Bradley Jones

Peter Aitken SEVENTH
EDITION

Covers
Cii

SamsTeachYourself

in One Hour a Day

FREE SAMPLE CHAPTER
10 & &

SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780789751997
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780789751997
https://plusone.google.com/share?url=http://www.informit.com/title/9780789751997
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780789751997
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780789751997/Free-Sample-Chapter

Bradley L. Jones
Peter Aitken
Dean Miller

SamsTeach Yourself

C Programming

in One Hour a Day
Seventh Edition

SAMS ‘ 800 East 96th Street, Indianapolis, Indiana 46240

Sams Teach Yourself C Programming in
One Hour a Day, Seventh Edition
Copyright © 2014 by Pearson Education

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and authors assume no responsibility for
errors or omissions. Neither is any liability assumed for damages resulting from the use of
the information contained herein.

ISBN-10: 0-7897-5199-2

ISBN-13: 978-0-7897-5199-7

Library of Congress Control Number: 2013949045
Printed in the United States of America

First Printing: October 2013

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
authors and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales @pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international @ pearsoned.com

Acquisitions Editor
Mark Taber

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Apostrophe Editing
Services

Indexer
Ken Johnson

Proofreader
Anne Goebel

Technical Editor
Siddhartha Singh

Team Coordinator
Vanessa Evans

Designer
Mark Shirar

Layout
Mary Sudul

Contents at a Glance

PART I:

N 6o a h WODN

PART II:

8

9

10
11
12
13
14

Introduction

Fundamentals of C

Getting Started with C

The Components of a C Program

Storing Information: Variables and Constants

The Pieces of a C Program: Statements, Expressions, and Operators
Packaging Code in Functions

Basic Program Control

Fundamentals of Reading and Writing Information

Putting C to Work

Using Numeric Arrays

Understanding Pointers

Working with Characters and Strings
Implementing Structures, Unions, and TypeDefs
Understanding Variable Scope

Advanced Program Control

Working with the Screen, Printer, and Keyboard

PART IlI: Advanced C

15
16
17
18
19
20
21
22

Pointers to Pointers and Arrays of Pointers
Pointers to Functions and Linked Lists
Using Disk Files

Manipulating Strings

Getting More from Functions

Exploring the C Function Library

Working with Memory

Advanced Compiler Use

PART IV: Appendixes

A

B
Cc
D

ASCII Chart

C/C++ Reserved Words
Common C Functions
Answers

Index

23
37
57
91
119
145

167
187
213
241
279
299
325

361
385
417
455
487
505
533
559

583
589
593
599

645

Table of Contents

Introduction

PART I: Fundamentals of C

LESSON 1: Getting Started with C

A Brief History of the C Language

Why Use C?

Preparing to Program

The Program Development Cycle
Creating the Source Code
Compiling the Source Code
Linking to Create an Executable File
Completing the Development Cycle

Your First C Program
Entering and Compiling hello.c

Summary

Q&A

Workshop
Quiz

Exercises

LESSON 2: The Components of a C Program

A Short C Program

The Program’s Components
The main () Function (Lines 9 Through 23)
The #include and #define Directives (Lines 2 and 3)
The Variable Definition (Line 5)
The Function Prototype (Line 7)
Program Statements (Lines 12, 13, 14, 17, 19, 20, 22, and 28)
The Function Definition (Lines 26 Through 29)
Program Comments (Lines 1, 11, 16, and 25)
Using Braces (Lines 10, 23, 27, and 29)
Running the Program

A Note on Accuracy

23
24
25
25
25
26
26
26
27
27
29
29
29

Contents

A Review of the Parts of a Program 30
Summary 32
Q&A 33
Workshop 33
Quiz 33
Exercises 34
LESSON 3: Storing Information: Variables and Constants 37
Understanding Your Computer’s Memory 38
Storing Information with Variables 39
Variable Names 39
Numeric Variable Types 40
Variable Declarations 44

The typedef Keyword 45
Initializing Variables 45
Constants 47
Literal Constants 47
Symbolic Constants 48
Summary 53
Q&A 53
Workshop 54
Quiz 54
Exercises 55

LESSON 4: The Pieces of a C Program: Statements, Expressions,

and Operators 57
Statements 58
The Impact of White Space on Statements 58
Creating a Null Statement 59
Working with Compound Statements 59
Understanding Expressions 60
Simple Expressions 60
Complex Expressions 60
Operators 61
The Assignment Operator 62
The Mathematical Operators 62

Operator Precedence and Parentheses 67

Vi

Sams Teach Yourself C Programming in One Hour a Day

Order of Subexpression Evaluation
The Relational Operators
The if Statement
The else Clause
Evaluating Relational Expressions
The Precedence of Relational Operators
The Logical Operators
More on True/False Values
The Precedence of Operators
Compound Assignment Operators
The Conditional Operator
The Comma Operator
Operator Precedence Revisited
Summary
Q&A
Workshop
Quiz

Exercises

LESSON 5: Packaging Code in Functions

Understanding Functions
A Function Defined
A Function Illustrated

How a Function Works

Functions and Structured Programming
The Advantages of Structured Programming
Planning a Structured Program
The Top-Down Approach

Writing a Function
The Function Header
The Function Body
The Function Prototype

Passing Arguments to a Function

Calling Functions
Recursion

Where the Functions Belong

69
70
71
74
77
79
80
82
82
84
85
85
86
87
88
88
89
89

91
92
92
92
95
97
97
97
99

100

100

103

109

110

110

112

114

Contents

Working with Inline Functions 115
Summary 115
Q&A 116
Workshop 116
Quiz 116
Exercises 117
LESSON 6: Basic Program Control 119
Arrays: The Basics 120
Controlling Program Execution 121
The for Statement 121
Nesting for Statements 127

The while Statement 130
Nesting while Statements 134

The do. . .while Loop 136
Nested Loops 141
Summary 142
Q&A 142
Workshop 143
Quiz 143
Exercises 143
LESSON 7: Fundamentals of Reading and Writing Information 145
Displaying Information Onscreen 146
The printf () Function 146

The printf () Format Strings 146
Displaying Messages with puts () 155
Inputting Numeric Data with scanf () 156
Using Trigraph Sequences 161
Summary 162
Q&A 163
Workshop 163
Quiz 163

Exercises 164

viii

Sams Teach Yourself C Programming in One Hour a Day

PART Ii: Putting C to Work

LESSON 8: Using Numeric Arrays
What Is an Array?
Using Single-Dimensional Arrays
Using Multidimensional Arrays
Naming and Declaring Arrays
Initializing Arrays
Initializing Multidimensional Arrays
Summary
Q&A
Workshop
Quiz

Exercises

LESSON 9: Understanding Pointers
What Is a Pointer?
Your Computer’s Memory
Creating a Pointer
Pointers and Simple Variables
Declaring Pointers
Initializing Pointers
Using Pointers
Pointers and Variable Types
Pointers and Arrays
The Array Name as a Pointer
Array Element Storage
Pointer Arithmetic
Pointer Cautions
Array Subscript Notation and Pointers
Passing Arrays to Functions
Summary
Q&A
Workshop
Quiz

Exercises

167
168
169
173
174
178
179
182
183
184
184
184

187
188
188
188
189
189
190
190
193
194
194
195
198
202
203
204
209
210
210
210
211

LESSON 10: Working with Characters and Strings
The char Data Type
Using Character Variables
Using Strings
Arrays of Characters
Initializing Character Arrays
Strings and Pointers
Strings Without Arrays
Allocating String Space at Compilation
The malloc () Function
Using the malloc () Function
Displaying Strings and Characters
The puts () Function
The printf () Function
Reading Strings from the Keyboard
Inputting Strings Using the gets () Function
Inputting Strings Using the scanf () Function
Summary
Q&A
Workshop
Quiz

