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A B S T R A C T

We investigated four sampling designs for soil organic carbon (SOC) stock assessment of soil profiles: (i) sam-
pling by horizons, (ii) vertical transect sampling, (iii) depth-based stratified random sampling, (iv) fuzzy c-means
sampling in which we explored the use of vis-NIR spectroscopy, image analysis and color models. An Alfisol and
Mollisol profile wall (1 × 1 m) was divided into a 10 × 10 cm raster and 100 samples (about 200 g each) were
collected at the centers of grid cells for SOC analysis. Bulk density samples were collected from each 10-cm depth
interval along a single vertical transect and the SOC stock was calculated using 100 points in the profile wall.
Horizon-based sampling for the Mollisol (5 horizons) ranged from 231 to 262 Mg C ha−1, whereas it ranged
from 69 to 99 Mg C ha−1 in the Alfisol (3 horizons). The SOC stocks obtained by 1 to 7 vertical transects ranged
from 68 to 81 Mg C ha−1 in the Alfisol, and 239 to 246 Mg C ha−1 in the Mollisol. Depth-based stratified
random sampling resulted in the SOC stocks ranging from 77 to 82 Mg C ha−1 in the Alfisol and 234 to
257 Mg C ha−1 in the Mollisol, and the standard errors decreased with increasing sample size from 10 to 70.
Fuzzy c-means clustering created clusters similar to the field delineated horizons. A sample size of 7 in both
profiles was sufficient to estimate the mean profile SOC stock by fuzzy c-means sampling. The CIE L*a*b* color
model resulted in more accurate estimation in the Alfisol, but the vis-NIR spectra resulted in more accurate
estimation in the Mollisol. Soil depth improved the performance of vis-NIR spectra. It is concluded that in these
soils, at least two or three vertical transects are required to capture the horizontal variation for estimating profile
SOC stock. Depth-wise stratified random sampling reduces the number of samples and is suitable when hor-
izontal variation is high. Fuzzy c-means sampling is useful to determine the minimum sample size for profile SOC
stock assessment but requires ancillary data and processing before sampling the soil profile.

1. Introduction

There is a growing need for accurate estimation of soil organic
carbon (SOC) stocks (Minasny et al., 2013). Mapping SOC at a range of
scales requires pedon data and recent examples have shown the use of
such data for estimating SOC stocks across a range of scales (Akpa et al.,
2016; Batjes, 2016; Bonfatti et al., 2016b; Priori et al., 2016; Schillaci
et al., 2017). Numerous studies assessed SOC stock for the top 30 cm
depth which is the standard IPCC sampling depth (IPCC, 2006). Few
efforts have been made on profile SOC stock assessment down to 1 m
(Lorenz and Lal, 2005). Deep soil carbon is important for enhancing
SOC sequestration (Olson and Al-Kaisi, 2015) and affects nitrate and
pesticide sorption and leaching behaviors (Meersmans et al., 2009).

From a soil profile, samples can be collected by horizons or by fixed
depth intervals (Allen et al., 2010). Marinho et al. (2017) sampled a
single vertical transect in a soil pit at 2-cm intervals and derived a depth
function. Wang et al. (2017) compared 20-cm fixed-depth sampling and
horizon-based sampling. They found that horizon-based sampling

resulted in 16–22% higher SOC stocks in the surface (0–20 cm) and
30–40% higher of the whole profile (0–80 cm). Grüneberg et al. (2010)
found that sampling by depth interval is preferred for regional SOC
stock estimation, whereas sampling by horizon is essential for pedo-
genesis studies. Boone et al. (1999) demonstrated that sampling by
fixed depth intervals is easier to budget and implement, and it is more
practical. Vertical sampling design tends to ignore the horizontal var-
iation of soil (Hole, 1953). In order to investigate soil profile variation
and produce soil profile maps, raster sampling has been conducted by
Davis et al. (1995) with 20 × 20 cm resolution as well as fine grid
sampling on soil monoliths (Roudier et al., 2016).

Proximal soil sensing and other instruments have been used to im-
prove soil profile characterization and quantification (Hartemink and
Minasny, 2014). In particular, visible near-infrared spectroscopy has
shown strong relationships with many soil properties, especially SOC
(Stenberg et al., 2010). Lab-based high-resolution vis-NIR imaging
spectroscopy has been used for profile C mapping and evaluation of soil
profile variation (Schreiner et al., 2015; Steffens and Buddenbaum,
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2013). Color is a useful proxy for SOC concentration and can be as-
sessed by Munsell color chart, a digital camera, scanner, and vis-NIR
spectroscopy and various studies have estimated SOC from a color
model (Stiglitz et al., 2017; Viscarra Rossel et al., 2008; Wills et al.,
2007).

