)^{2} \frac{24(24+8)}{15^{2}} \simeq 15
$$

and

$$
n_{2} \simeq 15\left(\frac{8}{24}\right)=5
$$

which must be the correct values.

From Piface $>$ Two-sample \boldsymbol{t} test (pooled or Satterthwaite):

Example 2.10 Calculate the sample size for the two-sample t test to reject H_{0} with 90% power when $\left|\mu_{1}-\mu_{2}\right|=5$. Assume that the sample sizes will be equal and that the two populations have equal standard deviations estimated to be $\widehat{\sigma}_{\epsilon}=3$. Compare the approximate and exact powers.
Solution: With $\Delta \mu=5$ and $\widehat{\sigma}_{\epsilon}=3$ in Equation 2.62, the sample size predicted in the first iteration with $t \simeq z$ is

$$
n=2\left(\frac{(1.96+1.282) 3}{5}\right)^{2}=8
$$

With $n=9$ for both samples, $d f_{\epsilon}=18-2=16$ and the approximate power is given by Equations 2.58 and 2.60:

$$
\begin{aligned}
\pi & =P\left(-\infty<t<\sqrt{\frac{n}{2}} \frac{\Delta \mu}{\widehat{\sigma}_{\epsilon}}-t_{0.025,16}\right) \\
& =P\left(-\infty<t<\sqrt{\frac{9}{2}} \frac{5}{3}-2.12\right) \\
& =P(-\infty<t<1.416) \\
& =0.912
\end{aligned}
$$

The t distribution noncentrality parameter is given by Equation 2.64:

$$
\phi=\sqrt{\frac{9}{2}} \frac{5}{3}=3.536
$$

The exact power is determined by Equation 2.63 with $\alpha=0.05$:

$$
t_{0.025}=2.120=t_{\beta, 3.536}
$$

which is satisfied by $\beta=0.087$, so the exact power is $\pi=0.913$. The exact power is in excellent agreement with the approximate power despite the somewhat small sample size.
From Piface $>$ Two-sample \boldsymbol{t} test (pooled or Satterthwaite):

MTB $>$	Power;
SUBC>	Trwo;
SUBC>	Difference 5;
SUBC>	Power 0.90;
SUBC>	Sigma 3;
SUBC>	GPCurve.

Power and Sample Size

2-Sample t Test
Testing mean $1=$ mean 2 (versus not $=$
Calculating power for mean $1=$ mean $2+$ difference Alpha $=0.05$ Assumed standard deviation $=3$

	Sample	Target	
Difference	Size	Power	Actual Power
5	9	0.9	0.912548

The sample size is for each group.

From PASS $>$ Means $>$ Two $>$ Independent $>$ Inequality (Normal) [Differences]:

Z3PASS: Means: 2: Inequality [Differences] Output

Two-Sample T-Test Power Analysis

Numeric Results for Two-Sample T-Test

Null Hypothesis: Mean1=Mean2. Alternative Hypothesis: Mean1>Mean2
The standard deviations were assumed to be unknown and equal.

			Allocation						
Power	N1	N2	Ratio	Alpha	Beta	Mean1	Mean2	S1	S2
0.91255	9	9	1.000	0.05000	0.08745	0.0	5.0	3.0	3.0

References
Machin, D., Campbell, M., Fayers, P., and Pinol, A. 1997. Sample Size Tables for Clinical Studies, 2nd Edition. Blackwell Science. Malden, MA
Zar, Jerrold H. 1984. Biostatatitical Analysis (Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey
Report Definitions
Power is the probability of rejecting a false null hypothesis. Power should be close to one
N 1 and N 2 are the number of tems sampled from each population. To conserve resources, they should be small
Alpha is the probability of rejecting a true null hypothesis. It should be small.
Beta is the probability of accepting a false null hypothesis. It should be small.
Mean2 is the mean of population 2 under the alternative hypothesis. The mean of population 1 is unchanged. $S 1$ and $S 2$ are the population standard deviations. They represent the variability in the populations.

Summary Statements
Summary Statements
Group sample sizes of 9 and 9 achieve 91% power to detect a difference of -5.0 between the null
Group sample sizes of9 and 9 achieve 91% power to detect a difference of 5.0 between the nul 2 is 5.0 with estimated group standard deviations of 3.0 and 3.0 and with a significance level (alpha) of 0.05000 using a two-sided two-sample t-test.

Example 2.11 Determine the size of the second sample under the conditions described in Example 2.10 if the first sample size must be $n=6$.

Solution: From Example 2.10, the optimal equal sample sizes are $n^{\prime}=9$. If $n_{1}=6$ is fixed, then, from Equation 2.68 , the approximate value of the second sample size must be

$$
n_{2}=\frac{6 \times 9}{(2 \times 6)-9}=18
$$

In the equal- n solution, we had $n_{1}+n_{2}=18$ and $d f_{\epsilon}=16$ with 91% power; therefore, we know that $n_{1}+n_{2}=6+18=24$ and $d f_{\epsilon}=22$ will give a slightly larger power, so the next guess for n_{2} can be a value less than $n_{2}=18$. By appropriate guesses and iterations, the required value of n_{2} is determined to be $n_{2}=15$ with approximate power

$$
\begin{aligned}
\pi & =P\left(-\infty<t<\frac{1}{\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}\left(\frac{\Delta \mu}{\widehat{\sigma}}\right)-t_{0.025,19}\right) \\
& =P\left(-\infty<t<\frac{1}{\sqrt{\frac{1}{6}+\frac{1}{15}}}\left(\frac{5}{3}\right)-2.093\right) \\
& =P(-\infty<t<1.357) \\
& =0.905
\end{aligned}
$$

ESPASS: Means: 2: Inequality [Differences] Output -

Page/Date/Time $\quad 1$ Two-Sample T-Test Power Analysis

Numeric Results for Two-Sample T-Test

Null Hypothesis: Mean1=Mean2. Aternative Hypothesis: Mean1 $>$ Mean2
The standard deviations were assumed to be unknown and equal.

Allocation									
Power	N1	N2	Ratio	Alpha	Beta	Mean1	Mean2	S1	S2
0.90514	6	15	2.500	0.05000	0.09486	0.0	5.0	3.0	3.0

References
Machin, D., Campbell, M. Fayers, P., and Pinol, A 1997. Sample Size Tables for Clinical Studies, 2nd
Edition. Blackwell Science. Malden, MA
Zar, Jerrold H. 1984. Biostatistical Analysis (Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey.

Report Definitions

Report definitions
Power is the probability of rejecting a false null hypothesis. Power should be close to one.
N 1 and N 2 are the number of tems sampled from each population. To conserve resources, they should be small
Alpha is the probability of rejecting a true null hypothesis. It should be small.
Beta is the probability of accepting a false null hypothesis. It should be small.
Mean1 is the mean of populations 1 and 2 under the null hypothesis of equality
Mean2 is the mean of population 2 under the alternative hypothesis. The mean of population 1 is unchanged.
S 1 and S 2 are the population standard deviations. They represent the variabilty in the populations.

Summary Statements

Group sample sizes of 6 and 15 achieve 91% power to detect a difference of -5.0 between the
null hypothesis that both group means are 0.0 and the atternative hypothesis that the mean of group 2 is 5.0 with estimated group standard deviations of 3.0 and 3.0 and with a significance level (alpha) of 0.05000 using a two-sided two-sample t-test

2.4 Equivalence Tests

Example 2.12 Determine the sample size required for a one-sample equivalence test of the hypotheses $H_{0}: \mu<490$ or $\mu>510$ versus $H_{A}: 490<\mu<510$ if the experiment must have 90% power to reject H_{0} when $\mu=505$ and $\sigma=4$.
Solution: With $\mu_{0}=500, \mu=505$, and $\delta=10$, the sample size given by Equation 2.74 is

$$
\begin{aligned}
n & =\left(\frac{\left(z_{0.05}+z_{0.10}\right) \sigma}{\delta-\Delta \mu}\right)^{2} \\
& =\left(\frac{(1.645+1.282) 4}{10-5}\right)^{2} \\
& =6 .
\end{aligned}
$$

Example 2.13 Determine the power of the two independent-sample equivalence test where μ_{1} and μ_{2} are considered to be practically equivalent if $|\Delta \mu|<2$ when $\Delta \mu=0.2$, $\sigma_{1}=\sigma_{2}=2$, and $n_{1}=n_{2}=20$.
Solution: With $\delta=2$ as the limit of practical equivalence, the hypotheses to be tested are

$$
\begin{aligned}
& H_{01}: \Delta \mu \leq-2 \text { versus } H_{A 1}: \Delta \mu>-2 \\
& H_{02}: \Delta \mu \geq 2 \text { versus } H_{A 2}: \Delta \mu<2
\end{aligned}
$$

From Equation 2.79 with $\Delta \mu=0.2$, the power of the equivalence test is

$$
\begin{aligned}
\pi & =\Phi\left(\frac{-2-0.2}{\sqrt{\frac{2}{20}} 2}+1.645<z<\frac{2-0.2}{\sqrt{\frac{2}{20}} 2}-1.645\right) \\
& =\Phi(-1.83<z<1.20) \\
& =0.85 .
\end{aligned}
$$

PASS and Piface do the two-sample t equivalence test which gives power comparable to that of the z test for this example with relatively large error degrees of freedom ($d f_{\epsilon}=20+20-2=38$).

Piface> Two-sample t test:

PASS $>$ Means $>$ Two $>$ Independent $>$ Equivalence [Difference]:

BPASS: Means: 2: Equivalence [Differences] Output

Power Analysis of Two-Sample T-Test for Testing Equivalence Using Differences
Numeric Results for Testing Equivalence Using a Parallel-Group Design

Example 2.14 What sample size is required in Example 2.13 to obtain 90% power?
Solution: From Equation 2.80 with $\beta=0.10$, the sample size is

$$
\begin{aligned}
n & =2\left(\frac{(1.645+1.282) 2}{2-0.2}\right)^{2} \\
& =22
\end{aligned}
$$

PASS and Piface do the two-sample t equivalence test which gives comparable sample size to that of the z test for this example with relatively large error degrees of freedom.

From Piface $>$ Two-sample \boldsymbol{t} test:

BPASS: Means: 2: Equivalence [Differences] 0utput

Power Analysis of Two-Sample T-Test for Testing Equivalence Using Differences
Numeric Results for Testing Equivalence Using a Parallel-Group Design

	Reference Treatment							
	Group	Group						
	Sample	Sample	Lower	Upper				
	Size	Size	Equiv.	Equiv.	True	Standard		
Power	(N1)	(N2)	Limit	Limit	Difference	Deviation	Alpha	Beta
0.9057	24	24	-2.00	2.00	0.20	2.00	0.0500	0.0943

References
Blackwelder, W.C. 1998. 'Equiwalence Trials.' In Encyclopedia of Biostatistics, John Wiley and Sons. New York
Volume 2, 1367-1372.
Chow, S.C.; Shao, J.; Wang, H. 2003. Sample Size Calculations in Clinical Research. Marcel Dekker. New York.
Julious, Steven A 2004. Tutorial in Biostatistics. Sample sizes for clinical trials with Normal data.
Statistics in Medicine, 23:1921-1986.
Philips, Kem F. 1990. 'Power of the Two One-Sided Tests Procedure in Bioequiwalence', Journal of
Pharmacokinetics and Biopharmaceutics, Volume 18, No. 2, pages 137-144.
chursing Eais of the Two One-Sided Tests Procedure and the Power Approach for , 15 . Nume Bioavailability', Journal of Pharmacokinetics and Biopharmaceutics,
Volume 15, Number 6, pages 657-680.

2.5 Contrasts

Example 2.15 How many observations per treatment group are required to estimate the contrast

$$
\mu_{c}=\left(\frac{\mu_{1}+\mu_{2}+\mu_{3}}{3}\right)-\mu_{4}
$$

to within $\delta=80$ measurement units with 95% confidence if the one-way ANOVA standard error is $s_{\epsilon}=200$?
Solution: The goal is to obtain a 95% confidence interval for the contrast of the form given in Equation 2.85 with a confidence interval half-width of $\delta=80$. The contrast coefficients are $c_{i}=\left\{\frac{1}{3}, \frac{1}{3}, \frac{1}{3},-1\right\}$. If there are sufficient error degrees of freedom so that $t \simeq z$, then, from Equation 2.87 , the approximate sample size is

$$
\begin{aligned}
n & \simeq\left(\frac{1.96 \times 200}{80}\right)^{2}\left(\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2}+(-1)^{2}\right) \\
& \simeq 33
\end{aligned}
$$

With $d f_{\epsilon}=k(n-1)=4(32)=128$ error degrees of freedom the $t \simeq z$ approximation is satisfied, so the sample size is accurate.
Piface doesn't calculate the sample size, but it can be used to confirm the answer by showing that the sample size $n=33$ produces about 50% power. From Piface $>$ Balanced ANOVA $>$ One-way ANOVA $>$ Differences/Contrasts:

From PASS $>$ Means $>$ Many Means $>$ ANOVA: One-Way:

2.6 Multiple Comparisons Tests

Example 2.16 Determine the sample size required per treatment to detect a difference $\Delta \mu=200$ between two treatment means using Bonferroni-corrected two-sample t tests for all possible pairs of five treatments with 90% power. Assume that the five populations are normal and homoscedastic with $\widehat{\sigma}_{\epsilon}=100$.

Solution: With $k=5$ treatments there will be $K=\binom{5}{2}=10$ two-sample t tests to perform. To restrict the family error rate to $\alpha_{\text {family }}=0.05$, the Bonferroni-corrected error rate for individual tests is

$$
\alpha=\frac{0.05}{10}=0.005
$$

By Equation 2.62 with $t \simeq z$, the sample size is

$$
\begin{aligned}
n & =2\left(\frac{\left(z_{0.0025}+z_{0.10}\right) \widehat{\sigma}_{\epsilon}}{\delta}\right)^{2} \\
& =2\left(\frac{(2.81+1.282) 100}{200}\right)^{2}=9
\end{aligned}
$$

There will be $d f_{\epsilon}=d f_{\text {total }}-d f_{\text {model }}=(5 \times 9-1)-(4)=40$ degrees of freedom to estimate $\widehat{\sigma}_{\epsilon}$ from the pooled treatment standard deviations, so the approximation $t \simeq z$ is justified.

From Piface $>$ Balanced ANOVA $>$ One-way ANOVA $>$ Differences/Contrasts:

PASS uses a more conservative method for analyzing multiple comparisons which gives a larger sample size.

Example 2.17 Determine the approximate power for the sample size calculated in Example 2.16.

Solution: The approximate power for the test is given by Equations 2.58 and 2.60 with $\alpha=0.005$:

$$
\begin{aligned}
\pi & =P\left(-\infty<t<t_{\beta}\right) \\
& =P\left(-\infty<t<\left(\sqrt{\frac{n}{2}} \frac{\Delta \mu}{\widehat{\sigma}}-t_{\alpha / 2}\right)\right) \\
& =P\left(-\infty<t<\left(\sqrt{\frac{9}{2}} \frac{200}{100}-t_{0.0025,40}\right)\right) \\
& =P(-\infty<t<1.273) \\
& =0.895 .
\end{aligned}
$$

Example 2.18 Bonferroni's method becomes very conservative when the number of tests gets very large. A less conservative method for determining α for individual tests is given by Sidak's method:

$$
\begin{equation*}
\alpha=1-\left(1-\alpha_{\text {family }}\right)^{1 / K} \tag{2.93}
\end{equation*}
$$

Compare the sample sizes determined using Bonferroni's and Sidak's methods for multiple comparisons between all possible pairs of fifteen treatments when the tests must detect a difference of $\Delta \mu=8$ with 90% power when $\widehat{\sigma}_{\epsilon}=6$.
Solution: The number of multiple comparisons tests required is

$$
\binom{15}{2}=\frac{15 \times 14}{2}=105 .
$$

By Bonferroni's method with $\alpha_{\text {family }}=0.05$, the α for individual tests is

$$
\alpha=\frac{0.05}{105}=0.000476
$$

so with $t \simeq z$ in Equation 2.62 the sample size is

$$
\begin{aligned}
n & =2\left(\frac{\left(z_{0.000476 / 2}+z_{0.10}\right) \widehat{\sigma}_{\epsilon}}{\delta}\right)^{2} \\
& =2\left(\frac{(3.494+1.282) 6}{8}\right)^{2}=26
\end{aligned}
$$

By Sidak's method (Equation 2.63), the α for individual tests is

$$
\alpha=1-(1-0.05)^{1 / 105}=0.000488
$$

so the sample size is

$$
\begin{aligned}
n & =2\left(\frac{\left(z_{0.000488 / 2}+z_{0.10}\right) \widehat{\sigma}_{\epsilon}}{\delta}\right)^{2} \\
& =2\left(\frac{(3.487+1.282) 6}{8}\right)^{2}=26
\end{aligned}
$$

Even with over 100 multiple comparisons, the sample sizes by the two calculation methods are still equal.

Example 2.19 An experiment will be performed to compare four treatment groups to a control group. Determine the sample size required to detect a difference $\delta=200$ between the treatments and the control using Bonferroni-corrected two-sample t tests with 90% power. Use a balanced design with the same number of observations in each of the five groups and assume that the five populations are normal and homoscedastic with $\widehat{\sigma}_{\epsilon}=100$.
Solution: To restrict the family error rate to $\alpha_{\text {family }}=0.05$ with $K=4$ tests, the Bonferroni-corrected error rate for individual tests is

$$
\alpha=\frac{0.05}{4}=0.0125 .
$$

By Equation 2.62 with $t \simeq z$, the sample size is

$$
\begin{aligned}
n & =2\left(\frac{\left(z_{0.0125 / 2}+z_{0.10}\right) \widehat{\sigma}_{\epsilon}}{\delta}\right)^{2} \\
& =2\left(\frac{(2.50+1.282) 100}{200}\right)^{2}=8
\end{aligned}
$$

Despite the small treatment-group sample size, the approximation $t \simeq z$ is justified because there will be $d f_{\epsilon}=d f_{\text {total }}-d f_{\text {model }}=(5 \times 8-1)-(4)=35$ degrees of freedom to estimate $\widehat{\sigma}_{\epsilon}$ from the five pooled treatment standard deviations.

Piface offers Dunnett's test, but it uses the Bonferroni correction to approximate Dunnett's method so it gives the same result. From Piface $>$ Balanced ANOVA $>$ One-way ANOVA $>$ Differences/Contrasts:

Example 2.20 Repeat Example 2.19 using the optimal allocation of units to treatments and controls. Solution: From Equation 2.98 with $t \simeq z$ and $K=4$,

$$
n_{i}=\left(1+\frac{1}{\sqrt{4}}\right)\left(\frac{(2.50+1.282) 100}{200}\right)^{2}=6
$$

$$
n_{0}=n_{i} \sqrt{K}=6 \sqrt{4}=12 .
$$

The approximation $t \simeq z$ is still justified because the error degrees of freedom will be $d f_{\epsilon}=(4 \times 6+12)-4=32$. The original experiment required $5 \times 8=40$ units, but the optimal experiment requires only $4 \times 6+12=36$ units to obtain the same power.

Chapter 3

Standard Deviations

3.1 One Standard Deviation

Example 3.1 Determine the sample size required to construct the 95% confidence interval for σ based on a random sample of size n drawn from a normal population if the confidence interval half-width must be about 10% of the sample standard deviation
Solution: From Table 3.1 the sample size must be about $n=200$. The lower and upper confidence limits will fall at about -9% and $+11 \%$ relative to the sample standard deviation, so the asymmetry for this relatively large sample size is not too severe.

From PASS $>$ Variance $>$ Variance: $\mathbf{1}$ Group (Note that when the Scale text box is set to Standard Deviation, other text boxes on the form with labels that refer to variances are interpreted as standard deviations.):

Example 3.2 Use the large sample approximation method to determine the sample size for the situation in Example 3.1.
Solution: The required confidence interval has the form

$$
P(s(1-0.10)<\sigma<s(1+0.10))=0.95 .
$$

With $\alpha=0.05$ and $\delta=0.10$ in Equation 3.8, the sample size required to obtain a confidence interval of the desired half-width is

$$
n=\frac{1}{2}\left(\frac{1.96}{0.10}\right)^{2}=193
$$

which is in excellent agreement with the original solution.

Example 3.3 For the test of $H_{0}: \sigma^{2}=10$ versus $H_{A}: \sigma^{2}>10$, find the power associated with $\sigma^{2}=20$ when the sample size is $n=20$ using $\alpha=0.05$. Solution: From Equation 3.14 the power is given by

$$
\begin{aligned}
\pi & =P\left(\chi_{0.95}^{2}\left(\frac{10}{20}\right)<\chi^{2}<\infty\right) \\
& =P\left(15.1<\chi^{2}<\infty\right) \\
& =0.72
\end{aligned}
$$

From MINITAB (V16) $>$ Stat $>$ Power and Sample Size >1 Variance:

Power and Sample Size
Test for One Variance
Testing variance $=$ null (versus $>$ null) Alpha $=0.05$ (variance $/$ null $)=$ rati
Sample

$$
\begin{array}{rrr}
& \text { Sample } & \\
\text { Ratio } & \text { Size } & \text { Power } \\
2 & 20 & 0.718025
\end{array}
$$

Power and Sample Size for 1 Variance			
Enter ratios of variances			
Specify values for any two of the following:			
Sample sizes: \square			
Ratios: \quad2 (variance $/$ hypothesized variance)			
Power values:			
	Options...	Graph...	
Help	@ ${ }^{\prime}$	Cancel	

From PASS $>$ Variance $>$ Variance: 1 Group:

Example 3.4 Find the sample size required to reject $H_{0}: \sigma^{2}=40$ with 90% power when $\sigma^{2}=100$ using $H_{A}: \sigma^{2}>40$ with $\alpha=0.05$. Solution: From Equation 3.15 with $\sigma_{0}^{2}=40$ and $\sigma_{1}^{2}=100$, the necessary sample size is the smallest value of n that meets the requirement

$$
\begin{aligned}
\frac{\chi_{0.95}^{2}}{\chi_{0.10}^{2}} & \leq \frac{100}{40} \\
& \leq 2.5
\end{aligned}
$$

By inspecting Table 3.2 and a table of χ^{2} values, the required sample size is $n=22$ for which

$$
\left(\frac{\chi_{0.95}^{2}}{\chi_{0.10}^{2}}=\frac{32.67}{13.24}=2.469\right) \leq 2.5 .
$$

From MINITAB (V16) $>$ Stat $>$ Power and Sample Size >1 Variance:

$$
\begin{array}{ll}
\text { MTB > } & \text { Power; } \\
\text { SUBC } & \text { OneVariance; } \\
\text { SUBC> } & \text { Ratio 2.5; } \\
\text { SUBC> } & \text { Power 0.90; } \\
\text { SUBC> } & \text { Alternative 1; } \\
\text { SUBC> } & \text { A1pha 0.05; } \\
\text { SUBC> } & \text { GPCurve. }
\end{array}
$$

Power and Sample Size

Test for one Variance
Testing variance $=$ null (versus $>$ null)
Calculating power for (variance / null) = ratio Alpha $=0.05$

$$
\begin{array}{ccc}
& \text { Sample } & \text { Target } \\
\text { Ratio } \\
\text { Size } & \text { Power Actual Power }
\end{array}
$$

Power and Sample Size for 1 Variance			x
Enter ratios of variances			
Specify values for any two of the following:			
Sample sizes:			
Ratios: 2.5			
(variance / hypothesized variance)			
Power values: 0.90			
	Oetions...	Graph...	
Help	$\underline{\text { OK }}$	Cancel	

From PASS $>$ Variance $>$ Variance: $\mathbf{1}$ Group:

Example 3.5 Find the sample size required to reject $H_{0}: \sigma=0.003$ in favor of $H_{A}: \sigma<0.003$ with 90% power when in fact $\sigma=0.001$.
Solution: With $\alpha=0.05$ and $\beta=1-\pi=0.10$, the sample size condition given by Equation 3.17 is

$$
\begin{aligned}
\frac{\chi_{0.90}^{2}}{\chi_{0.05}^{2}} & \geq\left(\frac{0.003}{0.001}\right)^{2} \\
& \geq 9.0
\end{aligned}
$$

which, from Table 3.2, is satisfied by $n=5$.
From MINITAB (V16) $>$ Stat $>$ Power and Sample Size >1 Variance:
From PASS $>$ Variance $>$ Variance: $\mathbf{1}$ Group:

```
MTB > Power;
SUBC> OneVariance;
SUBC> Ratio 0.3333;
SUBC> Power 0.90;
SUBC> Alternative -1;
SUBC> Alpha 0.05;
SUBC> GPCurve.
```


Power and Sample Size

Test for one Standard Deviation
Testing StDev = null (versus < null)
Calculating power for (StDev / null) $=$ ratio
Alpha $=0.05$
Sample Targe
Ratio Sample Target $\begin{gathered}\text { Size } \\ \text { Power alt Power }\end{gathered}$
$\begin{array}{cccc} & \text { Size } & \text { Power } & \text { Actual Power } \\ 0.3333 & 6 & 0.9 & 0.933121\end{array}$

Power and Sample Size for 1 Variance		
Enter ratios of standard devistions		
Specify values for any two of the fol		
Sample sizes:		
Ratios: 0.3333		
(StDev / hypothesized StDev)		
Power values: 0.90		
	Options...	Graph...
Help	ok	Cancel

Example 3.6 Compare the power determined by the large-sample approximation method to the exact power determined in Example 3.3.
Solution: The null hypothesis may be written as $H_{0}: \ln (\sigma)=\ln (\sqrt{10})$ and we wish to find the power to reject H_{0} when $\ln (\sigma)=\ln (\sqrt{20})$ with $n=20$. From Equation 3.20 we have

$$
z_{\beta}=\sqrt{2 \times 20} \ln \left(\sqrt{\frac{20}{10}}\right)-z_{0.05}=0.547
$$

and by Equation 3.19 the approximate power is

$$
\begin{aligned}
\pi & =\Phi(-0.547<z<\infty) \\
& =0.71 .
\end{aligned}
$$

This result is still in good agreement with the exact power of 72% despite the rather small sample size.

Example 3.7 Compare the sample size determined by the large-sample approximation method to the exact sample size determined in Example 3.4
Solution: The problem is to find the sample size to reject $H_{0}: \ln (\sigma)=\ln (\sqrt{40})$ with 90% power when $\ln (\sigma)=\ln (\sqrt{100})$. With $\alpha=0.05$ and $\beta=0.10$ in Equation ?? the approximate sample size required is

$$
n=\frac{1}{2}\left(\frac{1.645+1.282}{\ln \left(\sqrt{\frac{100}{40}}\right)}\right)^{2}=21
$$

which is in good agreement with the exact sample size of $n=22$.

3.2 Two Standard Deviations

Example 3.8 What equal- n sample size is required by an experiment to deliver a confidence interval for the ratio of two independent population standard deviations if the true ratio should fall within 20% of the experimental ratio with 95% confidence?
Solution: The goal of the experiment is to determine an interval of the form

$$
P\left(\frac{s_{1}}{s_{2}}(1-0.2)<\frac{\sigma_{1}}{\sigma_{2}}<\frac{s_{1}}{s_{2}}(1+0.2)\right)=1-\alpha .
$$

Then, from Equation ?? with $\delta=0.2$, the required sample sizes are

$$
n_{1}=n_{2}=\left(\frac{z_{0.025}}{\delta}\right)^{2}=\left(\frac{1.96}{0.20}\right)^{2}=97
$$

Piface and PASS support the F test for two variances which can be tricked into confirming the sample size for the confidence interval. The confidence interval is asymmetric so the sample size is taken as the average of the sample sizes required for $\sigma_{2} / \sigma_{1}=1.2$ and $\sigma_{2} / \sigma_{1}=0.8$.

From Piface $>$ Two Variances (F Test):

From PASS $>$ Variance $>$ Variance: 2 Groups:

The sample sizes are $n=118$ and $n=80$, respectively, so the average sample size is $n=(118+80) / 2=99$ which is in excellent agreement with the normal approximation.

Example 3.9 Find the power to reject $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ in favor of $H_{A}: \sigma_{1}^{2}>\sigma_{2}^{2}$ if $n_{1}=n_{2}=26, \sigma_{1}^{2}=15$, and $\sigma_{2}^{2}=5$ using $\alpha=0.05$.

