Sampling
PAM- Pulse Amplitude Modulation
(continued)

EELE445-14
Lecture 14
Sampling

Properties will be looking at for:

sImpulse Sampling
*Natural Sampling
*Rectangular Sampling
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Figure 2—-18 Impulse sampling.
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Impulse Sampling

w (t)

w(t)
|[W(f)|=0 for |f|>B

Impulse sampling 5. (t)= D S8(t-nT,)
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Impulse Sampling- text

w(t) =w(t)> .  S(t-nT)
=>"  w(nT,)§(t-nT,) eq2—171

subsituting ,

w, () =w(t)Y Tiejnwst

W,(F) ==X W(F-nf,
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Impulse Sampling

The spectrum of the impuse sampled signal is the spectrum of the
unsampled signal that is repeated every f, Hz, where f, is the
sampling frequency or rate (samples/sec). This is one of the
basic principles of digital signal processing.

Note:

This technique of impulse sampling is often used to
translate the spectrum of a signal to another frequency band that
is centered on a harmonic of the sampling frequency, f..

If f>=2B, (see fig 2-18), the replicated spectra around
each harmonic of f, do not overlap, and the original spectrum can
be regenerated with an ideal LPF with a cutoff of f/2.
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Impulse Sampling

Undersampling and aliasing.
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Natural Sampling

Generation of PAM with natural sampling (gating).

Analog bilateral switch

wl(t w(t) = w(t)s(e)
wc(: : - 07@0 O
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Natural Sampling
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{e) Resulting PAM Signal (natural sampling, d = =T, = 1/3)
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Natural Sampling
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PAM and PCM

* PAM- Pulse Amplitude Modulation:

— The pulse may take any real voltage value that is
proportional to the value of the original waveform.
No information is lost, but the energy is
redistributed in the frequency domain.

» PCM- Pulse Code Modulation:

— The original waveform amplitude is quantized with
a resulting loss of information
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Figure 3—4 Demodulation of a PAM signal (naturally sampled).
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Figure 3-5 PAM signal with flat-top sampling.
Impulse sample and hold
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Figure 3-6 Spectrum of a PAM waveform with flat-top sampling.

{a) Magnitude Spectrum of Input Analog Waveform

WinI

{b) Magnitude Spectrum of PAM (flai-top sampling), /7, = 1/3 and f, = 48
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Analog
signal in

Figure 3—7 PCM trasmission system.
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PCM Transmission

* Negative: The transmission bandwidth
of the PCM signal is much larger than
the bandwidth of the original signal

» Positive: The transmission range of a
PCM signal may be extended with the
use of aregenerative repeater.
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Figure 3-8 lllustration of waveforms in a PCM system.
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Figure 3-8 lllustration of waveforms in a PCM system.
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lllustration of waveforms in a PCM system.
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lllustration of waveforms in a PCM system.

Ditference between analog signal
and quantized PAM signal

(c) Error Signal

*The error signal, (quantization noise), is inversely
proportional to the number of quantization levels used
to approximate the waveform x(t)

Companding is used to improve the SQNR (signal to
guantization noise ratio) for small amplitude x(T) signals
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Figure 3—9 Compression characteristics (first quadrant shown).
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Figure 3—9 Compression characteristics (first quadrant shown).
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Figure 3-10 Output SNR of 8-bit PCM systems with and without companding.
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Quantization Noise,
Analog to Digital Converter-A/D

EELE445
Lecture 16
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Figure 3—7 PCM trasmission system.
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Quantization

x(t ) 1 8, ...0110...
® Sampler } Quantizer ) @——»

Figure 7.7 Block diagram of a PCM system. )'{n = Q(X)
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v
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Quantization — Results in a Loss of Information

- X(t) \ 2 V V
é A = —= ]
> M 2
Lost Information
A
- ? After sampling, x(t)=x;
X, €R
After Quantization:
Q(X)=X, XxXeR
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Quantization Noise

Quantization function:
O (x)= x; forall x ¢ R;.

Define the mean square distortion:

I 4(X) = (X- Q) = X°

A and

,,,,,,,,,,,,,,,,, A
Xx=Q(x)|< >

Figure 7.3 Example of an 8-level quantization scheme.
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Quantization oV

vy

r P, the gquantization noise

where M=2", V is ¥ the A/D input range,
and n is the number of bits
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Quantization Noise from the expectation operator:

Since X is arandom variable, so are X and X
So we can define the mean squared error (distortion) as:

D =Efd(x, X )= E[(x -Q(x))]

The pdf of the error is uniformly distributed: X =X -Q(X)

f(X)
1 - = —==<X<=
A f(X)=12 2 2
X 0 otherwise
A A
2 2
MONTANA
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SQNR — Signal to Quantization Noise
Definition ' 1f the random variable X is quantized to Q (X). the signal-
to-quantization noise ratio (SQNR) is defined by
ELX?]
SONR = ——————.
E[X - Q (X))
When dealing with signals, the quantization noise power is
1 %
: 8 2
Py = rlflc?/‘# E[X()— Q (X)) di
and the signal power is
1 [t
Py = lim —f’ E[X(H)dr1.
T-xT J_ r
Hence, the signal-to-quantization noise ratio is
Px
SQNR = —.
Q P;;
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SQNR - Signal to Quantization Noise

Ratio
P, may be found using:
Px = Rx(7)|,_,
o0
- f Sx(f)df
—00
o0
=/ xzfx(x) dx.
-0
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SQNR - Signal to Quantization Noise Ratio

The distortion, or “noise”, is therefore:

A
E[X?] = f+2 L gz = A% Xy _ X
2 A 12 3N2 3x4
P 3x N’P 4'p
SQNR=FX= >(2 X:3X2 X
X2 X max X max

Where P, is the power of the input signal
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SONR - Linear Quantization

E[x*]< %G
XFZ)X <1

The SQNR decreases as
The input dynamic range

increases

P
SQNR| ~ 10log)o X t6v+43.
dB

2
max
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U-Law Nonuniform PCM

used to increase SQNR for given P, , xmax, and n
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A-Law Nonuniform PCM
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u-Law v.s. Linear Quantization

8 bit
sol P, is signal power
Relative to full scale
a0k With companding
m
-
3
3 30f
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Pulse Code Modulation, PCM, Advantage
compared with analog systems
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Performance comparison of PCM and analog modulation.
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