There is an increasing need for new soil data for a range of studies,
in particular SOC assessment, and there are a range of technologies and
approaches being tested in addition to long standing approaches such as
in the IPCC. Bonfatti et al. (2016a) used data from 10 pedons to com-
pare four methods for SOC stock estimation: horizon values with dis-
crete data, exponential function, equal-area exponential function, and
equal-area quadratic spline function. It was found that different
methods produced significantly different results of SOC stocks and va-
lues derived from equal-area exponential and equal-area splines were
more similar to those of the horizons.

In this paper, we present several sampling approaches for assessing
SOC stocks in soil profiles. We have explored different sampling stra-
tegies based on sampling soils across the landscape and soil sampling
theory and practices. Transect sampling has been used to collect sam-
ples along toposequences (Odgers et al., 2008). Stratified random
sampling has been used to create strata with similar attributes to im-
prove the sampling efficiency (Webster and Lark, 2012). Stratified
sampling like the fuzzy clustering method (de Gruijter et al., 2010), has
been used for soil sampling to collect representative calibration dataset
for vis-NIR spectra models and digital soil mapping (Ramirez-Lopez
et al., 2014; Schmidt et al., 2014). A fuzzy clustering algorithm has
been used to delineate soil horizons with vis-NIR spectroscopy by
Fajardo et al. (2016). In summary, these approaches have been used to
sample two soil profiles and assess the SOC stocks. The objectives of this
paper were to: (i) investigate profile sampling designs for profile SOC
stock assessment; (ii) evaluate the feasibility of using vis-NIR spectro-
scopy to estimate SOC in a soil profile; and (iii) explore the possibility
of incorporating image analysis and color models for improved sam-
pling and SOC quantification of soil profiles.

2. Materials and methods

2.1. Study area and soil profiles

An Alfisol and Mollisol were studied and sampled in August 2014
and 2015. The Alfisol was located in the Driftless Area of Wisconsin
(WGS84 43.03° N, 90.05° W). The altitude of this area is 320 m.a.s.l.
The mean annual precipitation is about 860 mm and mean annual
temperature is about 7.4 °C. The field was covered by grass at the time
of sampling. The soil pit was located at the shoulder position of the
landscape with 6% slope. The soil was formed in loess over a mixture of
sand, clay, and glauconite weathered from the underlying sandstone,
dolomite, and shale bedrock. The soil was classified as fine-silty over
clayey, mixed, superactive, mesic Typic Hapludalfs (NewGlarus series).
Three horizons were identified in the field down to 1 m depth. Horizon
thickness was measured in the middle of the profiles. The Ap horizon
(0–22 cm) had granular and subangular blocky structure and silt loam
texture, with very dark grayish brown (10YR 3/2, moist) and light
brownish gray (10YR 6/2, dry) colors. The Bt horizon (22–68 cm) had
subangular blocky structure and silty clay loam texture, with dark
yellowish brown (10YR 4/4, moist) and light yellowish brown (10YR 6/
4 dry) colors. The 2Bw horizon (68–100 cm) had subangular blocky
structure and sandy clay loam texture, with strong brown (7.5YR 4.5/7,
moist) and strong brown (7.5YR 5/7 dry) colors.

The Mollisol was located at the University of Wisconsin-Madison
West Madison Agricultural Research Station in south-central Wisconsin
(WGS84 43.07° N, 89.54° W). The altitude of this area is 330 m.a.s.l.
The mean annual precipitation is about 840 mm and mean annual
temperature is about 7.8 °C. The field was covered by alfalfa and grass.
The soil pit was located at the footslope position and the soil was
moderately well-drained to well-drained. The soil was formed in loess