Solution: From Equation 3.34 the power is

$$
\begin{aligned}
\pi & =P\left(\left(\frac{\sigma_{2}}{\sigma_{1}}\right)^{2} F_{1-\alpha}<F<\infty\right) \\
& =P\left(\left(\frac{5}{15}\right) F_{0.95,25,25}<F<\infty\right) \\
& =P(0.652<F<\infty) \\
& =0.854 .
\end{aligned}
$$

From MINITAB (V16) $>$ Stat $>$ Power and Sample Size >2 Variances:

```
MTB > Power;
SUBC> TwoVariance;
SUBC> Sample 26;
SUBC> Ratio 3;
SUBC> Alternative 1;
SUBC> Alpha 0.05
SUBC> GPCurve
Power and Sample Size
Test for Two Variances
Testing (variance 1/variance 2) = 1 (versus >
Calculating power for (variance 1/variance 2) = ratio
Alpha = 0.05
Method: F Test
    Sample
Ratio Size Power
The sample size is for each group.
```


From PASS $>$ Variance $>$ Variance: $\mathbf{2}$ Groups:

缘 Test of equality of two variances				$\square \square$	
Options Help					
n1	\square^{4} Variance 1				限
Value $\checkmark 20$	OK	Value \vee	1		0
n2	* Variance 2				\square
Value $\checkmark 20$	ок	Value \checkmark	4		ок
\checkmark Equal ns	Alternative			Var1 < Var2	\checkmark
Alpha	Power				■
Value \checkmark. 05	ok	Value \vee	9044		ок

Solution: A factor of two difference in population standard deviation corresponds to a factor of four difference in variance, so we need to determine the sample size such that

$$
P\left(\frac{1}{4} F_{1-\alpha}<F<\infty\right)=0.90 .
$$

By iterating through several values of sample size, we find that when $n_{1}=n_{2}=20, F_{0.95,19,19}=2.168$ and $F_{0.096}=2.168 / 4=0.542$, which satisfies the problem statement. From MINITAB (V16) > Stat> Power and Sample Size >2 Variances:

```
MTB > Power;
JBC> TwoVariance;
SUBC> Ratio 2;
subC> Power 0.90,
SUBC> Alternative 1;
SUBC> Alpha 0.05;
FTBC> FTest;
Power and Sample Size
Test for Two Standard Deviations
Testing (StDev 1 / StDev 2) = 1 (versus >
Calculating power for (StDev 1/StDev 2) = ratio
alpha = 0.05
Method: F Test
Ratio }\begin{array}{rlrl}{\mathrm{ Sample }}&{\mathrm{ Target }}&{\mathrm{ Size }}&{\mathrm{ Power }}\\{\mathrm{ Actual Power }}
The sample size is for each group.
```

From Piface> Two Variances (F Test):
From PASS $>$ Variance $>$ Variance: 2 Groups:

Example 3.11 Repeat Example 3.9 using the large-sample approximation method.
Solution: From the information given in the example problem statement

$$
z_{\beta}=\frac{\ln \left(\sqrt{\frac{15}{5}}\right)}{\sqrt{\frac{1}{2}\left(\frac{1}{26}+\frac{1}{26}\right)}}-1.645=1.16
$$

so the power is

$$
\pi=\Phi(-1.16<z<\infty)=0.877
$$

which is in good agreement with the exact solution of $\pi=0.854$.
Example 3.12 Repeat Example 3.10 using the large-sample approximation method.
Solution: From the information given in the example problem statement

$$
n_{1}=n_{2}=\left(\frac{1.645+1.282}{\ln (2)}\right)^{2}=18
$$

which slightly underestimates the exact solution $n=20$.

3.3 Coefficient of Variation

Example 3.13 Determine the sample size required to estimate the population coefficient of variation to within $\pm 25 \%$ with 95% confidence if the coefficient of variation is expected to be about 30%.

Solution: With $\alpha=0.05, \delta=0.25$, and $\widehat{C V}=0.3$ in Equation 3.45, the sample size must be

$$
n=\left(\frac{1.96}{0.25}\right)^{2}\left((0.3)^{2}+\frac{1}{2}\right)=37
$$

Example 3.14 Determine the sample size required to reject $H_{0}: C V=0.5$ with 90% power when $C V=0.8$.
Solution: With $C V_{0}=0.5, C V_{1}=0.8, \alpha=0.05$, and $\beta=0.10$ in Equation 3.49, the required sample size is

$$
n=\left(\frac{1.96 \times 0.5 \sqrt{(0.5)^{2}+\frac{1}{2}}+1.282 \times 0.8 \sqrt{(0.8)^{2}+\frac{1}{2}}}{0.8-0.5}\right)^{2}=42 .
$$

Example 3.15 Determine the sample size required to reject $H_{0}: C V_{1}=C V_{2}$ in favor of $H_{A}: C V_{1} \neq C V_{2}$ with 90% power when $C V_{1}=0.3$ and $C V_{2}=0.5$. Solution: With $C V_{1}=0.3, C V_{2}=0.5, \alpha=0.05$, and $\beta=0.10$ in Equation 3.57, the required sample size is

$$
n=\left(\frac{1.96 \times 0.3 \sqrt{(0.3)^{2}+\frac{1}{2}}+1.282 \times 0.5 \sqrt{(0.5)^{2}+\frac{1}{2}}}{0.3-0.5}\right)^{2}=26 .
$$

Chapter 4

Proportions

4.1 One Proportion (Large Population)

Example 4.1 How large a random sample is required to demonstrate that the fraction defective of a process is less than 1% with 95% confidence? Solution: The required confidence interval has the form

$$
P(0<p<0.01)=0.95
$$

so $p_{U}=0.01$ and $\alpha=0.05$. If we assume that the sample size is small compared to the lot size, then Equation 4.4 can be used to approximate the sample size. However, because the number of defectives allowed in the sample was not specified, we must consider the possibility of different X values. For $X=0$, by the rule of three (Equation 4.5), the sample size is
$\begin{aligned} n & \simeq \frac{3}{0.01} \\ & \simeq 300 .\end{aligned}$
For $X=1$, by Equation 4.4

$$
\begin{aligned}
n & \simeq \frac{\chi_{0.95,4}^{2}}{2(0.01)} \\
& \simeq \frac{9.49}{2(0.01)} \\
& \simeq 475 .
\end{aligned}
$$

The values of n can be found for other choices of X in a similar manner.
Piface $>$ CI for one proportion, PASS $>$ Proportions $>$ One Group $>$ Confidence Interval - Proportion, and MINITAB $>$ Stat $>$ Power and Sample Size >1 Proportion use the normal approximation to the binomial distribution to calculate the sample size for a symmetric two-tailed confidence interval but the normal approximation isn't valid for this problem.

Example 4.2 What fraction of a large population must be inspected and found to be free of defectives to be 95% confident that the population contains no more than ten defectives?
Solution: The goal of the experiment is to demonstrate that the population defective count satisfies the confidence interval $P(0<S \leq 10)=0.95$. With $X=0$ and $\alpha=0.05$ in Equation 4.7, the fraction of the population that will need to be inspected is

$$
\begin{align*}
\frac{n}{N} & \simeq \frac{\chi_{0.95}^{2}}{2 S_{U}} \tag{4.1}\\
& \simeq \frac{3}{10} \tag{4.2}\\
& \simeq 0.30
\end{align*}
$$

This result violates the small-sample approximation requirement that $n \ll N$, but it provides a good starting point for iterations toward a more accurate result. When n becomes a substantial fraction of N, use the method shown in Section 10.4.1.2 instead. (This example is re-solved using that method in Example 10.21.)

Example 4.3 How many people should be polled to estimate voter preference for two candidates in a close election if the poll result must be within 2% of the truth with 95% confidence?
Solution: From Equation 4.15 with confidence interval half-width $\delta=0.02$ the required sample size is

$$
n=\frac{1}{(0.02)^{2}}=2500
$$

From Piface $>$ CI for one proportion:

From MINITAB (V16) $>$ Stat $>$ Power and Sample Size $>$ Sample Size for Estimation $>$ Proportion (Binomial):

From PASS $>$ Proportions $>$ One Group $>$ Confidence Interval - Proportion:

Example 4.4 Find the power to reject $H_{0}: p=0.1$ when in fact $p=0.2$ and the sample will be of size $n=200$.
Solution: Under both H_{0} and H_{A} the sample size is sufficiently large to justify the use of normal approximations to the binomial distributions. From Equation 4.21 with $\alpha=0.05$ we have

$$
z_{\beta}=\frac{\sqrt{200}|0.2-0.1|-z_{0.025} \sqrt{(0.1)(1-0.1)}}{\sqrt{(0.2)(1-0.2)}}=2.066
$$

so the power is

$$
\begin{aligned}
\pi & =1-\Phi(-\infty<z<2.066) \\
& =0.981
\end{aligned}
$$

\$. PASS: Proportion: Inequality [Differences] Output
Power Analysis of One Proportion
Numeric Results for testing H0: $\mathbf{P}=\mathbf{P} 0$ versus $\mathrm{H} 1: \mathrm{P}<>\mathrm{P} 0$
Test Statistic: Z Test using S(P)
Proportion Proportion

		相						
Power	N			(P1-P0)	Alpha	Alpha	Beta	If \mid \| \mid Then
0.9821	200	0.1000	0.2000	0.1000	0.0500	0.0439	0.0179	1.96

References

Chow, S.C.; Shao, J.; Wang, H. 2003. Sample Size Calculations in Clinical Research. Marcel Dekker. New York Fleiss, J. L., Levin, B., Paik, M.C. 2003. Statistical Methods for Rates and Proportions. Third Edition. John
Wiley \& Sons. New York
Lachin, John M. 2000. Biostatistical Methods. John Wiley \& Sons. New York. Edtition. Blackwell Science. Malden, Mass.
Zar, Jerrold H. 1984. Biostatistical Analysis (Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey]

Summary Statements

A sample size of 200 achieves 98% power to detect a difference (P1-F0) of 0.1000 using a wo-sided Z test that uses $S(P 0)$ to estimate the standard deviation. The target significance vel is 0.0500 . The actual significance level achieved by this test is 0.0439 . These results assume that the population proportion under the null hypothesis is 0.1000 .

From MINITAB $>$ Stat $>$ Power and Sample Size >1 Proportion:

MTB $>$	Power;
SUBC	POne;
SUBC	Sample 200;
SUBC	PAlternative 0.2;
SUBC>	PNull 0.1;
SUBC	GPCurve.

Power and Sample Size

Test for One Proportion
Testing proportion $=0.1$ (versus not $=0.1$) Alpha $=0.05$

Slternative Sample
$\begin{array}{rrr}\text { Proportion } & \text { Size } & \text { Power } \\ 0.2 & 200 & 0.980565\end{array}$

Example 4.5 What sample size is required to reject $H_{0}: p=0.05$ when in fact $p=0.10$ using a two-sided test with 90% power?
Solution: Assuming that the sample size will be sufficiently large to justify the normal approximation method, from Equation 4.22 the required sample size is

$$
\begin{aligned}
n & =\left(\frac{1.96 \sqrt{(0.05)(1-0.05)}+1.282 \sqrt{(0.10)(1-0.10)}}{0.10-0.05}\right)^{2} \\
& =264
\end{aligned}
$$

From Piface $>$ Test of one proportion:

ESPASS: Proportion: Inequality [Dififerences] Output

Power Analysis of One Proportion

Numeric Results for testing $\mathrm{H} 0: \mathrm{P}=\mathrm{P} 0$ versus $\mathrm{H} 1: \mathrm{P}<>\mathrm{P} 0$
Test Statistic: \mathbf{Z} Test using $\mathbf{S}(\mathbf{P} 0)$

Power	Proportion Proportion			Difference	Target Alpha	Actual Alpha	Reject H0 If	
		Given H0	Given H1					
	N	(P0)	(P1)				Beta	If $\|Z\|>$ Then
0.9031	245	0.0500	0.1000	0.0500	0.0500	0.0555	0.0969	1.9600

Chow, S.C.; Shao, J.; Wang, H. 2003. Sample Size Calculations in Clinical Research. Marcel Dekker. New York. Fleiss, J. L., Levin, B., Paik, M.C. 2003. Statistical Methods for Rates and Proportions. Third Edition. John Wiley \& Sons. New York
Lachin, John M. 2000. Biostatistical Methods. John Wiley \& Sons. New York.
Machin, D., Campbell, M., Fayers, P., and Pinol, A 1997. Sample Size Tables for Clinical Studies, 2nd Edition. Blackwell Science. Malden, Mass.
Zar, Jerrold H. 1984. Biostatistical Analysis (Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey.
Summary Statements
A sample size of 245 achieves 90% power to detect a difference (P1-P0) of 0.0500 using a wo-sided Z test that uses $\mathrm{S}(\mathrm{P} 0)$ to estimate the standard deviation. The target significance level is 0.0500 . The actual significance level achieved by this test is 0.0555 . These results assume that the population proportion under the null hypothesis is 0.0500 .

From MINITAB $>$ Power and Sample Size >1 Proportion:

Example 4.6 What sample size is required to reject $H_{0}: p=0.01$ with 90% power when in fact $p=0.03$?
Solution: The hypotheses to be tested are $H_{0}: p=0.01$ versus $H_{A}: p>0.01$ and the two points on the OC curve are $\left(p_{0}, 1-\alpha\right)=(0.01,0.95)$ and $\left(p_{1}, \beta\right)=(0.03,0.10)$. The exact simultaneous solution to Equations 4.24 and 4.25 , obtained using Larson's nomogram and then iterating to the exact solution using a binomial calculator, is $(n, c)=(390,7)$. The distributions of the success counts under H_{0} and H_{A} are shown in Figure 4.2.

From Piface $>$ Test of one proportion:

缕 Sample size for one proportion $\square \square$					
Options Help					
Null value (p0)					
Value \checkmark	. 01				ok
Actual value (p)					
Value \checkmark	. 03				ok
Sample size					
Value $\checkmark 429$					
Alternative $\mathrm{p}>\mathrm{p0} \quad \vee$ Alpha 0.05					
Method Exact \downarrow Size $=.03058$					
Power					
Value \vee	8977				OK

From PASS $>$ Proportions $>$ One Group $>$ Inequality [Differences]:

Example 4.7 Use Larson's nomogram to find n and c for the sampling plan for defectives that will accept 95% of lots with 2% defectives and 10% of lots with 8% defectives. Draw the OC curve.
Solution: Figure 4.3 shows the solution using Larson's nomogram with the two specified points on the OC curve at $\left(p, P_{A}\left(H_{0}\right)\right)=(0.02,0.95)$ and $(0.09,0.10)$. The required sampling plan is $n=100$ and $c=4$. The OC curve is shown in Figure 4.4. Points on the OC were obtained by rocking a line about the point at $n=100$ and $c=4$ in the nomogram and reading off p and P_{A} values.

From Piface $>$ Test of one proportion:

鮑 Sample size for one proportion $\square \square \times$						
Options Help						
Null value (p0)						
Value \vee	. 02					к
Actual value (p)						
Value \vee	. 09					\%
Sample size						
Value $\vee 88$						
Alternative	P	\checkmark	Alpha	0.05		\checkmark
Method	Exact	\checkmark	Size $=$	3203		
Power						
Value \vee	9064					

From PASS $>$ Proportions $>$ One Group $>$ Inequality [Differences]:

From MINITAB $>$ Stat $>$ Power and Sample Size >1 Proportion:

Power and Sample Size

Test for One Proportion
Testing proportion $=0.02$ (versus >0.02 Alpha $=0.05$

Alternative Sample Target $\begin{array}{rrrr}\text { Proportion } & \text { Size } & \text { Power } & \text { Actual Power } \\ 0.09 & 73 & 0.9 & 0.90063\end{array}$

From MINITAB $>$ Stat $>$ Quality Tools $>$ Acceptance Sampling by Attributes:

Example 4.8 What sample size is required to reject $H_{0}: p=0.03$ with 90% power when in fact $p=0.01$?
Solution: The hypotheses to be tested are $H_{0}: p=p_{0}$ versus $H_{A}: p<p_{0}$ and the two points on the OC curve are $\left(p_{0}, 1-\alpha\right)=(0.03,0.95)$ and $\left(p_{1}, \beta\right)=(0.01,0.10)$. The exact simultaneous solution to Equations 4.26 and 4.27 , determined using Larson's nomogram followed by manual iterations with a binomial calculator, is $(n, r)=(436,7)$.

From Piface $>$ Test of one proportion:

Acceptance Sampling by Attributes

Measurement type: Go/no go
Use binomial distribution to calculate probability of acceptance
Acceptable Quality Level (AQL) 0.02
Producer's Risk (Alpha) 0.05
Rejectable Quality Level (RQL or LTPD) 0.09
Consumer's Risk (Beta) 0.1

Generated Plan(s)
sample Size 8
Acceptance Number 4
accept lot if defective items in 87 sampled $<=4$; Otherwise reject.

Proportion	Probability	Probability
Defective	Accepting	Rejecting
0.02	0.969	0.031
0.09	0.099	0.901

Acceptance Sampling by Atributes
§ OC Curve

里 Sample size for one proportion $\square \square$					
Options Help					
Null value (p0)					
Value \checkmark. 03					
Actual value (p)					
Value $\vee .01$					
Sample size					
Value $\checkmark 437$					
Alternative $\mathrm{p}<\mathrm{p0} \vee$ Alpha $0.05 \vee$					
Method Exact \checkmark Size $=\mathbf{0} 04856$					
Power					
Value \checkmark	9247				OK

From PASS $>$ Proportions $>$ One Group $>$ Inequality [Differences]:

Acceptance Sampling by Attributes

Measurement type: Go/no go

Lot quality in proportion defective
Use binomial distribution to calculate probability of acceptance

Acceptable Quality Level (AQL)	0.01
Producer's Risk (Alpha)	0.1
Rejectable Quality Level (RQL or LTPD)	0.03
Consumer's Risk (Beta)	0.05

Generated Plan (s)

Acceptance Number
436
7
Accept lot if defective items in 436 sampled $<=7$; Otherwise reject.

4.2 One Proportion (Small Population)

Example 4.9 Suppose that a sample of size $n=20$ drawn from a population of $N=100$ units was found to have $X=2$ defective units. Determine the one-sided upper confidence limit for the population fraction defective
Solution: From the following hypergeometric probabilities:

$$
\begin{aligned}
& h(0 \leq x \leq 2 ; S=26, N=100, n=20)=0.0555 \\
& h(0 \leq x \leq 2 ; S=27, N=100, n=20)=0.0448
\end{aligned}
$$

the smallest value of S that satisfies the inequality in Equation 4.34 is $S=27$, so the 95% one-sided upper confidence limit for S is $S_{U}=27$ or

$$
P(S \leq 27) \geq 0.95 .
$$

Example 4.10 A hospital is asked by an auditor to confirm that its billing error rate is less than 10% for a day chosen randomly by the auditor. However, it is impractical to inspect all 120 bills issued on that day. How many of the bills must be inspected to demonstrate, with 95% confidence, that the billing error rate is less than 10% ?
Solution: The goal of the analysis is to demonstrate that the one-sided upper 95% confidence limit on the billing error rate p is 10% or

$$
P(p \leq 0.10)=0.95 .
$$

Under the assumption that the auditor will accept a zero defectives sampling plan, by the rule of three (Equation 4.5) the approximate sample size must be

$$
n \simeq \frac{3}{p}=\frac{3}{0.10}=30
$$

Because $n=30$ is large compared to $N=120$, the finite population correction factor (Equation 4.16) should be used and gives

$$
\begin{aligned}
n^{\prime} & =\frac{30}{1+\frac{30-1}{120}} \\
& =25 .
\end{aligned}
$$

Iterations with a hypergeometric probability calculator show that $n=26$ is the smallest sample size that gives 95% confidence that the billing error rate is less than 10%.

Example 4.11 What sample size n must be drawn from a population of size $N=200$ and found to be free of defectives if we need to demonstrate, with 95% confidence, that there are no more than four defectives in the population?
Solution: The goal of the experiment is to demonstrate the confidence interval

$$
P(0 \leq S \leq 4) \geq 0.95
$$

using a zero-successes $(X=0)$ sampling plan. By the small-sample binomial approximation with $S_{U}=4$ and $\alpha=0.05$, the required sample size by Equation 4.40 is given by

$$
n=\frac{\ln (0.05)}{\ln \left(1-\frac{4}{200}\right)}=149
$$

which violates the small-sample assumption. By Equation 4.42, the rare-event binomial approximation gives

$$
\begin{aligned}
n & \geq N\left(1-\alpha^{1 / S_{U}}\right) \\
& \geq 200\left(1-0.05^{1 / 4}\right) \\
& \geq 106
\end{aligned}
$$

This solution meets the requirements of the rare-event approximation method, but just to check this result, the corresponding exact hypergeometric probability is $h(0 ; 4,200,106)=$ 0.047 which is less than $\alpha=0.05$ as required, however, because $h(0,4,200,105)=0.049$, the sample size $n=105$ is the exact solution to the problem.

Example 4.12 A biologist needs to test the fraction of female frogs in a single brood, but the sex of the frog tadpoles is difficult to determine. The hypotheses to be tested are $H_{0}: p=0.5$ versus $H_{A}: p>0.5$ where p is the fraction of the frogs that are female. If there are $N=212$ viable frogs in the brood, how many of them must she sample to reject H_{0} with 90% power when $p=0.65$?
Solution: The exact sample size (n) and acceptance number (c) have to be determined by iteration. The approximate sample size given by the large-sample binomial approximation method in Equation 4.22 with $p_{0}=0.5, \alpha=0.05, p_{1}=0.65$, and $\beta=0.10$ is

$$
n=\left(\frac{1.645 \sqrt{0.5(1-0.5)}+1.282 \sqrt{0.65(1-0.65)}}{0.65-0.5}\right)^{2}=92
$$

However, this sample size is large compared to the population size, so the finite population correction factor (Equation 4.16) must be used, which gives

$$
\begin{aligned}
n^{\prime} & =\frac{92}{1+\frac{92-1}{212}} \\
& =65 .
\end{aligned}
$$

The exact values of n and c are determined from the simultaneous solution of Equations 4.43 and Equation 4.44 with $S_{0}=N p_{0}=106$ and $S_{1}=N p_{1}=138$, which gives

$$
\begin{aligned}
& \sum_{x=0}^{c} h(x ; S=106, N=212, n) \geq 0.95 \\
& \sum_{x=0}^{c} h(x ; S=138, N=212, n) \leq 0.10
\end{aligned}
$$

Using a hypergeometric calculator with $n=65$ we find

$$
\begin{aligned}
& \sum_{x=0}^{38} h(x ; S=106, N=212, n=65)=0.963 \\
& \sum_{x=0}^{38} h(x ; S=138, N=212, n=65)=0.117
\end{aligned}
$$

which satisfies the $1-\alpha \geq 0.95$ requirement but does not satisfy the $\beta \leq 0.10$ requirement. A few more iterations determine that $n=69$ and $c=40$ gives $\alpha=0.039$ and $\pi=0.912$ which meets both requirements. This means that the biologist must sample $n=69$ frogs and can reject H_{0} if $S>40$.

The one proportion methods in Piface and MINITAB can be used to find the first step in the solution, $n=92$, but they don't provide the opportunity to apply a small population correction. PASS does support finite populations using the binomial method instead of the normal approximation. From PASS $>$ Proportions $>$ One Group $>$ Inequality [Differences]:

4.3 Two Proportions

Example 4.13 Determine the sample size required to estimate the difference between two proportions to within 0.03 with 95% confidence if both proportions are expected to be about 0.45 . Assume that the two sample sizes will be equal.
Solution: From Equation 4.54 with $\delta=0.03, \bar{p}=0.45, n_{1} / n_{2}=1$, and $\alpha=0.05$, the required sample size is

$$
\begin{aligned}
n_{1} & =n_{2}=\left(\frac{1.96}{0.03}\right)^{2}(2 \times 0.45 \times(1-0.45)) \\
& =2113
\end{aligned}
$$

From Piface $>$ Test comparing two proportions without and with the continuity correction:

From MINITAB $>$ Stat $>$ Power and Sample Size $>$ Two Proportions:

| MTB $>$ | Power; |
| :--- | :--- | :--- |
| SUBC> | PTwo; |
| SUBC | Prone $0.435 ;$ |
| SUBC | Power 0.5; |
| SUBC> | PrTwo 0.465 |
| SUBC> | GPCurve. |

Power and Sample Size
Test for Two Proportions
Testing proportion $1=$ proportion 2 (versus not $=$ Calculating power for proportion $2=0.465$
Alpha $=0.05$

$$
\begin{array}{rrrr}
& \text { Sample } & \text { Target } & \\
\text { Proportion 1 } & \text { Size } & \text { Power } & \text { Actual Power } \\
0.435 & 2113 & 0.5 & 0.500081
\end{array}
$$

The sample size is for each group.

SPASS: Proportions: Inequality [Differences] Output

Two Independent Proportions (Null Case) Power Analysis

Numeric Results of Tests Based on the Difference: P1 - P2

H0: P1-P2=0. H1: P1-P2=D1<>0. Test Statistic: Z test with pooled variance

	Sample Size	Sample Size	Prop\|H1 Grp 1 or	Prop Grp 2 or	Diff	Diff			
Grp 1	Grp 2								
Trtmnt									
Control	if H0	if H1	Target	Actual					
Power	N1	N2	P1	P2	D0	D1	Alpha	Alpha	Beta
0.5001	2113	2113	0.4650	0.4350	0.0000	0.0300	0.0500		0.4999

Note: exact results based on the binomial were only calculated when both N 1 and N 2 were less than 100 .
References
Chow, S.C.; Shao, J.; Wang, H. 2003. Sample Size Calculations in Clirical Research. Marcel Dekker. New York.
D'Agostino, R.B., Chase, W., Belanger, A 1988. The Appropriateness of Some Common Procedures for Testing the
Equality of Two Independent Binomial Populations', The American Statistician, August 1988 , Volume 42 Number 3,
pages 198-202.
Feiss, J. L., Levin, B. Paik, M.C. 2003. Statistical Methods for Rates and Proportions. Third Edition. John
Wiley \& Sons. New York
Machin, D., Campbell, M., Fayers, P., and Pinol, A. 1997 . Sample Size Tables for Clinical Studies, 2nd Edition. Blackwell Science. Malden, Mass

Example 4.14 An experiment is planned to estimate the risk ratio. The two proportions are expected to be $p_{1} \simeq 0.2$ and $p_{2} \simeq 0.05$. Determine the optimal allocation ratio and the sample size required to determine the risk ratio to within 20% of its true value with 95% confidence?
Solution: A 95% confidence interval for the risk ratio is required of the form in Equation 4.56 . With $p_{1}=0.2$ and $p_{2}=0.05$, the anticipated value of the risk ratio is $R R \simeq$ $0.2 / 0.05=4$ and from Equation 4.62 the optimal sample size allocation ratio is

$$
\frac{n_{1}}{n_{2}}=\sqrt{\frac{0.05 / 0.95}{0.2 / 0.8}}=0.4588
$$

Then with $\delta=0.2$ and $\alpha=0.05$ in Equation 4.61 , the required sample size n_{1} is

$$
\begin{aligned}
n_{1} & =\left(\frac{1.96}{0.2}\right)^{2}\left(\frac{1-0.2}{0.2}+\frac{1-0.05}{0.05}(0.4588)\right) \\
& =1222
\end{aligned}
$$

and the sample size n_{2} is

$$
n_{2}=\frac{n_{1}}{\left(\frac{n_{1}}{n_{2}}\right)}=\frac{1222}{0.4588}=2664
$$

These sample sizes minimize the total number of samples required for the experiment.
Example 4.15 An experiment is planned to estimate the odds ratio. The two proportions are expected to be $p_{1} \simeq 0.5$ and $p_{2} \simeq 0.25$. Determine the optimal allocation ratio and the sample size required to determine, with 90% confidence, the odds ratio to within 20% of its true value?

Solution: The desired confidence interval has the form given by Equation 4.64 with $\delta=0.2$. With $p_{1}=0.5$ and $p_{2}=0.25$, the anticipated value of the odds ratio is $O R=$ $\frac{0.5 / 0.5}{0.25 / 0.75}=3$ and from Equation 4.70 the optimal sample size allocation ratio is

$$
\frac{n_{1}}{n_{2}}=\sqrt{\frac{0.25 \times 0.75}{0.5 \times 0.5}}=0.866
$$

Then with $\delta=0.2$ and $\alpha=0.10$ in Equation 4.69, the required sample size n_{1} is

$$
\begin{aligned}
n_{1} & =\left(\frac{1.645}{0.2}\right)^{2}\left(\frac{1}{0.5 \times 0.5}+\frac{1}{0.25 \times 0.75}(0.866)\right) \\
& =584
\end{aligned}
$$

and the sample size n_{2} is

$$
n_{2}=\frac{n_{1}}{\left(\frac{n_{1}}{n_{2}}\right)}=\frac{584}{0.866}=675 .
$$

Example 4.16 Determine the power for Fisher's test to reject $H_{0}: p_{1}=p_{2}$ in favor of $H_{A}: p_{1}<p_{2}$ when $p_{1}=0.01, p_{2}=0.50$, and $n_{1}=n_{2}=8$.
Solution: The Fisher's test p values for all possible combinations of x_{1} and x_{2} were calculated using Equation 4.71 and are shown in Table 4.3. The few cases that are statistically significant, where $p \leq 0.05$, are shown in a bold font in the upper right corner of the table. Table 4.4 shows the contributions to the power given by the product of the two binomial probabilities in Equation 4.74. The sum of the individual contributions, that is, the power of Fisher's test, is $\pi=0.60$.

From PASS> Proportions> Two Groups: Independent> Inequality [Differences]:

EPPASS: Proportions: Inequality [Proportions] Output
\square
Two Independent Proportions (Null Case) Power Analysis
Numeric Results of Tests Based on the Difference: P1 - P2
H0: P1-P2>0. H1: P1-P2=D1<0. Test Statistic: Fisher's Exact tes

Note: exact results based on the binomial were only calculated when both N 1 and N 2 were less than 100

References

References
Chow, S.C.; Shao, J.: Wang, H. 2003 . Sample Size Calculations in Clinical Research. Marcel Dekker. New York D'Agostino, R.B. Chase W. Belanger A. 1988 The Appropriateness of Some Common Procedures for Testing the Equality of Two Independent Binomial Populations', The American Statistician, August 1988 , Volume 42 Number 3 , pages 198-202
Fleiss, J. L., Levin, B., Paik, M.C. 2003. Statistical Methods for Rates and Proportions. Third Edition. John Wiley \& Sons. New York.
Lachin, John M. 2000. Biostatistical Methods. John Wiley \& Sons. New York.
Machin, D., Campbell, M., Fayers, P., and Pinol, A. 1997. Sample Size Tables for Clinical Studies, 2nd Edition. Blackwell Science. Malden, Mass.

MINITAB's default sample size and power calculator uses the normal approximation but the Fisher's test power can be calculated using the custom MINITAB macro fisherspower.mac that is posted on www.mmbstatistical.com.

