
Chapter 3

Sampling and Sampled-Data

Systems

3.1 Introduction

Today, virtually all control systems are implemented digitally, on platforms
that range from large computer systems (e.g. the mainframe of an industrial
SCADA1 system) to small embedded processors. Since computers work with
digital signals and the systems they control often live in the analog world, part
of the engineered system must be responsible for converting the signals from
one domain to another. In particular, the control engineer should understand
the principles of sampling and quantization, and the basics of Analog to Digital
and Digital to Analog Converters (ADC and DAC).

Control systems that combine an analog part with some digital components
are traditionally referred to as sampled-data systems. Alternative names such
as hybrid systems or cyber-physical systems (CPS) have also been used more
recently. In this case, the implied convention seems to be that the digital
part of the system is more complex than in traditional sampled-data systems,
involving in particular logic statements so that the system can switch between
different behaviors. Another important concern for the development of CPS
is system integration, since we must often assemble complex systems from
heterogeneous components that might be designed independently using perhaps
different modeling abstractions. In this chapter however we are concerned with
the classical theory of sampled-data system, and with digital systems that are
assumed to be essentially dedicated to the control task, and as powerful for
this purpose as needed. Even in this case, interesting questions are raised by
the capabilities of modern digital systems, such as the possibility of very high
sampling rates. Moreover, we can build on this theory to relax its unrealistic
assumptions for modern embedded implementation platforms and to consider
more complex hybrid system and CPS issues, as discussed in later chapters.

1SCADA = Supervisory Control and Data Acquisition
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Figure 3.1: Sampled-data model. H = hold, S = sampler, Q = quantizer (+
decoder), AAF = anti-aliasing (low-pass) filter. Continuous-time signals are
represented with full lines, discrete-time signals with dashed lines.

Organization of Sampled-Data Systems

The input signals of a digital controller consist of discrete sequences of finite
precision numbers. We call such a sequence a digital signal. Often we ignore
quantization (i.e., finite precision) issues and still call the discrete sequence a
digital signal. In sampled-data systems, the plant to be controlled is an ana-
log system (continuous-time, and usually continuous-state), and measurements
about the state of this plant that are initially in the analog domain need to
be converted to digital signals. This conversion process from analog to digital
signals is generally called sampling, although sampling can also refer to a par-
ticular part of this process, as we discuss below. Similarly, the digital controller
produces digital signals, which need to be transformed to analog signals to ac-
tuate the plant. In control systems, this transformation is typically done by
a form of signal holding device, most commonly a zero-order hold (ZOH) pro-
ducing piecewise constant signals, as discussed in section 3.3. Fig. 3.1 shows
a sampled-data model, i.e. the continuous plant together with the DAC and
ADC devices, which takes digital input signals and produces digital output sig-
nals and can be connected directly to a digital controller. The convention used
throughout these notes is that continuous-time signals are represented with full
lines and sampled or digital signals are represented with dashed lines. Note
that the DAC and ADC can be integrated for example on the microcontroller
where the digital controller is implemented, and so the diagram does not nec-
essarily represents the spatial configuration of the system. We will revisit this
point later as we discuss more complex models including latency and commu-
nication networks. The various parts of the system represented on Fig. 3.1 are
discussed in more detail in this chapter.
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3.2 Sampling

Preliminaries

We first introduce our notation for basic transforms, without discussing is-
sues of convergence. Distributions (e.g. Dirac delta) are also used informally
(Fourier transforms can be defined for tempered distributions).

Continuous-Time Fourier Transform (CTFT): For a continuous-time
function f(t), its Fourier transform is

f̂(ω) = Ff(ω) =

� ∞

−∞

f(t)e−iωtdt.

Inverting the Fourier transform, we then have

f(t) =
1

2π

� ∞

−∞

f̂(ω)eiωtdω.

Laplace Transform: generalizes the Fourier transform. In control however,
one generally uses the one-sided Laplace transform

f̂(s) = Lf(s) =
� ∞

0−
f(t)e−stdt, s ∈ C,

which is typically not an issue since we also assume that signals are zero for
negative time. We can invert it using

f(t) =
1

2πi

�
c+i∞

c−i∞

f̂(s)estds,

where c is a real constant that is greater than the real parts of all the singu-
larities of f̂(s).

Discrete-Time Fourier Transform (DTFT): for a discrete-time sequence
{x[k]}k, its Fourier transform is

x̂(eiω) = Fx(eiω) =
∞�

k=−∞

x[k]e−iωk.