Exercises

LESSON 11: Implementing Structures, Unions, and TypeDefs

Working with Simple Structures
Defining and Declaring Structures
Accessing Members of a Structure

Using Structures That Are More Complex
Including Structures Within Other Structures
Structures That Contain Arrays

Arrays of Structures

Initializing Structures

Structures and Pointers
Including Pointers as Structure Members
Creating Pointers to Structures
Working with Pointers and Arrays of Structures

Passing Structures as Arguments to Functions

Contents

213
214
215
218
218
219
219
220
220
221
222
226
226
227
228
228
232
235
235
237
237
238

241
242
242
243
246
246
250
252
256
259
259
261
264
267

Sams Teach Yourself C Programming in One Hour a Day

Understanding Unions 268
Defining, Declaring, and Initializing Unions 269
Accessing Union Members 269

Creating Synonyms for Structures with typedef 274

Summary 275

Q&A 275

Workshop 276
Quiz 276
Exercises 277

LESSON 12: Understanding Variable Scope 279

What Is Scope? 280
A Demonstration of Scope 280
The Importance of Scope 282

Creating External Variables 282
External Variable Scope 283
When to Use External Variables 283
The extern Keyword 283

Creating Local Variables 285
Static Versus Automatic Variables 285
The Scope of Function Parameters 288
External Static Variables 289
Register Variables 289

Local Variables and the main () Function 290

Which Storage Class Should You Use? 291

Local Variables and Blocks 291

Summary 293

Q&A 293

Workshop 294
Quiz 294
Exercises 295

LESSON 13: Advanced Program Control 299

Ending Loops Early 300

The break Statement 300

The continue Statement 302

Contents Xi

The goto Statement 304
Infinite Loops 307
The switch Statement 311
Exiting the Program 320
The exit () Function 320
Summary 321
Q&A 321
Workshop 322
Quiz 322
Exercises 322
LESSON 14: Working with the Screen, Printer, and Keyboard 325
Streams and C 326
What Exactly Is Program Input/Output? 326

What Is a Stream? 326

Text Versus Binary Streams 327
Predefined Streams 327

Using C’s Stream Functions 328
An Example 329
Accepting Keyboard Input 329
Character Input 330
Working with Formatted Input 338
Controlling Output to the Screen 347
Character Output with putchar (), putc (), and fputc () 347

Using puts () and fputs () for String Output 349
Using printf () and fprintf () for Formatted Output 350
When to Use fprintf () 357
Using stderr 357
Summary 358
Q&A 359
Workshop 359
Quiz 359

Exercises 360

Xii

Sams Teach Yourself C Programming in One Hour a Day

PART IlI: Advanced C

LESSON 15: Pointers to Pointers and Arrays of Pointers
Declaring Pointers to Pointers
Pointers and Multidimensional Arrays
Working with Arrays of Pointers
Strings and Pointers: A Review
Declaring an Array of Pointers to Type char
Pulling Things Together with an Example
Summary
Q&A
Workshop
Quiz

Exercises

LESSON 16: Pointers to Functions and Linked Lists
Working with Pointers to Functions
Declaring a Pointer to a Function
Initializing and Using a Pointer to a Function
Understanding Linked Lists
Basics of Linked Lists
Working with Linked Lists
A Simple Linked List Demonstration
Implementing a Linked List
Summary
Q&A
‘Workshop
Quiz

Exercises

LESSON 17: Using Disk Files
Relating Streams to Disk Files
Understanding the Types of Disk Files
Using Filenames

Opening a File

361
362
363
372
372
373
375
381
382
382
382
383

385
386
386
387
396
396
398
403
406
415
415
415
415
416

417
418
418
418
419

Contents Xiii

Writing and Reading File Data 423
Formatted File Input and Output 424
Character Input and Output 428
Direct File Input and Output 431

File Buffering: Closing and Flushing Files 435

Understanding Sequential Versus Random File Access 436
The ftell() and rewind () Functions 437
The fseek () Function 440

Detecting the End of a File 443

File Management Functions 445
Deleting a File 445
Renaming a File 446
Copying a File 447

Using Temporary Files 450

Summary 452

Q&A 452

Workshop 453
Quiz 453
Exercises 454

LESSON 18: Manipulating Strings 455

Determining String Length 456

Copying Strings 457
The strcpy () Function 457
The strncpy () Function 459

Concatenating Strings 461
Using the strcat () Function 461
Using the strncat () Function 462

Comparing Strings 464
Comparing Two Entire Strings 464
Comparing Partial Strings 466

Searching Strings 468
The strchr () Function 468
The strrchr () Function 470
The strcspn () Function 470

The strspn () Function 471

Xiv Sams Teach Yourself C Programming in One Hour a Day

The strpbrk () Function
The strstr () Function
String-to-Number Conversions
Converting Strings to Integers
Converting Strings to Longs
Converting Strings to Long Longs
Converting Strings to Floating-Point Numeric Values
Character-Test Functions
ANSI Support for Uppercase and Lowercase
Summary
Q&A
Workshop
Quiz

Exercises

LESSON 19: Getting More from Functions
Passing Pointers to Functions
Type void Pointers
Using Functions That Have a Variable Number of Arguments
Functions That Return a Pointer
Summary
Q&A
Workshop
Quiz

Exercises

LESSON 20: Exploring the C Function Library

Mathematical Functions

Trigonometric Functions

Exponential and Logarithmic Functions

Hyperbolic Functions

Other Mathematical Functions

A Demonstration of the Math Functions
Dealing with Time

Representing Time

The Time Functions

Using the Time Functions

473
473
474
475
475
476
476
477
481
483
483
484
484
484

487
488
492
496
499
501
502
502
502
503

505
506
506
506
507
507
508
509
509
510
513

Error-Handling
The assert () Macro
The errno.h Header File
The perror () Function
Searching and Sorting
Searching with bsearch ()
Sorting with gsort ()
Searching and Sorting: Two Demonstrations
Summary
Q&A
Workshop
Quiz

Exercises

LESSON 21: Working with Memory

Type Conversions
Automatic Type Conversions
Explicit Conversions Using Typecasts
Allocating Memory Storage Space
Allocating Memory with the malloc () Function
Allocating Memory with the calloc () Function
Allocating More Memory with the realloc () Function
Releasing Memory with the free () Function
Manipulating Memory Blocks
Initializing Memory with the memset () Function
Copying Memory with the memcpy () Function
Moving Memory with the memmove () Function
Working with Bits
The Shift Operators
The Bitwise Logical Operators
The Complement Operator
Bit Fields in Structures
Summary
Q&A
Workshop
Quiz

Exercises

Contents

516
516
518
519
521
521
523
523
529
529
530
530
531

533
534
534
536
538
539
540
541
543
545
545
546
546
548
548
550
552
552
554
554
556
556
557

Xvi Sams Teach Yourself C Programming in One Hour a Day

LESSON 22: Advanced Compiler Use 559
Programming with Multiple Source-Code Files 560
Advantages of Modular Programming 560
Modular Programming Techniques 560
Module Components 564
External Variables and Modular Programming 565

The C Preprocessor 567
The #define Preprocessor Directive 567
Using the #include Directive 572
Using #if, #elif, #else, and #endif 573
Using #if. ..#endif to Help Debug 574
Avoiding Multiple Inclusions of Header Files 575

The #undef Directive 576
Predefined Macros 576
Using Command-Line Arguments 577
Summary 580
Q&A 580
Workshop 581
Quiz 581
Exercises 582

PART 4: Appendixes

APPENDIX A: ASCII Chart 583
APPENDIX B: C/C++ Reserved Words 589
APPENDIX €: Common C Functions 593
APPENDIX D: Answers 599

Index 645

Xvii

About the Authors

Bradley L. Jones manages and directs the Developer.com Network, which includes sites
such as Developer.com, CodeGuru, and DevX. He has developed systems using C, C#,
C++, SQL Server, PowerBuilder, Visual Basic, HTMLS5, and more. His Twitter handle is
@BradleyLJones.