over outwash underlain by dolostone bedrock. It was classified as fine-
loamy, mixed, superactive, mesic Pachic Argiudolls (Troxel series). Five
horizons were identified in the field down to 1 m depth, and the soil
contained a buried A horizon at 59 cm depth. The Ap1 horizon
(0–18 cm) had granular structure and silt loam texture, with very dark
brown (10YR 2/2, moist) and dark grayish brown (10YR 4/2, dry)
colors. The Ap2 horizon (18–39 cm) had platy structure and silt loam
texture, with very dark brown (10YR 2/2, moist) and dark grayish
brown (10YR 4/2, dry) colors. The A2 horizon (39–59 cm) had sub-
angular blocky structure and silt loam texture, with very dark brown
(10YR 2/2, moist) and dark grayish brown (10YR 4/2, dry) colors. The
thick A-horizon was formed in sediments of eroded topsoils higher in
the landscape. The Ab horizon (59–77 cm) had subangular blocky
structure and silt loam texture, with black (10YR 2/1, moist) and dark
grayish brown (10YR 4/2, dry) colors. The Bt horizon (77–100 cm) had
angular blocky structure and silty clay loam texture, with dark yel-
lowish brown (10YR 3/4, moist) and yellowish brown (10YR 5/4, dry)
colors (Grauer-Gray and Hartemink, 2016).

2.2. Sample collection and analysis

Soil pits (2 m L × 2 m W× 1.2 m D) were dug and the Alfisol and
Mollisol profile walls (1 × 1 m) were divided into a 10 × 10 cm raster.
One sample (about 200 g, covering 75% of the raster cell) was collected
at the center of each cell for a total of 100 samples. The samples were
air-dried, ground, sieved to a diameter smaller than 2 mm. The SOC
concentration was determined by dry combustion method with a Flash
EA 1112 Series NC Soil Analyzer (Thermo Fisher Scientific Inc.). Bulk
density samples were collected at each 10-cm depth interval along a
single vertical transect on the left of the soil profile wall assuming that
bulk density was uniform across the soil profile. Bulk density was de-
termined by 250 mL rings, and oven-dried bulk soil at 105 °C for 72 h.

2.3. Profile SOC stock

The SOC stock of the 100 grid points was calculated by multiplying
SOC concentration, bulk density and 10-cm depth. There were no
coarse fragments in the two soils. The SOC stock of each vertical
transect was calculated by adding up the SOC stocks for each of the 10
grids. The profile SOC stock was the average of the 10 vertical transects.
The grand average SOC stock was used as a standard to compare with
the SOC stocks obtained by the four sampling designs.

2.4. vis-NIR spectra collection and analysis

Air dried soil samples were scanned by a portable PSR-3500 vis-NIR
spectroradiometer (Spectral Evolution Inc.). The PSR-3500 spectro-
meter operates in the range of 350–2500 nm with three detectors: (i) a
512-element silicon PDA covering the visible range and part of the near
infrared (350–1000 nm) with a resolution of 3 nm; (ii) a 256-element
InGaAs array covering 1000–1900 nm with a resolution of 8 nm; and
(iii) a 256-element InGaAs array covering 1900–2500 nm with a finer
spectral resolution of 6 nm. The reflectance data were resampled to
1 nm for output resulting in 2151 spectral points. The reflectance
spectrum was recorded by averaging 50 readings per soil sample
measurement, and 3 replicates were taken for each sample by re-
positioning the probe between each scan. The PSR-3500 was calibrated
by a polytetrafluoroethylene (PTEE) white plate with high diffuse re-
flectance. The vis-NIR spectroradiometer was calibrated every 10 soil
samples.

The following preprocessing techniques were implemented on the
vis-NIR spectra:

1) The raw reflectance data (R) were converted to absorbance data (A)
by A = log (1/R);

2) A second order Savitzky-Golay filter with a smoothing window of 11
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(Savitzky and Golay, 1964);
3) Selection of every 10th band within the spectral region between 500

and 2450 nm to reduce the high-dimensionality and collinearity.
4) Standard normal variate transformation (SNV) to reduce the light

scattering.

A principal component analysis (PCA) was performed on processed
spectra to select the first 5 principal components (PCs) for the Alfisol
and 3 PCs for the Mollisol, and these explained> 90% of the variation.
The cubist model was used to explore the relationship between SOC
concentrations and vis-NIR spectra. The 100 samples from each profile
were randomly split into calibration dataset (70%) and validation da-
taset (30%). Coefficient of determination (R2), root mean squared error
(RMSE), bias, residual prediction deviation (RPD), and ratio of perfor-
mance to inter-quartile distance (RPIQ) were calculated for the cali-
bration and validation. The spectral preprocessing and cubist model
were implemented by “prospectr” (Stevens et al., 2013) and “Cubist”
(Kuhn et al., 2014) packages in R version 3.3.1.