The inversion is
x[k] =

1

2π

�
π

−π

x̂(eiω)eiωkdω,

where the integration could have been performed over any interval of length
2π. Since we use both continuous-time and discrete-time signals, we use the
term discrete-time Fourier transform for the Fourier transform of a discrete-
time sequence. The notation should remind the reader that x̂(eiω) is periodic
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of period 2π (similarly in the following, we use x̂(eiωh), which is periodic of
period ωs = 2π/h). It is sufficient to consider the DTFT of a sequence over
the interval (−π, π]. The frequencies close to 0 + 2kπ correspond to the low
frequencies, and the frequencies close to π + 2kπ to the high frequencies. The
theory of the DTFT is related to that of the Fourier series for the periodic
function x̂(eiω).

z-transform and λ-transform: generalizing the DTFT for a discrete se-
quence {x[k]}k, we have the two-side z-transform

x̂(z) =
∞�

k=−∞

x[k]z−k, z ∈ C.

In control however, we often use the one-sided z-transform

x̂(z) =
∞�

k=0

x[k]z−k, z ∈ C,

but this not an issue, because the sequences are typically assumed to be zero for
negative values of k. The z-transform is analogous to the Laplace transform,
now for discrete-time sequences. It is often convenient to use the variable
λ = 1/z instead, and we call the resulting transform the λ-transform

x̂(λ) =
∞�

k=−∞

x[k]λk, λ ∈ C.

For G a DT LTI system (discrete-time linear time-invariant system) with
matrices A,B,C,D, as usual and impulse response {g(k)}, its transfer function
(a matrix in general) is

g(λ) = D + λC(I − λA)−1B,

or
g(z) = D + C(zI −A)−1B,

and also denoted �
A B
C D

�
.

Periodic Sampling of Continuous-Time Signals

In sampled-data systems the plant lives in the analog world and data conversion
devices must be used to convert its analog signals in a digital form that can
be processed by a computer. We first consider the output signals of the plant,
which are transformed into digital signals by an Analog-to-Digital Converter
(ADC). For our purposes, an ADC consists of four blocks2.

2this discussion assumes a “Nyquist-rate” ADC rather than an “oversampling” Delta-
Sigma converter, see [Raz95].
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1. First, an analog low-pass filter limits the signal bandwidth so that sub-
sequent sampling does not alias unwanted noise or signal components
into the signal band of interest. In a control system, the role of this
Anti-Aliasing Filter (AAF) is also to remove undesirable high-frequency
disturbances that can perturb the behavior of the closed-loop system.
Aliasing is discussed in more details in the next paragraph. For the
purpose of analysis, the AAF can be considered as part of the plant (the
dynamics of the AAF can in some rare instances be neglected, see [ÅW97,
p.255]). Note that most analog sensors include some kind of filter, but
the filter is generally not chosen for a particular control application and
therefore might not be adequate for our purposes.

2. Next, the filter output is sampled to produce a discrete-time signal, still
real-valued.

3. The amplitude of this signal is then quantized, i.e., approximated by one
of a fixed set of reference levels, producing a discrete-time discrete-valued
signal.

4. Finally, a digital representation is of this signal is produced by a de-
coder and constitutes the input of the processor. From the mathematical
point of view, we can ignore this last step which is simply a choice of
digital signal representation, and work with the signal produced by the
quantizer.

Let x(t) be a continuous-time signal. A sampler (block S on Fig. 3.1)
operating at times tk with k = 0, 1, . . . or k = . . . ,−1, 0, 1, . . ., takes x as
input-signal and produces the discrete sequence {xk}k, with xk = x(tk). Tra-
ditionally, sampling is performed at regular intervals, as determined by the
sampling period denoted h, so that we have tk = kh. This is the situation
considered in this chapter. We then let ωs =

2π
h

denote the sampling frequency
(in rad/s), and ωN = ωs

2 = π

h
is called the Nyquist frequency. Note that we

will revisit the periodic sampling assumption in later chapters, because it can
be hard to satisfy in networked embedded systems.

Aliasing

Sampling is a linear operation, but sampled systems in general are not time-
invariant. Perhaps more precisely, consider a simple system HS, consisting of
a sampler followed by a perfectly synchronized ZOH device. This system maps
a continuous-time signal into another one, as follows. If u is the input signal,
then the output signal y is

y(t) = u(tk), tk ≤ t < tk+1, ∀k,

where {tk}k is the sequence of sampling (and hold) times. It is easy to see
that it is linear and causal, but not time-invariant. For example, consider the
output produced when the input is a simple ramp, and shift the input ramp

29



in time. This system is periodic of period h if the sampling is periodic with
this period, in the sense that shifting the input signal u by h results in shifting
the output y by h. Indeed, periodically sampled systems are often periodic
systems.