Peter Aitken was on the faculty at Duke University Medical Center, where he cut his
programming teeth developing computer programs for research. He is an experienced
author in the IT field—on both applications and programming topics—with more than 70
magazine articles and 40 books to his credit. Aitken currently works as a consultant in
the pharmaceutical industry.

Dean Miller is a writer and editor with more than 20 years of experience in both the
publishing and licensed consumer product businesses. Over the years, he has created or
helped shape a number of bestselling books and series, including Teach Yourself in 21
Days, Teach Yourself in 24 Hours, and the Unleashed series, all from Sams Publishing.

Xviii

Acknowledgments

I’d like to thank Bradley Jones and Peter Aiken for creating an outstanding C
programming tutorial that has stood strong for more than two decades, teaching hundreds
of thousands how to program in the greatest language of all, C. I’d like to thank Mark
Taber for the opportunity to take this book into a new format, and to Mandie Frank, San
Dee Phillips, and Siddhartha Singh for taking the original text and my additions and
molding it into a better product. On a personal level, thanks to my wife Fran, my kids
John, Alice, and Margaret for their love and support. Id like to dedicate my part of this
edition to my two sisters, Sheryn and Rebecca, for their unparalleled strength through the
adversity life throws them.

—Dean Miller

First and foremost, my thanks go to my coauthor, Brad Jones, for his hard work and
dedication. I am also greatly indebted to all the people at Sams Publishing, unfortunately
too many to mention by name, who helped bring this book from concept to completion.

—Peter Aitken

I’d first like to thank my wife for her continued understanding and patience as I take

on such projects as the writing of books. A good book is the result of the symbiosis
achieved by a number of people working together. I would like to acknowledge all the
people—readers, editors, and others—who have taken the time to provide comments and
feedback on previous editions of this book. By incorporating much of their feedback, I
believe that we have made this the best book for easily learning to program C.

—Bradley L. Jones

Xix

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

We welcome your comments. You can email or write us to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this
book and may not be able to reply personally to every message we receive.

When you write, please be sure to include this book’s title, edition number, and authors
as well as your name and contact information. We will carefully review your comments
and share them with the authors and editors who worked on the book.

Email: feedback @samspublishing.com

Mail: Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

As you can guess from the title, this book is set up so that you can teach yourself the C
programming language in 22 one-hour lessons. Despite stiff competition from languages
such as C++, Java, and C#, C remains the language of choice for people who are just
learning programming. For reasons detailed in Lesson 1, “Getting Started with C,” you
can’t go wrong in selecting C as your programming language.

You’ve made a wise decision selecting this book as your means of learning C. Although
there are many books on C, this book presents C in the most logical and easy-to-learn
sequence. The fact that the six previous editions have been on best-seller lists indicates
that readers agree! This book is designed for you to work through the lessons in order

on a daily basis. You don’t need any previous programming experience; although expe-
rience with another language, such as BASIC, might help you learn faster. Also no
assumptions are made about your computer or compiler; this book concentrates on teach-
ing the C language, regardless of whether you use a PC, a Mac, or a UNIX system.

This Book’s Special Features

This book contains some special features to aid you on your path to C enlightenment.
Syntax boxes show you how to use specific C concepts. Each box provides concrete
examples and a full explanation of the C command or concept. To get a feel for the style
of the syntax boxes, look at the following example. (Don’t try to understand the material;
you haven’t even reached Lesson 1!)

Syntax

#include <stdio.h>
printf (format-string[,arguments,...]);

printf () is a function that accepts a series of arguments, each applying to a conversion
specifier in the given format string. It prints the formatted information to the standard
output device, usually the display screen. When using printf£ (), you need to include the
standard input/output header file, stdio.h.

Sams Teach Yourself C Programming in One Hour a Day

The format-string is required; however, arguments are optional. For each argument,
there must be a conversion specifier. The format string can also contain escape
sequences. The following are examples of calls to printf () and their output.

Example 1

#include <stdio.h>
int main(void)

{
}

printf("This is an example of something printed!");

Example 1 Output
This is an example of something printed!
Example 2

printf("This prints a character, %c\na number, %d\na floating point,
sf", 'z', 123, 456.789);

Example 2 Output

This prints a character, z
a number, 123
a floating point, 456.789

Another feature of this book is DO/DON’T boxes, which give you pointers on what to
do and what not to do.

DO DON'T

DO read the rest of this section. It DON'T skip any of the quiz questions
explains the Workshop sections that or exercises. If you can finish the
appear at the end of each lesson. lesson’s Workshop, you’re ready to

move on to new material.

You’ll encounter Tip, Note, and Caution boxes as well. Tips provide useful shortcuts
and techniques for working with C. Notes provide special details that enhance the
explanations of C concepts. Cautions help you avoid potential problems.

Numerous sample programs illustrate C’s features and concepts so that you can apply
them in your own programs. Each program’s discussion is divided into three components:
the program itself, the input required and the output generated by it, and a line-by-line
analysis of how the program works. These components are indicated by special icons.

Introduction

Each lesson ends with a Q&A section containing answers to common questions relating
to that lesson’s material. There is also a Workshop at the end of each lesson. It contains
quiz questions and exercises. The quiz tests your knowledge of the concepts presented
in that lesson. If you want to check your answers, or if you’re stumped, the answers are
provided in Appendix D.

You won’t learn C by just reading this book, however. If you want to be a programmer,
you must write programs. Following each set of quiz questions is a set of exercises. You
need to attempt each exercise. Writing C code is the best way to learn C.

The BUG BUSTER exercises are most beneficial. A bug is a program error in C. BUG
BUSTER exercises are code listings that contain common problems (bugs). It’s your job
to locate and fix these errors. If you have trouble busting the bugs, these answers also are
given in Appendix D.

As you progress through this book, some of the exercise answers tend to get long. Other
exercises have a multitude of answers. As a result, later lessons don’t always provide
answers for all the exercises.

Conventions Used in This Book

This book uses different typefaces to help you differentiate between C code and regular
English, and also to help you identify important concepts. Actual C code appears in a
special monospace font. In the examples of a program’s input and output, what the user
types appears in bold monospace. Placeholders—terms that represent what you actually
type within the code—appear in italic monospace. New or important terms appear in
italic.

This page intentionally left blank

LESSON 2
The Components of a
C Program

Every C program consists of several components combined in a specific
way. Most of this book is devoted to explaining these various program
components and how you use them. To help illustrate the overall picture,
you should begin by reviewing a complete (though small) C program with
all its components identified. In this lesson you learn:

m The components of a short C program
® The purpose of each program component

m How to compile and run a sample program

24

LESSON 2 The Components of a C Program

A Short C Program

Listing 2.1 presents the source code for bigyear.c. This is a simple program. All it does
is accept a year of birth entered from the keyboard and calculate what year a person
turns a specific age. At this stage, don’t worry about understanding the details of how
the program works. The point is for you to gain some familiarity with the parts of a C
program so that you can better understand the listings presented later in this book.

Before looking at the sample program, you need to know what a function is because
functions are central to C programming. A function is an independent section of program
code that performs a certain task and has been assigned a name. By referencing a
function’s name, your program can execute the code in the function. The program also
can send information, called arguments, to the function, and the function can return
information to the main part of the program. The two types of C functions are library
functions, which are a part of the C compiler package, and user-defined functions, which
you, the programmer, create. You learn about both types of functions in this book.

Note that, as with all the listings in this book, the line numbers in Listing 2.1 are not part
of the program. They are included only for identification purposes, so don’t type them.