MTB > "fisherspower 0.010 .5088
Executing from file: C:\Program Files \Minitab $15 \backslash$ English Macros \backslash fisherspower.MAC
power 0.598399

fisherspower.mac - Notepad
File Edit Format View Help

kile
macro
fisherspower p1 p2 n1 n2
sign alpha.
Fisher's exact test is the two independent sample test for Ho: p1 = p2 vs
\#Ha: p1 < p 2 . This macro calculates the power of the test for user
\#specified values of $\mathrm{p} 1, \mathrm{p} 2, \mathrm{n} 1$, and n 2 where:
p 1 and p 2 are the population fractions defective and
n 1 and n 2 are the sizes of the two samples.
The specified values of p 1 and p 2 must meet the condition $\mathrm{p} 1<\mathrm{p} 2$.
\#Example calling statement:
\# mtb > "fisherspower 0.010 .058080
\#Macro should return power $=0.211135$

Example 4.17 Determine the power for the test of $H_{0}: p_{1}=p_{2}$ versus $H_{A}: p_{1} \neq p_{2}$ when $n_{1}=n_{2}=200, p_{1}=0.10$, and $p_{2}=0.20$. Use a two-tailed test with $\alpha=0.05$ Solution: The normal approximation to the binomial distribution is justified for both samples, so with $\widehat{p}=0.15$ and $\Delta \widehat{p}=0.10$ in Equations 4.78 and 4.79 , the power is

$$
\begin{aligned}
\pi & =\Phi\left(-\infty<z<\frac{0.10}{\sqrt{\frac{2(0.15)(1-0.15)}{200}}}-1.96\right) \\
& =\Phi(-\infty<z<0.84) \\
& =0.80
\end{aligned}
$$

From Piface $>$ Test comparing two proportions without and with the continuity correction:

Yest of equality of two pro... $\square \square \times$		Sest of equality of two pro... \square			
Options Help		Options Help			
pl m		pl ${ }^{\text {p }}$			
Value \checkmark. 1	ok	Value $\vee .1$			ок
P2		p^{2}			
Value \checkmark. 2	ок	Value $\vee .2$			ок
nl		nl ${ }^{\text {a }}$			
Value $\checkmark 200$	ок	Value $\vee 200$			ok
n2		n2			
Value $\checkmark 200$	ok	Value $\checkmark 200$			or
∇ Equal ns		- Equal ns			
Alpha		Alpha			
Value \checkmark. 05		Value \downarrow. 05			ok
Power		Power			
Value $\checkmark .802$		Value $\checkmark .7604$			ok
Γ Continuity corr. Alternative	$\mathrm{p} 1!=\mathrm{p} 2 \vee$	\checkmark Continuity corr.	Alternative	p1 ! p 2	

From MINITAB $>$ Stat $>$ Power and Sample Size $>$ Two Proportions:

PPASS: Proportions: Inequality [Differences] 0utput

Two Independent Proportions (Null Case) Power Analysis

Numeric Results of Tests Based on the Difference: P1 - P2
$\mathrm{H} 0: \mathrm{P} 1-\mathrm{P} 2=0 . \mathrm{H} 1: \mathrm{P} 1-\mathrm{P} 2=\mathrm{D} 1<>0$. Test Statistic: Z test with pooled variance

	Sample	Sample	Prop\|H1	Prop					
	Size	Size	Grp 1 or	Grp 2 or	Diff	Diff			
	Grp 1	Grp 2	Titmnt	Control	if H 0	if H 1	Target	Actual	
Power	N1	N2	P1	P2	D0	D1	Alpha	Alpha	Beta
0.8020	200	200	0.1000	0.2000	0.0000	-0.1000	0.0500		0.1980

Note: exact results based on the binomial were only calculated when both N 1 and N 2 were less than 100.

References

Chow, S.C.; Shao, J., Wang, H. 2003. Sample Size Calculations in Clinical Research. Marcel Dekker. New. York.
D'Agostino, R.B., Chase, W., Belanger, A 1988. The Appropriateness of Some Common Procedures for Testing the
Equality of Two Independent Binomial Populations', The American Statistician, August 1988 , Volume 42 Number 3 pages 198-202.
eiss, J L. Levin, B. Paik. M.C. 2003. Statistical Methods for Rates and Proportions. Third Edition. John
Wiley \& Sons. New York
Machin, D., Campbell, M., Fayers, P., and Pinol, A 1997. Sample Size Tables for Clinical Studies, 2nd Edition. Blackwell Science. Malden, Mass.

Example 4.18 What common sample size is required to resolve the difference between two proportions with 90% power using a two-sided test when $p_{1}=0.10$ and $p_{2}=0.20$ is expected?
Solution: From Equation 4.80 with $\widehat{p}=0.15$ and $\Delta \widehat{p}=0.10$ the required sample size is

$$
\begin{aligned}
n & =\frac{2 \times 0.15 \times 0.85}{(0.10)^{2}}(1.28+1.96)^{2} \\
& =268 .
\end{aligned}
$$

From Piface $>$ Test comparing two proportions without the continuity correction:

隠 Test of equality of two pro... \square		
Options Help		
pl m		
Value $\vee .1$		ok
p2 ${ }^{\text {2 }}$		
Value $\vee .2$		ok
nl 回		
Value $\vee 266$		ok
n2 ${ }^{\text {a }}$		
Value $\vee 266$		OK
\checkmark Equal ns		
Alpha ${ }^{\text {a }}$		
Value \checkmark. 05		ok
Power		
Value $\checkmark .9002$		ok
\ulcorner Continuity corr.	Alternative	$\mathrm{p} 1!=\mathrm{p} 2 \vee$

From MINITAB $>$ Stat $>$ Power and Sample Size $>$ Two Proportions:

The sample size is for each group.

\section*{PASS: Proportions: Inequality [Differences] Output
 Two Independent Proportions (Null Case) Power Analysis
 Numeric Results of Tests Based on the Difference: P1 - P2
 $\mathrm{H} 0: \mathrm{P} 1-\mathrm{P} 2=0 . \mathrm{H} 1: \mathrm{P} 1-\mathrm{P} 2=\mathrm{D} 1<>0$. Test Statistic: Z test with pooled variance

Note: exact results based on the binomial were only calculated when both N 1 and N 2 were less than 100 .

References
Chow, S.C.; Shao, J.; Wang, H. 2003. Sample Size Calculations in Clinical Research. Marcel Dekker. New York.
D'Agostino, R.B., Chase, W., Belanger, A 1988. The Appropriateness of Some Common Procedures for Testing the Equality of Two Independent Binomial Populations', The American Statistician, August 1988, Volume 42 Number3, ages 198-202.
2003. Statistical Methods for Rates and Proportions. Third Edition. John Wiley \& Sons. New York
achin, John M. 2000. Biostatistical Methods. John Wiley \& Sons. New York
Machin, D., Campbell, M., Fayers, P., and Pinol, A. 1997. Sample Size Tables for Clinical Studies, 2nd Edition. Blackwell Science. Malden, Mass.

Example 4.19 Repeat the calculation of the sample size for Example 4.18.
Solution: From Equation 4.86 the required sample size is

$$
n=\frac{1}{2}\left(\frac{1.28+1.96}{\arcsin \sqrt{0.10}-\arcsin \sqrt{0.20}}\right)^{2}=261
$$

which is in excellent agreement with the sample size determined by the normal approximation method.

Example 4.20 Repeat the calculation of the sample size for Example 4.18 using the log risk ratio method.
Solution: With $R R=0.1 / 0.2=0.5, \alpha=0.05, \beta=0.10$, and $n_{1} / n_{2}=1$ in Equation 4.90 , the required sample size is

$$
n_{1}=n_{2}=\left(\frac{1.96+1.282}{\ln (0.5)}\right)^{2}\left(\frac{1-0.1}{0.1}+\frac{1-0.2}{0.2}\right)=285
$$

which is in excellent agreement with the sample size obtained by the normal approximation method.

See PASS $>$ Proportions $>$ Two Groups: Independent $>$ Inequality [Ratios].

Example 4.21 Repeat the calculation of the sample size for Example 4.18 using the log odds ratio method. Solution: With $n_{1} / n_{2}=1$ in Equation 4.97, the required common sample size is

$$
n=\left(\frac{1.96+1.282}{\ln \left(\frac{0.10 / 0.90}{0.20 / 0.80}\right)}\right)^{2}\left(\frac{1}{0.10(0.90)}+\frac{1}{0.20(0.80)}\right)=278
$$

which is in excellent agreement with the sample size obtained by the normal approximation method.
See PASS $>$ Proportions $>$ Two Groups: Independent $>$ Inequality [Odds Ratios].

Example 4.22 Determine the number of subjects required for McNemar's test to reject $H_{0}: R R=1$ with 90% power when $R R=2$ and the rate of discordant observations is estimated to be $p_{D}=0.2$ from a preliminary study.
Solution: With $\beta=0.10$ and $\alpha=0.05$ in Equation 4.105, the approximate number of subjects required for the study is

$$
\begin{aligned}
\sum_{i} \sum_{j} \widehat{f}_{i j} & \simeq \frac{(1.282+1.96)^{2}}{0.20}\left(\frac{2+1}{2-1}\right)^{2} \\
& \simeq 473
\end{aligned}
$$

From PASS $>$ Proportions $>$ Two Groups: Paired or Correlated $>$ Inequality (McNemar) [Odds Ratios]:

Example 4.23 Determine the McNemar's test power to reject $H_{0}: R R=1$ in favor of $H_{A}: R R \neq 1$ for a study with 200 subjects when in fact $R R=3$ using $p_{D}=0.3$. Solution: With 200 subjects in the study, the expected number of discordant pairs is

$$
\widehat{f}_{12}+\widehat{f}_{21}=p_{D} \sum_{i} \sum_{j} \widehat{f}_{i j}=0.3 \times 200=60
$$

Under H_{A} with $R R=3$, we have $\widehat{f}_{21}=15$ and $\widehat{f}_{12}=45$, so the expected value of the McNemar's z_{M} statistic is

$$
z_{M}=\frac{|45-15|}{\sqrt{45+15}}=3.87
$$

and the approximate power is

$$
\begin{aligned}
\pi & =P\left(-\infty<z<z_{\beta}\right) \\
& =P\left(-\infty<z<\left(z_{M}-z_{\alpha / 2}\right)\right) \\
& =P(-\infty<z<(3.87-1.96)) \\
& =P(-\infty<z<1.91) \\
& =0.972 .
\end{aligned}
$$

From PASS $>$ Proportions $>$ Two Groups: Paired or Correlated $>$ Inequality (McNemar) [Odds Ratios]:

4.4 Equivalence Tests

Example 4.24 For the test of $H_{0}: p<0.45$ or $p>0.55$ versus $H_{A}: 0.45<p<0.55$, calculate the exact and approximate power when $p=0.5$ assuming that the sample size is $n=800$ and $\alpha=0.05$.
Solution: The value of x_{1}, determined from Equation 4.106, is $x_{1}=384$ because

$$
\sum_{x=0}^{383} b\left(x ; n=800, p_{1}=0.45\right)=0.952 .
$$

The value of x_{2}, determined from Equation 4.107, is $x_{2}=416$ because

$$
\sum_{x=0}^{416} b\left(x ; n=800, p_{2}=0.55\right)=0.048 .
$$

Then the power when $p=0.5$ is given by Equation 4.108:

$$
\begin{aligned}
\pi & =\sum_{x=383}^{416} b\left(x ; n=800, p_{2}=0.50\right) \\
& =0.757 .
\end{aligned}
$$

The approximate power by the normal approximation method, given by Equation 4.111, is

$$
\begin{aligned}
\pi & =\Phi\left(\frac{0.45-0.5}{\sqrt{\frac{0.5(1-0.5)}{800}}}+1.645<z<\frac{0.55-0.5}{\sqrt{\frac{0.5(1-0.5)}{800}}}-1.645\right) \\
& =\Phi(-1.183<z<1.183) \\
& =0.763
\end{aligned}
$$

which is in good agreement with the exact solution.
From PASS $>$ Proportions $>$ One Group: Equivalence [Differences]:

Example 4.25 An experiment is to be performed to test the hypotheses $H_{0}: p_{1} \neq p_{2}$ versus $H_{A}: p_{1}=p_{2}$. The two proportions are expected to be $p \simeq 0.12$ and the limit of practical equivalence is $\delta=0.02$. What sample size is required to reject H_{0} when $p_{1}=p_{2}$ with 80% power?

Solution: With $\alpha=0.05$ and $n_{1} / n_{2}=1$ in Equation 4.118, the sample size $n=n_{1}=n_{2}$ is

$$
\begin{aligned}
n & =2\left(z_{0.05}+z_{0.10}\right)^{2} \frac{0.12(1-0.12)}{(0.02)^{2}} \\
& =2(1.645+1.282)^{2} \frac{0.12(1-0.12)}{(0.02)^{2}} \\
& =4524 .
\end{aligned}
$$

From PASS $>$ Proportions $>$ Two Groups: Independent $>$ Equivalence [Differences]:

Numeric Results for Equivalence Tests Based on the Difference: P1-P2
H0: P1-P2<=D0.L or P1-P2>=D0.U. H1: D0.L<P1-P2=D1<D0.U.
Test Statistic: Z test (pooled)

				Lower	Upper	Lower	Upper			
	Sample	Sample		Equiv.	Equiv.	Equiv.	Equiv.	Actual		
	Size	Size	Prop	Grp	Grp	Margin	Margin	Margin		
	Grp 1	Grp 2	Grp 2	Prop	Prop	Diff	Diff	Diff	Target	Actual
Power	N1	N2	P2	P1.0L	P1.0U	D0.L	D0.U	D1	Alpha	Alpha
0.8000	4522	4522	0.1200	0.1000	0.1400	-0.0200	0.0200	0.0000	0.0500	

Note: exact results based on the binomial were only calculated when both N 1 and N 2 were less than 100
Report Definitions
Power is the probability of concluding equivalence when equivalence is correct
Beta is the probability of accepting a false HO . Beta $=1$ - Power.
N 1 and N 2 are the sizes of the samples drawn from the corresponding groups.
2 is the response rate for group two which is the standard, reference, baseline, or control group.
P1.0L is the smallest treatment-group response rate that still yields an equivalence conclusion.
P1.0U is the largest treatment-group response rate that still yields an equivalence conclusion.
DO.L is the lowest difference that still results in the conclusion of equivalence.
DO.U is the highest difference that still results in the conclusion of equiwalence.
D1 is the actual difference, P1-P2, at which the power is calculated.
Actual Apha' is the probability of rejecting a true null hypothesis that was desired.
'Actual Apha is the value of alpha that is actually achieved. Only available for exact results.
'Grp 2 ' refers to Group 2 which is the reference, standard, or control grou
Equiv. 'refers to a small amount that is not of practical importance.
Actual refers to the true value at which the power is computed.

Summary Statements

Sample sizes of 4522 in the treatment group and 4522 in the reference group achieve 80% power to detect equivalence. The margin of equivalence, given in terms of the difference, extends 0.1200. The calculations assume that two, one-sided pooled Z tests are used The significance level of the test is 0.0500 .

Example 4.26 What sample size is required if the true difference between the two proportions in Example4.254.25 is $\Delta p=0.01$?

Solution: p_{1} and p_{2} are not specified, but they are both approximately $p=0.12$, so from Equation 4.119 the sample size must be

$$
\begin{aligned}
n_{1} & \simeq 2\left(z_{\alpha}+z_{\beta}\right)^{2} \frac{p(1-p)}{(\delta-|\Delta p|)^{2}} \\
& \simeq 2(1.645+0.842)^{2} \frac{0.12(1-0.12)}{(0.02-0.01)^{2}} \\
& \simeq 13063 .
\end{aligned}
$$

From PASS $>$ Proportions $>$ Two Groups: Independent $>$ Equivalence [Differences]:

BS PASS: Proportions: Equivalence [Differences] Output
e Difference: P1 - P2
H0: P1-P2<=D0.L or P1-P2 $=$ D0.U. H1: D0.L<P1-P2=D1<D0.U.
Test Statistic: Z test (pooled)

	Sample Size	$\begin{gathered} \text { Sample } \\ \text { Size } \end{gathered}$	Prop	Lower Equiv. Grp 1	Upper Equiv. Grp 1	Lower Equiv. Margin	Upper Equiv. Margin	Actual Margin		
	Grp 1	Gip 2	Grp 2	Prop	Prop	Diff	Diff	Diff	Target	Ac
Power	N1	N2	P2	P1.0L	P1.0U	D0.L	D0.U	D1	Alpha	
0.8000	13524	13524	0.1200	0.1000	0.1400	-0.0200	0.0200	0.0100	0.0500	

Report Definitions
Power is the probabilty of concluding equivalence when equivalence is correct. Beta is the probability of accepting a false HO . Beta $=1$ - Power.
N 1 and N 2 are the sizes of the samples drawn from the corresponding groups.
P2 is the response rate for group two which is the standard, reference, baseline, or control group
P1.0L is the smallest treatment-group response rate that still yields an equivalence conclusion.
DO.L is the lowest difference that still results in the conclusion of equivalence.
DO.U is the highest difference that still results in the conclusion of equivalence.
D1 is the actual difference, P1-P2, at which the power is calculated.
'Target Apha' is the probability of rejecting a true null hypothesis that was desired.
'Actual Alpha' is the value of alpha that is actually achieved. Only available for exact results.
'Grp 1 ' refers to Group 1 which is the treatment or experimental group
'Grp 2' refers to Group 2 which is the reference, standard, or control group.
Actual refers to the true value at which the power is computed

Summary Statements
Sample sizes of 13524 in the treatment group and 13524 in the reference group achieve 80% power
to detect equivalence. The margin of equwalence, given in terms of the difference, extends
from -0.0200 to 0.0200 . The actual difference is 0.0100 . The reference group proportion is
0.1200 The calculations assume that two, one-sided pooled Z tests are used. The significance
level of the test is 0.0500 .

4.5 Chi-square Tests

Example 4.27 Confirm the sample size for Example 4.18 using the χ^{2} test method for a 2×2 table.
Solution: Under H_{A} with $p_{1}=0.10$ and $p_{2}=0.20$ the expected proportion of observations in each cell of the 2×2 table is

$$
\left(p_{i j}\right)_{A}=\frac{1}{2}\left\{\begin{array}{ll}
0.1 & 0.9 \\
0.2 & 0.8
\end{array}\right\}=\left\{\begin{array}{ll}
0.05 & 0.45 \\
0.1 & 0.4
\end{array}\right\}
$$

Under H_{0} with $p_{1}=p_{2}=(0.1+0.2) / 2=0.15$ the expected distribution of observations is

$$
\left(p_{i j}\right)_{0}=\frac{1}{2}\left\{\begin{array}{ll}
0.15 & 0.85 \\
0.15 & 0.85
\end{array}\right\}=\left\{\begin{array}{ll}
0.075 & 0.425 \\
0.075 & 0.425
\end{array}\right\} .
$$

From Equation 4.121 with a total of $2 \times 268=536$ observations the noncentrality parameter is

$$
\begin{aligned}
\phi= & 536\left(\frac{(0.05-0.075)^{2}}{0.075}+\frac{(0.1-0.075)^{2}}{0.075}+\frac{(0.45-0.425)^{2}}{0.425}\right. \\
& \left.+\frac{(0.4-0.425)^{2}}{0.425}\right) \\
= & 10.51
\end{aligned}
$$

Then, with $\alpha=0.05$ and $d f=1$ degree of freedom in Equation 4.122,

$$
\chi_{0.95}^{2}=3.8415=\chi_{\beta, 10.51}^{2}
$$

which is satisfied by $\beta=0.10$, so the power is $\pi=1-\beta=0.90$ and is consistent with the original example problem solution.
Example 4.28 A large school district intends to perform pass/fail testing of students from four large schools to test for performance differences among schools. If 50 students are chosen randomly from each school, what is the power of the χ^{2} test to reject the null hypothesis of homogeneity when the student failure rates at the four schools are in fact $10 \%, 10 \%, 10 \%$, and 30% ?
Solution: To calculate the power of the χ^{2} test we must specify the two 2×4 tables (result by school) associated with $\left(p_{i j}\right)_{0}$ and $\left(p_{i j}\right)_{A}$. From the problem statement, under H_{A} with $\left(p_{1 j}\right)_{A}=\{0.1,0.1,0.1,0.3\}$, the table of $\left(p_{i j}\right)_{A}$ is

$$
\begin{aligned}
\left(p_{i j}\right)_{A} & =\frac{1}{4}\left\{\begin{array}{llll}
0.1 & 0.1 & 0.1 & 0.3 \\
0.9 & 0.9 & 0.9 & 0.7
\end{array}\right\} \\
& =\left\{\begin{array}{llll}
0.025 & 0.025 & 0.025 & 0.075 \\
0.225 & 0.225 & 0.225 & 0.175
\end{array}\right\} .
\end{aligned}
$$

The mean failure rate of all four schools is $(3(0.1)+0.3) / 4=0.15$ under H_{0}, so the corresponding table of $\left(p_{i j}\right)_{0}$ is

$$
\begin{aligned}
\left(p_{i j}\right)_{0} & =\frac{1}{4}\left\{\begin{array}{llll}
0.15 & 0.15 & 0.15 & 0.15 \\
0.85 & 0.85 & 0.85 & 0.85
\end{array}\right\} \\
& =\left\{\begin{array}{llll}
0.0375 & 0.0375 & 0.0375 & 0.0375 \\
0.2125 & 0.2125 & 0.2125 & 0.2125
\end{array}\right\} .
\end{aligned}
$$

Under these definitions, the χ^{2} distribution noncentrality parameter is

$$
\begin{aligned}
\phi= & 200\left[3\left(\frac{(0.025-0.0375)^{2}}{0.0375}\right)+\frac{(0.075-0.0375)^{2}}{0.0375}\right. \\
& \left.+3\left(\frac{(0.225-0.2125)^{2}}{0.2125}\right)+\frac{(0.175-0.2125)^{2}}{0.2125}\right] \\
= & 11.77 .
\end{aligned}
$$

The χ^{2} test statistic will have $d f=(2-1)(4-1)=3$ degrees of freedom, so the critical value of the test statistic is $\chi_{0.95,3}^{2}=7.81$. The power of the test determined from the condition

$$
\chi_{0.95}^{2}=7.81=\chi_{1-\pi, 11.77}^{2}
$$

is $\pi=0.833$.

From Piface $>$ Generic chi-square test:

- Chisquare Power	- $\square^{\text {x }}$
Options Help	
Prototype data	
Chi2 ${ }^{+} 11.77$ n \mathbf{n}^{+}	
Study parameters	
df 3 Alp	. 05
n	
Value $\downarrow 200$	0
Power	-
Value $\checkmark .8324$	ok

From PASS $>$ Proportions $>$ Multi-Group: Chi-Square Test with effect size $W=\sqrt{\phi / N}=\sqrt{11.77 / 200}=0.2425$:

Chi-Square Test Power Analysis

Power N

 $\begin{array}{lll}0.83210 & 200 & 0.2425\end{array}$ 0.05000References
Cohen, Jacob. 1988. Statistical Power Analysis for the Behavioral Sciences, Lawrence Erlbaum Associates, Hillsdale, New Jersey.

Report Definitions
Nower is the probability of rejecting a false null hypothesis. It should be close to one.
Wis the effect size--a measure of the the population. To conserve reso to be detected.
DF is the degrees of freedom of the Chi-Square distribution
Alpha is the probability of rejecting a true null hypothesis.
Beta is the probability of accepting a false null hypothesis.
Summary Statements
A sample size of 200 achieves 83% power to detect an effect size (M) of 0.2425 using a 3
degrees of freedom Chi-Square Test with a significance level (alpha) of 0.05000 .

Example 4.29 What is the power to reject the claim that a die is balanced ($H_{0}: \theta_{i}=\frac{1}{6}$ for $i=1$ to 6) when it is in fact slightly biased toward one die face (H_{A} : $\theta_{i}=$ $\{0.16,0.16,0.16,0.16,0.16,0.20\})$ based on 100 rolls of the die?
Solution: The table of observations will have six cells and there will be no parameters estimated from the sample data, so the χ^{2} test will have $d f=6-1=5$ degrees of freedom. From Equation 4.121 the noncentrality parameter will be

$$
\phi=100\left[5\left(\frac{\left(0.16-\frac{1}{6}\right)^{2}}{\frac{1}{6}}\right)+\frac{\left(0.20-\frac{1}{6}\right)}{\frac{1}{6}}\right]=20.13 .
$$

With $\alpha=0.05$ we have $\chi_{0.95}^{2}=11.07$, so the power to reject H_{0} is determined from the condition

$$
\chi_{0.95}^{2}=11.07=\chi_{1-\pi, 20.13}^{2}
$$

which is satisfied by $\pi=0.954$.
From Piface> Generic chi-square test:

Chi-Square Power			$\square \square$	
Options Help				
Prototype data				
Chi2 ${ }^{\text {* }} 20.13$		\mathbf{n}^{*}	100	
Study parameters				
df 5		Alpha	. 05	
				\square
Value ${ }^{\text {v }}$	100			ok
Power				
Value \checkmark	9537			0 O

From PASS $>$ Proportions $>$ Multi-Group: Chi-Square Test with effect size $W=\sqrt{\phi / N}=\sqrt{20.13 / 100}=0.4487$:

Chapter 5

Poisson Counts

5.1 One Poisson Count

Example 5.1 How many Poisson events must be observed if the relative error of the estimate for λ must be no larger than $\pm 10 \%$ with 95% confidence? Solution: The desired confidence interval for λ has the form

$$
P\left(\frac{x}{n}(1-0.10)<\lambda<\frac{x}{n}(1+0.10)\right)=0.95,
$$

so $\delta=0.10$ and from Equation 5.10

$$
x=\left(\frac{1.96}{0.10}\right)^{2}=385 .
$$

That is, if the Poisson process is sampled until $x=385$ counts are obtained, then the 95% confidence limits for λ will be

$$
U C L / L C L=\left(\frac{385}{n}\right)(1 \pm 0.10)
$$

or

$$
P\left(\frac{346}{n}<\lambda<\frac{424}{n}\right)=0.95 .
$$

From Piface $>$ Generic Poisson test:

From MINITAB (V16) $>$ Stat $>$ Power and Sample Size $>$ Sample Size for Estimation $>$ Mean (Poisson):

$$
\begin{aligned}
& \begin{array}{ll}
\text { MTB }> & \text { SSCI; } \\
\text { SUBC> } & \text { PMean 10; } \\
\text { SUBC> } & \text { Confidence } 95.0 \\
\text { SUBC> } & \text { IType 0; } \\
\text { SUBC> } & \text { MError 1. }
\end{array} \\
& \text { Sample Size for Estimation } \\
& \text { Method }
\end{aligned}
$$

From MINITAB (V16) $>$ Stat $>$ Power and Sample Size $>$ 1-Sample Poisson Rate:

```
TB > Power;
UBC> OneRate,
SUC> RCompare 90;
SUBC> PNull 100;
SUBC> Alternative 0;
SUBC> Alpha 0.05
UBC> Length 1.0
SUBC> Length 1.
UBC> GPCurve
```

Power and Sample Size
Test for 1-Sample Poisson Rate
esting rate $=100$ (versus not $=100$
1pha $=0.05$
Length" of observation = 1

Comparison Sample Target
Rate Size Power Actual Power
$\begin{array}{ll}\text { MTB }> & \text { Power; } \\ \text { SUBC }>\quad \text { OneRate }\end{array}$
SUBC> RCompare 110;
SUBC> Power 0.5
SUBC> RNull 100; \quad,
SUBC> Alpha 0.05 :
SUBC> Alpha 0.05;
SUBC> GPCurve.

Power and Sample Size

Test for 1-Sample Poisson Rate
Testing rate $=100$ (versus not $=100$)
Alpha $=0.05$
"Length" of observation = 1

Comparison Sample Target
Rate Size Power Actual Power
$\begin{array}{lrrr}110 & 4 & 0.5 & 0.515305\end{array}$

Example 5.2 For the hypothesis test of $H_{0}: \lambda=4$ versus $H_{A}: \lambda>4$ based on a sample of size $n=2$ units using $\alpha \leq 0.05$, determine the power to reject H_{0} when $\lambda=8$. Solution: Under H_{0}, the distribution of the observed number of counts x will be Poisson with $\mu_{x}=n \lambda_{0}=2 \times 4=8$. The acceptance interval for H_{0} will be $0 \leq x \leq 13$ because

$$
\begin{aligned}
(1-\text { Poisson }(0 \leq x \leq 12 ; 8)=0.064) & >0.05 \\
(1-\text { Poisson }(0 \leq x \leq 13 ; 8)=0.034) & <0.05
\end{aligned}
$$

so the exact significance level for the test will be $\alpha=0.034$. With $\lambda=8$, the power to reject H_{0} is

$$
\pi=1-\text { Poisson }(0 \leq x \leq 13 ; n \lambda=16)=0.725
$$

The count distributions under H_{0} and H_{A} are shown in Figure 5.1.