Exercise 2. Assume that two systems H1S1 and H2S2 with sampling periods
h1 and h2 are connected in parallel. For what values of h1, h2 is the connected
system periodic?

In particular, sampled systems do not have a transfer function, and new
frequencies are created in the signal by the process of sampling, leading to the
distortion phenomenon known as aliasing. Consider a periodic sampling block
S, with sampling period h, analog input signal y and discrete output sequence
ψ, i.e., ψ[k] = y(kh) for all k.

y
S

ψ

The following result relates the Fourier transforms of the continuous-time input
signal and the discrete-time output signal. Define the periodic-extension of
ŷ(ω) by

ŷe(ω) :=
∞�

k=−∞

ŷ(ω + kωs),

and note that ŷe is periodic of period ωs, and is characterized by its values in
the band (−ωN , ωN ].

Lemma 3.2.1. The DTFT of ψ = {y(kh)}k and the CTFT of y are related
by the relation

ψ̂(eiωh) =
1

h
ŷe(ω),

i.e.,
ψ̂(eiω) =

1

h
ŷe

�ω
h

�
.

Proof. Consider the impulse-train
�

k
δ(t − kh) (or Dirac comb), which is a

continuous-time signal of period h. The Poisson summation formula gives the
identity �

k

δ(t− kh) =
1

h

�

k

eikωst.

Then define the impulse-train modulation

v(t) = y(t)
�

k

δ(t− kh) =
1

h

�

k

y(t)eikωst.

Taking Fourier transforms, we get

v̂(ω) =
1

h

�

k

y(ω + kωs) =
1

h
ŷe(ω).
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On the other hand, we can also write

v(t) =
�

k

ψ(k)δ(t− kh).

And taking again Fourier transforms

v̂(ω) =

� �
�

k

ψ(k)δ(t− kh)

�
eiωtdt

=
�

k

ψ(k)e−iωkh

= ψ̂(eiωh).

In other words, periodic sampling results essentially in the periodization of
the Fourier transform of the original signal y (the rescaling by h in frequency
is not important here: it is just due to the fact that the discrete-time sequence
is always normalized, with intersample distance equal to 1 instead of h for
the impulse train). If the frequency content of y extends beyond the Nyquist
frequency ωN , i.e. ŷ is not zero outside of the band (−ωN , ωN ), then the sum
defining ŷe involves more than one term in general at a particular frequency,
and the signal y is distorted by the sampling process. On the other hand, if ŷ
is limited to (−ωN , ωN ), then we have ψ̂(eiωh) = y(ω) for the defining interval
(−ωN , ωN ) and the sampling block does not distort the signal, but acts as a
simple multiplicative block with gain 1/h. The presence of an anti-aliasing low-
pass filter, with cut-off frequency at ωN , is then a means to avoid the folding of
high signal frequencies of the continuous-time signals into the frequency band
of interest due to the sampling process.

Sampling Noisy Signals

The previous discussion concerns purely deterministic signals and justifies the
AAF to avoid undesired folding of high-frequency components in the frequency
band of interest. Now for a stochastic input signal y to the sampler, it is
perhaps more intuitively clear that direct sampling is not a robust scheme,
as the values of the samples become overly sensitive to high-frequency noise.
Instead, a popular way of sampling a continuous-time stochastic signal is to
integrate (or average) the signal over a sampling period before sampling

ψ[k] =

�
kh

t=(k−1)h
y(τ)dτ,

which is in fact also form of (low-pass) prefiltering since we can rewrite

ψ[k] = (f ∗ y)(t)|t=kh,
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where

f(t) =

�
1, 0 ≤ t < h

0, otherwise.
(3.1)

This filter can be called an averaging filter or “integrate and reset” filter. In
other words, the continuous-time signal y(t) first passes through the filter that
produces a signal ȳ(t), in this case

ȳ(t) =

�
t

(k−1)h
y(s)ds, for (k − 1)h ≤ t < kh.

Note that ȳ((kh)+) = 0, ∀k, i.e., the filter resets the signal just after the sam-
pling time. Also, even though the signal is reset, if we have access to the samples
{ψ[k]}k, we can immediately reconstruct the integrated signal z(t) =

�
t

0 y(s)ds

at the sampling instants, since z(kh) =
�

k

i=1 ψ[k], and hence the signal y(t)
at the sampling instants as well (since y = ż). In Section 3.4 we provide ad-
ditional mathematical justification for the integrate and reset filter to sample
stochastic differential equations.