2.5. Image analysis

Digital images (RAW format) with a horizontal and vertical re-
solution of 300 dpi were taken for the Alfisol and Mollisol with a Nikon
v1 camera. An internal white balance test was executed before the
pictures were taken. The digital images were cropped and georefer-
enced to the profile walls, and processed and scaled to 10 cm resolution
in ImageJ (Rasband, 1997). The CIE L*a*b* color model, representing
lightness to darkness (L*), red to green (a*), and yellow to blue (b*),

were extracted from each pixel of the processed image. The correlations
between SOC concentrations and CIE L*a*b* color models were calcu-
lated in R version 3.3.1. Multiple linear regression was used to explore
the relationship between SOC concentrations and CIE L*a*b* color
models and soil depth.

2.6. Sampling designs

Four sampling designs were investigated and the sample support is
the 10 × 10 cm grid cell:

1) Sampling by horizons.
Bulk soil samples are collected at the center of each horizon. In this
study, soil horizons were described in the field in the middle of the
profiles. The horizon thickness was assumed to be the same across
the profile. Then, the soil profile wall was divided into 10 vertical
transects (10 cm width). The soil properties of each horizon were
represented by the soil properties over 10-cm depth interval at
which the horizon centers were located. If the horizon centers were
located at the boundary of two 10-cm depths, the soil properties
were calculated by averaging the properties from two 10-cm depths.
The SOC stock of each vertical transect was calculated by adding up
the horizon SOC stocks. The profile SOC stock was expressed by the
average SOC stock of 10 vertical transects. The SOC stock of each
vertical transect obtained by sampling by horizons was compared
with that obtained by sampling by transect (10-cm depth interval).

2) Vertical transect sampling.
The profile SOC stock was estimated by uniformly distributed

Fig. 1. Distribution of SOC concentration by 10-cm depth
intervals (above) and soil horizons (below) of the Alfisol
(fine-silty over clayey, mixed, superactive, mesic Typic
Hapludalfs, NewGlarus series) and Mollisol (fine-loamy,
mixed, superactive, mesic Pachic Argiudolls, Troxel series) in
Dane County, Wisconsin. Soil depth at y-axes of horizon
graphs indicates center of the horizon.

Y. Zhang, A.E. Hartemink Geoderma 307 (2017) 220–230

222



vertical transects with size of 1 to 7, and 10 samples were collected
from each 10-cm depth interval in each transect. The profile SOC
stock was calculated by the average SOC stock of selected transects.

3) Depth-based stratified random sampling.
The soil profile was divided into 10 layers with 10-cm depth inter-
vals. Samples were randomly taken from each layer with size of 1 to
7. The SOC concentration and bulk density were averaged for each
layer and used to calculate SOC stock. The profile SOC stock was
calculated by adding up the SOC stocks of 10 layers. The uncertainty
(standard error) was obtained by repeating the procedure 50 times.

4) Fuzzy c-means sampling.
Four sets of variables were used for cluster analysis, including (i) 3
or 5 PCs of vis-NIR spectra, (ii) 3 or 5 PCs of vis-NIR spectra and
depth, (iii) CIE L*a*b* color models, and (iv) CIE L*a*b* color
models and depth. The sample with highest membership in each
cluster was selected. The sample size was determined by the number
of clusters (Schmidt et al., 2014). Cluster sizes varying from 3 to 10
were tested for fuzzy c-means sampling. The SOC stocks of selected
sample locations were regarded as representative of clusters and the
SOC stock of each cluster was regarded as uniform. Based on the
area of clusters and corresponding SOC stocks, the profile SOC stock

was calculated. The fuzzy c-means clustering was implemented by
“e1071” package (Meyer et al., 2015) in R version 3.3.1. The
membership exponent was chosen to be 2.

3. Results

3.1. Profile SOC stocks

In the Alfisol, the SOC concentration decreased exponentially with
depth (Fig. 1). The topsoil SOC concentration ranged from 10 to
32 g C kg−1 and variation in the subsoil was 1 to 7 g C kg−1. In the
Mollisol, the SOC concentration decreased from 25 to 17 g C kg−1

down to 30 cm, and increased from 30 to 70 cm. A peak was found at 60
to 70 cm with SOC concentration of 36 g C kg−1 in the buried A hor-
izon. SOC concentration decreased to 5 g C kg−1 below 70 cm. A large
variation (12 to 31 g C kg−1) was observed at 70 to 80 cm soil depth.