Input v
Listing 2.1 bigyear.c - A Program Calculates What Year a Person Turns a Specific Age

1: /* Program to calculate what year someone will turn a specific age */
2: #include <stdio.h>

3: #define TARGET_AGE 88

4:

5: int yearl, year2;

6:

7: int calcYear(int yearl);

8:

9: int main(void)

10: {

11: // Ask the user for the birth year

12: printf ("What year was the subject born? ");
13: printf ("Enter as a 4-digit year (YYYY): ");
14: scanf (" %d", &yearl);

15:

16: // Calculate the future year and display it
17: year2 = calcYear (yearl);

18:

19: printf ("Someone born in %d will be %d in %d.",
20: yearl, TARGET_AGE, year2);

21:

22: return 0;

N
w
—

The Program’s Components 25

24:

25: /* The function to get the future year */
26: int calcYear(int yearl)

27:

28: return (year1+TARGET AGE) ;

29: |}

Output v

What year was the subject born? 1963
Someone born in 1963 will be 88 in 2051.

The Program’s Components

The following sections describe the various components of the preceding sample program.
Line numbers are included so that you can easily identify the program parts discussed.

The main () Function (Lines 9 Through 23)

The only component required in every executable C program is the main () function. In
its simplest form, the main () function consists of the name main followed by a pair of
parentheses containing the word void ((void)) and a pair of braces ({}). You can leave
the word void out and the program still works with most compilers. The ANSI Standard
states that you should include the word void so that you know there is nothing sent to
the main function.

Within the braces are statements that make up the main body of the program. Under
normal circumstances, program execution starts at the first statement in main () and
terminates at the last statement in main (). Per the ANSI Standard, the only statement that
you need to include in this example is the return statement on line 22.

The #include and #define Directives (Lines 2 and 3)

The #include directive instructs the C compiler to add the contents of an include file
into your program during compilation. An include file is a separate disk file that contains
information that can be used by your program or the compiler. Several of these files
(sometimes called header files) are supplied with your compiler. You rarely need to
modify the information in these files; that’s why they’re kept separate from your source
code. Include files should all have an .h extension (for example, stdio.h).

You use the #include directive to instruct the compiler to add a specific include file to
your program during compilation. In Listing 2.1, the #include directive is interpreted to
mean “Add the contents of the file stdio.h.” You will almost always include one or more

26

LESSON 2 The Components of a C Program

include files in your C programs. Lesson 22, “Advanced Compiler Use” presents more
information about include files.

The #define directive instructs the C compiler to replace a specific term with its
assigned value throughout your program. By setting a variable at the top of your program
and then using the term throughout the code, you can more easily change a term if
needed by changing the single #define line as opposed to every place throughout

the code. For example, if you wrote a payroll program that used a specific deduction

for health insurance and the insurance rate changed, tweaking a variable created with
#define named HEALTH INSURANCE at the top of your program (or in a header file)

would be so much easier than searching through lines and lines of code looking for
every instance that had the information. Lesson 3, “Storing Information: Variables and
Constants” covers the #define directive.

The Variable Definition (Line 5)

A variable is a name assigned to a location in memory used to store information. Your
program uses variables to store various kinds of information during program execution.
In C, a variable must be defined before it can be used. A variable definition informs the
compiler of the variable’s name and the type of information the variable is to hold. In the
sample program, the definition on line 4, int yearl, year2;, defines two variables—
named year1l and year2—that each hold an integer value. Lesson 3 presents more
information about variables and variable definitions.

The Function Prototype (Line 7)

A function prototype provides the C compiler with the name and arguments of the
functions contained in the program. It appears before the function is used. A function
prototype is distinct from a function definition, which contains the actual statements
that make up the function. (Function definitions are discussed in more detail in “The
Function Definition” section.)

Program Statements (Lines 12, 13, 14, 17, 19, 20,
22, and 28)

The real work of a C program is done by its statements. C statements display information
onscreen, read keyboard input, perform mathematical operations, call functions, read
disk files, and all the other operations that a program needs to perform. Most of this
book is devoted to teaching you the various C statements. For now, remember that in
your source code, C statements are generally written one per line and always end with a
semicolon. The statements in bigyear.c are explained briefly in the following sections.

The Program’s Components 27

The printf () Statement

The printf () statement (lines 12, 13, 19, and 20) is a library function that displays
information onscreen. The printf () statement can display a simple text message (as in
lines 12 and 13) or a message mixed with the value of one or more program variables (as
in lines 19-20).

The scanf () Statement

The scanf () statement (line 14) is another library function. It reads data from the
keyboard and assigns that data to one or more program variables.

The program statement on line 17 calls the function named calcyear (). In other
words, it executes the program statements contained in the function calcyear (). It
also sends the argument year1 to the function. After the statements in calcyear ()

are completed, calcyear () returns a value to the program. This value is stored in the
variable named year2.

The return Statement

Lines 22 and 28 contain return statements. The return statement on line 28 is part

of the function calcyear (). It calculates the year a person would be a specific age by
adding the #define constant TARGET AGE to the variable year1 and returns the result to
the program that called calcyear (). The return statement on line 22 returns a value of
0 to the operating system just before the program ends.

The Function Definition (Lines 26 Through 29)

When defining functions before presenting the program bigyear.c, two types of
functions—Ilibrary functions and user-defined functions—were mentioned. The printf ()
and scanf () statements are examples of the first category, and the function named
calcYear (), on lines 26 through 29, is a user-defined function. As the name implies,
user-defined functions are written by the programmer during program development. This
function adds the value of a created constant to a year and returns the answer (a different
year) to the program that called it. In Lesson 5, “Packaging Code in Functions,” you learn
that the proper use of functions is an important part of good C programming practice.

Note that in a real C program, you probably wouldn’t use a function for a task as simple
as adding two numbers. It has been done here for demonstration purposes only.

Program Comments (Lines 1, 11, 16, and 25)

Any part of your program that starts with /* and ends with */ or any single line
that begins with // is called a comment. The compiler ignores all comments, so they
have absolutely no effect on how a program works. You can put anything you want

28

LESSON 2 The Components of a C Program

into a comment, and it won’t modify the way your program operates. The first type
of comment can span part of a line, an entire line, or multiple lines. Here are three
examples:

/* A single-line comment */
int a,b,c; /* A partial-line comment */

/* a comment
spanning
multiple lines */

You should not use nested comments. A nested comment is a comment that has been put
into another comment. Most compilers will not accept the following:

/ *

/* Nested comment */

*/

Some compilers do allow nested comments. Although this feature might be tempting to
use, you should avoid doing so. Because one of the benefits of C is portability, using

a feature such as nested comments might limit the portability of your code. Nested
comments also might lead to hard-to-find problems.

The second style of comment, the ones beginning with two consecutive forward slashes
(/), are only for single-line comments. The two forward slashes tell the compiler to
ignore everything that follows to the end of the line.

// This entire line is a comment
int x; // Comment starts with slashes

Many beginning programmers view program comments as unnecessary and a waste

of time. This is a mistake! The operation of your program might be quite clear when
you write the code; however, as your programs become larger and more complex, or
when you need to modify a program you wrote 6 months ago, comments are invaluable.
Now is the time to develop the habit of using comments liberally to document all your
programming structures and operations. You can use either style of comments you
prefer. Both are used throughout the programs in the book.

The Program’s Components 29

DO

DON'T

DO add abundant comments to your
program’s source code, especially near
statements or functions that could

be unclear to you or to someone who
might have to modify it later.

DO learn to develop a style that will
be helpful. A style that’s too lean or
cryptic doesn’t help. A style that is
verbose may cause you to spend more
time commenting than programming.

DON’T add unnecessary comments
to statements that are already clear.
For example, entering

/* The following prints Hello
World! on the screen */
printf ("Hello World!) ;

might be going a little too far,

at least when you’re completely 2
comfortable with the printf ()

function and how it works.

Using Braces (Lines 10, 23, 27, and 29)

You use braces {} to enclose the program lines that make up every C function—
including the main () function. A group of one or more statements enclosed within braces
is called a block. As you see in later lessons, C has many uses for blocks.