Exercise 3. Compute the Fourier transform of f in (3.1) and explain why this
is a form of low pass filtering.

3.3 Reconstruction of Analog Signals: Digital-to-Analog
Conversion

Zero-Order Hold

The simplest and most popular way of reconstructing a continuous-time sig-
nal from a discrete-time signal in control systems is to simply hold the signal
constant until a new sample becomes available. This transforms the discrete-
time sequence into a piecewise constant continuous-time signal3, and the device
performing this transformation is called a zero-order hold (ZOH). Let us con-
sider the effect of the ZOH in the frequency domain, assuming an inter-sample
interval of h seconds. Introduce

r(t) =

�
1/h, 0 ≤ t < h

0, elsewhere.

Then the relationship between the input and output of the zero-order hold
device

ψ
ZOH

y

3This is again a mathematical idealization. In practice, the physical output of the hold
device is continous.
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can be written
y(t) = h

�

k

ψ[k] r(t− kh).

Taking Fourier transforms, we get

ŷ(ω) = h
�

k

ψ[k] r̂(ω)e−iωkh

= hr̂(ω)ψ̂(eiωh).

Note that we can write

r(t) =
1

h
1(t)− 1

h
1(t− h),

and so we have the Laplace transform

r̂(s) =
1− e−sh

sh
.

We then get the Fourier transform

r̂(ω) =
1− e−iωh

iωh

= e−iωh/2 sinω
h

2

ω h

2

.

Note in particular that r̂(s) ≈ e−sh/2 at low frequency, and so in this regime r̂
acts like a time delay of h/2.

Lemma 3.3.1. The Fourier transforms of the input and output signals of the
zero-order hold device are related by the equation

ŷ(ω) = hr̂(ω)ψ̂(eiωh).

First-Order Hold

Other types of hold devices can be considered. In particular, we can try to
obtain smaller reconstruction errors by extrapolation with high-order polyno-
mials. For example, a first-order hold is given by

y(t) = ψ[k] +
t− tk

tk − tk+1
(ψ[k]− ψ[k − 1]), tk ≤ t < tk+1,

where the times tk are the times at which new samples ψ[k] become avail-
able. This produces a piecewise linear CT signal, by continuing a line passing
through the two most recent samples. The reconstruction is still discontinuous
however. Postsampling filters at the DAC can be used if these discontinuities
are a problem.
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Figure 3.2: Step-invariant transformation for discretizing G. H here is a ZOH.

One can also try a predictive first-order hold

y(t) = ψ[k] +
t− tk

tk+1 − tk
(ψ[k + 1]− ψ[k]), tk ≤ t < tk+1,

but this scheme is non-causal since it requires ψ[k + 1] to be available at tk.
For implementing a predictive FOH, one can thus either introduce a delay or
better use a prediction of ψ[k + 1]. See [ÅW97, chapter 7] for more details on
the implementation of predictive FOH. In any case, an important issue with
any type of higher-order hold is that it is usually not available in hardware,
largerly dominated by ZOH DAC devices4.

3.4 Discretization of Continuous-Time Plants

Step-Invariant discretization of linear systems

We can now consider the discrete-time system obtained by putting a zero-order
hold device H and sampling block S at the input and output respectively of
a continuous-time plant G, see Fig. 3.2. Let us assume that S is a peri-
odic sampling block and H is a perfectly synchronized with S. The resulting
discrete-time system is denoted Gd = SGH, and is called the step-invariant
transformation of G. The name can be explained by the fact that unit steps
are left invariant by the transformation, in the sense that

GdS1 = Gd1d = SGH1d = SG1,

where 1 and 1d are the CT and DT unit steps respectively. Using Lemmas
3.2.1 and 3.3.1, we obtain the following result.

Theorem 3.4.1. The CTFT ĝ(ω) of G and the DTFT of Gd obtained by a
step-invariant transformation are related by the equation

ĝd(e
iωh) =

∞�

k=−∞

ĝ(ω + kωs)r̂(ω + kωs),

or

ĝd(e
iω) =

∞�

k=−∞

ĝ
�ω
h
+ kωs

�
r̂
�ω
h
+ kωs

�
.

4There is also the possibility of adding an inverse-sinc filter and a low-pass filter at the
back-end of the ZOH DAC, see [Raz95].
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Proof. To compute ĝd, we take v on Fig. 3.2 to be the discrete-time unit
impulse, whose DTFT is the constant unit function. Then we have û(ω) =
hr̂(ω), thus y = ĝ(ω)û(ω), and the result follows from Lemma 3.2.1.