In the Alfisol, the SOC stocks decreased from about 90 to
70 Mg C ha−1 from left to the middle of the profile and then slightly
increased from the middle to the right side (Fig. 2). The profile SOC
stock, expressed as the mean of 10 vertical transects, was 79 Mg C ha−1

in the Alfisol. In the Mollisol, the SOC stocks of 10 vertical transects
decreased from about 260 to 220 Mg C ha−1 from left to right in the
profile with fluctuations in between. The mean profile SOC stock of the
Mollisol was 242 Mg C ha−1.

3.2. Relationship between SOC and vis-NIR spectra, CIE L*a*b*, and soil
depth

The relationship between SOC and vis-NIR spectra, CIE L*a*b* color
model, and soil depth were investigated. The SOC concentration was
strongly correlated with vis-NIR spectra in both soils (Table 1). The

Fig. 2. Alfisol and Mollisol SOC stocks at each horizontal
position by sampling by transect (solid line) and by horizons
(dashed line).

Table 1
Calibration and validation results of cubist vis-NIR spectral models of SOC concentration
(g kg−1) of the Alfisol and Mollisol.

R2 RMSE bias RPD RPIQ

Alfisol Calibration 0.99 0.60 −0.02 13.55 1.12
Validation 0.94 1.83 −0.10 3.97 0.21

Mollisol Calibration 0.98 1.09 0.02 6.77 2.42
Validation 0.95 1.70 −0.05 4.52 2.94
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calibration resulted in slightly better prediction performance with
higher R2 and lower RMSE than validation in both profiles. The Alfisol
had higher RPD value in the calibration but lower RPIQ values com-
pared to the Mollisol.

The profile images and CIE L*a*b* color models (10 × 10 cm raster)
are shown in Fig. 3. In the Alfisol, the soil color changed from black, to
yellowish, and to brownish with depth, corresponding to the Ap, Bt, and
2Bw horizons. The L* coordinate showed higher values at 0–50 cm
depth, and lower values at 50–100 cm depth. The a* coordinate showed
a gradually increasing pattern with depth. The b* coordinate showed a
similar pattern to a* coordinate, and matched the field delineated
horizons. In the Mollisol, a darker layer at 70–80 cm and a yellowish
layer at 80–100 cm were observed. The L* coordinate had lower values
at 70–80 cm and in the top right corner which corresponded to the
darker color of the image. The a* coordinate displayed no pattern. The
highest b* coordinate values were in the Bt horizon.

The SOC concentration was negatively correlated to the b* co-
ordinates (−0.82 and −0.74) and a* coordinates (−0.55 and −0.41)
in both soils. The L* coordinate showed a weak positive correlation
(0.24) in the Alfisol, but a negative correlation (−0.43) in the Mollisol.
The SOC concentration showed a strong negative correlation (−0.73)
with soil depth in the Alfisol and a weak negative correlation (−0.39)
with soil depth in the Mollisol. Multiple linear regressions of SOC
concentration showed significant effects of depths and colors on SOC
concentration. Soil depth slightly improved the predictions of SOC
concentration compared to colors alone.

= − × + × − × =

= − × − × + × − × =

= − × − × − × =

= − × − × − × − × =

= < = < = <

∗∗∗ ∗∗∗

∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

∗∗∗ ∗∗ ∗∗∗

∗∗ ∗∗∗ ∗∗∗ ∗∗∗

∗∗∗ ∗∗ ∗p p p

Alfisol
SOC 23.99 0.16 L 1.79 a 2.11 b R 0.82
SOC 46.77 0.20 Depth 0.60 L 1.89 a 1.38 b R 0.85
Mollisol
SOC 31.44 0.26 L 3.87 a 1.23 b R 0.67
SOC 33.90 0.05 Depth 0.28 L 4.24 a 1.09 b R 0.69

0.001, 0.01, 0.05.

2

2

2
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3.3. Sampling designs

3.3.1. Sampling by horizons
The SOC concentrations of each soil horizon are displayed in Fig.1.

Sampling by horizons smoothed the within-horizon variations, espe-
cially in the Ap horizon of the Alfisol and at 70 to 80 cm depth of the
Mollisol. In the Alfisol sampling by horizons showed lower SOC con-
centration in the Ap horizon. In the Alfisol, the SOC stocks showed si-
milar trends from left to right in the profile compared to the sampling
by transect, but SOC stocks were higher in the left 3 vertical transect
positions (Fig. 2). The mean profile SOC stock of sampling by horizon
was 80 Mg C ha−1 of the range 69–99 Mg C ha−1. In the Mollisol, the
SOC stocks fluctuated from left to right, and generally had higher values
than the stocks obtained by sampling by transect. The SOC stocks ob-
tained by sampling by horizons deviated from the sampling by transect
at the right side of the Mollisol profile by 6–20 Mg C ha−1. The mean
profile SOC stock of sampling by horizons was 247 Mg C ha−1.