Running the Program

Take the time to enter, compile, and run bigyear.c. It provides additional practice in using
your editor and compiler. Recall these steps from Lesson 1, “Getting Started with C”:

1. Make your programming directory current.

2. Start your editor.

3. Enter the source code for bigyear.c exactly as shown in Listing 2.1, but be sure to

omit the line numbers and colons.

4. Save the program file.

5. Compile and link the program by entering the appropriate command(s) for your
compiler. If no error messages display, you can run the program by clicking the

appropriate button in your C environment.

6. If any error messages display, return to step 2 and correct the errors.

A Note on Accuracy

A computer is fast and accurate, but it also is completely literal. It doesn’t know enough
to correct your simplest mistake; it takes everything you enter exactly as you entered it,

not as you meant it!

30

LESSON 2 The Components of a C Program

This goes for your C source code as well. A simple typographical error in your program
can cause the C compiler to choke, gag, and collapse. Fortunately, although the compiler
isn’t smart enough to correct your errors (and you’ll make errors—everyone does!), it is

smart enough to recognize them as errors and report them to you. (You saw in Lesson 1

how the compiler reports error messages and how you interpret them.)

A Review of the Parts of a Program

Now that all the parts of a program have been described, you can look at any program
and find some similarities. Look at Listing 2.2 and see whether you can identify the
different parts.

input v
Listing 2.2 list_it.c — A Program to List a Code Listing with Added Line Numbers

1: /* list _it.c__This program displays a listing with line numbers! */
2: #include <stdio.h>

3: #include <stdlib.h>

4: #define BUFF_SIZE 256

5: void display usage(void) ;

6: int line;

7:

8: int main(int argc, char *argv[])

9: {

10: char buffer [BUFF_SIZE];

11: FILE *fp;

12:

13: if(argec < 2)

14: {

15: display usage() ;

16: return (1);

17: }

18:

19: if ((fp = fopen(argv([1l], "r")) == NULL)
20: {
21: fprintf(stderr, "Error opening file, %s!", argv[l]);
22: return(l) ;
23: }

24:

25: line = (1);

26:

27: while(fgets(buffer, BUFF SIZE, fp) != NULL)
28: fprintf(stdout, "%4d:\t%s", line++, buffer);
29:

30: fclose(fp);

31: return 0;

w
\S]
—

A Review of the Parts of a Program 31

33:
34: void display usage (void)
35:
36: fprintf (stderr, "\nProper Usage is: ");
37: fprintf (stderr, "\n\nlist it filename.ext\n");
38:
Output v
C:\>list_it list_it.c
1: /* list_it.c - This program displays a listing with line numbers! */
2: #include <stdio.h> 2
3: #include <stdlib.h>
4: #define BUFF_SIZE 256
5: void display usage (void) ;
6: int line;
7:
8: int main(int argc, char *argvl(]
9: {
10 char buffer [BUFF_SIZE];
11 FILE *fp;
12:
13: if(argc < 2)
14: {
15: display usage() ;
16: return (1);
17 }
18:
19 if ((fp = fopen(argv[l], "r")) == NULL)
20 {
21 fprintf(stderr, "Error opening file, $%s!", argv[l]);
22 return (1) ;
23: }
24:
25: line = 1;
26:
27 while(fgets(buffer, BUFF SIZE, fp) != NULL)
28 fprintf(stdout, "%4d:\t%s", line++, buffer);
29:
30: fclose (fp) ;
31 return (0);
32: }
33:
34: void display usage (void)
35: {
36: fprintf (stderr, "\nProper Usage is: ");
37 fprintf (stderr, "\n\nlist it filename.ext\n");
38: |}

32

LESSON 2 The Components of a C Program

Analysis v

The list_it.c program in Listing 2.2 displays C program listings that you have saved.
These listings display on the screen with line numbers added.

Looking at this listing, you can summarize where the different parts are. The required
main () function is in lines 8 through 32. Lines 2 and 3 have #include directives. Lines
6, 10, and 11 have variable definitions. Line 4 defines a constant BUFF_SIZE as 256, the
stand size for buffers. The value to doing this is that if the buffer size changes, you only
need to adjust this one line and all lines using this constant will automatically update.

If you hardcode a number like 256, you’d have to search all your lines of code to make
sure you caught all mentions.

A function prototype, void display usage (void), is in line 5. This program has many
statements (lines 13, 15, 16, 19, 21, 22, 25, 27, 28, 30, 31, 36, and 37). A function
definition for display usage () fills lines 34 through 38. Braces enclose blocks
throughout the program. Finally, only line 1 has a comment. In most programs, you
should probably include more than one comment line.

list_it.c calls many functions. It calls only one user-defined function, display usage().
The library functions that it uses are fopen () in line 19; fprintf () in lines 21, 28, 36,
and 37; fgets () in line 27; and fclose () in line 30. These library functions are covered
in more detail throughout this book.

Summary

This lesson was short, but it’s important because it introduced you to the major
components of a C program. You learned that the single required part of every C
program is the main () function. You also learned that a program’s real work is done
by program statements that instruct the computer to perform your desired actions. You
were also introduced to variables and variable definitions, and you learned how to use
comments in your source code.

In addition to the main () function, a C program can use two types of subsidiary
functions: library functions, supplied as part of the compiler package, and user-defined
functions, created by the programmer. The next few lessons go into much more detail on
many of the parts of a C program that you saw in this lesson.

Workshop 33

Q&A

Q What effect do comments have on a program?

A Comments are for programmers. When the compiler converts the source code to
object code, it throws the comments and the white space away. This means that
they have no effect on the executable program. A program with a lot of comments
executes just as fast as a program with few comments. Comments do make your
source file bigger, but this is usually of little concern. To summarize, you should
use comments and white space to make your source code as easy to understand and
maintain as possible.

Q What is the difference between a statement and a block?

A A block is a group of statements enclosed in braces ({}). A block can be used in
most places that a statement can be used.

Q How can I find out what library functions are available?

A Many compilers come with online documentation dedicated specifically to docu-
menting the library functions. They are usually in alphabetical order. Appendix C,
“Common C Functions,” lists many of the available functions. After you begin to
understand more of C, it would be a good idea to read that appendix so that you
don’t rewrite a library function. (There’s no use reinventing the wheel!)

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned.

Quiz

What is the term for a group of one or more C statements enclosed in braces?

=

What is the one component that must be present in every C program?

How do you add program comments, and why are they used?

What is a function?

C offers two types of functions. What are they, and how are they different?
What is the #include directive used for?

Can comments be nested?

Can comments be longer than one line?

© ® N o o w0 N

What is another name for an include file?

[N
o

What is an include file?

34 LESSON 2 The Components of a C Program

Exercises
1. Write the smallest program possible.

2. Consider the following program:

1: /* ex02-02.c */

2: #include <stdio.h>

3:

4: void display line(void);

5:

6: int main(void)

7: {

8: display line();

9: printf ("\n Teach Yourself C In One Hour a Day!\n");

10: display line();

11:

12: return 0;

13: }

14:

15: /* print asterisk line */

16: void display line(void)

17: {

18: int counter;

19:

20: for(counter = 0; counter < 30; counter++

21: printf ("xn);

22: }

23: /* end of program */
a. What line(s) contain statements?
b. What line(s) contain variable definitions?
c. What line(s) contain function prototypes?
d. What line(s) contain function definitions?

e. What line(s) contain comments?

3. Write an example of a comment.

4. What does the following program do? (Enter, compile, and run it.)

/* ex02-04.c */
#include <stdio.h>

int main(void)

{

int ctr;

for(ctr = 65; ctr < 91; ctr++
printf ("%c", ctr);

W 0 J O Ul b W N

[
o .