Note that if the transfer function ĝ(ω) of the continous-time plant G that
is bandlimited to the interval (−ωN , ωN ), we have then

ĝd(e
iωh) = ĝ(ω)r̂(iω), −ωN < ω < ωN ,

and at low frequencies
ĝd(e

iωh) ≈ ĝ(iω),

or somewhat more precisely, the ZOH essentially introduces a delay of h/2.
Otherwise distortion by aliasing occurs, which can significantly change the
frequency content of the system. This in particular intuitively justifies the
presence of an anti-aliasing filter (AAF) with cutoff frequency ωN < ωs/2
at the output of the plant, if a digital control implementation with sampling
frequency ωs is expected. Indeed, aliasing can potentially introduce undesired
oscillations impacting the performance of a closed-loop control system without
proper AAF. The following example, taken from [ÅW97, chapter 1], illustrates
this issue.

Example 3.4.1. Consider the continuous-time control system shown on Fig.
3.3. The plant in this case is a disk-drive arm, which can be modeled approxi-
mately by the transfer function

P (s) =
k

Js2
,

where k is a constant and J is the moment of inertia of the arm assembly. The
arm is should to be positioned with great precision at a given position, in the
fastest possible way in order to reduce access access time. The controller is
implemented for this purpose, and we focus here to the response to step inputs
uc. Classical continuous-time design techniques suggest a controller of the form

K(s) = M

�
b

a
Uc(s)−

s+ b

s+ a
Y (s)

�
= M

�
b

a
Uc(s)− Y (s) +

a− b

s+ a
Y (s)

�
,

(3.2)
where

a = 2ω0, b = ω0/2, and M = 2
Jω2

0

k
,

and ω0 is a design coefficient. The transfer function of the closed loop system
is

Y (s)

U(s)
=

ω
2
0
2 (s+ 2ω0)

s3 + 2ω0s2 + 2ω2
0s+ ω3

0

. (3.3)

This system has a settling time to 5% equal to 5.52/ω0. The step response of
the closed-loop system is shown on Fig. 3.3 as well.
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Let us now assume that a sinusoidal signal n(t) = 0.1 sin(12t) of amplitude
0.1 and frequency 12 rad/s perturbs the measurements of the plant output.
It turns out that this disturbance has little impact on the performance of the
continuous-time closed-loop system, see the left column of Fig. 3.4. Then
consider the following simple discretization of the controller (3.2). First, a
continuous-time state-space realization of the transfer function K(s) is realized
by

u(t) = M

�
b

a
uc(t)− y(t) + x(t)

�

ẋ(t) = −ax+ (a− b)y.

Next, we approximate the derivative of the controller state with a simple for-
ward difference scheme (we will see soon that we could be more precise here,
but this will do for now)

x(t+ h)− x(t)

h
= −ax(t) + (a− b)y(t),

where h is the sampling period. We then obtain the following approximation
of the continuous-time controller

x[k + 1] = (1− ah)x[k] + h(a− b)y[k],

u[k] = M

�
b

a
uc[k]− y[k] + x[k]

�
,

where uc[k] = uc(kh) and y[k] = y(kh) are the sampled values of the input
reference and (noise perturbed) plant output. A Simulink model of this im-
plementation is shown on Fig. 3.5. As you can see on the right of Fig. 3.4,
for a choice of sampling period h = 0.5 that is too large, there is a significant
deterioration of the output signal due to the presence of a clearly visible low
frequency component.

This phenomenon is explained by the aliasing phenomenon, as discussed
above. We have ωs = 2π/h = 2π/0.5 ≈ 12.57 rad/s, and the measured signal
has a frequency 12 rad/s, well above the Nyquist frequency. After sampling,
we then have the creation of a low frequency component with the frequency
12.57 − ωs = 0.57 rad/s, in other word with a period of approximately 11 s,
which is the signal observed on the right of Fig. 3.4.

Exercise 4. Derive (3.3).

Step-Invariant discretization of linear state-space systems

In this section, we consider a state-space realization of an LTI plant instead
of working in the frequency domain as in the previous paragraph. It turns
out that the step-invariant discretization of such as plant can be described
exactly (i.e., without approximation error) by a discrete-time LTI system. This
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Figure 3.3: Feedback control system and step response for example 3.4.1 with
J = k = ω0 = 1.
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Figure 3.4: Effect of a periodic perturbation on the continuous-time design
(left) and discretized design with sampling period 0.5 (right), for example 3.4.1.
The bottom row shows the analog input u to the plant. The analog controller
provides a significant action, whereas the digital controller does not seem to be
able to detect the high-frequency measurement noise.
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Figure 3.5: Simulink model for the digital implementation of example 3.4.1.

discrete-time system gives exactly the state of the continuous-time plant at
the sampling instants. Although this process might not be able to detect
certain hidden oscillations in the continuous-time system, it forms the basis of
a popular design approach that consists in working only with the discretized
version of the plant and using discrete-time control methods.