3.3.2. Vertical transect sampling
Two sampling schemes of uniformly distributed vertical transects (1

to 7) and corresponding SOC stocks are displayed in Fig. 4. In the Al-
fisol, 3 to 7 vertical transects sufficed to estimate the mean profile SOC
stock. With two transects, the spatially separate transects (A) produced
more accurate estimation of profile SOC stock than the clustered two
transects (B). Two single transects were selected at the middle of the
profile, and both transects produced deviations from the mean profile
SOC stock. In the Mollisol, the SOC stocks estimated by 1 to 7 vertical
transects ranged from 239 to 246 Mg C ha−1, which slightly deviated
from the mean profile SOC stock.

Fig. 3. Alfisol and Mollisol soil profiles and the CIE L*a*b* color coordinates for each 10 × 10 cm pixel.
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3.3.3. Depth-based stratified random sampling
The SOC stocks calculated from depth-based stratified random

sampling with 10 to 70 samples are displayed in Fig. 5. In the Alfisol,
SOC stocks ranged from 77 to 82 Mg C ha−1, and the standard errors
increased from 1 to 5 Mg C ha−1 with decreasing sample size from 70
to 10. In the Mollisol, the SOC stocks ranged from 238 to
245 Mg C ha−1 using 30 to 70 samples. The SOC stocks were 234 and
257 Mg C ha−1 with 20 and 10 samples. The Mollisol showed higher
standard errors than the Alfisol, ranging from 2 to 10 Mg C ha−1 from
70 to 10 samples.

3.3.4. Fuzzy c-means sampling
The hard clusters and sampling points of fuzzy c-means sampling

with 3 to 10 samples of the Alfisol and Mollisol are presented in Fig. 6.
In both profiles, the spectra displayed more vertical variation, whereas
CIE L*a*b* produced more irregularities. Soil depth tended to create
more horizontal uniformities compared to spectra or CIE L*a*b* alone.
The clusters are similar to the field delineated horizons with a cluster
size< 5. In the Alfisol, the 3-cluster scheme showed a similar pattern in
2Bw horizon, but a deeper Ap horizon. The 4-cluster scheme displayed
similar patterns in Ap and 2Bw horizons, but split the Bt horizon into
two horizons. In the Mollisol, the three clusters generated by spectra

and depth matched with Ap1 and Ap2, A2 and Ab, and Bt horizons. The
four clusters generated by spectra and depth matched with the Ap1,
Ap2, A2 + Ab, and Bt horizons. The five clusters generated by spectra
and depth and CIE L*a*b* and depth matched the field delineated
horizons of the Mollisol. In both soil profiles, more clusters resulted in
finer within-horizon partitions.

The SOC stocks obtained by fuzzy c-means sampling with 3 to 10
samples in the Alfisol and Mollisol are plotted in Fig. 7. With a sample
size is< 6, the SOC stocks deviated from the mean but a sample size of
7 in both profiles was sufficient to estimate the mean with< 10% de-
viation. In the Alfisol, CIE L*a*b* resulted in more accurate mean
profile SOC stock estimation than solely the use of spectra. Soil depth
improved the performance of spectra, but had no improvements on the
performance of CIE L*a*b*. In the Mollisol, the spectra resulted in more
accurate estimation than CIE L*a*b*. The soil depth optimized the es-
timation with spectra, but resulted in an overestimation with the use of
CIE L*a*b*.

Fig. 4. Uniformly distributed vertical transects and SOC stocks
obtained by sampling 1 to 7 transects of the Alfisol and
Mollisol. The solid lines were fitted by spline function.
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4. Discussion

4.1. Sampling by horizons or by fixed depth

SOC stock estimation was affected by the variation in horizon
thickness. In the Alfisol, three horizons were identified at 0–22 cm,
22–68 cm, and 68–100 cm at the middle of the profile. The thickness of
Ap horizon increased from left to right in the profile, and consequently
the thickness of 2Bw horizon decreased. The Ap horizon is 10 cm
thinner on the left side of the soil profile, leading to 10% higher SOC
stock by horizon-based sampling. Variation in the depth of the plough
layer and bulk density are the most important sources of field-scale SOC
stock variability in cropland (Goidts et al., 2009). Premrov et al. (2017)
suggested that sampling by horizons with accurate measurements of
horizon thickness is a suitable method for SOC stock estimation.