11:
11:
12:
13:

Workshop

printf ("\n");
return 0;

}

/* end of program */

5. What does the following program do? (Enter, compile, and run it.)

W J O Ul B W

P PR BPRPP o
Ul W N R o

/* ex02-05.c */
#include <stdio.h>
#include <string.h>
int main(void)

{

char buffer[256];

printf ("Enter your name and press <Enter>:\n");
fgets(buffer);

printf ("\nYour name has %d characters and spaces!",
strlen(buffer));

return 0;

35

This page intentionally left blank

Index

Symbols

& (ampersands)
address operator, 156, 362
AND operator, 550-551
initializing pointers, 190

&& (AND operator), 81

* (asterisks)

indirection operator,
189-191, 259, 262, 362

functions returning
pointers, 499

passing by reference,
492

precedence, 386

multiplication operator,
48, 65

pointers, 190

** (double indirection
operator), 362, 371

\ (backslashes)

escape sequences,
146-147

paths, 419
\O (null character), 218, 456

\n (newline character), 146-
147

{ } (braces), 29
compound statements, 59
functions, 94-96, 103
initializing
multidimensional arrays,
179

[1 (brackets)
arrays, 87, 169

multidimensional array,
pointers, 363

precedence, 368
> (greater than operator), 70

>= (greater than or equal to
operator), 70

>> (shift operator), 548-550
< (less than operator), 70

<= (less than or equal to
operator), 70

<< (shift operator), 548-550

N (carets), XOR operator,
550-551

, (comma operator), 126, 130
... (ellipses)
function prototypes, 424

functions with variable
numbers of arguments,
496

- (em dashes), subtraction
operator, 65

- (unary operator), 62-65

-> (indirect membership
operator), 263, 268

= (equals symbols),
assignment operator, 45, 62

== (equals operator), 70

! (exclamation point), NOT
operator, 81

!= not equal to operator, 70

646 / (forward slashes)

/ (forward slashes)
division operator, 65
paths, 419
() (parentheses), 94
functions
function operator, 87

passing arguments,
110

operator precedence, 68

pointer declaration, 368
% (percent symbols)

%d specifier, 151

%f specifier, 152

%s specifier, printf()
function, 227

%u specifier, 151
conversion specifiers, 147
modulus operator, 65

. (periods), dot operator,
243-244

| (pipes), OR operator,
550-551

|| (OR operator), 81

+ (plus symbols), addition
operator, 65

++ unary operator, 62, 65,
264

(pound symbols), stringizing
operator, 569-571

#define directive
(preprocessor), 26, 574

constants, 49
declaring arrays, 174
function macros, 568-572

macros versus functions,
571572

substitution macros, 567-
568, 572

symbolic character
constants, 215

#define statements, 178

#elif directive (preprocessor),
573

#else directive (preprocessor),
573

#endif directive (preprocessor),
573

#if directive (preprocessor),
573

#if...#endif directive
(preprocessor), 573-575

#include directive
(preprocessor), 25, 572

#undef directive
(preprocessor), 576

(concatenation operator),
570

“” (double quotation marks),
format strings, 146

: (semicolons), 130
function headers, 101

function prototypes,
writing, 109

~ (tildes), complement
operator, 552

__ (underlines)
_ DATE__ macro, 576
_ FILE__ macro, 576
__LINE__ macro, 576
_ _TIME__ macro, 576

A

abs() function, 507

accessibility variables,
280-281

accuracy
source code, 30

variables. See precision
variables

acos() function, 506
adding
elements to linked lists

beginning of lists,
398-399

empty lists, 399

end of lists, 400-401

existing lists, 400

middle of lists, 401-402
links to linked lists, 398

addition operator (+), 65

address operator (&), 156,
362

addresses
array elements, 195-198
memory, 188
RAM, 38

addressing pointers to
functions, 386

add to list() function, linked
lists, 412

agechecker.c, 73-74
agechecker2.c, 75-76
allocating memory
for strings, 221
at compilation, 220

malloc() function,
222-226

storage space

calloc() function,
540-541

dynamic memory
allocation, 538

freeing via free()
function, 543-545

malloc() function, 539

realloc() function,
541-543

static memory
allocation, 538

ampersands (&)
&& (AND operator), 81
address operator, 156, 362
AND operator, 550-551
initializing pointers, 190
ANSI
C Standard, 6, 10
C11 Standard, 6

compatibility, functions
and, 311

compliance, functions and,
332-334

strings
comparing, 466

converting uppercase/
lowercase characters,
481-483

strings, comparing, 466

approximate range (variables),
42

arguments, 24. See also
variables

base, 523

buf, 431-432

cmp, 521

command-line, 577-580
conversion specifiers, 154
dest

memcopy() function,
546

memmove() function,
546

expression, 516
filename, 420

fp, 431, 435-437, 443
functions, 95

functions with
variable numbers of
arguments, 496-498

macros, 568

passing to, 110

writing, 100-103
in functions, 94
key, 521

mode, fopen() function,
420

msg, 519
num, 521

passing to parameters,
102

printf() function, 154
ptr, 541
retrieving, 497

scanf() function, 160,
338-339

size, 431-432

src
memcpy() function, 546

memmove() function,
546

structures, passing as
arguments to functions,
267-268

variables, passing
arguments as, 488

void pointers, 492

arithmetic expressions,
typecasts and, 536-537

arithmetic operation, pointers,
202

arrays
array elements, 168
arrays of pointers
allocating memory, 372
char type, 372-375
declaring, 373

example of, 375-381,
386

initializing, 374

passing to functions,
374-375

sorting, 376

sorting keyboard input,
377-379

strings, 372
buf, 543
characters, 218
initializing, 219
pointers to, 219-220
declaring, 169, 174-178
defining, 120, 168

element addresses,
displaying, 196

elements, assigning values
to, 553

for statements, 120
indexes, 120
initializing, 178-182
multidimensional, 178
initializing, 179-182
memory, 173

assert() function

passing to functions,
369-371

pointers, 363-368, 371
printing elements, 368
subscripts, 173
naming, 174-178
of pointers, 372, 380
of structures, 255
passing
by reference, 489
to functions, 204-209
pointers

arithmetic operations,
202

array element storage,
195-198

array hames as,
194-195

comparisons, 201
decrementing, 199-201
differencing, 201
incrementing, 198-199
random arrays, 182

single-dimensional,
169-173

structures

containing arrays,
250-252

of arrays, 252-258,
264-266

subscripts, 120, 169, 203

two-dimensional, 173-176,
364

variables, 168

ASCII
concatenating strings, 462
source code files, 9

ASCII character set, 214-217

ASCII code, comparing strings,
464

asctime() function, 511, 515
asin() function, 506

asm, 589

assert() function, 516-518

How can we make this index more useful? Email us at indexes@samspublishing.com

647

648

assignment operators

assignment operators, 45, 62,
84-85

assignment statements, 231
nesting, 61
operator precedence, 67

assignment, type conversion
by, 535-536

asterisks (*)

** (double indirection
operator), 362, 371

indirection operator,
189-191, 259, 262, 362

functions returning
pointers, 499

passing by reference,
492

precedence, 386

multiplication operator,
48, 65

pointers, 190
atan() function, 506
atan2() function, 506
atof() function, 476-477
atoi() function, 475
atol() function, 475
atoll() function, 476
auto, 589
auto keyword, 288
automatic type conversions

assignments, conversion
by, 535-536

expression, type promotion,
534-535

automatic variables

static variables versus,
285-288

storage classes, 291
average() function, 497-498

B language, 6
backslashes (\)
B language, 6

\n (newline character),
146-147

escape sequences, 146,
147

paths, 419
base arguments, 523
binary files
direct output, 423
EOF, 445
binary instructions, 9

binary-mode files, 418,
431-434

binary operators, 65-67

binary streams, 327, 418

bitwise operators, 548
bit fields, 552-554

complement operator (~),
552

logical operators, 550-551

shift operators, 548-550
blocks, 29, 59-60

if statements, 72

local variables and,
291-293

BLOCKSIZE constant, 544
Bool, 591

boolean operators. See logical
operators

braces ({ }), 29
compound statements, 59
functions, 94-96, 103
initializing
multidimensional arrays,
179

brackets ([1)