From Piface $>$ Generic Poisson test:

MINITAB V16 uses the normal approximation to the Poisson distribution so its answers are different from the exact answers. From MINITAB (V16) $>$ Stat $>$ Power and Sample Size > 1-Sample Poisson Rate:
$\begin{array}{ll}\text { SUBC> } & \text { OneRate; } \\ \text { SUBC> } & \text { Sample 2; } \\ \text { SUBC> } & \text { RCompare 8; } \\ \text { SUBC> } & \text { RNull 4; } \\ \text { SUBC> } & \text { Alternative 1; } \\ \text { SUBC> } & \text { Alpha 0.05; } \\ \text { SUBC> } & \text { Length 1.0; } \\ \text { SUBC> } & \text { GPCurve. }\end{array}$
Power and Sample Size
Test for 1-Sample Poisson Rate
Testing rate $=4$ (versus > 4)
Length" of observation $=1$

Comparison Sample
Rate Size Power
secify values for any two of the following:
secify values for any two of the following:
secify values for any two of the following:
Sample sizes:
Sample sizes:
Sample sizes:
power values:
power values:
power values:
OK Cancel
OK Cancel
OK Cancel

Exampler 5.3 For the hypothesis test of
transformation method with $\alpha=0.05$.
Solution: By Equation 5.16, the power to reject $H_{0}: \lambda=4$ when $\lambda=9$ is

$$
\begin{aligned}
\pi & =\Phi\left(-2 \sqrt{5}(\sqrt{9}-\sqrt{4})+z_{0.05}<z<\infty\right) \\
& =\Phi(-2.83<z<\infty) \\
& =0.9977
\end{aligned}
$$


```
MTB > Power;
SUBC>
SUBC> OneRate;
SUBC> Sample 5;
SUBC> RCompare
SUBC> Alternative 1;
SUBC> Alpha 0.05;
SUBC> Alpha 0.05;
SUBC> GPCurve.
Power and Sample Size
Test for 1-Sample Poisson Rate
Testing rate = 4 (versus > 4)
"Length" of observation = 1
Comparison Sample
    Rate 
```

Power and Sample Size for 1-Sample Poisson Rate		
Specify values for any two of the following:		
Sample sizes:	5	
Comparison rates:	9	
Power values:		
Hypothesized rate:		
	Options...	Graph...
Help	@ ${ }^{\prime}$	Cancel

Solution: By Equation 5.17 the necessary sample size is

$$
n=\frac{1}{4}\left(\frac{1.645+1.282}{\sqrt{15}-\sqrt{10}}\right)^{2}=4.2
$$

which rounds up to $n=5$ sampling units.

From Piface $>$ Generic Poisson test:

㳕 Power of a Simple Poisson Test		$\square \square$
Options Help		
lambda0		
Value \vee	10	OK
alternative	lambda $>$ lambda0	\checkmark
apha	． 05	
Boundaries of acceptance region		
	uper $=61$	
size $=.04239$		
lambda 四		
Value v	15	ok
n 四		
Value v	5	OK
power		
Value \checkmark	． 9288	OK
Java Applet	Window	

```
MTB > Power;
SUBC> Unef
SUBC> SeRate;
SUBC> Sample 5;
SUBC> RNull 4;
SUBC> Alternative 1;
SUBC> Alpha 0.05;
SUBC> Alpha 0.05;
SUBC> GPCurve.
Power and Sample Size
Test for 1-Sample Poisson Rate
Testing rate = 4 (versus > 4)
Testing rate = 4 (versus > 4
"Length" of observation = 1
Comparison Sample
|\mp@code{Comparison }}\begin{array}{rlr}{\mathrm{ Rample }}&{}\\{\mathrm{ Rate }}&{\mathrm{ Size }}&{\mathrm{ Power }}\\{9}&{5}&{0.995733}
    OneRate;
    Sample 5;
    RCompare
```

Power and Sample Size for 1-Sample Poisson Rate
Specify values for any two of the following:
Sample sizes:
Gomparison rates:
Power values:
5
Hypothesized rate: 4
Oetions...
Graph...
Help
\square
Cancel

5.2 Two Poisson Counts

Example 5.5 What optimal sample sizes are required to estimate the difference between two Poisson means with 30% precision if the means are expected to be $\lambda_{1}=25$ and $\lambda_{2}=16$?
Solution: The difference between the means is expected to be $\Delta \lambda=9$, so the confidence interval half-width must be 30% of that, or

$$
\delta=0.3 \times 9=2.7
$$

From Equation 5.24, the optimal sample size ratio is

$$
\frac{n_{1}}{n_{2}}=\sqrt{\frac{\lambda_{1}}{\lambda_{2}}}=\sqrt{\frac{25}{16}}=1.25
$$

From Equation 5.22, with $\alpha=0.05$, the sample size n_{1} must be

$$
n_{1}=\left(\frac{1.96}{2.7}\right)^{2}(25+1.25 \times 16)=23.7
$$

and the sample size n_{2} must be

$$
n_{2}=\frac{n_{1}}{\left(\frac{n_{1}}{n_{2}}\right)}=\frac{23.7}{1.25}=18.96,
$$

which round up to $n_{1}=24$ and $n_{2}=19$.
Example 5.6 How many Poisson counts are required to estimate the ratio of the means of two independent Poisson distributions to within 20% of the true ratio with 95% confidence if the sample sizes will be the same and the ratio of the means is expected to be $\lambda_{1} / \lambda_{2} \simeq 2$?

Solution: With $n_{1} / n_{2}=1, \lambda_{1} / \lambda_{2}=2, z_{0.025}=1.96$, and $\delta=0.02$ in Equation 5.30, the number of Poisson counts required in the first sample is

$$
x_{1}=(1+1 \times 2)\left(\frac{1.96}{0.2}\right)^{2}
$$

$=289$.
The corresponding required counts in the second sample are about half of the counts in the first: $x_{2}=289 / 2=145$.
Example 5.7 Determine the power to reject $H_{0}: \lambda_{1}=\lambda_{2}$ in favor of $H_{A}: \lambda_{1}<\lambda_{2}$ when $\lambda_{1}=10, n_{1}=8$ and $\lambda_{2}=15, n_{2}=6$. Use the large-sample normal approximation, square root transform, and F test methods with $\alpha=0.05$.
Solution: The expected number of counts from the first $\left(x_{1}\right)$ and second $\left(x_{2}\right)$ populations are both large enough to justify the large sample approximation method. By this method the power is

$$
\begin{aligned}
\pi & =\Phi\left(-\infty<z<\frac{15-10}{\sqrt{\frac{15}{6}+\frac{10}{8}}}-1.645\right) \\
& =\Phi(-\infty<z<0.937) \\
& =0.826 .
\end{aligned}
$$

By the log-transformation method the power is

$$
\begin{aligned}
\pi & =\Phi\left(-\infty<z<\frac{\log (15 / 10)}{\sqrt{\frac{1}{6 \times 15}+\frac{1}{8 \times 10}}}-1.645\right) \\
& =\Phi(-\infty<z<0.994) \\
& =0.840 .
\end{aligned}
$$

By the square-root transform method the power is

$$
\begin{aligned}
\pi & =\Phi\left(-\infty<z<\frac{\sqrt{15}-\sqrt{10}}{\frac{1}{2} \sqrt{\frac{1}{8}+\frac{1}{6}}}-1.645\right) \\
& =\Phi(-\infty<z<1.01) \\
& =0.838
\end{aligned}
$$

By the F test method the power is

$$
\begin{aligned}
\pi & =P\left(\frac{10}{15} F_{0.95,2(6)(15), 2(8)(10)}<F<\infty\right) \\
& =P(0.86<F<\infty) \\
& =0.837
\end{aligned}
$$

MINITAB V16 supports the two-sample Poisson method but only for equal sample sizes.
By the F test method using Piface> Two variances (F Test) with $n_{1}=2 \times 6 \times 15=180$ and $n_{2}=2 \times 8 \times 10=160$:

. Test of equality of two variances		$\square \square$			
Options Help					
n1	『 Variance 1				\square
Value $\checkmark 180$	ok	Value \checkmark	10		OK
n2	Variance 2				\square
Value $\checkmark 160$	OK	Value \checkmark	15		ок
\ulcorner Equal ns	Alternative			Var1 < Var2	\checkmark
Alpha		Power			\square
Value \checkmark. 05	ок	Value \checkmark	83		ок

By the F test method using PASS $>$ Variance $>$ Variance: 2 Groups:

Example 5.8 What minimum total counts are required for the two-sample counts test to detect a factor of two difference between the count rates with 90% power? Assume that the two sample sizes will be equal.
Solution: The hypotheses to be tested are $H_{0}: \lambda_{1} / \lambda_{2}=1$ versus $H_{A}: \lambda_{1} / \lambda_{2}>1$. From Equation 5.45 , which is expressed in terms of the ratio of the two means, the number of
count events x_{1} required to reject H_{0} when $\lambda_{1} / \lambda_{2}=2$ is

$$
\begin{aligned}
x_{1} & =\left(1+\frac{\lambda_{1}}{\lambda_{2}}\right)\left(\frac{z_{\alpha}+z_{\beta}}{\ln \left(\lambda_{1} / \lambda_{2}\right)}\right)^{2} \\
& =(1+2)\left(\frac{1.645+1.282}{\ln (2)}\right)^{2} \\
& =54 .
\end{aligned}
$$

Because $\lambda_{2}=\lambda_{1} / 2$, the corresponding number of x_{2} counts is $x_{2}=54 / 2=27$.
From MINITAB (V16) $>$ Stat $>$ Power and Sample Size $>$ 2-Sample Poisson Rate:

> ITB $>$ Power;
> UUC> TwoRate,
> SUBC> RCompare 2
> UBC> Power 0.90;
> SUBC> Alternative 1;
> SUBC> Alpha 0.05;
> SUBC> Length 1.0
> SUBC> GPCurve.

Power and Sample Size
Test for 2-Sample Poisson Rate
Testing comparison rate $=$ baseline rate (versus >)
Calculating power for baseline rate $=1$
"Lengths" of observation for sample 1 , sample $2=1$, 1
Comparison Sample Target
Rate Size Power Actual Power
The sample size is for each group.
By trial and error using the F test method in Piface $>$ Two variances (F Test), 90% power is obtained with $x_{1}=192 /(2 \times 2)=48$ and $x_{2}=48 /(2 \times 2)=24$:

5.3 Tests for Many Poisson Counts

Example 5.9 In a test for differences between mean counts from five different processes, determine the power to reject $H_{0}: \lambda_{i}=\lambda_{j}$ for all i, j pairs when $\lambda_{1}=\lambda_{2}=\lambda_{3}=16$, $\lambda_{4}=9, \lambda_{5}=25$ and $n=3$ units from each process are inspected. The number of counts will be reported for each unit. Assume that the test will be performed using one-way ANOVA applied to the square root transformed counts.
Solution: After the square root transform, the transformed treatment means are $\lambda_{1}^{\prime}=\lambda_{2}^{\prime}=\lambda_{3}^{\prime}=4, \lambda_{4}^{\prime}=3$, and $\lambda_{5}^{\prime}=5$. The grand transformed mean is $\overline{\lambda^{\prime}}=4$, so the treatment biases relative to the grand mean are $0,0,0,-1$, and 1 , respectively. The ANOVA F test noncentrality parameter is then

$$
\phi=\frac{E\left(S S_{\text {Treatment }}\right)}{E\left(M S_{\epsilon}\right)}=\frac{3\left(0^{2}+0^{2}+0^{2}+(-1)^{2}+(1)^{2}\right)}{\left(\frac{1}{2}\right)^{2}}=24
$$

where $E\left(M S_{\epsilon}\right)=\left(\sigma^{\prime}\right)^{2}=\left(\frac{1}{2}\right)^{2}$ is the error variance of the transformed counts. The ANOVA will have $d f_{\text {Treatment }}=4$ and $d f_{\epsilon}=15-1-4=10$, so the F test critical value will be $F_{0.95,4,24}=3.48$. The power to reject H_{0} is then given by Equation 8.1:

$$
\begin{aligned}
F_{1-\alpha} & =F_{1-\pi, \phi} \\
3.48 & =F_{1-\pi, 24} \\
3.48 & =F_{0.11,24}
\end{aligned}
$$

so the power is $\pi=0.89$ to reject H_{0} for the specified set of means.
Example 5.10 In a test for differences among the means of five Poisson populations, determine the probability of rejecting $H_{0}: \lambda_{i}=\lambda_{0}$ for all i when $\lambda_{i}=\{16,16,16,12,20\}$. The number of units inspected is $n_{i}=4$ for all i.
Solution: Given the Poisson means specified under H_{A}, the value of λ_{0} under H_{0} is given by

$$
\lambda_{0}=\frac{1}{5}(16+16+16+12+20)=16 .
$$

With $n_{i}=n=4$, the noncentrality parameter is given by

$$
\begin{aligned}
\phi & =n \sum_{i=1}^{k} \frac{\left(\lambda_{A, i}-\lambda_{0}\right)^{2}}{\lambda_{0}} \\
& =4\left(\frac{(0)^{2}}{16}+\frac{(0)^{2}}{16}+\frac{(0)^{2}}{16}+\frac{(-4)^{2}}{16}+\frac{(4)^{2}}{16}\right)=8 .
\end{aligned}
$$

The power is determined from Equation 5.61:

$$
\chi_{0.95}^{2}=9.49=\chi_{0.395,8}^{2}
$$

where the central and noncentral χ^{2} distributions both have $\nu=5-1=4$ degrees of freedom, so the power is $\pi=0.605$.

5.4 Correcting for Background Counts

Example 5.11 In a two-sample test for counts, what common sample size $n=n_{1}=n_{2}$ is required to distinguish $\lambda_{1}=\lambda_{2}=6$ from $\lambda_{1}=6$, $\lambda_{2}=15$ with 90% power in the presence of a background count rate of $\lambda_{0}=10$?
Solution: From Equation 5.55, modified to account for the background count rate, the necessary sample size to reject $H_{0}: \lambda_{1}=\lambda_{2}$ in favor of H_{A} : $\lambda_{1}<\lambda_{2}$ with 90% power and $\alpha=0.05$ is given by

$$
\begin{align*}
n & =\frac{1}{2}\left(\frac{z_{\alpha}+z_{\beta}}{\left(\sqrt{\lambda_{2}+\lambda_{0}}-\sqrt{\lambda_{1}+\lambda_{0}}\right)}\right)^{2} \tag{5.1}\\
& =\frac{1}{2}\left(\frac{1.645+1.282}{\sqrt{25}-\sqrt{16}}\right)^{2}=5 .
\end{align*}
$$

Chapter 6

Regression

6.1 Linear Regression

Example 6.1 Designed experiments frequently involve two or three equally weighted levels of x. Compare the sample sizes required for these two important special cases if they must both deliver a β_{1} confidence interval half-width δ and the observations are taken over the same x range from $x_{\min }$ to $x_{\max }$. For the three-level case, assume that the middle level will be midway between $x_{\min }$ and $x_{\max }$.
Solution: The subscripts 2 and 3 will be used to indicate parameters from the two-level and three-level cases, respectively. For the two-level case, from Equation 6.12 with $k_{2}=2$ and $\Delta x_{2}=x_{\text {max }}-x_{\text {min }}$, the sample size per x level will be

$$
\begin{align*}
n_{2} & \geq 2\left(\frac{t_{\alpha / 2} \widehat{\sigma}_{\epsilon}}{\delta \Delta x_{1}}\right)^{2} \\
& \geq 2\left(\frac{t_{\alpha / 2} \widehat{\sigma}_{\epsilon}}{\delta\left(x_{\max }-x_{\min }\right)}\right)^{2} \tag{6.1}
\end{align*}
$$

For the three-level case with $k_{3}=3$ and $\Delta x_{3}=\frac{1}{2}\left(x_{\max }-x_{\min }\right)$ the sample size per x level will be

$$
\begin{align*}
n_{3} & \geq \frac{1}{2}\left(\frac{t_{\alpha / 2} \widehat{\sigma}_{\epsilon}}{\delta \Delta x_{2}}\right)^{2} \\
& \geq 2\left(\frac{t_{\alpha / 2} \widehat{\sigma}_{\epsilon}}{\delta\left(x_{\max }-x_{\min)}\right.}\right)^{2} . \tag{6.2}
\end{align*}
$$

Because $n_{2}=n_{3}, N_{2}=2 n_{2}$, and $N_{3}=3 n_{2}$, the two experiments appear to have the same ability to resolve β_{1} even though the three-level experiment requires 50% more observations! This means that the middle observations in the three-level experiment are effectively wasted for the purpose of estimating β_{1}. This statement is not entirely true because the middle observations in the three-level experiment do add error degrees of freedom, which potentially decrease n_{3} compared to n_{2} for the same δ. In general, the purpose of using three levels of x in an experiment is not to improve the precision of the β_{1} estimate; rather, three levels are used to allow a linear lack of fit test, which is not possible using just two levels of x.

Example 6.2 Compare the sample sizes required to estimate the slope parameter with equal precision for two experiments if x is uniformly distributed over the interval from $x_{\min }$ to $x_{\max }$ in the first experiment and if x has two levels, $x_{\min }$ and $x_{\max }$, in the second experiment.
Solution: From Equations 6.9 and 6.13 the ratio of the total number of observations required by the two experiments is

$$
\frac{N_{\text {uniform } x}}{N_{\text {two levels of } x}} \simeq \frac{12\left(\frac{t_{\alpha / 2} \widehat{\sigma}_{\epsilon}}{\delta\left(x_{\text {max }}-x_{\text {min }}\right)}\right)^{2}}{4\left(\frac{t_{\alpha / 2} \widehat{\sigma}_{\epsilon}}{\delta \Delta x}\right)^{2}}
$$

where the $t_{\alpha / 2}$ values may differ a bit because of the difference in error degrees of freedom. Both experiments cover the same x range, so $\Delta x=x_{\max }-x_{\min }$ and the sample size ratio reduces to:

$$
\frac{N_{\text {uniform } x}}{N_{\text {two levels of } x}} \simeq 3
$$

That is, three times as many observations are required in an experiment that uses uniformly distributed x values than if the x values are concentrated at the ends of the x range. Because we saw in Example 6.1 that the experiment with three evenly spaced, equally weighted levels of x requires 1.5 times as many observations as the two-level experiment, other methods of taking evenly spaced, equally weighted observations of x must give experiment sample size ratios between 1.5 and 3 . Obviously, the two-level equally weighted method is the most efficient method for specifying x values for an experiment.

Example 6.3 For an experiment to be analyzed by linear regression with a single predictor, how many observations are required to reject $H_{0}: \beta_{1}=0$ in favor of $H_{A}: \beta_{1} \neq 0$ with 90% power for $\beta_{1}=10$ when a) the distribution of x values will be normal with $\mu_{x} \simeq 15$ and $\sigma_{x} \simeq 2$; \mathbf{b}) an equal number of observations will be taken at $x=10$ and $x=20$; c) uniformly distributed values of x will be used over the interval $10 \leq x \leq 20$; and d) an equal number of observations will be taken at $x=10,15$, and 20 . Experience with the process tells us the standard error of the model is expected to be $\sigma_{\epsilon}=30$.

Solution:

a) With $t \simeq z$ in Equation 6.19, the first iteration to find N gives

$$
N=\left(z_{0.025}+z_{0.10}\right)^{2}\left(\frac{30}{10 \times 2}\right)^{2}=24
$$

Further iterations indicate that the required sample size is $N=26$.
From Piface $>$ Linear regression:

娩 Linear Regression		$\square \square$		
Options Help				
No．of predictors	四	Error SD		『
Value $\checkmark 1$	OK	Value \vee	30	OK
SD of $\mathrm{x}[\mathrm{j}]$	四	Detectable beta［j］		\square
Value $\checkmark 2$	OK	Value \vee	10	OK
		Sample size		\square
		Value \vee	26	OK
Alpha	［10	Power		回
Value \checkmark ． 05	OK	Value \vee	9033	OK
V Two－tailed		Solve for	Sample size	\checkmark
Java Applet Window				

b) The standard deviation of the x values will be

$$
\sigma_{x}=\sqrt{\frac{S S_{x}}{N}}=\sqrt{\frac{1}{N} \frac{N}{2}\left((-5)^{2}+(5)^{2}\right)}=5
$$

The first iteration to find N, with $t \simeq z$, gives

$$
N=\left(z_{0.025}+z_{0.10}\right)^{2}\left(\frac{30}{10 \times 5}\right)^{2}=4
$$

Further iterations indicate that $N=7$ observations are required.
From Piface> Linear regression:

c) For uniformly distributed x, the standard deviation of the x values is

$$
\sigma_{x}=\frac{x_{\max }-x_{\min }}{\sqrt{12}}=\frac{10}{\sqrt{12}}=2.89
$$

With $t \simeq z$, the first iteration to find N gives

$$
N=\left(z_{0.025}+z_{0.10}\right)^{2}\left(\frac{30}{10 \times 2.89}\right)^{2}=12
$$

Further iterations indicate that $N=14$ observations are required. From Piface $>$ Linear regression:

d) The standard deviation of the x values will be

$$
\sigma_{x}=\sqrt{\frac{S S_{x}}{N}}=\sqrt{\frac{1}{N} \frac{N}{3}\left((-5)^{2}+(0)^{2}+(5)^{2}\right)}=4.0825
$$

The first iteration to find N, with $t \simeq z$, gives

$$
N=\left(z_{0.025}+z_{0.10}\right)^{2}\left(\frac{30}{10 \times 4.0825}\right)^{2}=6
$$

Further iterations indicate that $N=9$ observations are required.

From Piface> Linear regression:

Example 6.4 What is the power to reject H_{0} for the situation described in Example 6.3a if the sample size is $N=20$? Solution: From Equation 6.18 with $S S_{x}=N \sigma_{x}^{2}$ and $d f_{\epsilon}=20-2=18$,

$$
\begin{aligned}
t_{\beta} & =\frac{\left|\beta_{1}\right| \sqrt{N} \sigma_{x}}{\sigma_{\epsilon}}-t_{0.025,18} \\
& =\frac{10 \sqrt{20} 2}{30}-2.10 \\
& =0.881
\end{aligned}
$$

The power, as given by Equation 6.17, is

$$
\begin{aligned}
\pi & =P(-\infty<t<0.881) \\
& =0.805
\end{aligned}
$$

缯Linear Regression		$\square \square$		
Options Help				
No. of predictors	OK	Error SD		\square
Value $\checkmark 1$		Value $\checkmark 30$		ok
SD of x[j]	ок	Detectable beta[j]		\square
Value $\checkmark 2$		Value $\checkmark 10$		ok
		Sample size		\square
		Value \checkmark	20	OK
Apha	ок	Power		回
Value \checkmark. 05		Value v	8049	ok
- Two-tailed		Solve for	Sample size	\checkmark

From PASS $>$ Regression $>$ Linear Regression:

EPASS: Regression: Linear Output
 I
 Linear Regression Power Analysis

Numeric Results for Two-Sided Testing of $B=B 0$ where $B 0=0.00$

	Sample		Standard Deviation	Standard Deviation		
	Size	Slope	of X	of Residuals		
Power	(N)	(B)	(SX)	(S)	Alpha	Beta
0.80491	20	10.00	2.00	30.00	0.05000	0.19509

References
Neter, J Wasserman W, and Kutner, M. 1983 Applied Linear Regression Models Richard D Imin, Inc. Chicago, llinois.

Report Definition
Power is the probability of rejecting a false null hypothesis. It should be close to one.
N is the size of the sample drawn from the population. To conserve resources, it should be small.
00 is the slope under the null hypothesis.
B is the slope at which the power is calculated
SX is the standard deviation of the X values
S is the standard deviation of the residuals.
Alpha is the probability of rejecting a true null hypothesis. It should be smal
Beta is the probability of accepting a false null hypothesis It should be smal
Summary Statements
A sample size of 20 achieves 80% power to detect a change in slope from 0.00 under the null
hypothesis to 10.00 under the atternative hypothesis when the standard deviation of the X 's is 2.00 , the standard deviation of the residuals is 30.00 , and the two-sided significance level is 0.05000

6.2 Logistic Regression

Example 6.5 What sample size is required for an experiment to be analyzed by logistic regression if $H_{0}: \beta_{1}=0$ should be rejected in favor of H_{A} : $\beta_{1} \neq 0$ with 90% power when x is dichotomous with associated proportions $p_{1}=0.04$ and $p_{2}=0.08$?
Solution: The odds ratio for the given proportions is

$$
O R=\frac{p_{1} /\left(1-p_{1}\right)}{p_{2} /\left(1-p_{2}\right)}=\frac{0.04 / 0.96}{0.08 / 0.92}=0.479 .
$$

The required sample size is given by Equation 4.97:

$$
n=\left(\frac{z_{0.025}+z_{0.10}}{\ln (0.479)}\right)^{2}\left(\frac{1}{0.04(0.96)}+\frac{1}{0.08(0.92)}\right)=770 .
$$

From PASS $>$ Regression $>$ Logistic Regression the total sample size is:

Example 6.6 What sample size is required for an experiment to be analyzed by logistic regression if $H_{0}: \beta_{1}=0$ should be rejected in favor of H_{A} : $\beta_{1} \neq 0$ with 90% power when x is normally distributed with expected success proportions $p(x=\mu)=0.14$ and $p(x=\mu+\sigma)=0.22$.
Solution: From Equation 6.22 the required sample size is

$$
n=\frac{(1.96+1.282)^{2}}{0.14(0.86)\left(\ln \left(\frac{0.14 / 0.86}{0.22 / 0.78}\right)\right)^{2}}=289
$$

From PASS $>$ Regression $>$ Logistic Regression

PASS: Regression: Logistic Output

\section*{Numeric Results
 | Power | N | P0 | P1 | Odds | Ratio | Rquared | Alpha |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | | Seta | |
| ---: | :--- |
| 0.89912 | 288 |}

References
Hsieh, F. Y., Block, D.A , and Larsen, M.D. 1998. 'A Simple Method of Sample Size Calculation for Linear and logisticRegression' Statistics in Medicine Volume 17 pages 1623-1634.

Report Definitions
Power is the probabilty of rejecting a false null hypothesis. It should be close to one.
N is the size of the sample drawn from the population
FO is the response probability at the mean of X.
P1 is the response probability when X is increased to one standard deviation above the mean
Odds Ratio is the odds ratio when P 1 is on top. That is, it is $[\mathrm{P} 1 /(1-\mathrm{P} 1) \mathrm{Y}(\mathrm{P}) /(1-\mathrm{PO})]$.
R-Squared is the $R 2$ achieved when X is regressed on the other independent variables in the regression Apha is the probability of rejecting a true null hypothesis

Summary Statements
Alogistic regression of a binary response variable ($($) on a continuous, normally distributed variable (X) with a sample size of 288 observations achieves 90% power at a 0.05000 significance level to detect a change in Prob $(Y=1)$ from the value of 0.140 at the mean of X to 0.220 when X is increased to one standard deviation above the mean. This change corresponds to
an odds ratio of 1.733 .

Chapter 7

Correlation and Agreement

7.1 Pearson's Correlation

Example 7.1 Determine the number of paired observations required to obtain the following confidence interval for the population correlation:

$$
P(0.9<\rho<0.99)=0.95 .
$$

Solution: The Fisher's Z-transformed confidence interval is

$$
\begin{aligned}
P\left(Z_{0.9}<Z_{\rho}<Z_{0.99}\right) & =0.95 \\
P\left(1.472<Z_{\rho}<2.647\right) & =0.95 .
\end{aligned}
$$

Then with $\alpha=0.05$ in Equation 7.10, the required sample size is

$$
\begin{aligned}
n & =4\left(\frac{1.96}{2.647-1.472}\right)^{2}+3 \\
& =15
\end{aligned}
$$

Example 7.2 An experiment is planned to test $H_{0}: \rho=0.9$ versus $H_{A}: \rho<0.9$ on the basis of $n=28$ paired observations. Determine the power of the test to reject H_{0} when $\rho=0.7$.
Solution: Under H_{0} following Fisher's transform we have

$$
\left(\mu_{Z}\right)_{0}=\frac{1}{2} \ln \left(\frac{1+0.9}{1-0.9}\right)=1.472
$$

and by Equation 7.4

$$
\sigma_{Z}=\frac{1}{\sqrt{28-3}}=0.2
$$

For the one-sided left-tailed test, the critical value of Z that distinguishes the accept/reject regions is given by

$$
\begin{aligned}
Z_{A / R} & =\left(\mu_{Z}\right)_{0}-z_{\alpha} \sigma_{z} \\
& =1.472-z_{0.05}(0.2) \\
& =1.472-1.645(0.2) \\
& =1.143 .
\end{aligned}
$$

The corresponding Z value under H_{A} when $\rho=0.7$ is

$$
\left(\mu_{Z}\right)_{A}=\frac{1}{2} \ln \left(\frac{1+0.7}{1-0.7}\right)=0.867
$$

Then the power to reject H_{0} when $\rho=0.7$ is

$$
\begin{aligned}
\pi & =\Phi\left(-\infty<Z<Z_{A / R} ;\left(\mu_{Z}\right)_{A}, \sigma_{Z}\right) \\
& =\Phi(-\infty<Z<1.143 ; 0.867,0.2) \\
& =\Phi(-\infty<z<1.38) \\
& =0.916 .
\end{aligned}
$$

From PASS $>$ Correlations $>$ Correlations: One:

[^0]

Solution: The Fisher-transformed difference between the two correlations under H_{A} is

$$
\begin{aligned}
\Delta Z & =Z_{1}-Z_{2} \\
& =\frac{1}{2} \ln \left(\frac{1+0.99}{1-0.99}\right)-\frac{1}{2} \ln \left(\frac{1+0.95}{1-0.95}\right) \\
& =0.815 .
\end{aligned}
$$

From Equations 7.11 and 7.14 with $\alpha=0.05$ the power is

$$
\begin{aligned}
\pi & =\Phi\left(-\infty<z<\left(\frac{0.815}{\sqrt{\frac{2}{30-3}}}-1.96\right)\right) \\
& =\Phi(-\infty<z<1.03) \\
& =0.85
\end{aligned}
$$

From PASS $>$ Correlations $>$ Correlations: Two:

Example 7.4 What sample size should be drawn from two populations to perform the two-sample test for correlation ($H_{0}: \rho_{1}=\rho_{2}$ versus $H_{A}: \rho_{1} \neq \rho_{2}$) with 90% power to reject H_{0} when $\rho_{1}=0.9$ and $\rho_{2}=0.8$?