Hence suppose that we have a CT LTI system G with state-space realization

ẋ = Ax+Bu (3.4)
y = Cx+Du, (3.5)

and consider the step-invariant transformation SGH, with sampling times
{tk}k. The control input u to the CT plant in (3.4), (3.5) is then piecewise
constant equal to u[k] on tk ≤ t < tk+1. We are also interested in the sampled
values of the output y[k] = y(tk). Directly integrating the differential equation
(3.4), we have

x(t) = eA(t−tk)x(tk) +

�
t

tk

eA(t−τ)Bdτ u[k], for tk ≤ t < tk+1.

In particular, for a periodic sampling scheme with tk+1 − tk = h,

x(tk+1) = eAhx(tk) +

�
tk+1

tk

eA(tk+1−τ)Bdτ u[k]

x(tk+1) = eAhx(tk) +

�
h

0
eAτBdτ u[k], for tk ≤ t < tk+1.

Writing x[k] = x(tk) for all k, the state of the plant at the sampling times can
then be described by the following LTI difference equation

x[k + 1] = Adx[k] +Bdu[k],
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with Ad = eAh and Bd =
�
h

0 eAτBdτ . Note that this exact discretization could
have been used in example 3.4.1 instead of the approximate Euler scheme.
In summary, with periodic sampling the plant is represented at the sampling
instants by the DT LTI system

x[k + 1] = Adx[k] +Bdu[k]

y[k] = Cx[k] +Du[k].

Remark. The matrix exponential, necessary to compute Ad, can be computed
using the MATLAB expm funtion. There are various ways of computing Bd.
The most straightforward is to simply use the MATLAB function c2d which
performs the step-invariant discretization with a sampling period value pro-
vided by the user. Actually this function also provides other types of discretiza-
tion, including plant discretization using FOH, and other types of discretization
for continuous-time controllers (rather than controlled plants), discussed later
in this chapter.

A few identities are sometimes useful for computations or in proofs. First
define

Ψ =

�
h

0
eAτdτ = Ih+

Ah2

2!
+ . . .

Then we have Bd = ΨB, and Ad = I + AΨ. Moreover, we have the following
result.

Lemma 3.4.2. Let A11 and A22 be square matrices, and define for t ≥ 0

exp

�
t

�
A11 A12

0 A22

��
=

�
F11(t) F12(t)

0 F22(t)

�
. (3.6)

Then F11(t) = etA11 , F22 = etA22 , and

F12(t) =

�
t

0
e(t−τ)A11A12e

τA22dτ.

Using this lemma, one can compute Ad and Bd using only the matrix ex-
ponential function for example, by taking t = h,A11 = A,A22 = 0, A12 = B,
so that F11(h) = Ad and F12(h) = Bd.

Proof. The expressions for F11 and F22 are immediate since the matrices are
block triangular. To obtain F12, differentiate (3.6)

d

dt

�
F11(t) F12(t)

0 F22(t)

�
=

�
A11 A12

0 A22

� �
F11(t) F12(t)

0 F22(t)

�
,

hence
d

dt
F12(t) = A11F12(t) +A12F22(t).

We then solve this differential equation, using the facts F22(t) = etA22 and
F12(0) = 0.

39



Discretization of Linear Stochastic Differential Equations

Mathematically, it is also impossible to sample directly a signal containing
white noise, a popular form of disturbance in control and signal processing
models. Formally, the autocovariance function of a continuous-time zero-mean,
vector valued white noise process w(t) is a Dirac delta

E[w(t)w(t�)T ] = r(t− t�) = Wδ(t− t�). (3.7)

In other words, the values of the signal at different times are uncorrelated, as
for discrete-time white noise. The power spectral density of w is defined as the
Fourier transform of the autocovariance function

φw(ω) =

� ∞

−∞

r(t)e−iωtdt =

� ∞

−∞

Wδ(t)e−iωtdt = W,

hence W is called the power spectral density matrix of w. The frequency con-
tent of w is flat with infinite bandwidth. Hence intuitively, according to the
frequency folding phenomenon illustrated in lemma 3.2.1, the resulting sampled
signal would have infinite power in the finite band (−ωN , ωN ).