> (greater than operator),
70

>= (greater than or equal
to operator), 70

>> (shift operator), 548-
550

< (less than operator), 70

<= (less than or equal to
operator), 70

<< (shift operator),
548-550

arrays, 87, 169

multidimensional array,
pointers, 363

precedence, 368

branching statements, goto
statements, 304-306

breaking, literal string
constant strings, 59

break statements, 300-302,
313-314

breaks, 589

bsearch() function, 521-529
buf arguments, 431-432
buf arrays, 543

buffered character input
functions, 330

buffering files, 435-436
buffers, 435, 546

bugs, 97

by_ref() function, 491
bytes, 38

by_value() function, 491

C

benefits of using, 6, 7
development cycle, 12

differences between C and
C++, 7

standard, most-recent
changes to, 6

C extension, 9

C statements, 26
printf(), 27
return, 27
scanf(), 27

C++, 7

C#, 7

calculating time difference,
difftime() function, 513

calling
functions, 92, 95-96,
110-114, 386

printf() function, 154
puts() function, 155
calloc() function, 414

allocating memory, 540,
541

linked lists, 400

carets ("), XOR operator,
550-551

case statement, switch
statements, 319-320

cases, 589

ceil() function, 507

char, 589

character input functions

buffered character input,
330

echoing, 330

fgetc() function, 335
fgets() function, 336-338
getc() function, 335

getchar() function,
330-332

getche() function, 334
getch() function, 332-334
gets() function, 336
line-input functions, 336
putchar() function, 333
text-mode files, 428-429

unbuffered character input,

330
ungetc() function, 335

character input/output (1/0),
428

character output
functions
fputc() function, 349
putc() function, 349

putchar() function,
347-349
text-mode files, 423,
430-431

character test functions,
477-481

characters

arrays of, 218
initializing, 219
pointers to, 219-220

char data type, 214

declaring variables, 215

defining, 213

displaying

printf() function,
227-228

puts() function,
226-227

extended ASCII, 216-217
initializing variables, 215
reading

gets() function,
228-232

scanf() function, 232-
235

variables, 215-218
char data type, 214
char type

arrays of pointers, 372-375

bit fields, 552
checkerboard array, 173
clock() function, 513-515
closing files, 435-436
cmp arguments, 521
code

listings. See listings

spaghetti code, 306

comma operator (,), 85-86,
126, 130

command-line arguments,
577-580

comments, 27
nested, 28

writing styles, developing,
28-29

comparing strings, 464-468
comparison, pointers, 201
compilers, 10

conditional compilation,
573

const keyword

expressions, creating, 535

nested comments, 28

predefined macros, 576

preprocessor, 567

register keyword, 289

variable name length, 40
compiling, 12, 29

command-line arguments,
577-580

errors, line numbers, 282
hello.c, 14-15
source code, 9-11

using graphical
environments, 10

complement operator (~), 552
Complex, 591

complex expressions, 60-61
complex structures

arrays within structures,
250-252

structures within structures,
246-249

compound assignment
operators, 84-85

compound statements, 59-60
concatenating strings
strcat() function, 461-462
strncat() function, 462-464

concatenation operator (##),
570

conditional compilation, 573

conditional debugging,
#if...#endif directive
(preprocessor), 574-575

conditional operator, 85
conditions
do...while loops, 137
do...while statements, 140
for statements, 122, 126

while statements, 130,
133

const, 589
const keyword, 50-52

How can we make this index more useful? Email us at indexes@samspublishing.com

649

constants

constants

BLOCKSIZE, 544

floating-point, 47

literal, 47-48, 60

pointer constants, 201

symbolic, 48, 60
#define directive, 49
defining, 49

defining with const
keyword, 50-52

declaring arrays, 174
variable scope, 280
continue, 589
continue statements, 302-304

conversion characters,
formatted output functions
and, 351-352

conversion specifiers, 147
%d, 151
%f, 152
%s, printf() function, 227
%u, 151
arguments, 154

functions with variable
numbers of arguments,
496

printf() function, 151-153

scanf() function, 339-340

strftime() function, 512-513
converting

data types, 536

automatic conversions,
534-535

explicit conversions via
typecasts, 537-538

strings to numbers

double type numeric
values, 476-477

floating point numeric
values, 476

integers, 475
long longs, 476
longs, 475

time representations
asctime() function, 511
localtime() function, 510
mk()time() function, 511

strftime() function, 511-
513

copy_file() function, 448-450
copying
files, 447-450

memory, memcpy()
function, 546-548

strings

strcpy() function,
457-459

strncpy() function,
459-460

cos() function, 506
cosh() function, 507
CPU register variables, 289

CR-LF (carriage-return linefeed),
418

ctime() function, 511

ctype.h, character test
functions, 477

current time, obtaining via
time() function, 510

data storage, memory
requirements, 38

data types, 44

argument, functions with
variable numbers of
arguments, 496

char, 214
char type, bit fields, 552
converting, 536

automatic conversions,
534-535

explicit conversions via
typecasts, 537-538

expressions, type
promotion, 534-535

functions

functions with
variable numbers of
arguments, 496

passing data types to,
493-495

numeric, 41

pointers, 193-194, 495
size_t, 456

variable scope, 280

debugging via #if...#endif
directive (preprocessor),
574-575

decimal integers, 48, 156
decimal points, constants, 48
declaring
arrays, 169, 174-178
arrays of pointers, 373
character variables, 215
external variables, 283

pointers, 189-190, 262,
371

char type, 372

pointers to functions,
386, 396

pointers to pointers,
362-363

structures, 242-245
unions, 269
variables, 44, 282
decrementing
counter variables, 124
decrement operators, 62
pointers, 199-201
default, 589
defined() operator, 574
defining
functions, 27, 94-96
symbolic constants, 49

degrees, trigonometric
functions, 506

delay() function, 310-311
deleting

elements from linked lists,
402-403, 414

files, 445-446
links from linked lists, 398
demo() function, 105

dereferencing void pointers,
493-495

dest arguments, 546

device independent
programming, 326

differencing pointers, 201
difftime() function, 513-515
direct access, 191

direct file input, 431

direct 1/0, binary-mode files,
431-434

direct output, binary files, 423

directives (preprocessor)
checking, 575-576
#define, 26, 567, 574

function macros,
568-572

substitution macros,
572

#elif, 573

#else, 573

#endif, 573

#if, 573

#if...#endif, 573-575
#include, 25, 572
#undef, 576

disk drives, file stream buffers,
435

disk files
binary-mode files, 418
character input, 428-429
character 1/0, 428

character output, 423,
430-431

closing files, 435-436
direct I/0, 431-434
direct output, 423

EOF, detecting, 443-444
file buffering, 435-436
filenames, 418-419
formatted input, 427-428

formatted output, 423-426
opening, 419-423

random file access,
436-442

reading/writing data, 423

sequential file access,
436-442

streams, 418
text-mode files, 418
displaying
strings, 227
printf() function, 228
puts() function, 226
times, 511
division operator (/), 65
do, 589
dot operator (.), 243-244
double, 589

double indirection operator
(**), 362, 371

double operands, type
promotion, 535

double quotation marks ("),
format strings, 146

double type numeric values,
converting strings to, 476-
477

do...while loops, 136-142, 150
break statements, 300-302

continue statements, 302-
304

infinite loops, 307-310

structure, 137
do...while statements, 140
dynamic allocation, 220

dynamic memory allocation,
221-226, 538

echoing, 330
editors, source code, 9

elapsed time, calculating via
difftime(), 513

error-handling functions 651

elements

arrays, assighing values to
elements, 553

linked lists, 397

adding elements to
beginning of lists,
398-399

adding elements to
empty lists, 399

adding elements to end
of lists, 400-401

adding elements to
existing lists, 400

adding elements to
middle of lists,
401-402

deleting elements from
lists, 402-403, 414

pointers to, 195-198
ellipses (...)
function prototypes, 424

functions with variable
numbers of arguments,
496

else, 589
else clauses, 74-76
em dashes (-)
- (unary operator), 62-65

-> (indirect membership
operator), 263, 268

subtraction operator, 65
entries/exits in functions, 108
enum, 590
EOF (End of File)

detecting, 443-444

fgets() function, 430

putc() function, 430
equals symbols (=)