Solution: The Fisher-transformed difference between the two correlations is

$$
\begin{aligned}
\Delta Z & =Z_{1}-Z_{2} \\
& =\frac{1}{2} \ln \left(\frac{1+0.9}{1-0.9}\right)-\frac{1}{2} \ln \left(\frac{1+0.8}{1-0.8}\right) \\
& =0.374 .
\end{aligned}
$$

From Equation 7.15 with $\alpha=0.05$ and $\beta=0.10$ the required common sample size is

$$
\begin{aligned}
n & =2\left(\frac{1.96+1.28}{0.374}\right)^{2}+3 \\
& =154
\end{aligned}
$$

From PASS $>$ Correlations $>$ Correlations: Two:

Example 7.5 Determine the power to reject $H_{0}: \rho^{2}=0$ when in fact $\rho^{2}=0.6$ based on a sample of $n=20$ observations taken with four random covariates.
Solution: The regression model for y as a function of the four predictors will have $d f_{\text {model }}=k=4$ model degrees of freedom and $d f_{\epsilon}=n-k-1=20-4-1=15$ error degrees of freedom. The F distribution noncentrality parameter from Equation 7.19 with $\rho^{2}=0.6$ is

$$
\phi=20 \frac{0.6}{1-0.6}=30
$$

From Equation 7.18 we have

$$
\begin{aligned}
F_{0.95} & =F_{1-\pi, 30} \\
3.056 & =F_{0.024,30}
\end{aligned}
$$

so the power is $\pi=1-0.024=0.976$
 Dialog that there is a discrepancy between it and the references.)

7.2 Intraclass Correlation

 must be sampled if the desired confidence interval for $I C C$ is $P(0.7<I C C<0.9)=0.95$?
Solution: By Equation 7.31, the desired confidence interval for $I C C$ transforms into the following confidence interval for $Z_{I C C}$:

$$
P\left(0.867<Z_{I C C}<1.472\right)=0.95
$$

Then, from Equation 7.36 with $r=2$ observations per subject and $\alpha=0.05$, the number of subjects required is

$$
\begin{aligned}
n & =4\left(\frac{1.96}{1.472-0.867}\right)^{2}+\frac{3}{2} \\
& =44
\end{aligned}
$$

Example 7.7 Confirm the answer to Example 7.6 using the method of Donner and Koval.

Solution: Assuming that $\widehat{I C C}=0.8$, the sample size according to Donner and Koval is given by Equation 7.38:

$$
\begin{aligned}
n & =\frac{8}{2(2-1)}\left(\frac{1.96(1-0.8)(1+(2-1) 0.8)}{0.9-0.7}\right)^{2} \\
& =50
\end{aligned}
$$

which is in reasonable agreement with the sample size determined by the Fisher's transformation method.

Example 7.8 How many subjects are required in an experiment to reject $H_{0}: I C C=0.6$ with 80% power when $I C C=0.8$ and two raters will rate each subject? Confirm the sample size by calculating the exact power.
Solution: From Equation 7.31 the $Z_{I C C}$ values corresponding to $I C C=0.6$ and $I C C=0.8$ are $Z_{0}=0.693$ and $Z_{1}=1.099$, respectively. From Equation 7.42 with $r=2$ and $\alpha=0.05$, the approximate sample size is

$$
\begin{aligned}
n & =\left(\frac{z_{0.05}+z_{0.20}}{Z_{1}-Z_{0}}\right)^{2}+\frac{3}{2} \\
& =\left(\frac{1.645+0.84}{1.099-0.693}\right)^{2}+\frac{3}{2} \\
& =39
\end{aligned}
$$

The exact power is given by Equation 7.39 where the F distribution has $d f_{1}=39-1=38$ numerator degrees of freedom and $d f_{2}=39(2-1)=39$ denominator degrees of freedom. The power is given by

$$
\begin{aligned}
\pi & =P\left(\frac{1+2\left(\frac{0.6}{1-0.6}\right)}{1+2\left(\frac{0.8}{1-0.8}\right)} F_{0.95}<F<\infty\right) \\
& =P(0.760<F<\infty) \\
& =0.80
\end{aligned}
$$

which is in excellent agreement with the target power.
From PASS $>$ Correlation $>$ Intraclass Correlation:

7.3 Cohen's Kappa

Example 7.9 How many units should two operators evaluate in an attribute inspection agreement experiment to be analyzed using Cohen's κ if the true value of the unknown κ must be determined to within ± 0.10 with 95% confidence? A preliminary experiment indicated that $\kappa \simeq 0.85$ and $p_{e} \simeq 0.5$.
Solution: With $\alpha=0.05$ and $\delta=0.10$ in Equation 7.55 , the required sample size is

$$
n=\frac{0.85(1-0.85)}{1-0.5}\left(\frac{1.96}{0.10}\right)^{2}=98
$$

Example 7.10 Calculate the power to reject $H_{0}: \kappa=0.4$ in favor of $H_{A}: \kappa>0.4$ when $\kappa=0.7$ if a sample of size $n=70$ is allocated to $k=3$ categories in the ratio $0.4: 0.5: 0.1$. Solution: The expected chance agreement by Equation 7.46 is $p_{e}=0.4^{2}+0.5^{2}+0.1^{2}=0.42$. The two κ values of interest have intermediate values not covered by the large- or small- κ approximations, so it is necessary to estimate $\sigma_{\widehat{\kappa}}$ using Equation 7.47. Under H_{0} with $\kappa=0.4$ and $p_{e}=0.42$ in Equation 7.44 , we have

$$
\begin{aligned}
p_{o} & =0.4(1-0.42)+0.42 \\
& =0.652,
\end{aligned}
$$

so

$$
\begin{aligned}
\sigma_{\widehat{\kappa}_{0}} & \simeq \frac{1}{1-0.42} \sqrt{\frac{0.652(1-0.652)}{70}} \\
& \simeq 0.0982 .
\end{aligned}
$$

Under H_{A} with $\kappa=0.7$ we have

$$
\begin{aligned}
p_{o} & =0.7(1-0.42)+0.42 \\
& =0.826,
\end{aligned}
$$

so

$$
\begin{aligned}
\sigma_{\widehat{\kappa}_{1}} & \simeq \frac{1}{1-0.42} \sqrt{\frac{0.826(1-0.826)}{70}} \\
& \simeq 0.0781
\end{aligned}
$$

Then with $\alpha=0.05, z_{\beta}$ is given by Equation 7.58:

$$
\begin{aligned}
z_{\beta} & =\frac{(0.7-0.4)-1.645(0.0982)}{0.0781} \\
& =1.77
\end{aligned}
$$

and the power is given by Equation 7.57:

$$
\begin{aligned}
\pi & =\Phi(-\infty<z<1.77) \\
& =0.962
\end{aligned}
$$

 be inspected is evenly split between the two categories?
 $\beta=1-\pi=0.10$, and $\delta=0.4-0=0.4$ in Equation 7.59 , the required sample size is

$$
n \simeq \frac{0.5}{1-0.5}\left(\frac{z_{0.05}+z_{0.10}}{\delta}\right)^{2}=\left(\frac{1.645+1.282}{0.40}\right)^{2}=54
$$

 four categories.
Solution: From Equation 7.51 with $k=4$ categories, $p_{e} \simeq 0.25$. With $\alpha=0.05, \beta=1-\pi=0.10$, and $\delta=0.9-0.8=0.1$ in Equation 7.60 , the required sample size is

$$
\begin{aligned}
n & \simeq \frac{1}{1-0.25}\left(\frac{1.645 \sqrt{0.8 \times 0.2}+1.282 \sqrt{0.9 \times 0.1}}{0.9-0.8}\right)^{2} \\
& \simeq 145
\end{aligned}
$$

7.4 Receiver Operating Characteristic (ROC) Curves

Example 7.13 What sample size is required to estimate the value of an ROC curve's $A U C$ to within ± 0.05 with 95% confidence if the $A U C$ value is expected to be about 90% ? Solution: The desired confidence interval has the form

$$
P(\widehat{A U C}-0.05<A U C<\widehat{A U C}+0.05)=0.95 .
$$

With $\alpha=0.05, A U C=0.90$, and $\delta=0.05$ in Equation 7.66 , the required sample size is

$$
\begin{aligned}
n & \simeq \frac{1-A U C}{2}\left(\frac{z_{0.025}}{\delta}\right)^{2} \\
& \simeq \frac{1-0.90}{2}\left(\frac{1.96}{0.05}\right)^{2} \\
& \simeq 77 .
\end{aligned}
$$

That is, about 77 positives and 77 negatives are required. The large-sample and large $A U C$ assumptions are reasonably satisfied, so this approximate sample size should be accurate.

SPASS: ROC Curve: 1 Output

One RoC Curve Power Analysis

Numeric Results for Testing AUC0 $=$ AUC1 with Continuous Data
Test Type $=$ Two-Sided. FPR1 $=0.0 . \quad$ FPR2 $=1.0 . \mathrm{B}=1.000$. Allocation Ratio $=1.000$.

Power	N+	N-	AUC0'	AUC1	Diff'	AUC0	AUC1	Diff	Alpha	Beta
0.5065	79	79	0.9000	0.9500	0.0500	0.9000	0.9500	0.0500	0.0500	0.4935

References
Hanley, J. A and McNeil, B. J 1983 ' A Method of Comparing the Areas under Receiver Operating Characteristic Curves Derived from the Same Cases.' Radiology, 148, 839-843. September, 1983.
Obuchowski, N. and McClish, D. 1997. 'Sample Size Determination for Diagnostic Accuracy Studies Involving Binormal ROC Curve Indices.' Statistics in Medicine, 16, pages 1529-1542.

Report Definitions

Power is the probability of rejecting a false null hypothesis.
$N+i$ is the sample size from the positive (diseased) population.
N - is the sample size from the negative (non-diseased) population
A C^{\prime} ' th ention Ratio ($\mathrm{R}=\mathrm{N}-/ \mathrm{N}+$)
AUC1' is the adjusted area under the ROC curve under the
Diff' is AUC1 - 'AUCD. This is the adjusted difference to be deternative hypothesis.
$A U C O$ is the actual area under the ROC curve under the null hypothesis
AUC1 is the actual area under the ROC curve under the atternative hypothesis.
Diff is AUC1 - AUCO. This is the difference to be detected.
Alpha is the probability of rejecting a true null hypothesis,
FPR1, FPR2 are the lower and upper bounds on the false positive rates
Bis the ratio of the standard deviations of the negative and positive groups.
Summary Statements
A sample of 79 from the positive group and 79 from the negative group achieve 51% power to
detect a difference of 0.0500 between the area under the ROC curve (AUC) under the null
hypothesis of 0.9000 and an AUC under the atternative hypothesis of 0.9500 using a two-sided
z-test at a significance level of 0.0500 . The data are continuous responses. The AUC is
the responses in the negive the thard deviation of the responses in the
positive group is 1.000 .

Example 7.14 What sample size is required to reject $H_{0}: A U C=0.9$ in favor of $H_{A}: A U C \neq 0.9$ with 90% power when $A U C=0.95$? Solution: With $\alpha=0.05$ in Equation 7.67, the required sample size is approximately

$$
\begin{aligned}
n & =\left(\frac{\sqrt{\frac{1-0.90}{2}} z_{0.025}+\sqrt{\frac{1-0.95}{2}} z_{0.10}}{0.95-0.90}\right)^{2} \\
& =\left(\frac{\sqrt{\frac{1-0.90}{2}} 1.96+\sqrt{\frac{1-0.95}{2}} 1.282}{0.95-0.90}\right)^{2} \\
& =165
\end{aligned}
$$

SPASS: ROC Curve: 1 Outpu

One RoC Curve Power Analysis

Numeric Results for Testing AUC0 $=$ AUC1 with Continuous Data
Test T ype $=$ Two-Sided. $\mathrm{FPR} 1=0.0 . \mathrm{FPR} 2=1.0 . \mathrm{B}=1.000$. Allocation Ratio $=1.000$.

Power	N+	N-	AUC0.	AUC1	Diffr	AUC0	AUC1	Diff	Alpha	Beta
0.9001	167	167	0.9000	0.9500	0.0500	0.9000	0.9500	0.0500	0.0500	0.0999

References
Hanley, J. A and McNeil, B. J. 1983. 'A Method of Comparing the Areas under Receiver Operating Characteristic
Curves Derived from the Same Cases.' Radiology, 148,839-843. September, 1983.
buchowski, N. and McClish, D. 1997. 'Sample Size Determination for Diagnostic Accuracy Studies Invoving Binormal ROC Curve Indices.' Statistics in Medicine, 16, pages 1529-1542

Report Definitions

Power is the probability of rejecting a false null hypothesis.
$\mathrm{N}+\mathrm{i}$ the sample size from the positive (diseased), population.
N - is the sample size from the negative (non-diseased) population
loc Ratio is the Sample Allocation Ratio ($\mathrm{R}=\mathrm{N}-/ \mathrm{N}+$)
Diff i AUC1 - 'AUCD This is the adjusted difference tor the alternative hypothesis
$A U C D$ is the actual area under the ROC curve under the null hypothesis.
AUC1 is the actual area under the ROC curve under the alternative hypothesis
Diff is AUC1 - AUCD. This is the difference to be detected.
Apha is the probability of rejecting a true null hypothesis.
FPR1, FPR2 are the lower and upper bounds on the false positive rates
B the ratio of the standard deviations of the negative and positive groups

Summary Statements

A sample of 167 from the positive group and 167 from the negative group achieve 90% power to
detect a difference of 0.0500 between the area under the ROC curve (AUC) under the null hypothesis of 0.9000 and an AUC under the alternative hypothesis of 0.9500 using a two-sided z-test at a significance level of 0.0500 . The data are continuous responses. The AUC is computed between false postive rates of 0.000 and 1.000. The rat ine standard deviation positive group is 1.000 .

Example 7.15 What sample size is required to reject $H_{0}: A U C=0.5$ versus $H_{A}: A U C>0.5$ with 90% power when $A U C=0.75$? Solution: With $\beta=0.10$ when $A U C=0.75$ in Equation 7.67, the required sample size is approximately

$$
\begin{aligned}
n & =\left(\frac{\sqrt{\frac{1}{6}} z_{0.05}+\sqrt{\frac{1-0.75}{2}} z_{0.10}}{0.75-0.50}\right)^{2} \\
& =\left(\frac{\sqrt{\frac{1}{6}} 1.645+\sqrt{\frac{1-0.75}{2}} 1.282}{0.75-0.50}\right)^{2} \\
& =21
\end{aligned}
$$

The large-sample assumption is only marginally satisfied, so this sample size may be somewhat inaccurate. From PASS $>$ Diagnostic Tests $>$ ROC Curve - 1 Test:

PASS: ROC Curve: 10 utput
 One ROC Curve Power Analysis

Numeric Results for Testing AUC0 $=$ AUC1 with Continuous Data
Test $\mathrm{Type}=$ One-Sided. $\mathrm{FPR} 1=0.0 . \mathrm{FPR} 2=1.0 . \mathrm{B}=1.000$. Allocation Ratio $=1.000$.

Power	N+	N-	AUC0'	AUC1	Diff	AUC0	AUC1	Diff	Alpha	Beta
0.9033	20	20	0.5000	0.7500	0.2500	0.5000	0.7500	0.2500	0.0500	0.0967

References
Hanley, J. A and McNeil, B. J. 1983. 'A Method of Comparing the Areas under Receiver Operating Characteristic
Curves Derved from the Same Cases.' Radiology, 148, 839-843. September, 1983.
buchowski, N. and McClish, D. 1997. 'Sample Size Determination for Diagnostic Accuracy Studies Involving Binormal ROC Curve Indices.' Statistics in Medicine, 16, pages 1529-1542.

Report Definitions

Power is the probability of rejecting a false null hypothesis.
$N+i$ s the sample size from the positive (diseased) population.
N - is the sample size from the negative (non-diseased) population
AUCD' is the adjusted are under the ROC curve
AUC1' is the adjusted area under the ROC curve under the nul hypothesis
Diff ' is AUC1 - 'AUCD. This is the adjusted difference to be deternative hypothesis.
AUCO is the actual area under the ROC curve under the null hypothesis.
AUC1 is the actual area under the ROC curve under the atternative hypothesis.
Diffis $A \cup C 1-A U C D$. This is the difference to be detected.
Alpha is the probability of rejecting a true null hypothesis.
PPR1 FPR2 are the ow accepting a false null hypothesis
B is the ratio of the standard deviations of the negative and posivive rates.
Summary Statements
A sample of 20 from the positive group and 20 from the negative group achieve 90% power to
detect a difference of 0.2500 between the area under the ROC curve (AUC) under the null
hypothesis of 0.5000 and an AUC under the atternative hypothesis of 0.7500 using a one-sided
-test at a signnicance level of 0.0500 . The data are continuous responses. The AUC is
of the responses in the negative group to the standard deviation of the responses in the
positive group is 1.000 .

7.5 Bland-Altman Plots

Example 7.16 What minimum sample size is required to demonstrate the agreement between two methods to measure length by the Bland-Altman method if the limits of agreement are $L O A_{U / L}= \pm 3 \mathrm{~cm}$ and the standard deviation of the differences had been estimated to be $\widehat{\sigma}_{d}=0.65 \mathrm{~cm}$ from historical data? Assume that the limits of agreement must cover 99% of the samples with 95% confidence and that there is no bias between the two methods, i.e., $\mu_{d}=0$.
Solution: The two-sided normal distribution tolerance interval factor k_{2} is given by

$$
\begin{aligned}
k_{2} & =\frac{L O A}{\widehat{\sigma}_{d}} \\
& =\frac{3 \mathrm{~cm}}{0.65 \mathrm{~cm}} \\
& =4.615 .
\end{aligned}
$$

With $\alpha=0.05$ and $Y=0.99$ in Appendix E, Table E.7, the smallest sample size that gives $k_{2} \leq 4.615$ is $n=10$.

Chapter 8

Designed Experiments

8.1 One-Way Fixed Effects ANOVA

Example 8.1 In a one-way classification design with four treatments and five observations per treatment, determine the power of the ANOVA to reject H_{0} if the treatment means are $\mu_{i}=\{40,55,55,50\}$. The four populations are expected to be normal and homoscedastic with $\sigma_{\epsilon}=8$.
Solution: The grand mean is $\bar{\mu}=50$ so the treatment biases relative to the grand mean are $\tau_{i}=\{-10,5,5,0\}$. From Equation 8.2 the F distribution noncentrality parameter is,

$$
\phi=\frac{n \sum_{i=1}^{k} \tau_{i}^{2}}{\sigma_{\epsilon}^{2}}=\frac{5\left(-10^{2}+(5)^{2}+(5)^{2}+(0)^{2}\right)}{8^{2}}=11.72
$$

The F statistic will have $d f_{\text {treatments }}=4-1=3$ and $d f_{\epsilon}=4(5-1)=16$ degrees of freedom. The power is 72% as determined from Equation 8.1:

$$
F_{0.95}=3.239=F_{0.280,11.72}
$$

From Piface $>$ Balanced ANOVA (any model) $>$ One-way ANOVA with:

$$
s_{A}=\sqrt{\frac{\left((-10)^{2}+(5)^{2}+(5)^{2}+(0)^{2}\right)}{4-1}}=7.07
$$

MINITAB $>$ Stat $>$ Power and Sample Size $>$ One-Way ANOVA cannot be used to solve this problem because it does not allow specification of the individual treatment means or the standard deviation of the treatment means. The steps required to calculate the power from the model and error degress of freedom and the noncentrality parameter using MINITAB $>$ Calc $>$ Probability Distributions $>$ F are:

```
MTB invcdf 0.95;
SUBC f 3 16.
F distribution with 3 DF in numerator and 16 DF in denominator
P(~X~=~X~)
    0.95 3.23887
MTB cdf 3.23887.
SUBC f 3 16 11.72.
F distribution with 3 DF in numerator and 16 DF in denominator and noncentrality parameter 11.72
X P(~X~=~~X~)
Power = 1 - 0.280 = 0.720
```

Example 8.2 Determine the power of the ANOVA to reject H_{0} in a one-way classification design with four treatments and five observations per treatment if the treatment biases from the grand mean are $\tau_{i}=\{-12,12,0,0\}$. The four populations are expected to be normal and homoscedastic with $\sigma_{\epsilon}=8$.

Solution: From Equation 8.5 with $\delta=24$, the F distribution noncentrality parameter is

$$
\phi=\frac{n}{2}\left(\frac{\delta}{\sigma_{\epsilon}}\right)^{2}=\frac{5}{2}\left(\frac{24}{8}\right)^{2}=22.5
$$

The F statistic will have $d f_{\text {treatments }}=4-1=3$ and $d f_{\epsilon}=4(5-1)=16$ degrees of freedom. The power is 95.4% as determined from Equation 8.1

$$
F_{0.95}=3.239=F_{0.046,22.5}
$$

From Piface $>$ Balanced ANOVA (any model) $>$ One-way ANOVA with:

$$
s_{A}=\sqrt{\frac{\left((-12)^{2}+(12)^{2}+(0)^{2}+(0)^{2}\right)}{4-1}}=9.80
$$

읠) Select an ANOVA model			$\square \times$
Options Help			
Built-in models	One-way ANOVA		\checkmark
TitleModel	One-way ANOVA		
	A		
Levels	A 4		
Random fact			
$\sqrt{\square}$ Replicated	Observations per factor combinatio: 5		
Study the power of...		Differences/Contrasts	Ftests
Java Applet Window			

煫 One-way ANOVA

$\square \square \times$
Options Help

A Fixed C Random		
levels[A]		\square
Value \vee	4	OK

From MINITAB $>$ Stat $>$ Power and Sample Size $>$ One-Way ANOVA:

From PASS $>$ Means $>$ Many Means $>$ ANOVA: One-Way:

Example 8.3 In a one-way classification design with four treatments and five observations per treatment, determine the power of the ANOVA to reject H_{0} if the treatment biases from the grand mean are $\tau_{i}=\{18,-6,-6,-6\}$. The four populations are expected to be normal and homoscedastic with $\sigma_{\epsilon}=8$.

Solution: From Equation 8.6 with $\delta=24$, the F distribution noncentrality parameter is

$$
\phi=\frac{n(k-1)}{k}\left(\frac{\delta}{\sigma_{\epsilon}}\right)^{2}=\frac{5 \times 3}{4}\left(\frac{24}{8}\right)^{2}=33.75
$$

The F statistic will have $d f_{\text {treatments }}=4-1=3$ and $d f_{\epsilon}=4(5-1)=16$ degrees of freedom. The power is 99.5% as determined from Equation 8.1:

$$
F_{0.95}=3.239=F_{0.005,33.75}
$$

From Piface $>$ Balanced ANOVA (any model) $>$ One-way ANOVA with:

$$
s_{A}=\sqrt{\frac{\left((18)^{2}+(-6)^{2}+(-6)^{2}+(-6)^{2}\right)}{4-1}}=12.0
$$

绿 Select an ANOVA model			\square
Options Help			
Built-in models	One-way ANOVA		\checkmark
Title Model	One-way ANOVA		
	A		
Levels	A 4		
Random fact			
\checkmark Replicated	Observations per factor combinatio: 5		
Study the power of...		Differences/Contrasts	F tests,
Java Applet Windo			

炮 One-way ANOVA					- $\square \times$	
Options Help						
A F Fixed C Random	SD[A]	Power[A]				\square
Ter	Value $\vee 12$	OK	Value \vee	. 995		ок
Value $\vee 4$	SD[Within]	1	Significance le		$0.05 \vee$	
	Value $\checkmark 8$	OK				
Within CFixs © Rande n[Within]	-					
Value $\checkmark 5$						
Java Applet Window						

From PASS $>$ Means $>$ Many Means $>$ ANOVA: One-Way:

Example 8.4 Determine the power to reject H_{0} by one-way ANOVA when the treatment means are $\mu_{i}=\{50,30,40,40,40\}$ and the sample sizes are $n_{i}=\{12,12,20,20,15\}$. The five populations are expected to be normal and homoscedastic with $\sigma_{\epsilon}=13$.
Solution: The grand mean of the experimental data is expected to be

$$
\frac{\sum n_{i} \mu_{i}}{\sum n_{i}}=\frac{(50 \times 12)+\cdots+(40 \times 15)}{12+\cdots+15}=40 .
$$

The treatment biases relative to the grand mean are $\tau_{i}=\{10,-10,0,0,0\}$ so the noncentrality parameter is

$$
\phi=\frac{12(10)^{2}+12(-10)^{2}+20(0)^{2}+20(0)^{2}+15(0)^{2}}{13^{2}}=14.2
$$

The ANOVA will have $d f_{\text {treatments }}=5-1=4$ and $d f_{\epsilon}=\sum n_{i}-1-4=74$ degrees of freedom. The power is 84.7% as determined from Equation 8.1:

$$
F_{0.95}=2.495=F_{0.153,14.2}
$$

8.2 Randomized Block Design

Example 8.5 Recalculate the power for Example 8.1 if the experiment is built as a randomized block design and the standard deviation of the population of block biases is $\sigma_{\text {blocks }}=4$.
Solution: The F distribution noncentrality parameter $(\phi=11.72)$ and the treatment degrees of freedom $\left(d f_{\text {treatments }}=3\right)$ will be unchanged from the original solution, but if the experiment is built in five blocks with one replicate in each block, the new error degrees of freedom for the RBD will be

$$
\begin{aligned}
d f_{\epsilon} & =d f_{\text {total }}-d f_{\text {treatments }}-d f_{\text {blocks }} \\
& =19-3-4 \\
& =12 .
\end{aligned}
$$

The power of the RBD is 68% as determined from

$$
F_{0.95}=3.490=F_{0.32,11.72} .
$$

This is slightly lower than the original power (72\%) because the RBD has fewer error degrees of freedom than the CRD. The RBD's power is not affected by the block variation because it separates that variation from the error variation that is used to determine the power.

From Piface $>$ Balanced ANOVA (any model) $>$ Two-way ANOVA (additive model) with:

Study the power of... Differences/Contrasts F tests

Options Help

Java Applet Window

Java Applet Window

From PASS $>$ Means $>$ Many Means $>$ ANOVA: Fixed Effect:

Example 8.6 A 40-run experiment was performed using an RBD with $k=5$ treatments and $r=8$ blocks. The ANOVA table from the experiment is shown in Table 8.2. Calculate the blocking efficiency and the increase in the number of runs required to obtain the same estimation precision for treatment means using a CRD.
Solution: The blocking efficiency as determined from Equation 8.13 is

$$
\begin{aligned}
E & =\frac{(7 \times 14)+(8 \times 4 \times 4)}{(5 \times 8-1) 4} \\
& =1.45
\end{aligned}
$$

That is, the CRD will require about 45% more runs than the RBD because it ignores the variation associated with block effects. Because the number of runs in the RBD was $k r=40$, the number of runs required for the CRD to obtain the same estimation precision for the treatment means would be $E k r=1.45 \times 40=58$. Apparently the blocking was beneficial and should be used in future studies.

8.3 Balanced Full Factorial Design with Fixed Effects

Example 8.7 A $2 \times 3 \times 5$ full factorial experiment with four replicates is planned. The experiment will be blocked on replicates and the ANOVA model will include main effects and two-factor interactions. Determine the power to detect a difference $\delta=300$ units between two levels of each study variable if the standard error of the model is expected to
be $\sigma_{\epsilon}=500$.
Solution: If the three study variables are given the names A, B, and C and have $a=2, b=3$, and $c=5$ levels, respectively, then the degrees of freedom associated with the terms in the model will be $d f_{\text {blocks }}=3, d f_{A}=1, d f_{B}=2, d f_{C}=4, d f_{A B}=2, d f_{A C}=4, d f_{B C}=8$, and

$$
\begin{aligned}
d f_{\epsilon} & =d f_{\text {total }}-d f_{\text {model }} \\
& =(2 \times 3 \times 5 \times 4-1)-(3+1+2+4+2+4+8) \\
& =119-24 \\
& =95 .
\end{aligned}
$$

From Equation 8.2, the F distribution noncentrality parameter for variable A with treatment biases $\alpha_{1}=-150$ and $\alpha_{2}=150$ is

$$
\begin{aligned}
\phi_{A} & =\frac{b c n \sum_{i=1}^{2} \alpha_{i}^{2}}{\sigma_{\epsilon}^{2}} \\
& =\frac{3 \times 5 \times 4 \times\left((-150)^{2}+150^{2}\right)}{500^{2}} \\
& =10.8 .
\end{aligned}
$$

The distribution of F_{A} will have $d f_{A}=1$ numerator and $d f_{\epsilon}=95$ denominator degrees of freedom, so the power associated with A is given by Equation 8.1:

$$
F_{0.95}=3.942=F_{1-\pi_{A}, 10.8}
$$

which is satisfied by $\pi_{A}=0.908$ or 90.8%.
Similarly, the F distribution noncentrality parameter for B with biases
$\beta_{1}=-150, \beta_{2}=150$, and $\beta_{3}=0$ is

$$
\begin{aligned}
\phi_{B} & =\frac{a c n \sum_{i=1}^{3} \beta_{i}^{2}}{\sigma_{\epsilon}^{2}} \\
& =\frac{2 \times 5 \times 4 \times\left((-150)^{2}+150^{2}+0^{2}\right)}{500^{2}} \\
& =7.2 .
\end{aligned}
$$

The distribution of F_{B} will have $d f_{B}=2$ numerator and $d f_{\epsilon}=95$ denominator degrees of freedom, so the power associated with B is given by

$$
F_{0.95}=3.093=F_{1-\pi_{B}, 7.2}
$$

which is satisfied by $\pi_{B}=0.654$.

Finally, the F distribution noncentrality parameter for C with biases
$\gamma_{1}=-150, \gamma_{2}=150$, and $\gamma_{3}=\gamma_{4}=\gamma_{5}=0$ is

$$
\begin{aligned}
\phi_{C} & =\frac{a b n \sum_{i=1}^{5} \gamma_{i}^{2}}{\sigma_{\epsilon}^{2}} \\
& =\frac{2 \times 3 \times 4 \times\left((-150)^{2}+150^{2}+0^{2}+0^{2}+0^{2}\right)}{500^{2}} \\
& =4.32 .
\end{aligned}
$$

The distribution of F_{C} will have $d f_{C}=4$ numerator and $d f_{\epsilon}=95$ denominator degrees of freedom, so the power associated with C is given by

$$
F_{0.95}=2.469=F_{1-\pi_{C}, 4.32},
$$

which is satisfied by $\pi_{C}=0.328$. These three power calculations confirm by example that the power to detect a variable effect decreases as the number of variable levels increases. From MINITAB $>$ Stat $>$ Power and Sample Size $>$ General Full Factorial Design (MINITAB only reports the power for the variable with the most levels, which in this case is C):

General Full Factorial Design
Alpha $=0.05$ Assumed standard deviation $=500$
Factors: 3 Number of levels: 2, 3, 5
Include terms in the model up through order: Include blocks in model.