Mathematically rigorous theories for manipulating models involving white
noise are usually developed by working instead with an integral version of white
noise

B(t) =

�
t

0
w(s)ds, B(0) = 0.

One can then use this theory to justify a posteriori the engineering formulas
often formulated in terms of Dirac deltas such as (3.7) 5. The stochastic process
B has zero mean value and its increments I(s, t) = B(t) − B(s) over disjoint
intervals are uncorrelated with covariance

E[(B(t)−B(s))(B(t)−B(s))T ] = |t− s|W.

For this reason, Wdt is sometimes called the incremental covariance matrix of
the process B. The stochastic process B is called Brownian motion or Wiener
process if in addition the increments have a Gaussian distribution. Note that
in this case the increments over disjoint intervals are in fact independent, as a
consequence of a well-known property of Gaussian random variables. We then
called the corresponding white noise (zero-mean) Gaussian white noise.

Gaussian white noise (or equivalently the Wiener process) is the most im-
portant stochastic processes for control system applications, in particular be-
cause one can derive from it other noise processes with a desired spectral density
by using it as an input to an appropriate filter (this is a consequence of spec-
tral factorization, which you might want to review). The advantage of this
approach is that we can then only work with white noise and take advantage
of the uncorrelated samples property to simplify computations.

5Another approach would be to work with white noise rigorously using the theory of
distributions, but in general this is unnecessarily complicated and it is just simpler to use
integrated signals.
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Continuous-time processes with stochastic disturbances are thus often de-
scribed by a stochastic differential equation, e.g. of linear form

dx

dt
= Ax+Bu+ w(t),

where w is a zero-mean white noise process with power spectral density matrix
W , which moreover we will assume to be Gaussian. Mathematically, it is then
more rigorous to write this equation in the incremental form

dx = (Ax+Bu)dt+ dB1(t), (3.8)

where B1 is a Wiener process with incremental covariance R1dt. This equation
just means the integral form

x(t) = x(0) +

�
t

0
(Ax+Bu)dt+

�
t

0
dB1(t),

where the last term is called a stochastic integral and can be rigorously defined.
Similarly, white noise can be used to model measurement noise. In this case,
instead of the form

y = (Cx+Du) + v,

where y is the measured signal and v is white Gaussian noise with power
spectral density matrix V , we work with the integrated signal z(t) =

�
t

0 y(s)ds,
so that we can write again more rigorously

dz = (Cx+Du)dt+ dB2(t), (3.9)

where B2 is a Wiener process with incremental covariance R2dt. It is assumed
that the processes B2 and B2 are independent.

Now assume that the process is sampled at discrete times {tk}k, and that
we want as in the deterministic case to relate the values of x and z at the
sampling times. Integrating (3.8) and denoting hk = tk+1 − tk, we get6

x(tk+1) = eAhkx(tk) +

�
tk+1

tk

eA(tk+1−τ)Gudτ +

�
tk+1

tk

eA(tk+1−τ)dB1(τ).

Assuming a fixed value hk = h for the intersample intervals and a ZOH, we get

x[k + 1] = Adx[k] +Bdu[k] + w[k],

where Ad and Bd are obtained as in the deterministic case, and the sequence
{w[k]}k is a random sequence. This random sequence has the following prop-
erties, which come from the construction of stochastic integrals. First, the
random variables w[k] have zero mean

E(w[k]) = E
��

tk+1

tk

eA(tk+1−τ)dB1(τ)

�
= 0,

6This can be admitted formally, by analogy with the deterministic case.
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and a Gaussian distribution, which are general properties of these stochastic
integrals. Their variance is equal to

E(w[k]w[k]T ) = E
��

tk+1

tk

eA(tk+1−τ)dB1(τ)

�
tk+1

tk

dBT

1 (τ
�)eA

T (tk+1−τ
�)

�

=

�
tk+1

tk

�
tk+1

tk

eA(tk+1−τ)Wδ(τ − τ �)eA
T (tk+1−τ

�)dτdτ �

=

�
tk+1

tk

eA(tk+1−τ)WeA
T (tk+1−τ)dτ. (3.10)

Here we have used the formal manipulations of Dirac deltas, but this formula
is in fact a consequence of the Ito isometry. Finally, essentially by the inde-
pendent increment property of the Brownian motion, we have that variables
w[k] and w[k�] for k �= k� are uncorrelated (or independent here since they are
Gaussian)

E(w[k]w[k�]) = 0, k �= k�.