In the Mollisol, 5 horizons were delineated at 0–18 cm, 18–39 cm,
39–59 cm, 59–77 cm, and 77–100 cm. The deviation of SOC stocks
obtained by horizon sampling from fixed-depth sampling was due to the
selection of representative depths of the corresponding horizons. The
data from 0 to 10 cm were used to represent Ap horizon (0–18 cm)
which resulted in an overestimation of SOC stocks. Palmer et al. (2002)
illustrated that changes in carbon content within A horizon affect SOC
stock estimation. They found that the SOC concentrations were 1.5%
for 0–5 cm and 0.8% for 5–10 cm, but the SOC concentration of bulk
soil over A horizon (0–12 cm) was 1.2%. Within-horizon variation was
ubiquitous and we suggest that samples are collected at the center of
the horizon or bulk samples of the entire horizon.

4.2. Vertical transect sampling

Vertical transects were uniformly distributed across the profile to
explore the variation in the profile. The accuracy of vertical transect
sampling is influenced by the horizontal variation of profiles. In the
Alfisol, the SOC stocks decreased from left to middle in the profile, and
then increased from middle to right in the profile. Three or more ver-
tical transects captured the variations at the left, middle, and right of
the profile, resulting in an accurate estimation of the profile SOC stock.
With two vertical transects, the spatially separate transects (A) captured
the variation, and led to more accurate estimation than the clustered
two transects (B). In the Mollisol, SOC stocks decreased from left to
right in the profile. The lower variation pattern compared to the Alfisol
resulted in a better estimation in the Mollisol by two vertical transects
or a single vertical transect.

The horizontal variation of profiles implied that the sampling with a
single core is not sufficient to capture the short range variation (Hole,
1953). Since the actual horizontal variation of soil profile is unknown,
our research seems to suggest that 2, 3, or 4 cores or vertical transects
may be sampled or composited at lines, equilateral triangular grids, and
square grids to capture the variation in these soil profiles.

4.3. Depth-based stratified random sampling

SOC concentration typically decreases exponentially with depth
(Jenny, 1930) and such a pattern was observed in the Alfisol. The
Mollisol with the buried horizon had a more complex depth function.

Fig. 5. SOC stocks obtained by depth-based stratified random
sampling with 10 to 70 samples and standard errors obtained
by 50 times repeated random sampling processes of the Alfisol
and Mollisol. Note different scales of SOC stocks and standard
error axes. The solid lines were fitted by spline function.
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The random procedure increased the flexibility of vertical transect
sampling and tended to capture more horizontal variation. In the Al-
fisol, the standard errors were 5 and 3 Mg C ha−1 with 10 and 20
samples, and a better estimation of the SOC stock was obtained com-
pared to vertical transect sampling with same size. In the Mollisol, large
standard errors and deviations with 10 and 20 samples were observed
in the stratified random sampling that did not perform well compared
to the vertical transect sampling. This suggests that depth-based stra-
tified random sampling is more flexible and effective when the hor-
izontal variation is high. When the sample size is 30 or more, either
sampling design results in a good estimation of the SOC stocks.

4.4. Fuzzy clustering

The vis-NIR spectra were well correlated with SOC concentration.
The carbon-spectra relationship is partly due to the colorimetric feature
of C in the visible region (Stenberg et al., 2010). The b* coordinate

showed good negative correlation with SOC concentration which was
comparable to other studies (Stiglitz et al., 2017; Viscarra Rossel et al.,
2008). The b* coordinate represented the chromatic parameter from
blue to yellow and mainly expressed the yellowish color in the subsoil
which corresponded to the low SOC concentration. The distribution of
the b* coordinate matched the delineated horizons which contributes to
the usefulness of clustering analysis. The a* coordinate exhibited
stronger correlation in the Alfisol than that in the Mollisol which may
be due to the brownish color of the 2Bw horizon in the Alfisol. The L*
coordinate showed low correlation with SOC concentration which was
comparable to Stiglitz et al. (2017), but it was lower than Viscarra
Rossel et al. (2008). Several studies have used depth to improve the
prediction of SOC by CIE L*a*b* alone (Stiglitz et al., 2017; Wills et al.,
2007) but it seems to marginally improve the SOC prediction by mul-
tiple linear regression.