Maximumn		Total	
Difference	Reps	Runs	Power
300	4	120	0.328605

From Piface $>$ Balanced ANOVA (any model) $>$ Three-way ANOVA with

$$
\begin{aligned}
& s_{A}=\sqrt{\left(2(150)^{2}\right) /(2-1)}=212.1 \\
& s_{B}=\sqrt{\left(2(150)^{2}+(0)^{2}\right) /(3-1)}=150.0 \\
& s_{C}=\sqrt{\left(2(150)^{2}+3(0)^{2}\right) /(5-1)}=106.1
\end{aligned}
$$

SPASS: Means: ANOVA: Fixed Effects or Factorial Output

Fixed Effects ANOVA Power Analysis

Numeric Results									
Term	Power	n	Total N	df1	df2	Std Dev of Means (Sm)	$\begin{gathered} \text { Effect } \\ \text { Size } \end{gathered}$	Alpha	Beta
A	0.90217	4.00	120	1	98	150.000	0.300	0.05000	0.09783
B	0.65427	4.00	120	2	98	122.474	0.245	0.05000	0.34573
C	0.32908	4.00	120	4	98	94.868	0.190	0.05000	0.67092
$A B$	0.05000	4.00	120	2	98	0.000	0.000	0.05000	0.95000
AC	0.05000	4.00	120	4	98	0.000	0.000	0.05000	0.95000
BC	0.05000	4.00	120	8	98	0.000	0.000	0.05000	0.95000

MINITAB doesn't have a built in capability to do sample size and power calculations for multi-way ANOVA, however, the custom macro power.mac (posted at www.mmbstatistical.com/Sampl can be used to calculate the power for one design variable at a time in a balanced multi-way ANOVA. For the first variable:

MTB \%power c1
Executing from file: C:\Program Files \Minitab $15 \backslash$ English \backslash Macros \backslash power. MAC
Do you want to specify your design from the terminal or from a column?
If from terminal a column will be created in the column specified.
Otherwise the column specified will be the input.
(terminal=1, column=2)
DATA 1
How many runs are in one replicate?
DATA 30
How many replicates?
DATA 4
How many levels does the variable have?
DATA 2

How many model degrees of freedom are there?
DATA 24
What is the standard deviation?
DATA 500
What is the smallest difference that you
want to detect between two levels?
DATA 300

N	120.000
Runs	30.0000
reps	4.00000
Levels	2.00000
dfmodel	24.0000
dferror	95.0000
Fcrit	3.94122
lambda	10.8000
sigma	500.000
delta	300.000
Power	0.901990

8.4 Random and Mixed Models

Piface can calculate sample size and power for random and mixed models but MINITAB and PASS can not.
Example 8.8 A balanced full factorial experiment is to be performed using $a=3$ levels of a fixed variable $A, b=5$ randomly selected levels of a random variable B, and $n=4$ replicates. Determine the power to reject $H_{0}: \alpha_{i}=0$ for all i when the A-level biases are $\alpha_{i}=\{-20,20,0\}$ with $\sigma_{B}=25, \sigma_{A B}=0$, and $\sigma_{\epsilon}=40$. Assume that the $A B$ interaction term will be included in the ANOVA even though its expected variance component is 0 .
Solution: The ANOVA table with the equations for the expected mean squares is shown in Table 8.3. From the ANOVA table, the error mean square used for testing the A effect (that is, the denominator of F_{A}) is

$$
\begin{aligned}
M S_{\epsilon(A)} & =M S_{A B} \\
& =\widehat{\sigma}_{\epsilon}^{2}+n \widehat{\sigma}_{A B}^{2}
\end{aligned}
$$

The noncentrality parameter for the test of the fixed effect A is given by Equation 8.15:

$$
\begin{aligned}
\phi_{A} & =\frac{N}{a} \frac{\sum_{i=1}^{a} \alpha_{i}^{2}}{M S_{\epsilon(A)}} \\
& =\frac{3 \times 5 \times 4}{3} \frac{(-20)^{2}+(20)^{2}+(0)^{2}}{(40)^{2}+4(0)^{2}} \\
& =10
\end{aligned}
$$

With $d f_{A}=2, d f_{A B}=8$, and $\alpha=0.05$ in Equation 8.1

$$
F_{0.95}=4.459=F_{1-\pi, 10.0}
$$

which is satisfied by $\pi=0.640$.
From Piface $>$ Balanced ANOVA (any model) with:

$$
s_{A}=\sqrt{\left((-20)^{2}+(20)^{2}+(0)^{2}\right) /(3-1)}=20
$$

Example 8.9 Determine the power to reject $H_{0}: \sigma_{B}^{2}=0$ when $\sigma_{B}=25, \sigma_{A B}=0$, and $\sigma_{\epsilon}=40$ for Example 8.8. Retain the $A B$ interaction term in the model even though its variance component is 0 .
Solution: The ANOVA table with the equations for the expected mean squares is shown in Table 8.3. From Equation 8.19 under the specified conditions, the expected F_{B} value
is approximately

$$
\begin{aligned}
E\left(F_{B}\right) & \simeq \frac{E\left(M S_{B}\right)}{E\left(M S_{A B}\right)} \\
& \simeq \frac{\sigma_{\epsilon}^{2}+n \sigma_{A B}^{2}+a n \sigma_{B}^{2}}{\sigma_{\epsilon}^{2}+n \sigma_{A B}^{2}} \\
& \simeq \frac{(40)^{2}+4(0)^{2}+3 \times 4 \times(25)^{2}}{(40)^{2}+4(0)^{2}} \\
& \simeq 5.69 .
\end{aligned}
$$

With $d f_{B}=4, d f_{A B}=8$, and $\alpha=0.05$, the critical F value for the test for the B effect is $F_{0.95,4,8}=3.838$, so from Equation 8.20 the power is approximately

$$
\begin{aligned}
\pi & \simeq P\left(\frac{3.838}{5.69}<F<\infty\right) \\
& \simeq P(0.675<F<\infty) \\
& \simeq 0.618
\end{aligned}
$$

See Piface solution to Example 8.8.

8.5 Nested Designs

Example 8.10 A is a fixed variable with three levels and B is a random variable with four levels nested within each level of A. The nested design is crossed with a five-level fixed variable C and one replicate of the experiment will be built. The model to be fitted is: $A+B(A)+C+A C+B C$. Find the power to detect a difference $\delta=40$ between two levels of A assuming that the standard deviations for the random effects are $\sigma_{B}=12, \sigma_{B C}=4$, and $\sigma_{\epsilon}=10$.
Solution: The ANOVA table with the equations for the expected mean squares is shown in Table 8.4 where the α_{i} are the A-level biases, the τ_{i} are the C-level biases, and the γ_{i} are the $A C$ interaction biases. The error mean square used for testing the A effect is $M S_{\epsilon(A)}=M S_{B(A)}$. The noncentrality parameter for the test of the fixed effect A is given by Equation 8.15:

$$
\begin{aligned}
\phi_{A} & =\frac{a \times b \times c \times n}{a} \frac{\sum_{i=1}^{a} \alpha_{i}^{2}}{\sigma_{\epsilon}^{2}+n \sigma_{B C}^{2}+c n \sigma_{B(A)}^{2}} \\
& =\frac{3 \times 4 \times 5 \times 1}{3} \frac{(-20)^{2}+(20)^{2}+(0)^{2}}{(10)^{2}+(4)^{2}+5(12)^{2}} \\
& =19.14 .
\end{aligned}
$$

With $d f_{A}=2, d f_{B(A)}=3(4-1)=9$, and $\alpha=0.05$ in Equation 8.1:

$$
F_{0.95}=4.256=F_{1-\pi, 19.14}
$$

which is satisfied by $\pi=0.915$.

From Piface $>$ Balanced ANOVA (any model) with:

$$
s_{A}=\sqrt{\frac{2(20)^{2}+(0)^{2}}{3-1}}=20.0
$$

8.6 Two-Level Factorial Designs

Example 8.11 Use the method of Equation 8.24 to determine the number of replicates required to detect an effect of size $\delta=6$ with 90% power in a 2^{4} experiment when $\sigma_{\epsilon}=10$. Assume that the ANOVA model will include main effects and two-factor interactions.
Solution: With $t \simeq z$ in the first iteration of Equation 8.24, the number of replicates required to deliver 90% power to detect the difference $\delta=6$ between two levels of a design variable is

$$
\begin{aligned}
n & \geq \frac{1}{2^{4-2}}(1.96+1.282)^{2}\left(\frac{10}{6}\right)^{2} \\
& \geq 8
\end{aligned}
$$

Another iteration (not shown) confirms that $n=8$ is the correct number of replicates.
See Example 8.12.
Example 8.12 Use the method of Equation 8.21 to confirm the solution to Example 8.11.
Solution: By Equation 8.22 the F distribution noncentrality parameter is

$$
\phi=8 \times 2^{4-2}\left(\frac{6}{10}\right)^{2}=11.5
$$

The central and noncentral F distributions will have $d f_{i}=1$ numerator and $d f_{\epsilon}=d f_{\text {total }}-d f_{\text {model }}=\left(8 \times 2^{4}-1\right)-(4+6)=117$ denominator degrees of freedom. The power, determined from the condition

$$
\begin{aligned}
F_{0.95} & =F_{1-\pi, 11.5} \\
3.922 & =F_{0.080,11.5}
\end{aligned}
$$

is $\pi=0.920$ or 92.0%. This value is slightly larger than the 90% goal because the calculated value of n was fractional and was rounded up to the nearest integer. With $n=7$ the power is slightly less than 90%.

From Piface $>$ Balanced ANOVA (any model) with:

$$
s_{A}=\sqrt{\frac{2(3)^{2}}{2-1}}=4.243
$$

From MINITAB $>$ Stat $>$ Power and Sample Size $>$ 2-Level Factorial Design (with 5 terms removed from the model: four three-factor interactions and the one four-factor interaction):

$$
\begin{array}{ll}
\text { MIB }> & \text { Powre } \\
\text { SUCP } & \text { FFDesign 4 16; } \\
\text { SUBC> } & \text { Effect 6; } \\
\text { SUBC } & \text { Power 0.90; } \\
\text { SUBC> } & \text { CPBlock 0; } \\
\text { SUBC> } & \text { Sigma 10; } \\
\text { SUBC> } & \text { Omit 5; } \\
\text { SUBC> } & \text { FitC; } \\
\text { SUBC> } & \text { FitB; } \\
\text { SUBC> } & \text { GPCurve. }
\end{array}
$$

Power and Sample Size

2-Level Factorial Design
Alpha $=0.05$ Assumed standard deviation $=10$
Factors: 4 Base Design: 4, 16
Blocks: none
Number of terms omitted from model: 5

Center Total Target
$\begin{array}{rrrrrr}\text { Points } & \text { Effect } & \text { Reps } & \text { Runs } & \text { Power } & \text { Actual Power } \\ 0 & 6 & 8 & 128 & 0.9 & 0.920162\end{array}$

Power Curve for 2-Level Factorial Design
MTB >

Example 8.13 Suppose that two more two-level variables were added to the 2^{4} experiment with $n=8$ replicates from Example 8.11 without any increase in the total number of runs. Calculate the power for the resulting 2^{6} experiment.
Solution: The 2^{6} experiment must have $n=2$ replicates to maintain the same number of runs as the original experiment. Because $8 \times 2^{4}=2 \times 2^{6}$, the F distribution noncentrality parameter will be unchanged. The new error degrees of freedom for the F distributions will be $d f_{\epsilon}=\left(2 \times 2^{6}-1\right)-(6+15)=106$. The power, determined from

$$
\begin{aligned}
F_{0.95} & =F_{1-\pi, 11.5} \\
3.931 & =F_{0.081,11.5}
\end{aligned}
$$

is $\pi=0.919$ or 91.9%. This example confirms that adding variables to a 2^{k} design without increasing the total number of observations has little effect on the power provided that the error degrees of freedom remains large.

From Piface $>$ Balanced ANOVA (any model):

From MINITAB $>$ Stat $>$ Power and Sample Size $>$ 2-Level Factorial Design (with 42 terms removed from the model: 20 three-factor interactions, 15 four-factor interactions, 6 five-factor interactions, and the one six-factor interaction):

>	r;
UBC>	FFDesign 664;
SUBC>	Reps 2;
SUBC>	Effect 6;
JBC>	CPBlock 0;
SUBC>	Sigma 10;
SUBC>	Omit 42;
SUBC>	Fitc;
SUBC>	FitB;
BC	

Power and Sample Size

-Level Factorial Design
Alpha $=0.05$ Assumed standard deviation $=10$
Factors: 6 Base Design: 6, 6
Blocks: none
Number of terms omitted from model: 42

Points Effect Reps Runs Power

Example 8.14 Derive a simplified expression for the total number of observations required for a 2^{k} experiment to detect a difference δ between two levels of a design variable assuming $\alpha=0.05$ and $\beta=0.10$. Under what conditions should this expression be valid?
Solution: From Equation 8.25 the total number of replicates required for a 2^{k} design to have 90% power to detect a difference δ between two levels of a design variable is approximately

$$
\begin{align*}
n 2^{k} & \geq 4\left(z_{0.025}+z_{0.10}\right)^{2}\left(\frac{\sigma_{\epsilon}}{\delta}\right)^{2} \\
& \geq 42\left(\frac{\sigma_{\epsilon}}{\delta}\right)^{2} \tag{8.1}
\end{align*}
$$

This condition will be strictly valid when $d f_{\epsilon}$ is large so that the $t \simeq z$ approximation is well satisfied.
Example 8.15 How many replicates of a 2^{3} design are required to determine the regression coefficient for a main effect with precision $\delta=300$ with 95% confidence when the standard error of the model is expected to be $\sigma_{\epsilon}=600$?
Solution: If the error degrees of freedom are sufficiently large that $t_{0.025} \simeq z_{0.025}$ then

$$
\begin{aligned}
n & \geq \frac{1}{2^{3}}\left(\frac{1.96 \times 600}{300}\right)^{2} \\
& \geq 2
\end{aligned}
$$

With only $2 \times 2^{3}=16$ total runs, the $t_{0.025} \simeq z_{0.025}$ assumption is not satisfied. Another iteration shows that the transcendental sample size condition is satisfied for $n=3$ replicates of the 2^{3} design.

Example 8.16 What is the power for the $2_{I V}^{4-1}$ design with two replicates to detect a difference of $\delta=10$ between two levels of a design variable if $\sigma_{\epsilon}=5$?
Solution: With two replicates the total number of experimental runs will be $2\left(2^{4-1}\right)=16$. Because the experiment design is resolution IV , the model can include main effects and only three of the six possible two-factor interactions, so $d f_{\text {model }}=4+3=7$. Then, the error degrees of freedom will be $d f_{\epsilon}=(16-1)-7=8$. The F distribution noncentrality parameter associated with a difference of $\delta=10$ between two levels of a design variable is given by a slightly modified form of Equation 8.22:

$$
\begin{align*}
\phi & =n 2^{(k-p)-2}\left(\frac{\delta}{\sigma_{\epsilon}}\right)^{2} \tag{8.2}\\
& =2 \times 2^{(4-1)-2}\left(\frac{10}{5}\right)^{2} \\
& =16.0
\end{align*}
$$

where $p=1$ accounts for the half-fractionation of the full factorial design. Then, by Equation 8.21

$$
\begin{aligned}
F_{0.95} & =F_{1-\pi, 16} \\
5.318 & =F_{0.063,16}
\end{aligned}
$$

The power is $\pi=1-0.063=0.937$.

From MINITAB $>$ Stat $>$ Power and Sample Size $>$ 2-Level Factorial Design:

Power Curve for 2-Level Factorial Design

Example 8.17 How many replicates of a 2_{V}^{5-1} design are required to have 90% power to detect a difference $\delta=0.4$ between two levels of a design variable? Assume that ten of the fifteen possible terms will drop out of the model and that the standard error will be $\sigma_{\epsilon}=0.18$
Solution: If a model with main effects and two factor interactions is fitted to one replicate of the 2_{V}^{5-1} design, there will not be any degrees of freedom left to estimate the error, so either the experiment must be replicated or some terms must be dropped from the model. Under the assumption that the number of replicates is large, so that we can take $t \simeq z$ in the first iteration of Equation 8.24, we have

$$
\begin{aligned}
n & \geq \frac{1}{2^{(5-1)-2}}\left(z_{0.025}+z_{0.10}\right)^{2}\left(\frac{0.18}{0.4}\right)^{2} \\
& \geq 0.532
\end{aligned}
$$

Obviously, the $t \simeq z$ approximation is not satisfied, so at least one more iteration is required. If only one replicate of the half-fractional factorial design is built and ten of the fifteen possible terms are dropped from the model, the error degrees of freedom will be $d f_{\epsilon}=15-10=5$. Then, for the second iteration of Equation 8.24 , we have

$$
\begin{aligned}
n & \geq \frac{1}{2^{(5-1)-2}}\left(t_{0.025}+t_{0.10}\right)^{2}\left(\frac{0.18}{0.4}\right)^{2} \\
& \geq \frac{1}{2^{(5-1)-2}}(2.228+1.372)^{2}\left(\frac{0.18}{0.4}\right)^{2} \\
& \geq 0.656,
\end{aligned}
$$

which rounds up to $n=1$. Calculation of the power (not shown) confirms $\pi=0.98$ for one replicate.

Power Curve for 2-Level Factorial Design

```
MTB > Power;
SUBC> FFDesign 5 16;
SUBC> Reps 1;
SUBC> Effect 0.4;
SUBC>
SUBC> Omit 10;
SUBC> FitC;
SUBC> FitB;
SUBC> GPCurve
```

Power and Sample Size
2-Level Factorial Design
Alpha $=0.05$ Assumed standard deviation $=0.18$
Factors: 5 Base Design: 5, 16
Blocks: non
Number of terms omitted from model: 10
Center Total
Points Effect Reps Runs Power
Power Curve for 2-Level Factorial Design
MTB >

Power and Sample Size for 2-Level Factorial - De... X

Number of blocks:
Number of terms omitted from model: 10
\checkmark Include term for center points in model
V_{V} Include blocks in model

Example 8.18 How many replicates of a 9-variable 12-run Plackett-Burman design are required to detect a difference $\delta=7000$ between two levels of a variable with 90% power if the standard error is expected to be $\sigma_{\epsilon}=4000$?
Solution: Plackett-Burman designs are resolution III, so their models may contain only main effects. If the experiment is run with only one replicate, then $d f_{\epsilon}=(12-1)-9=2$ and the large-sample approximation is obviously not satisfied. If enough replicates are run so that the large-sample approximation is satisfied, then with $\alpha=0.05, \beta=0.10$ and $t \simeq z$, the approximate number of replicates required is

$$
\begin{aligned}
n & \geq \frac{4}{12}(1.96+1.282)^{2}\left(\frac{4000}{7000}\right)^{2} \\
& \geq 2
\end{aligned}
$$

Another iteration confirms that two replicates are sufficient to achieve 90% power.
From MINITAB $>$ Stat $>$ Power and Sample Size $>$ Plackett-Burman Design:

8.7 Two-Level Factorial Designs with Centers

Example 8.19 Calculate the power to detect a difference $\delta=1400$ between two levels of a study variable in a 2^{3} design with three replicates built in blocks with two center points per block. Include terms for main effects, two-factor interactions, lack of fit, and blocks in the model. The standard error is expected to be $\sigma_{\epsilon}=1000$.
Solution: The experiment will have $3\left(2^{3}+2\right)=30$ total observations, so the total degrees of freedom will be $d f_{\text {total }}=29$. The degrees of freedom for the model will be

$$
\begin{aligned}
d f_{\text {model }} & =d f_{\text {blocks }}+d f_{\text {main effects }}+d f_{\text {interactions }}+d f_{\text {LOF }} \\
& =2+3+3+1 \\
& =9,
\end{aligned}
$$

so the error degrees of freedom will be

$$
d f_{\epsilon}=d f_{\text {total }}-d f_{\text {model }}=29-9=20 .
$$

The power π to reject $H_{0}: \delta=0$ for the main effect of any one of the study variables is given by Equation 8.21 with one numerator and twenty denominator degrees of freedom where the F distribution noncentrality parameter, as given in Equation 8.22, is

$$
\begin{aligned}
\phi & =3 \times 2^{3-2}\left(\frac{1400}{1000}\right)^{2} \\
& =11.76
\end{aligned}
$$

With $\alpha=0.05$ and

$$
\begin{aligned}
F_{1-\alpha} & =F_{1-\pi, \phi} \\
F_{0.95} & =4.351=F_{1-\pi, 8.17}
\end{aligned}
$$

we find the power to be $\pi=0.903$.
From MINITAB $>$ Stat $>$ Power and Sample Size $>$ 2-Level Factorial Design:

MTB >	ower:
SUBC>	FFDesign 3 8;
SUBC>	Reps 3;
SUBC>	Effect 1400;
SUBC>	CPBlock 2;
SUBC>	Sigma 1000;
SUBC>	Blocks 3;
SUBC>	Omit 1;
SUBC>	FitC;
SUBC>	FitB;
SUBC>	GPCurve.

Power and Sample Size
2-Level Factorial Design
Alpha $=0.05$ Assumed standard deviation $=1000$
Factors: 3 Base Design: 3, 8
Blocks: 3
Number of terms omitted from model: 1 Including a term for center points in model. Including blocks in model.

Center
$\begin{array}{rrrrr}\text { Points } & & & & \\ \text { Fer } & & & \text { Total } & \\ \text { Block } & \text { Effect } & \text { Reps } & \text { Runs } & \text { Power } \\ 2 & 1400 & 3 & 30 & 0.903298\end{array}$

Power Curve for 2-Level Factorial Design

 4TB -

Example 8.20 Determine the ratio of the precisions of the estimates for the lack of fit and main effects in a 2^{4} plus centers design when two center points are used per replicate. Solution: From Equation 8.39 with $k=4$ and $n_{0}=2$ the ratio of the lack of fit and main effect precision estimates will be

$$
\begin{aligned}
\frac{\delta_{* *}}{\delta} & =\sqrt{1+\frac{2^{4}}{2}} \\
& =3
\end{aligned}
$$

That is, the confidence interval for the lack of fit estimate will be three times wider than the confidence interval for the main effects.

8.8 Response Surface Designs

Example 8.21 How many replicates of a three-variable Box-Behnken design are required to estimate the regression coefficients associated with main effects, two-factor interactions, and quadratic terms to within $\delta= \pm 2$ with 95% confidence if the standard error is expected to be $\sigma_{\epsilon}=5$?

Solution: A first estimate for the number of replicates required to estimate the regression coefficients associated with main effects is given by Equation 8.43 with $t_{0.025} \simeq 2$ and, from Table 8.5 for the $B B(3)$ design, $S S_{\text {Main Effects }}=8$ is

$$
\begin{aligned}
n & \geq \frac{1}{8}\left(\frac{2 \times 5}{2}\right)^{2} \\
& \geq 4
\end{aligned}
$$

With $n=4$ replicates, the error degrees of freedom will be

$$
\begin{aligned}
d f_{\epsilon} & =d f_{\text {total }}-d f_{\text {model }} \\
& =(4 \times 15-1)-9 \\
& =50
\end{aligned}
$$

so the approximation for $t_{0.025}$ is justified. Another iteration with $n=3$ replicates indicates that the precision of the regression coefficient estimates would be slightly greater than $\delta=2$, so $n=4$ replicates are required.

From Table 8.5 for two-factor interactions, $S S_{\text {Interaction }}=4$, so the number of replicates required to estimate the regression coefficients associated with two-factor interactions with confidence interval half-width $\delta=2$ with 95% confidence is

$$
\begin{aligned}
n & \geq \frac{1}{4}\left(\frac{t_{0.025} \times 5}{2}\right)^{2} \\
& \geq 6 .
\end{aligned}
$$

From Table 8.5 for quadratic terms, $S S_{\text {Quadratic }}=3.694$, so the number of replicates required to estimate the regression coefficients associated with quadratic terms is

$$
\begin{aligned}
n & \geq \frac{1}{3.694}\left(\frac{t_{0.025} \times 5}{2}\right)^{2} \\
& \geq 7
\end{aligned}
$$

Chapter 9

Reliability and Survival

9.1 Reliability Parameter Estimation

Example 9.1 How many units must be tested to failure to determine, with 20% precision and 95% confidence, the exponential mean life μ ? Solution: From Equation 9.6 with $\alpha=0.05$ and $\delta=0.2$, the required number of failures is

$$
r=\left(\frac{1.96}{0.20}\right)^{2}=97
$$

From PASS $>$ Means $>$ One $>$ Inequality (Exponential):

From MINITAB $>$ Stat $>$ Reliability/Survival $>$ Test Plans $>$ Estimation:

$\begin{array}{ll}\text { MTB }> & \text { Etestplan; } \\ \text { SUBC> } & \text { EPtile 63.2; } \\ \text { SUBC> } & \text { Dlower 20; } \\ \text { SUBC> } & \text { Weibull; } \\ \text { SUBC } & \text { SetS 1; } \\ \text { SUBC> } & \text { ScLocation 100; } \\ \text { SUBC> } & \text { TwoSided. }\end{array}$
Estimation Test Plans
Uncensored data
Estimated parameter: 63.2 th percentile Calculated planning estimate $=99.967$ Precision in terms of the lower bound of a two-sided confidence interval.

Planning distribution: Exponential
Scale $=100$

	Sample	Actual
Precision	Size	Confidence Level
20	78	95.1330

Estimation Test Plans

Uncensored data
Estimated parameter: 63.2 th percentile Calculated planning estimate $=99.9672$ Target Confidence Level $=95 \%$ Precision in terms of the upper bound of a

Planning distribution: Exponential
Scale $=100$
$\begin{array}{rrr} & & \text { Actual } \\ \text { Precision } & \text { Sample } & \begin{array}{r}\text { Confidence } \\ \text { Size }\end{array} \\ 20 & \text { Level } \\ & 116 & 95.0499\end{array}$

Example 9.2 How many units must be tested to failure to determine, with 20% precision and 95% confidence, any failure percentile under the assumption that the reliability distribution is exponential?
Solution: The conditions required to estimate the failure percentiles are the same as those in Example 9.1, so the same number of failures required is $r=97$.

From PASS $>$ Means $>$ One $>$ Inequality (Exponential):

P PASS: Mean: Exponential: 1				
File Run Analysis Graphics PASS GESS Tools Window Help				
	$\underbrace{}_{\text {Map }} \underbrace{}_{\text {NRV }}$		\|e	cat
Symbols $\underline{\text { ? }}$	Eackground	Abbreviations	Template	
Plot Iext	Axes	3 D	Symbols 1	
Data	options	Regorts	Plot Selup	
Find (Solve For):		Allernative Hypothesis:		
Beta and Power	\checkmark	Ha: Theta $<>$ Theta 1	\checkmark	
Thetao (Baseline Mean Life):		Termination Criterion:		
100	\checkmark	Fixed Time using Thels-hat	\checkmark	
Thela 1 (Allernative Mean Life):		Replacement Method:		
120	\checkmark	without Replacement	\checkmark	
N (Sample Size):		Alpha (Producer's Risk):		
		0.05	\checkmark	
10 (Test Duration Time):		Seta (Consumer's Risk):		
10000	\checkmark		\checkmark	
$\nabla \mathrm{E}(0)$ based on Thetal		r (Number of Failures):		
		97	\checkmark	

EPASS: Mean: Exponential: 1 Output

Exponential Mean Power Analysis

Numeric Results

Test Based on Theta-hat with Fixed Running Time to and Without Replacement Sampling.
HO: Theta $=$ Theta0. Ha: Theta $=$ Theta $1>$ Theta0. Reject HO if Theta-hat $<=$ Theta L or Theta-hat $>=$ Theta U.
 $\begin{array}{lrrrrrrrrrrr}\text { Power } & \text { N } & \text { t0 } & \text { Theta0 } & \text { Theta人 } & \text { Alpha } & \text { Alpha } & \text { Beta } & \text { Beta } & \text { L } & \text { U } \\ 0.50379 & 9710000.000 & 100.0 & 120.0 & 0.05000 & 0.05000 & & 0.49621 & 80.1 & 119.9\end{array}$

Summary Statements

A sample size of 97 achieves 50% power to detect the difference between the null hypothesis
mean lifetime of 100.0 and the alternative hypothesis mean Iffetime of 120.0 at a 0.05000
significance level (alpha) using a two-sided test based on the elapsed time. Failing items are
not replaced with new items. The study is terminated when it has run for 10000.000 time units.