In other work, {w[k]}k is a discrete-time white Gaussian noise sequence with
covariance matrix Wd given by (3.10), which we can rewrite

Wd =

�
h

0
eAtWeA

T
tdt,

by the change of variables u = tk+1 − τ . Note in particular that

Wd ≈ Wh

for h small.
Let us now consider the sampling of the stochastic measurement process

(3.9). Note first that we have

ȳ[k + 1] = z(tk+1)− z(tk) =

�
tk+1

tk

y(τ)dτ, (3.11)

which corresponds physically to the fact mentioned earlier that the random
signal y containing high-frequency noise is not sampled directly but first inte-
grated7. Thus we have

ȳ[k + 1] = z(tk+1)− z(tk)

=

��
tk+1

tk

CeA(t−tk)dt

�
x[k] +

��
tk+1

tk

�
t

tk

CeA(t−τ)dτdtB +Dhk

�
u[k] + v[k],

=:Cdx[k] +Ddu[k] + v[k],

7Other forms of analog pre-filtering are possible and must be accounted for explicitly,
by including a state-space model of the AAF filter. The simple integrate and reset filter (or
average and reset) is the most commonly discussed in the literature on stochastic systems
however.
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where

v[k] = +

�
tk+1

tk

�
t

tk

CeF (t−τ)dB1(τ)dt+B2(tk+1)−B2(tk).

Note first that the expressions for Cd, Dd can be rewritten

Cd =

�
h

0
CeAtdt

Dd =

�
tk+1

tk

�
tk+1

τ

CeA(t−τ)dtdτB +Dh

=

�
tk+1

tk

��
tk+1−τ

0
CeAsds

�
dτB +Dh

=:

�
tk+1

tk

θ(tk+1 − τ)dτB +Dh

=

�
h

0
θ(u)duB +Dh.

Note the definition θ(t) := C
�
t

0 eAsds. Similarly for v[k] we have

v[k] =

�
tk+1

tk

θ(tk+1 − τ)dB1(τ) +B2(tk+1)−B2(tk).

Again {v[k]} is a sequence of Gaussian, zero-mean and independent random
variables, i.e., discrete-time Gaussian white noise. We can also immediately
compute [Åst06, p.83]

E(v[k]v[k]T ) =
�

tk+1

tk

θ(tk+1 − τ)Wθ(tk+1 − τ)dτ + V h

=

�
h

0
θ(s)WθT (s)ds+ V h =: Vd

E(w[k]v[k�]T ) = δ[k − k�]

�
h

0
eAsWθT (s)ds =: δ[k − k�]Sd.

Note in particular that the discrete samples w[k] and v[k] are not independent
even if B1 and B2 are independent Wiener processes!

In summary, we obtain after integration of the output and sampling a
stochastic difference equation of the form

x[k + 1] = Adx[k] +Bdu[k] + w[k] (3.12)
ȳ[k + 1] = Cdx[k] +Ddu[k] + v[k] (3.13)

where the covariance matrix of the discrete-time noise can also be expressed as

E
��

w[k]
v[k]

� �
w[k]
v[k]

�T�
=

�
Wd Sd

ST

d
Vd

�
=

�
h

0
eĀt

�
W 0
0 V

�
eĀ

T
tdt, (3.14)
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with
Ā =

�
A 0
C 0

�
⇒ eĀt =

�
eAt 0

C
�
t

0 eAτdτ I

�
,

using Lemma 3.4.2.
Remark. Some authors assume that the measurements are of the averaging
form

ȳ[k + 1] =
1

h

�
tk+1

tk

y(t)dt,

instead of (3.11), see e.g. [GYAC10]. Then θ(t) ≈ C for t close to zero, instead
of θ(t) ≈ Ct as t → 0 here. This results in a covariance matrix where (3.14)
should be multiplied on the left and right by blkdiag(I, I/h). As a consequence
of this choice however, the variance of the discrete-time measurement noise
v[k] diverges as h → 0, and one should work with power spectral densities
[GYAC10].
Remark. Note that in (3.13), there is a delay in the measurement, in con-
trast to the standard form of difference equations. Such a discrete-time de-
lay is theoretically not problematic, since we can redefine the state as x̃[k] =
[x[k]T , x[k − 1]T ]T and the measurement as ỹ[k] =

�
0 Cd

�
x̃[k]. Doubling the

dimension of the state space has computational consequences however.

Nonlinear Systems

Poles and Zeros of Linear Sampled-Data Systems

Incremental Models

Choice of Sampling Frequency

Generalized Sample and Hold Functions

3.5 Discretization of Continuous-Time Controllers

3.6 Quantization Issues

3.7 Complements on Modern Sampling Theory and
Reconstruction
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