The results showed that the fuzzy c-means sampling can be used to
collect representative samples for profile SOC stock assessment. The vis-

Fig. 6. Hard clusters and sampling points
(#) of fuzzy c-means sampling with 3 to 10
samples of the Alfisol and Mollisol. Fuzzy c-
means clustering was implemented on 5 or
3 principal components (PCs) of vis-NIR
spectra, 5 or 3 PCs of vis-NIR spectra and
depth, CIE L*a*b* color models, and CIE
L*a*b* color models and depth, respec-
tively. Sampling points were selected from
each cluster with highest membership.
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NIR spectra was more effective than the CIE L*a*b* color model with
the consideration of clustering. The soil depth helped to improve the
vertical partitioning of profiles and the SOC stock estimation. When the

sample size is small, clustering analysis generated clusters that matched
delineated horizons and resulted in accurate estimation of SOC stock in
the Mollisol. When the cluster size is large, the clustering analysis

Fig. 7. SOC stocks obtained by fuzzy c-means sampling with 3 to 10 samples of the Alfisol and Mollisol. The solid lines were fitted by spline function.

Table 2
Summary of profile sampling designs for SOC stock assessment used in this study.

Sampling design Ancillary
variables

Minimum sample size Summary

Sampling by horizons No 2 or 3 transects and horizon-
based samples

Soil horizons are accurately delineated and horizon thickness are measured. Representative
samples are collected at the center of the horizon or bulk samples of the entire horizon.

Vertical transect sampling No 2 or 3 vertical transects at 10-
cm fixed intervals

Two or three vertical transects (cores) are required or composited in vertical transect
sampling to capture the short range horizontal variations. The depth interval is usually
10 cm when actual soil samples are taken. Smaller increments can be measured in situ or on
soil cores.

Depth-based stratified
random sampling

No 10 or 20 samples It increases the flexibility and estimation accuracy when the horizontal variation is large
and SOC concentration decreases with depth.

Fuzzy c-means sampling Vis-NIR spectra 3 more samples than
delineated horizons

This is a two-step sampling design whereby the ancillary variables are collected and
processed in the first step, and samples are collected after the first step. It requires specific
equipment and data analysis.

Color models
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showed no match to the horizonation, but it contributed to the esti-
mation of profile SOC stock.

Roubens (1982) compared clustering validity indices and re-
commended the fuzziness performance index and normalized classifi-
cation entropy which have been used by others to determine the op-
timal cluster size (McBratney and Moore, 1985; Odeh et al., 1992).
Such indices may indicate smaller cluster size than it is actually re-
quired. McBratney and Moore (1985) applied these two indices on a
dataset from China which indicated that two clusters was the “best”
solution. They used six clusters to achieve finer partition for practical
use. Therefore, in horizon delineation, the minimum cluster size may be
determined by number of horizons that are identified in the field and
using the indices. But for the purpose of estimating profile SOC stock, a
few more samples may be needed (a total of 7 samples in the Alfisol and
Mollisol) to achieve 90% estimation accuracy.

5. Conclusions

This study presented four sampling designs for soil profile SOC stock
assessment. The following can be concluded (Table 2):

1) Horizon-based sampling is effective to assess profile SOC stock
provided (i) horizon depths are accurately measured across the soil
profile wall; (ii) representative samples are collected at the horizon
centers or bulk samples of the entire horizons.

2) Two or three vertical transects (cores) are required or composited in
vertical transect sampling to capture the horizontal variations.

3) Depth-wise stratified random sampling increases the flexibility and
the estimation accuracy of vertical transect sampling when the
horizontal variation is high. It is suitable when the SOC concentra-
tion decreases with depth.

4) Fuzzy c-means sampling can be used to stratify the soil profile and
determine representative samples. Both vis-NIR spectra and CIE
L*a*b* color model were effective variables for clustering analysis,
but color parameters created irregular patches of the profiles. The
soil depth improved the profile partitioning and SOC stock estima-
tion by spectra or color models alone. The accuracy increased with
increasing cluster size. A small sample size which is determined by
the identified horizons may be appropriate for horizonation,
whereas more samples are required to improve the accuracy.
However, fuzzy c-means sampling requires specific equipment
(spectrometer or digital camera). It is a two-step sampling design
whereby the ancillary variables are collected and processed in the
first step followed by sample collection in the field.

We suggest 2 or 3 vertical transects be sampled or composited in a
soil pit. In these soils, uniformly distributed vertical transect sampling
or depth-based stratified random sampling are both suitable methods
for SOC stock estimation. Fuzzy c-means sampling needs slightly more
samples (e.g. 3) than delineated horizon to achieve> 90% estimation
accuracy.
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