Example 9.3 How many units must be tested to failure in an experiment to determine, with 95% confidence, the exponential reliability to within 10% of its true value if the expected reliability is 80% ?
Solution: From Equation 9.12 with $\alpha=0.05, \delta=0.10$, and $\widehat{R}=0.80$, the required number of failures is

$$
r=\left(\frac{1.96 \ln (0.80)}{0.10}\right)^{2}=20
$$

Example 9.4 How many units must be tested to failure to estimate, with 20% precision and 95% confidence, the Weibull scale factor if the shape factor is known to be $\beta=2$? Solution: The goal of the experiment is to obtain a confidence interval for the Weibull scale factor of the form given by Equation 9.17 with $\delta=0.20$ and $\alpha=0.05$. From Equation 9.19 the required number of failures is

$$
r=\left(\frac{1.96}{2 \times 0.20}\right)^{2}=25
$$

```
MTB > Etestplan;
SUBC> EPtile 63.2;
ll
SUBC> SetS 2;
SUBC> SeLocation 100;
SUBC> TwoSided.
```


Estimation Test Plans

Uncensored data
Estimated parameter: 63.2th percentile Calculated planning estimate $=99.9836$ Target Confidence Level $=95$

Precision in terms of the lower bound of a two-sided confidence interval.
Planning distribution: Weibull Scale $=100$, Shape (true value) $=2$

$$
\begin{array}{rrr}
& & \text { Actual } \\
& \text { Sample } & \text { Confidence } \\
\text { Precision } & \text { Size } & \text { Level } \\
20 & 20 & 95.4090
\end{array}
$$

The MINITAB solution for the upper bound is $n=29$, so the average of the two sample sizes is consistent with the approximate solution.
Example 9.5 How many units must be tested to failure to estimate, with 95% confidence, the Weibull shape parameter to within 20% of its true value?
Solution: The goal of the experiment is to produce a 95% confidence interval for β of the form given by Equation 9.20 with $\delta=0.20$. From Equation 9.24 with $\alpha=0.05$, the required number of failures is

$$
r=6\left(\frac{1.96}{\pi \times 0.20}\right)^{2}=59
$$

Example 9.6 How many units must be tested to failure to estimate the Weibull reliability with 5% precision and 95% confidence when the expected reliability is 90% ? Assume that the Weibull shape factor is known.
Solution: The desired confidence interval will have the form of Equation 9.31. From Equation 9.35 with $\delta=0.05, \alpha=0.05$, and $\widehat{R}=0.90$, the required number of failures is

$$
r=\left(\frac{1.645}{0.05}\left(\frac{1-0.9}{0.9}\right)\right)^{2}=19
$$

Example 9.7 An experiment is planned to estimate, with 95% confidence, the time at which 10% of units will fail to within 1000 hours. The life distribution is expected to be normal with $\widehat{\sigma}_{t}=2000$ and all units will be tested to failure.

Solution: With $z_{\alpha / 2}=z_{0.025}=1.96$ and $z_{f}=z_{0.10}=1.282$ in Equation 9.40, the sample size is

$$
\begin{aligned}
n & =\left(\frac{1.96 \times 2000}{1000}\right)^{2}\left(1+\frac{(1.282)^{2}}{2}\right) \\
& =28
\end{aligned}
$$

From MINITAB $>$ Stat $>$ Reliability/Survival $>$ Test Plans $>$ Estimation:

Estimation Test Plans

Uncensored data
Estimated parameter: 10th percentile Calculated planning estimate $=-2563.10$ Calculated planning estimate $=$
Target Confidence Level $=95 \%$
Target Confidence Level $=95 \%$
Precision in terms of the upper bound of two-sided confidence interval.

Planning distribution: Normal
Location $=0$, Scale $=2000$

		Actual
	Sample	Confidence
Precision	Size	Level
1000	28	95.0065

Example 9.8 What sample size is required to estimate, with 95% confidence, the 24000 hour failure probability of a product to within 2% if the life distribution is expected to be normal with $\mu \simeq 20000$ and $\sigma \simeq 2000$?
Solution: With $x=24000$ and $\widehat{z}=(24000-20000) / 2000=2$, the required confidence interval for the 24 hour failure probability has the form

$$
P(\widehat{\Phi}(2)-0.02<\Phi(x=24000 ; \mu, \sigma)<\widehat{\Phi}(2)+0.02)=0.95 .
$$

From Equation 9.44 the required sample size to obtain this interval is

$$
\begin{aligned}
n & =\left(\frac{z_{0.025} \varphi(2)}{0.02}\right)^{2}\left(1+\frac{1}{2} 2^{2}\right) \\
& =\left(\frac{1.96 \times 0.0540}{0.02}\right)^{2}(3) \\
& =85 .
\end{aligned}
$$

From MINITAB $>$ Stat $>$ Reliability/Survival $>$ Test Plans $>$ Estimation the calculated sample sizes are $n=20$ for the upper bound and $n=147$ for the lower bound. Their average, $n=84$, is in good agreement with the approximate solution.

9.2 Reliability Demonstration Tests

Example 9.9 How many units must be tested for 200 hours without any failures to show, with 95% confidence, that the MTTF of a system exceeds 400 hours. The life distribution is exponential and the test is time terminated.
Solution: We must determine the value of n with $r=0$ failures in $t^{\prime}=200$ hours of testing such that

$$
P(400<\mu<\infty)=0.95 .
$$

From the f^{\prime} equation for the exponential distribution from Table 9.1 with $\mu_{0}=400$, the $t^{\prime}=200$ hour failure probability is

$$
\begin{aligned}
f^{\prime} & =1-e^{-t^{\prime} / \mu_{0}} \\
& =1-e^{-200 / 400} \\
& =0.3935
\end{aligned}
$$

With $r=0$ and $\alpha=0.05$ the smallest value of n that satisfies Equation 9.46 is $n=6$ because

$$
(b(0 ; 6,0.3935)=0.04977)<(\alpha=0.05) .
$$

From MINITAB $>$ Stat $>$ Reliability/Survival $>$ Test Plans $>$ Demonstration:

Example 9.10 Determine how long ten units must be life tested with no more than one failure during the test period to demonstrate, with 90% confidence, that the mean life is greater than 1000 hours. Assume that the life distribution is exponential.
Solution: The goal of the experiment is to demonstrate that

$$
P(1000<\mu<\infty)=0.90
$$

With $n=10$ and $r=1$, Equation 9.46 gives

$$
\begin{equation*}
\sum_{x=0}^{1} b\left(x ; n=10, f^{\prime}\right)=0.10 \tag{9.48}
\end{equation*}
$$

which is satisfied by $f^{\prime}=0.337$. From the t^{\prime} equation for the exponential distribution from Table 9.1, the required duration of the test in hours is

$$
\begin{aligned}
t^{\prime} & =-\mu_{0} \ln \left(1-f^{\prime}\right) \\
& =-1000 \ln (1-0.337) \\
& =411
\end{aligned}
$$

From MINITAB $>$ Stat $>$ Reliability/Survival $>$ Test Plans $>$ Demonstration:

Example 9.11 Determine how long ten units must be life tested with no more than one failure during the test period to demonstrate, with 90% confidence, that the Weibull scale factor is at least 1000 hours. Assume that the Weibull shape factor is known to be $\beta=2$.
Solution: The design parameters of the RDT are the same as in Example 9.10, so Equation 9.48 still applies and the end-of-test failure probability is $f^{\prime}=0.337$. From the t^{\prime} equation for the Weibull distribution from Table 9.1, the required duration of the test in hours is

$$
\begin{aligned}
t^{\prime} & =\eta_{0}\left(-\ln \left(1-f^{\prime}\right)\right)^{\frac{1}{\beta}} \\
& =1000(-\ln (1-0.337))^{\frac{1}{2}} \\
& =641 .
\end{aligned}
$$

Example 9.12 Determine how long ten units must be life tested with no more than one failure during the test period to demonstrate, with 90% confidence, that the mean life is at least 1000 hours. Assume that the life distribution is normal with $\sigma=100$
Solution: The design parameters of the RDT are the same as in Example 9.10, so Equation 9.48 applies and the failure probability is $f^{\prime}=0.337$. From the equation for t^{\prime} from Table 9.1, the required duration of the test in hours is

$$
\begin{aligned}
t^{\prime} & =\mu+z_{f^{\prime}} \sigma \\
& =10000+z_{0.337}(100) \\
& =10000+(-0.42 \times 100) \\
& =958
\end{aligned}
$$

```
MTB > DtestPlan 1;
SUBC> Sample 10;
SUBC> Normal;
SUBC> ShScale 100;
SUBC> Confidence 90
Demonstration Test Plans
Reliability Test Plan
Distribution: Normal, Scale = 100
MTTF Goal = 1000, Actual Confidence Level = 90%
Failure Sample Testing
    Test Size rerrine
```


Example 9.13 How many units must be tested for 400 hours without any failures to demonstrate 90% reliability at 600 hours, with 95% confidence? Assume that the reliability distribution is exponential.
Solution: In terms of the 600 hour failure probability, the goal of the experiment is to demonstrate

$$
P(0<f(600)<0.10)=0.95
$$

based on a sample of size n tested to $t^{\prime}=400$ hours with $r=0$ failures. From Table 9.2 the equation for f^{\prime} for the exponential distribution gives

$$
\begin{aligned}
f^{\prime} & =1-\left(1-f_{0}\right)^{t^{\prime} / t_{0}} \\
& =1-(1-0.10)^{400 / 600} \\
& =0.0678
\end{aligned}
$$

With $r=0, f^{\prime}=0.0678$, and $\alpha=0.05$, Equation 9.46 gives

$$
b(0 ; n, 0.0678) \leq 0.05
$$

which is satisfied by $n=43$.

From MINITAB $>$ Stat $>$ Reliability/Survival $>$ Test Plans $>$ Demonstration:

Example 9.14 How long must ten units be life tested with no more than one failure during the test period to demonstrate, with 80% confidence, that the 3000 -hour reliability is at least 90%. Assume that the life distribution is Weibull with $\beta=1.8$.
Solution: The goal of the experiment is to demonstrate that
or in terms of the failure probability
With $n=10, r=1$, and $\alpha=0.20$, Equation 9.46 becomes

$$
\begin{aligned}
& P(0.90<R(3000)<1)=0.80 \\
& P(0<f(3000)<0.10)=0.80 .
\end{aligned}
$$

$$
\sum_{x=0}^{1} b\left(x ; 10, f^{\prime}\right) \leq 0.20
$$

which is satisfied by $f^{\prime}=0.271$. From the equation for t^{\prime} for the Weibull distribution from Table 9.2 with $f_{0}=0.10$ and $t_{0}=3000$, the test time is

$$
\begin{aligned}
t^{\prime} & =t_{0}\left(\frac{\ln \left(1-f^{\prime}\right)}{\ln \left(1-f_{0}\right)}\right)^{1 / \beta} \\
& =3000\left(\frac{\ln (1-0.271)}{\ln (1-0.10)}\right)^{1 / 1.8} \\
& =5523 .
\end{aligned}
$$

From MINITAB $>$ Stat $>$ Reliability/Survival $>$ Test Plans $>$ Demonstration:

Example 9.15 How many units must be tested for 140 hours with no more than one failure to demonstrate that the 100 hour reliability is at least 95% with 90% confidence? Assume that the reliability distribution is normal with $\sigma=20$.
Solution: The goal of the experiment is to demonstrate

$$
P(0<f(100)<0.05)=0.90
$$

based on a sample of size n tested to $t^{\prime}=140$ hours with no more than $r=1$ failures. From Table 9.2, the equation for $z_{f^{\prime}}$ for the normal distribution gives

$$
\begin{aligned}
z_{f^{\prime}} & =z_{f_{0}}+\left(\frac{t^{\prime}-t_{0}}{\sigma}\right) \\
& =z_{0.05}+\left(\frac{140-100}{20}\right) \\
& =-1.645+2.0 \\
& =0.355
\end{aligned}
$$

which is satisfied by $f^{\prime}=\Phi(-\infty<z<0.355)=0.639$. With $r=1, f^{\prime}=0.639$, and $\alpha=0.10$, Equation 9.46 becomes

$$
\sum_{x=0}^{1} b(x ; n, 0.639) \leq 0.10
$$

which is satisfied by $n=5$.
From MINITAB $>$ Stat $>$ Reliability/Survival $>$ Test Plans $>$ Demonstration:

Example 9.16 How many units must be tested without any failures to t_{0} hours to demonstrate 90% reliability at t_{0} hours with 95% confidence? Assume that the distribution is Weibull.
Solution: The goal of the experiment is to demonstrate

$$
P\left(0<f\left(t_{0}\right)<0.10\right)=0.95 .
$$

With $f_{0}=0.10$ and $t^{\prime}=t_{0}$ in the Weibull equation for f^{\prime} from Table 9.2

$$
\begin{aligned}
f^{\prime} & \left.=1-(1-0.10)^{\left(\frac{t}{0}^{t_{0}}\right.}\right)^{\beta} \\
& =0.10 .
\end{aligned}
$$

With $f^{\prime}=0.10, r=0$, and $\alpha=0.05$, Equation 9.46 is

$$
b(0 ; n, 0.10) \leq 0.05,
$$

which is satisfied by $n=29$. This is just a case of the rule of three: $n=3 / f_{0}$.
Example 9.17 How long must 50 units be tested without any failures to demonstrate that the time at which the first 1% of the population fails exceeds 400 cycles? Assume that the life distribution is exponential and use the 95% confidence level.
Solution: The goal of the experiment is to demonstrate that

$$
P\left(400<t_{0.01}<\infty\right)=0.95 .
$$

From Equation 9.46 with $r=0, n=50$, and $\alpha=0.05$

$$
b\left(0 ; 50, f^{\prime}\right) \leq 0.05
$$

which is satisfied by $f^{\prime}=0.058$. From the exponential form of t^{\prime} from Table 9.2 with $t_{0}=400$, the required duration of the test in cycles is

$$
\begin{aligned}
t^{\prime} & =t_{0} \frac{\ln \left(1-f^{\prime}\right)}{\ln \left(1-f_{0}\right)} \\
& =400 \frac{\ln (1-0.058)}{\ln (1-0.01)} \\
& =2380 .
\end{aligned}
$$

From MINITAB $>$ Stat $>$ Reliability/Survival $>$ Test Plans $>$ Demonstration:

$$
\begin{array}{lc}
\text { MTB }> & \text { DtestPlan 0; } \\
\text { SUBCC } & \text { PTile 1; } \\
\text { SUBC } & \text { Time 400; } \\
\text { SUBC> } & \text { Sample 50; } \\
\text { SUBC> } & \text { Exponential; }
\end{array}
$$

Demonstration Test Plans
Reliability Test Plan
Distribution: Exponential
Percentile Goal $=400$, Actual Confidence Level $=95 \%$
Failure Sample Testing
Test Size Time

Example 9.18 How many units must be tested to 30,000 cycles without any failures to demonstrate, with 95% confidence, that the 20,000 cycle reliability is at least 90% ? The life distribution is known to be Weibull with $\beta=3.1$.
Solution: The goal of the experiment is to demonstrate that

$$
P\left(20000<t_{0.10}<\infty\right)=0.95
$$

The equation for f^{\prime} for the Weibull distribution from Table 9.2 with $f_{0}=0.10, t_{0}=20000, t^{\prime}=30000$, and $\beta=3.1$ gives

$$
\begin{aligned}
f^{\prime} & =1-\left(1-f_{0}\right)^{\left(t^{\prime} / t_{0}\right)^{\beta}} \\
& =1-(1-0.10)^{(30000 / 20000)^{3.1}} \\
& =0.3095 .
\end{aligned}
$$

Then, with $r=0, f^{\prime}=0.3095$, and $\alpha=0.05$, Equation 9.46 gives

$$
b(0 ; n, 0.3095) \leq 0.05
$$

which is satisfied by $n=9$.
From MINITAB $>$ Stat $>$ Reliability/Survival $>$ Test Plans $>$ Demonstration:

9.3 Two-Sample Reliability Tests

Example 9.19 A reliability experiment is to be performed to compare the mean life of two different product designs. Determine the power to reject $H_{0}: \mu_{1}=\mu_{2}$ in favor of $H_{A}: \mu_{1}>\mu_{2}$ when $\mu_{1}=200$ hours and $\mu_{2}=100$ hours using two different strategies: a) $n_{1}=n_{2}=30$ units, all tested to failure and b) $n_{1}=40, n_{2}=20$, and the test will be suspended when 90% of the units from one of the two designs have failed. Assume that both life distributions are exponential Solution:
a) With $n_{1}=n_{2}=30$ units tested to failure, the F test critical value will be $F_{0.95,60,60}=1.534$ and by Equation 9.55 the power will be

$$
\begin{aligned}
\pi & =P\left(\left(\frac{100}{200} \times 1.534\right)<F<\infty\right) \\
& =P(0.767<F<\infty) \\
& =0.846
\end{aligned}
$$

b) Under H_{A} in the second strategy, the second treatment group has fewer units with lower mean life so they should be exhausted first. The time at which 90% or 18 of these units will have failed is expected to be about $t=-100 \ln (0.1)=230$ hours. At the same time about $40\left(1-e^{-230 / 200}\right)=27$ of the units from the first treatment group are expected to fail. If the test is suspended then, with $x_{1}=27$ and $x_{2}=18$, then the power will be

$$
\begin{aligned}
\pi & =P\left(\left(\frac{100}{200} \times F_{0.95,54,36}\right)<F<\infty\right) \\
& =P(0.842<F<\infty) \\
& =0.721
\end{aligned}
$$

Under the second strategy, the test will end much earlier (i.e., when the 18th unit with 100 hour mean life fails versus when the 30 th unit with 200 hour mean life fails); however, at the penalty of reduced experimental power.

Example 9.20 Determine how many units must be included in a study to compare the survival rates of two treatments using the log-rank test if the control treatment is expected to have about 20% survivors at the end of the study and the study should have 90% power to reject H_{0} if the experimental treatment has 40% survivors at the end of the study. Assume that the hazard rates are proportional and that the sample sizes will be equal.
Solution: From the expected end-of-study conditions under H_{A} the log-hazard ratio is estimated to be

$$
r_{A} \simeq \frac{\ln (0.40)}{\ln (0.20)}=0.5693
$$

so the required sample size is

$$
n_{1}=n_{2}=\left(\frac{z_{0.05}+z_{0.10}}{\ln (0.5693)}\right)^{2}\left(\frac{1}{1-0.2}+\frac{1}{1-0.4}\right)=79
$$

From PASS $>$ Survival and Reliability $>$ Log-Rank Survival (Simple):

XPASS: Log Rank Survival: Simple Output

Log Rank Survival Power Analysis - Simple

Numeric Results								
Hazard			One-Sided					
Power	N	N1	N2	S1	S2	Ratio	Alpha	Beta
0.9009	163	82	81	0.2000	0.4000	0.5693	0.0500	0.0991

Summary Statements
A one-sided log rank test with an overall sample size of 163 subjects (of which 82 are in group 1 and 81 are in group 2) achieves 90% power at 20.0500 significance levelto detect a difference of 0.2000 between 0.2000 and 0.4000 --the proportions surviving in groups 1 and 2 respectively. This con spond to a hazard ratio of 0.56 . The proption that the haza are proportional.

Example 9.21 Compare the power of the log-rank test to the power of the two-sample test for exponential mean life for Example 9.19b.
Solution: Because the hazard rate of an exponential distribution is constant, the proportional hazards assumption is satisfied. At 230 hours with $s_{1}\left(t^{\prime}\right)=2 / 20=0.10$ and $s_{2}\left(t^{\prime}\right)=13 / 40=0.325$ the hazard ratio under H_{A} will be

$$
r_{A}=\frac{\ln (0.325)}{\ln (0.10)}=0.488
$$

With $n_{2} / n_{1}=2, d_{1}\left(t^{\prime}\right)=18$, and $d_{2}\left(t^{\prime}\right)=27$, the z_{β} value from Equation 9.64 is

$$
z_{\beta}=\frac{1-0.488}{1+2(0.488)} \sqrt{2(18+27)}-1.96=0.50
$$

Then the power for the log-rank test is $\pi=\Phi(-\infty<z<0.50) \simeq 0.69$, which is slightly less than the power for the two-sample exponential test for mean life, which was $\pi=0.72$. The two-tailed test was used here to match the power obtained in Example 9.19.

From PASS $>$ Survival and Reliability $>$ Log-Rank Survival (Simple):

Example 9.22 Compare the sample size calculated by Lachin's method to that of Schoenfeld's method in Example 9.20.
Solution: From the information given in the problem statement and Equation 9.66 the sample size by Lachin's method must be

$$
n_{1}=n_{2}=\frac{(1.645+1.282)^{2}}{2-0.2-0.4}\left(\frac{1+0.5693}{1-0.5693}\right)^{2}=82
$$

which is in good agreement with Schoenfeld's method, $n=79$.
See the NCSS/PASS solution shown in Example 9.20. The manual calculation by Schoenfeld's method is in excellent agreement with PASS which uses the same method.

9.4 Interference

Example 9.23 A random sample of component strengths gave $n_{S}=100, \widehat{\mu}_{S}=600$, and $\widehat{\sigma}_{S}=60$ and a random sample of loads gave $n_{L}=36, \widehat{\mu}_{L}=450$, and $\widehat{\sigma}_{L}=40$. Both distributions are known to be normal. Determine the 90% upper confidence limit for the interference failure rate.
Solution: The point estimate for \widehat{z}_{f} is given by Equation 9.73:

$$
\widehat{z}_{f}=\frac{450-600}{\sqrt{40^{2}+60^{2}}}=-2.08
$$

and the corresponding point estimate for the interference failure rate is

$$
\widehat{f}=\Phi(-\infty<z<-2.08)=0.0188
$$

The approximate standard deviation of the \widehat{z}_{f} distribution is given by Equation 9.74:

$$
\widehat{\sigma}_{\widehat{z}_{f}}=\sqrt{\frac{1}{40^{2}+60^{2}}\left(\frac{40^{2}}{36}+\frac{60^{2}}{100}+\frac{1}{2}\left(\frac{450-600}{40^{2}+60^{2}}\right)^{2}\left(\frac{40^{4}}{36}+\frac{60^{4}}{100}\right)\right)}=0.178
$$

Then, from Equation 9.76 with $z_{0.10}=1.282$

$$
\begin{aligned}
\widehat{z}_{f_{U}} & =-2.08+1.282 \times 0.178 \\
& =-1.85
\end{aligned}
$$

so from Equation 9.75 the 90% upper confidence limit for the interference failure probability is

$$
\begin{aligned}
\widehat{f}_{U} & =\Phi(-\infty<z<-1.85) \\
& =0.032
\end{aligned}
$$

That is, on the basis of the sample data, we can claim that the one-sided upper 90% confidence interval for the interference failure rate is

$$
P(0<f<0.032)=0.90
$$

Example 9.24 What sample size is required to demonstrate that the interference failure probability is less than 0.1% with 90% confidence if the strength distribution is known to be normal with $\mu_{S}=20$ and $\sigma_{S}=2$ and the load distribution is expected to be normal with $\widehat{\mu}_{L}=13$ and $\widehat{\sigma}_{L}=1$?
Solution: The point estimate for the interference failure probability determined from the S parameters and the L parameter estimates is

$$
\begin{aligned}
\widehat{f} & =\Phi\left(-\infty<z<\widehat{z}_{f}\right) \\
& =\Phi\left(-\infty<z<\frac{13-20}{\sqrt{1^{2}+2^{2}}}\right) \\
& =\Phi(-\infty<z<-3.13) \\
& =0.000874 .
\end{aligned}
$$

The sample size required to study the load distribution is given by swapping the relevant S and L subscripts in Equation 9.78:

$$
\begin{align*}
n_{L} & =\left(\frac{z_{\alpha}}{\widehat{z}_{f_{U}}-\widehat{z}_{f}}\right)^{2}\left(\frac{\widehat{\sigma}_{L}^{2}}{\widehat{\sigma}_{L}^{2}+\sigma_{S}^{2}}\right)\left(1+\frac{\widehat{\sigma}_{L}^{2}}{2}\left(\frac{\widehat{\mu}_{L}-\mu_{S}}{\widehat{\sigma}_{L}^{2}+\sigma_{S}^{2}}\right)^{2}\right) \tag{9.1}\\
& =\left(\frac{z_{0.10}}{z_{0.001}-z_{0.000874}}\right)^{2}\left(\frac{1^{2}}{1^{2}+2^{2}}\right)\left(1+\frac{1^{2}}{2}\left(\frac{13-20}{1^{2}+2^{2}}\right)^{2}\right) \\
& =\left(\frac{1.282}{-3.09-(-3.13)}\right)^{2}\left(\frac{1^{2}}{1^{2}+2^{2}}\right)\left(1+\frac{1^{2}}{2}\left(\frac{13-20}{1^{2}+2^{2}}\right)^{2}\right) \\
& =407 .
\end{align*}
$$

Example 9.25 What sample size is required to determine the 95% two-sided confidence interval for the exponential-exponential interference failure rate if the confidence limits must be within 50% of the predicted mean failure rate?
Solution: The goal of the experiment is to obtain a confidence interval for the exponential-exponential interference failure rate f of the form

$$
\Phi(0.50 \widehat{f}<f<1.50 \widehat{f})=0.95
$$

With $z_{0.025}=1.96$ and $\delta=0.50$ in Equation 9.90 , the required equal sample sizes are

$$
n_{L}=n_{S}=2\left(\frac{1.96}{0.50}\right)^{2}=31
$$

Example 9.26 How many measurements of mating components in a device must be taken to demonstrate, with 95% confidence, that their true interference failure rate does not exceed the observed failure rate by 20% if the two distributions are known to be Weibull with $\beta_{S}=2.5$ and $\beta_{L}=1.5$, respectively?
Solution: The goal of the experiment is to acquire sufficient information to demonstrate the following one-sided upper confidence interval for the interference failure rate f :

$$
P(0<f<\widehat{f}(1+0.2))=0.95 .
$$

With $\delta=0.2$ and $\alpha=0.05$ in Equation 9.100, we obtain the sample size

$$
\begin{aligned}
n & =\left(\frac{1.645}{0.2 \times \Gamma\left(1+\frac{2.5}{1.5}\right)}\right)^{2}\left(1+\frac{2.5^{2}}{1.5^{2}}\right) \\
& =113
\end{aligned}
$$

Chapter 10

Statistical Quality Control

10.1 Statistical Process Control

Example 10.1 Evaluate the following control chart run rule: A process is judged to be out of control if at least two of three consecutive observations falls beyond the same 2σ limit on the chart.
Solution: The rule is easy to identify on the chart, so it satisfies the first condition for a valid run rule. If the process is in control and the distribution of the statistic (call it w) is approximately normal, then the probability that any point on the chart falls above $\mu_{w}+2 \sigma_{w}$ is $p=\Phi(2<z<\infty)=0.023$. The probability that at least $x=2$ of $n=3$ consecutive points fall above that limit is given by the binomial probability

$$
\sum_{x=2}^{3} b(x ; n=3, p=0.023)=0.0016
$$

Because this pattern could also appear on the bottom half of the chart, the type I error rate for this rule is $\alpha=2(0.0016)=0.0032$, which is acceptably low, so the rule meets the second requirement for a valid control chart rule. If the process mean shifted to $\mu_{w}+2 \sigma_{w}$, then the probability that an observation would fall beyond $\mu_{w}+2 \sigma_{w}$ is $p=0.5$ and the corresponding power of the rule is

$$
\pi=\sum_{x=2}^{3} b(x ; n=3, p=0.5)=0.5
$$

This meets the third requirement of a valid control chart rule. Because all three conditions are satisfied, that is: 1) the rule is easy to recognize, 2) it has a low type I error rate, and 3) it has good power to detect shifts in the process, then it is a valid control chart run rule.

Example 10.2 One of the weaknesses of defects charts when the sampling unit is small is that it is not possible to declare a process to be out of control on the lower side of the chart with a single observation. Evaluate the following special run rule for defects charts: If a defects chart's sampling unit size is sufficient to deliver $\lambda \geq 3$, then the process is out of control if two consecutive sampling units have 0 defects.
Solution: The chart obviously meets the first and third conditions for valid control chart run rules, but it is not clear if the second condition (low type I error rate) is satisfied. If the mean defect rate is $\lambda=3$, then the probability of a sampling unit having 0 defects when the process is in control $\left(H_{0}: \lambda=3\right)$ is Poisson ($x=0 ; \lambda=3$) $=0.05$, a rather common occurrence. Under the same conditions, the probability of observing two consecutive zeros is $b(x=2 ; n=2, p=0.05)=0.0025$, but this is just the type I error rate for the rule. Because $\alpha=0.0025$ is acceptably low, the rule meets all three conditions for a valid control chart run rule.

Example 10.3 When Walter Shewhart invented control charts, he expected that an operator would be using about four run rules to interpret at most three control charts. If each of Shewhart's run rules had $\alpha_{i} \simeq 0.004$, what is the expected overall type I error rate?
Solution: From Equation 10.4

$$
\alpha_{F A M I L Y} \simeq 3 \times 4 \times 0.004=0.048
$$

That is, with three simultaneous charts and four run rules, Shewhart expected about 5% of the sampling intervals to result in type I errors.
Example 10.4 What is the minimum sample size required to have a positive lower control limit on a defectives chart if the process fraction defective is expected to be $p=0.01$? Solution: From Equation 10.6 the required sample size is

$$
\begin{aligned}
n & >\left(\frac{9(1-0.01)}{0.01}\right) \\
& >891
\end{aligned}
$$

Example 10.5 What is the smallest sampling unit size for a defects chart that will deliver no more than about 5\% zero-defect observations when the process delivers 0.6 defects per unit?
Solution: From Equation 10.13 the mean number of defects per sampling unit is the value of λ that satisfies the condition

$$
\begin{equation*}
\text { Poisson }(x=0 ; \lambda)=0.05, \tag{10.1}
\end{equation*}
$$

which is $\lambda=3$. Consequently, the sampling unit size must be $3 / 0.6=5$ units.

Example 10.6 Calculate the power to reject $H_{0}: \mu=30$ when $\mu=32$ if an \bar{x} chart is kept using $n=4$ and $\sigma_{x}=2$. Also determine the corresponding $A R L$.
Solution: The \bar{x} chart control limits will fall at

$$
U C L / L C L=30 \pm \frac{3 \times 2}{\sqrt{4}}=33 / 27
$$

Assuming that the only out-of-control rule used is one point beyond three sigma limits, the power is given by Equation 10.18

$$
\begin{aligned}
\pi & =1-\Phi\left(27<\bar{x}<33 ; \mu_{x}=32, \sigma_{\bar{x}}=\frac{2}{\sqrt{4}}=1\right) \\
& =1-\Phi(-5<z<1) \\
& =0.16
\end{aligned}
$$

Under the same conditions, the average number of subgroups that will have to be drawn after a shift from $\mu=30$ to $\mu=32$ to detect the shift is

$$
A R L=\frac{1}{0.16}=6.3 .
$$

From MINITAB $>$ Stat $>$ Power and Sample Size $>$ 1-Sample Z:

10.2 Process Capability

Example 10.7 What sample size is required to determine c_{p} to within 10% of its true value with 90% confidence?
Solution: With $\delta=0.10$ and $\alpha=0.10$ in Equation 10.26 the required sample size is

$$
n=\frac{1}{2}\left(\frac{1.645}{0.10}\right)^{2}=136
$$

The c_{p} value is inversely proportional to the standard deviation, so a standard deviation calculator can be used to determine the sample size required for a confidence interval for c_{p}. From PASS $>$ Variance $>$ Variance: 1 Group:

Example 10.8 What sample size is required to estimate $c_{p k}$ to within 5% of its true value with 90% confidence if $c_{p k}=1.0$ is expected? Solution: From Equation 10.30 with $\delta=0.05$ and $\alpha=0.05$ the required sample size is

$$
n \simeq\left(\frac{1.645}{0.05}\right)^{2}\left(\frac{1}{9(1.0)^{2}}+\frac{1}{2}\right)=662
$$

Example 10.9 What sample size is required to estimate $c_{p k}$ to within 5% of its true value with 90% confidence if $c_{p k}$ is expected to be very large? Solution: From Equation 10.31 with $\delta=0.05$ and $\alpha=0.05$ the required sample size is

$$
n \simeq \frac{1}{2}\left(\frac{1.645}{0.05}\right)^{2}=541
$$

Example 10.10 Determine the sample size required to reject $H_{0}: c_{p}=1.33$ in favor of $H_{A}: c_{p}>1.33$ with 90% power when $c_{p}=1.5$. Solution: With $\left(c_{p}\right)_{0}=1.33,\left(c_{p}\right)_{1}=1.5, \alpha=0.05$, and $\beta=0.10$ in Equation 10.33 , the required sample size is

$$
n \simeq \frac{1}{2}\left(\frac{1.645+1.282}{\ln \left(\frac{1.5}{1.33}\right)}\right)^{2}=297
$$

The hypothesis test for c_{p} can be performed using a sample size calculator for the standard deviation. By setting the standard deviations to the reciprocals of c_{p} in PASS $>$ Variance> Variance: 1 Group:

Example 10.11 Determine the sample size required to reject $H_{0}: c_{p k}=1.33$ in favor of $H_{A}: c_{p k}>1.33$ with 90% power when $c_{p k}=1.5$. Solution: With $\left(c_{p k}\right)_{0}=1.33,\left(c_{p k}\right)_{1}=1.5, \alpha=0.05$, and $\beta=0.10$ in Equation 10.35, the sample size required to reject H_{0} is

$$
n=\left(\frac{1.645(1.33) \sqrt{\frac{1}{9 \times 1.33^{2}}+\frac{1}{2}}+1.282(1.5) \sqrt{\frac{1}{9 \times 1.5^{2}}+\frac{1}{2}}}{1.5-1.33}\right)^{2}
$$

As expected, this value is comparable to the $n=297$ sample size required for the test of c_{p} determined in Example 10.10 for similar conditions.
Example 10.12 Determine the sample size for Example 10.11 using the large sample approximation and compare the result to the original sample size. Solution: From the information given in the original problem statement and Equation 10.36 the approximate sample size is

$$
\begin{aligned}
n & \simeq \frac{1}{2}\left(\frac{1.645(1.33)+1.282(1.5)}{1.5-1.33}\right)^{2} \\
& \simeq 292
\end{aligned}
$$

This value is about 10\% lower than the more accurate value calculated in Example 10.11.

10.3 Tolerance Intervals

Example 10.13 What sample size is required to be 95% confident that at least 99% of a population of continuous measurement values falls within the extreme values of the sample?

Solution: With $\alpha=0.05$ and $p_{U}=0.01$ the required sample size is approximately

$$
\begin{aligned}
n & \simeq \frac{\chi_{0.95,4}^{2}}{2 \times 0.01} \\
& \simeq 475
\end{aligned}
$$

Further iterations indicate that the smallest value of n for which $\alpha \leq 0.05$ is $n=473$, which leads to the following nonparametric tolerance interval for x :

$$
P\left(0.99<P\left(x_{\min } \leq x \leq x_{\max }\right)<1\right)=0.9502 .
$$

Example 10.14 What sample size n is required to be 95% confident that at least 99% of a population of continuous measurement values falls below the maximum value of the sample?
Solution: With $\alpha=0.05$ and $p_{U}=0.01$ the required sample size is

$$
\begin{aligned}
n & \simeq \frac{\chi_{0.95,2}^{2}}{2 \times 0.01} \\
& \simeq 300
\end{aligned}
$$

Example 10.15 Determine the sample size required to obtain a 95% confidence two-sided 99% coverage normal distribution tolerance interval with tolerance limits $U T L / L T L=$ $\bar{x} \pm 3.5$ s.
Solution: The desired tolerance interval has the form

$$
P(0.99 \leq \Phi(\bar{x}-3.5 s \leq x \leq \bar{x}+3.5 s) \leq 1)=0.95 .
$$

From Appendix E.7, as sample of size $n=25$ gives $k_{2}=3.46$. A spreadsheet (not shown) was set up to calculate k_{2} as a function of n using Equation 10.47 with $p=0.01$ and $\alpha=0.05$. The spreadsheet indicated that the sample size $n=24$ delivers $k_{2}=3.485$ and that $n=23$ delivers $k_{2}=3.514$, so $n=24$ should be used to be conservative. These approximate k_{2} values differ from the exact values given in Appendix E. 7 in the thousandths place.

Example 10.16 Determine the sample size required to obtain a 95% confidence 99% coverage normal distribution tolerance interval with one-sided upper tolerance limit $U T L=$ $\bar{x}+3 s$.
Solution: The required interval has the form

$$
\begin{equation*}
P(0.99<\Phi(-\infty<x \leq U T L)<1)=0.95 \tag{10.2}
\end{equation*}
$$

where $U T L=\bar{x}+k_{1} s$ with $k_{1}=3$. From Table E. 7 of Appendix E with $\alpha=0.05$ and $Y=0.99$, the required sample size is $n=35$.

10.4 Acceptance Sampling

Example 10.17 Design the single sampling plan for attributes that will accept 95% of lots when the process fraction defective is 1% and accept only 10% of lots when the process fraction defective is 5%.
Solution: From the problem statement, the lots are coming from a continuous process, so the sampling plan will be Type B with points on the OC curve at ($A Q L, 1-\alpha$) $=$
$(0.01,0.95)$ and $(R Q L, \beta)=(0.05,0.10)$. From Table 10.1 with $R Q L / A Q L=0.05 / 0.01=5.0$, the acceptance number must be $c=3$. Then, from the RQL condition, the required sample size is approximately

$$
\begin{aligned}
n & \simeq \frac{\chi_{0.90,8}^{2}}{2(0.05)} \\
& \simeq \frac{13.36}{2 \times 0.05} \\
& \simeq 134 .
\end{aligned}
$$

The exact sampling plan that meets the specifications in the problem statement is $n=132$ and $c=3$.

From MINITAB $>$ Stat $>$ Quality Tools $>$ Acceptance Sampling by Attributes:

SUBC> RQL 0.01;
SUBC> RQL 0.01;
SUBC> RQL 0.05;
SUBC> RQL 0.05;
SUBC> ALPHA O.05;
SUBC> ALPHA O.05;
SUBC> BETA 0.10;
SUBC> BETA 0.10;
$\begin{array}{ll}\text { SUBC> } & \text { PROPO } \\ \text { SUBC> } & \text { GOC. }\end{array}$

Acceptance Sampling by Attributes
Measurement type: Go/no go
Lot quality in proportion defective
Use binomial distribution to calculate probability of acceptance

Acceptable Quality Level (AOL)	0.0
Producer's Risk (Alpha)	0.0

Producer's Risk (Alpha) 0.0

Rejectable Quality Level (RQL or LTPD) 0.05
Consumer's Risk (Beta) 0.1

Generated Plan(s)
Sample Size
Acceptance Number 132
3

Accept lot if defective items in 132 sampled $<=3$; otherwise reject.

Proportion	Probability	Probability
Defective	Accepting	Rejecting
0.01	0.956	0.044

$0.01 \quad 0.956 \quad 0.044$
\qquad

Example 10.18 Find the $c=0$ plans that meet a) the $A Q L$ requirement and b) the $R Q L$ requirement from Example 10.17. Plot the three OC curves on the same graph. Solution:
a) The sample size for the $c=0$ plan that meets the $A Q L$ requirement $\left(p, P_{A}\right)=(0.01,0.95)$ is approximately

$$
\begin{aligned}
n & \simeq \frac{\chi_{\alpha, 2}^{2}}{2 \times A Q L} \\
& \simeq \frac{0.1026}{2 \times 0.01} \\
& \simeq 6 .
\end{aligned}
$$

A few binomial calculations indicate that the exact sample size is $n=5$ because $(b(0 ; 5,0.01)=0.951)>(1-\alpha=0.95)$.
b) The sample size for the $c=0$ plan that meets the $R Q L$ requirement $\left(p, P_{A}\right)=(0.05,0.10)$ is approximately

$$
\begin{aligned}
n & \simeq \frac{\chi_{1-\beta, 2}^{2}}{2 \times R Q L} \\
& \simeq \frac{4.61}{2 \times 0.05} \\
& \simeq 46
\end{aligned}
$$

The exact sample size is $n=45$ because $(b(0 ; 45,0.05)=0.099)<(\beta=0.10)$.
From MINITAB $>$ Stat $>$ Quality Tools $>$ Acceptance Sampling by Attributes:

Example 10.19 Determine the sampling plan for lots of size $N=50$ that will accept 95% of the lots with $D \leq 1$ defectives and reject 90% of the lots with $D \geq 5$ defectives. Solution: The sampling plan must meet the simultaneous conditions given by Equation 10.57 with $D_{1}=1$ and $\alpha \leq 0.05$:

$$
\begin{equation*}
\sum_{x=0}^{c} h\left(x ; D_{1}=1, N=50, n\right) \geq 0.95 \tag{10.3}
\end{equation*}
$$

and Equation 10.58 with $D_{2}=5$ and $\beta \leq 0.10$:

$$
\begin{equation*}
\sum_{x=0}^{c} h\left(x ; D_{2}=5, N=50, n\right)<0.10 . \tag{10.4}
\end{equation*}
$$

The acceptance number c is not specified, so different values of c must be considered. The approximate sample size for the $c=0$ sampling plan to meet the condition in Equation 10.63 is given by Equation 10.61:

$$
n \simeq 50\left(1-0.10^{1 / 5}\right)=19
$$

however, the condition in Equation 10.62 is not satisfied because

$$
\left(h\left(x=0 ; D_{1}=1, N=50, n=19\right)=0.525\right) \nsupseteq 0.95 .
$$

Iterations with a hypergeometric calculator show that with $c=1$ Equation 10.63 is satisfied when $n=29$ because

$$
\begin{aligned}
& \left(\sum_{x=0}^{1} h\left(x ; D_{1}=5, N=50, n=28\right)=0.109\right) \not \leq 0.10 \\
& \left(\sum_{x=0}^{1} h\left(x ; D_{1}=5, N=50, n=29\right)=0.092\right) \leq 0.10
\end{aligned}
$$

and Equation 10.62 is satisfied because

$$
\left(\sum_{x=0}^{1} h\left(x ; D_{1}=1, N=50, n=29\right)=1\right) \geq 0.95 .
$$

The sampling plan that meets the requirements is $n=29$ with $c=1$.

From MINITAB $>$ Stat $>$ Quality Tools $>$ Acceptance Sampling by Attributes:

```
MTB \(>\) Rasampling 1;
SUBC> AQL 0.02;
SUBC> RQL 0.10
\(\begin{array}{ll}\text { SUBC> } & \text { CREATE; } \\ \text { SUBC> } \\ \text { ALPHA } \\ \text { O. }\end{array}\)
SUBC> BLPA O.05;
SUBC> LOTSIZE 50;
SUBC> PROPORTION:
SUBC> HYPERGEOMETRIC;
SUBC> GOC;
SUBC> GAOQ;
SUBC> ONEGRAPH
```


Acceptance Sampling by Attributes

Measurement type: Go/no go
Lot quality in proportion defective
Lot size: 50
Use hypergeometric distribution to calculate probability of acceptance

$$
\begin{array}{ll}
\text { Acceptable Quality Level (ALL) } & 0.02 \\
\text { Producer's Risk (Alpha) } & 0.05 \\
& \\
\text { Rejectable Quality Level (RQL or LTPD) } & 0.1
\end{array}
$$

Consumer's Risk (Beta)
0.1

Generated Plan (s)
Sample Size 29
Acceptance Number 1
accept lot if defective items in 29 sampled $<=1$; Otherwise reject.
<

Example 10.20 A 100% inspection process for large lots is to be replaced with a $c=0$ sampling plan. What fraction of each lot must be inspected if lots that contain five or more defectives must be rejected 90% of the time?
Solution: From Equation 10.61 with $D=5$ and $P_{A}=0.10$, the fraction of each lot that must be inspected is

$$
\begin{aligned}
\frac{n}{N} & \simeq 1-0.10^{1 / 5} \\
& \simeq 0.37
\end{aligned}
$$

Example 10.21 The calculated sample size in Example 4.2 was quite large compared to the lot size, which violates the small-sample approximation assumption. Repeat that example using the small-lot-size method.
Solution: The solution in the example indicated that 30% of the lot needed to be inspected. From Equation 10.61, which takes the relatively large sample size into account, the fraction of the lot that has to be inspected is more accurately

$$
\begin{aligned}
\frac{n}{N} & \simeq 1-0.05^{1 / 10} \\
& \simeq 0.259
\end{aligned}
$$

Example 10.22 Create the OC curves for normal, tightened, and reduced inspection under ANSI/ASQ Z1.4 using general inspection level II, single sampling, $N=1000$, and $A Q L=1 \%$.
Solution: The sampling plans determined for code letter J from the standard were normal ($n=200, c=5$), tightened ($n=200, c=3$), and reduced ($n=80, c=2$). The operating characteristic curves were calculated using Equation 10.54 and are shown in Figure 10.6. For reference, the figure also shows the OC curve for the sampling plan determined for the same conditions using the Squeglia zero acceptance number sampling standard, which is often used instead of ANSI/ASQ Z1.4.

Example 10.23 Determine the optimal rectifying inspection sampling plan for $L T P D=0.04$ with $\beta=0.10$ when the lot size is $N=2500$ and the historical process fraction defective is $p=0.01$.
Solution: A spreadsheet was used to solve Equations 10.66 and 10.67 as a function of acceptance number c as shown in Table 10.2. For the specified conditions, the sampling plan that minimizes $A T I$ when $p=0.01$ is $n=232$ with $c=5$. By comparison, the Dodge-Romig LTPD tables indicate a sampling plan with $n=230$ and $c=5$, which is in excellent agreement with the calculated plan.

Example 10.24 Find the rectifying inspection plan with $L T P D=0.04$ and $\beta=0.1$ for a lot size of $N=50$.
Solution: For the given conditions, the spreadsheet method gives $n=58$, which exceeds the lot size. From Equation 10.70 the sample size required for the $c=0$ plan is

$$
\begin{aligned}
n & \simeq 50\left(1-0.1^{\frac{1}{50 \times 0.04}}\right) \\
& \simeq 35 .
\end{aligned}
$$

By comparison, the corresponding Dodge-Romig plan calls for $n=34$ and is independent of the historical fraction defective.
From MINITAB $>$ Stat $>$ Quality Tools $>$ Acceptance Sampling by Attributes:

Acceptance Sampling by Attributes
Measurement type: Go/no go
Lot quality in proportion defective
Lot size: 50 hypergeometric distribution to calculate probability of acceptance

Acceptable Quality Level (AQL)	0.000001
Producer's Risk (Alpha)	0.05
Rejectable Quality Level (RQL or LTPD)	0.04
Consumer's Risk (Beta)	0.1

Generated Plan(s)
Sample Size 34
0

Accept lot if defective items in 34 sampled $<=0$; Otherwise reject.

Acceptance Sampling by Attributes - Options

\checkmark Use hypergeometric distribution for isolated lot
 Enter additional quality levels to calculate acceptance probabilities:

(Units: Proportion defective)

You may increase Alpha and Beta slightly for alternative plans with smaller sample sizes
Maximum Alpha allowed:
Maximum Eeta allowed: \square

Help \qquad Cancel

Example 10.25 What sample size is required for a $c=1$ rectifying inspection single-sampling plan to obtain $1 \% A O Q L$ if the lot size is $N=300$? For what value of incoming fraction defective will $A O Q$ be a maximum?
Solution: From Equation 10.76 with $A_{1}=0.839$ the required sample size is

$$
n=\frac{1}{\frac{0.01}{0.839}+\frac{1}{300}}=66
$$

$A O Q$ will be at its maximum value, $A O Q L$, when the incoming fraction defective is

$$
p_{c}=\frac{\chi_{1}^{2}}{2 n}=\frac{3.24}{2 \times 66}=0.0245 .
$$

Example 10.26 Determine the sampling plan that minimizes the $A T I$ for lots of size $N=1000$ with $A O Q L=0.02$ when the historical defective rate is $p=0.01$.
Solution: A spreadsheet was used to solve for n and $A T I$ as a function of c using Equations 10.76 and 10.67. The results from the spreadsheet, shown in Table 10.4, indicate that the sampling plan that minimizes $A T I$ is given by $n=65$ and $c=2$. By comparison, this is exactly the same plan indicated in the Dodge-Romig tables for these conditions.

Example 10.27 Find the single sampling plan for variables that will accept 95% of the lots with 1% defectives and reject 90% of the lots with 4% defectives when $\sigma=30$ and the specification is one-sided with $U S L=700$.
Solution: The two specified points on the OC curve are $\left(p_{0}, 1-\alpha\right)=(0.01,0.95)$ and $\left(p_{1}, \beta\right)=(0.04,0.10)$. From Equation 10.79 the required sample size is

$$
\begin{aligned}
n & =\left(\frac{z_{0.05}+z_{0.10}}{z_{0.01}-z_{0.04}}\right)^{2} \\
& =\left(\frac{1.645+1.282}{2.33-1.75}\right)^{2} \\
& =26 .
\end{aligned}
$$

The critical value of $\bar{x}_{A / R}$ is

$$
\begin{aligned}
\bar{x}_{A / R} & =\mu_{0}+z_{\alpha} \sigma_{\bar{x}} \\
& =\left(U S L-z_{p_{0}} \sigma_{x}\right)+z_{\alpha} \frac{\sigma_{x}}{\sqrt{n}} \\
& =(700-2.33 \times 30)+1.645 \frac{30}{\sqrt{26}} \\
& =640 .
\end{aligned}
$$

Example 10.28 Determine the sample size ratio for attributes and variables inspection plans that will accept 95% of the lots with 0.1% defectives and reject 95% of the lots with 0.4% defectives.
Solution: The two points on the OC curve are ($p_{0}=0.001,1-\alpha=0.95$) and ($p_{1}=0.004, \beta=0.05$). Because $\alpha=\beta=0.05$ and both p_{0} and p_{1} are relatively small, from Equation 10.81 the ratio of the attributes- to variables-based sample sizes is approximately

$$
\begin{aligned}
\frac{n_{\text {attributes }}}{n_{\text {variables }}} & \simeq \frac{1}{4}\left(\frac{z_{0.001}-z_{0.004}}{\sqrt{0.004}-\sqrt{0.001}}\right)^{2} \\
& \simeq \frac{1}{4}\left(\frac{3.090-2.652}{\sqrt{0.004}-\sqrt{0.001}}\right)^{2} \\
& \simeq 48
\end{aligned}
$$

So, the attributes plan sample size will have to be about 48 times larger than the variables plan sample size to obtain the same performance for acceptable and rejectable quality levels!

Example 10.29 Find the single sampling plan for variables that will accept 95% of the lots with 1% defectives and reject 90% of the lots with 4% defectives. The specification is one-sided and σ is unknown.
Solution: The two specified points on the OC curve are $\left(p_{0}, 1-\alpha\right)=(0.01,0.95)$ and $\left(p_{1}, \beta\right)=(0.04,0.10)$. From Equation 10.86 , the condition that determines the sample size is

$$
t_{0.95, n-1,-z_{0.01} \sqrt{n}}=t_{0.10, n-1,-z_{0.04 \sqrt{n}}}
$$

which is satisfied by $n=78$ because

The accept/reject value of k for the test is

$$
t_{0.95,77,-20.58}=t_{0.10,77,-15.46}=-17.75
$$

$$
k=\frac{17.75}{\sqrt{78}}=2.01
$$

From MINITAB $>$ Stat $>$ Quality Tools $>$ Acceptance Sampling by Variables $>$ Create/Compare:

Example 10.30 Plot the OC curves for the normal, tightened, and reduced sampling plans under ANSI/ASQ Z1.9 using a one-sided specification with Form 1, code letter F, and $A Q L=1 \%$.

Solution: The sampling plans determined from the standard were normal ($n=10, k=1.72$), tightened ($n=10, k=1.84$), and reduced ($n=4, k=1.34$). The operating characteristic curves were calculated using Equations 10.84 and 10.85 . For example, the OC curve for normal inspection is given by

$$
\begin{aligned}
& t_{P_{A}, d f,-z_{p} \sqrt{n}}=-k \sqrt{n} \\
& t_{P_{A}, 9,-z_{p} \sqrt{10}}=-1.72 \sqrt{10} \\
& t_{P_{A}, 9,-z_{p} \sqrt{10}}=-5.439 .
\end{aligned}
$$

The OC curves are shown in Figure 10.9 and are in excellent agreement with the OC curves in the standard
From MINITAB $>$ Stat $>$ Quality Tools $>$ Acceptance Sampling by Variables $>$ Create/Compare:

SUBC> GOC.
Acceptance Sampling by Variables - Create/Compare
Lot quality in proportion defective

10.5 Gage R\&R Studies

Chapter 11

Resampling Methods

11.1 Software Requirements

11.2 Monte Carlo

Example 11.1 How many samples should be drawn from a Poisson population to estimate the mean with 20% precision and 95% confidence? The mean is expected to be $\lambda=5$. Solution: The sample size must be sufficient to deliver the following confidence interval for λ :

$$
\begin{aligned}
P(0.8 \widehat{\lambda}<\lambda<1.2 \widehat{\lambda}) & =0.95 \\
P(4<\lambda<6) & =0.95
\end{aligned}
$$

where $\hat{\lambda}=x / n$ and x is the number of counts observed in n sampling units. A MINITAB macro was used to draw 10000 random samples, all of size n, from a Poisson distribution with $\lambda=5$, and calculate $\hat{\lambda}$ for each sample. The $2.5^{t h}$ and $97.5^{t h} \widehat{\lambda}$ percentiles were used to estimate the 95% confidence limits. Figure 11.1 shows the Monte Carlo confidence limits as a function of sample size. The sample size that delivers the desired confidence interval width is $n=19$, which is in good agreement with the sample size given by Equation 5.11:

$$
\begin{aligned}
n & =\frac{1}{\lambda}\left(\frac{z_{\alpha / 2}}{\delta}\right)^{2} \\
& =\frac{1}{5}\left(\frac{1.96}{0.2}\right)^{2} \\
& =20 .
\end{aligned}
$$

Example 11.2 Use the Monte Carlo method to confirm the answer to Example 9.25, that samples of size $n=31$ are required to estimate, with 95% confidence, the exponentialexponential interference failure rate to within $\pm 50 \%$.
Solution: A MINITAB macro was written that draws random samples of size $n=31$ for exponential load and strength distributions, where the load distribution has mean μ_{L},
where μ_{L} comes from a uniform distribution with $1 \leq \mu_{L} \leq 10$, and the strength distribution has mean $\mu_{S}=k \mu_{L}$, where k comes from a uniform distribution with $3 \leq k \leq 10$. The macro loops 1000 times, collecting the ratio of the empirical interference failure rate \widehat{f} to the known failure rate f from each pass. Figure 11.2 shows the histogram of \widehat{f} / f. About 97% of the observed \widehat{f} values fall within $\pm 50 \%$ of their known f values, which is consistent with the intended 95% confidence level.

Example 11.3 An experiment is proposed to study the defective rate (p) of a process using a sample of size $n=300$ units. The process is considered to be acceptable when $p \leq 0.01$, but $p \geq 0.03$ is unacceptable. Determine the acceptance number and power for the sampling plan.
Solution: The hypotheses to be tested are $H_{0}: p \leq 0.01$ versus $H_{A}: p>0.01$. The decision to reject H_{0} or not is based on the observed number of defectives x in a sample of size $n=300$. The critical value of x that distinguishes the accept and reject regions should be chosen such that $\alpha \leq 0.05$ for $p=0.01$. To determine this critical value, MINITAB was used to select 10000 random samples from a binomial population with $n=300$ and $p=0.01$. The frequencies and cumulative percentages by x are shown in the H_{0} columns of Table 11.1. From the CumPct column, the critical value of x must be set to $x_{A / R}=6.5$ to provide good protection against type I errors ($\alpha=1-0.9692=0.0308$). The frequency statistics under H_{A} in the Figure were created by selecting 10000 random samples from a binomial population with $n=300$ and $p=0.03$. From the CumPct column, the type II error probability relative to $x_{A / R}=6.5$ is $\beta=0.206$, so the power to reject H_{0} when $p=0.03$ is $\pi=1-\beta=0.794$. This is in excellent agreement with the power calculated for the one-sample proportion test (see Section 4.1.2), which is $\pi=0.797$.

Example 11.4 Tukey's quick test is a nonparametric two-sample test for location that is easy to perform using dotplots. The samples must be comparable in size and they must be slipped, that is, one sample must have the largest observation and the other sample must have the smallest observation. The test statistic, T, is the number of slipped or nonoverlapping points. The Tukey test rejects $H_{0}: \mu_{1}=\mu_{2}$ when $T \geq 7$. For example, in Figure $11.3 T=7+10=17$, so there is sufficient evidence to reject H_{0}.

Use the Monte Carlo method to determine the power of Tukey's quick test as a function of effect size and sample size assuming that the two populations are normal and homoscedastic.
Solution: A MINITAB macro was written to draw 1000 random samples of equal sample size from two independent homoscedastic normal populations and count the number of times that H_{0} was rejected by the Tukey quick test. Figure 11.4 shows that the power of the test is low for all sample sizes until the difference between the means is greater than 1.5 to 2.5 standard deviations. When the sample size is $n \geq 20$, Tukey's quick test has power $\pi \geq 0.90$ for differences between the means of 1.5 standard deviations or greater.

11.3 Bootstrap

Example 11.5 The following yield strength values (in thousands of $p s i$) for a material were obtained in a pilot study: $\{56,23,25,68,35,31,13,15,48,37,57,69,50,76,50,19,88$, $33,10,21\}$. What sample size is required to estimate, with 95% confidence, the mean yield strength to within ± 5000 psi?
Solution: The bootstrap percentile confidence interval width was studied as a function of sample size using 1000 resamples for sample sizes from $n=30$ to 100 . Figure 11.5 shows the confidence interval width, given by

$$
2 \delta=\widehat{\theta}_{0.975}^{*}-\widehat{\theta}_{0.025}^{*},
$$

versus sample size. The sample size required to obtain the desired precision of the estimate is $n=75$.
Example 11.6 The following data were obtained from a pilot study: $\{56,48,44,62,50,47,49,57,48,55,96,47,46,47,49,72,46,61\}$. Determine the sample size required to obtain 90% power to reject $H_{0}: \mu=50$ when $\mu=52$. The population is not normal, so assume that the experimental data will be analyzed using the bootstrap method.
Solution: If the population distribution is normal, the one-sample Student's t test would be an appropriate method of analysis. Because the normality assumption is not satisfied, the preferred method of analysis using the bootstrap method uses the analogous bootstrap- t distribution given by

$$
\begin{equation*}
t^{*}=\frac{\bar{x}^{*}-\mu_{0}}{s^{*} / \sqrt{n}} \tag{11.4}
\end{equation*}
$$

where \bar{x}^{*} and s^{*} are the mean and standard deviation of bootstrap samples. Figure 11.6 shows the bootstrap distributions of t^{*} with samples of size $n=18$ under $H_{0}: \mu=50$ and $H_{A}: \mu=56$, where the sample data were shifted to the appropriate population means before bootstrapping using transformations of the form

$$
x_{i}^{\prime}=x_{i}-\bar{x}+\mu .
$$

From the bootstrap- t distribution under H_{0}, the acceptance interval for H_{0} is $-4.29 \leq t^{*} \leq 1.62$. The acceptance interval is skewed because the original sample is skewed. From the bootstrap distribution under H_{A}, the power is $\pi=0.802$, which does not meet the 90% power requirement.

Figure 11.7 shows the bootstrap- t test power versus sample size for samples from size $n=16$ to 30 . (Figure 11.6 was constructed from 1000 bootstrap samples. Each point in Figure 11.7 was constructed from 10000 bootstrap samples to reduce the noise in the power versus sample size plot.) The sample size required to obtain 90% power to reject H_{0} when $\mu=56$ is $n=23$.

[^0]: Example 7.3 Find the power to reject $H_{0}: \rho_{1}=\rho_{2}$ in favor of $H_{A}: \rho_{1} \neq \rho_{2}$ when $\rho_{1}=0.99, \rho_{2}=0.95$, and $n_{1}=n_{2}=30$.