== (equals operator), 70

assignment operator, 45,
62

equivalence of streams, 329

errno.h header file, 518-521

error-handling functions
assert(), 516-518

How can we make this index more useful? Email us at indexes@samspublishing.com

error-handling functions

errno.h header file,
518-521

perror(), 519-520
errors

compilation, 15-17

fgets() function, 430

initializing arrays, 178

line numbers, 281

linker, 17

renaming files, 446

uninitialized pointers,
dangers of, 202-203

variable scope, 281
escape sequences, 146-147

printf() function, 147-151,
353-354

puts() function, 155
examples. See listings
exclamation points (!)

= not equal to operator, 70

NOT operator, 81
executables, linking, 10
executing programs

controlling, 121

do...while loops, 136-142

do...while statements, 140

for statements, 121-130

loops, nesting, 141-142

while statements, 130-136
exit() function, 318-321
exiting programs, 320-321
exits/entries in functions, 108
exp() function, 507
expenses.c, 171-172
exponential functions, 506-507
expressions

arithmetic, typecasts and,
536-537

arguments, 516
complex, 60-61
conditions

do...while loops, 137

do...while statements,
140

for statements, 122,
126

while statements, 130,
133

creating, 535

increments, for statements,
122-126

initial, 121, 126

simple, 60

switch statements, 311
type promotion, 534-535

extended ASCII characters,
216-217

extensions
.C,9
.0, 10
.obj, 10
extern, 590

extern keyword, 283-285,
565-566

external static variables, 289
external variables, 282
declaring, 283
external static, 289
extern keyword, 283-285

modular independence,
283

modular programming,
565-566

scope, 283
symbolic constants, 283
when to use, 283

F

factorial() function, 114

false/true values (logical
operators), 81-82

fclose() function, 435
fcloseall() function, 436

feof() function, 443-444
fflush() function, 344, 436
fgetc() function, 335, 429
fgets() function, 336-338, 429

field-width specifier, printf()
function, 353

file buffering, 435-436
file extensions
.C,9
.0, 10
.obj, 10
file management, 445
FILE structures, 420
filenames (disk files), 418
arguments, 420
paths, 419
files
closing, 435-436
copying, 447-450
defining, 326
deleting, 445-446
flushing, 435-436
managing
copying files, 447-450
deleting files, 445-446
renaming files, 446-447
renaming, 446-447

standard input/output files.
See predefined streams

temporary, 450-452
flags, printf() function, 353
float, 590

float operands, type promotion,
535

float type pointers, 193
float variable, 537
floating-point constants, 47

floating point numeric values,
converting strings to, 476

floating-point variables, 41
floor() function, 507
flushall() function, 436
flushing files, 435-436
fmod() function, 508
fopen() function, 419-421
for, 590

for loops, 121, 124, 177
break statements, 300-302

character test functions,
481

continue statements,
302-304

infinite loops, 307-310
local variables, 287

pointers and arrays of
structures, 264

strings, uppercase/
lowercase character
conversions, 483

for statements
arrays, 120

executing programs,
121-126

nesting, 127-130
structure, 121

format specifiers, literal text,
151

format strings, 154
printf() function, 146
scanf() function, 232

formatted input, text-mode
files, 427-428

formatted input functions, 338
fflush() function, 344

scanf() function, 338,
345-347

conversion specifiers,
339-340

extra characters,
341-343

precision modifiers,
340-341

text-mode files, 427-428
formatted output functions

fprintf() function, 350-352,
357-358

printf() function, 350-351,
355-357

escape sequences,
353-354

field-width, 353
flags, 353

Il specifier, 352
| modifier, 352
precision, 352
text-mode files, 423-426
formatting, 9
forward slash(/)
division operator, 65
paths, 419

fp arguments, 431, 435-437,
443

fprintf() function, 350, 424-426

conversion characters,
351-352

stderr stream, 357-358
fputc() function, 349, 430
fputs() function, 349, 431
fread() function, 432-436
free() function, 543-545
frexp() function, 507
fscanf() function, 427-428
fSeek() function, 440-442, 445
ftell() function, 437-439
function definitions, 26

function macros, #define
directive (preprocessor),
568-572

function prototypes, 26
functions, 7, 24

abs(), 507

acos(), 506

add to list(), linked lists,
412

ANSI
compatibility, 311
compliance, 332-334
arguments, 94-95

functions with
variable numbers of
arguments, 496-498
passing to, 110
passing to parameters,
102

arrays of pointers, passing
to functions, 374-375

functions

asctime(), 511, 515
asin(), 506
assert(), 516-518
atan(), 506
atan2(), 506
atof(), 476-477
atoi(), 475

atol(), 475

atoll(), 476
average(), 497-498
body of, 94-96
bsearch(), 521-529
by_ref(), 491
by_value(), 491

calling, 92, 95, 110-111,
386

recursion, 112-114
syntax, 95-96
calloc(), 414

allocating memory,
540-541

linked lists, 400
ceil(), 507
character input

echoing, 330

fgetc(), 335

fgets(), 336-338

getc(), 335

getch(), 332-334

getchar(), 330-332

getche(), 334

gets(), 336

line-input, 336

putchar(), 333

unbuffered character
input, 330

ungetc(), 335
character output

fputc(), 349

putc(), 349

putchar(), 347-349
character test, 477-481
clock(), 513-515

How can we make this index more useful? Email us at indexes@samspublishing.com

653

functions

copy_file(), 448-450
cos(), 506

cosh(), 507

ctime(), 511

data types, passing to
functions, 493-495

defining, 27, 92-96
delay(), 310-311
demo(), 105
difftime(), 513-515
entries/exits, 108
error-handling
assert(), 516-518

errno.h header file,
518-521

perror(), 519-520
exit(), 318-321
xp(), 507
exponential, 506-507
factorial(), 114
fclose(), 435
fcloseall(), 436
feof(), 443-444
fflush(), 344, 436
fgetc(), 335, 429
fgets(), 336-338, 429
file management, 445-446
floor(), 507
flushall(), 436
fmod(), 508
fopen(), 419-421
formatted input

fflush(), 344

scanf(), 338-347
formatted output

fprintf(), 350-352,
357-358

printf(), 350-357
fprintf(), 350, 424-426

conversion characters,
351-352

stderr stream, 357-358
fputc(), 349, 430

fputs(), 349, 431
fread(), 432-436
free(), 543-545
frexp(), 507

fscanf(), 427, 428
fSeek(), 440-442, 445
ftell(), 437-439
fwrite(), 431-436
getc(), 335, 429
getch(), 332-334

getchar(), 179, 182,
330-332, 429

getche(), 334
get_int(), 480
get_menu_choice, 150
gets(), 228-232, 329, 336
half(), 110, 495
half_of(), 111
headers, 94-96, 100
hyperbolic functions
cosh(), 507
sinh(), 507
tanh(), 507
if statement, 111
illustrated, 92
independent, 282
indirect recursion, 112
inline, 115
input/output functions, 329
intcmp(), 526
keywords, 94
larger_of(), 108
largest(), 206-208
Idexp(), 507
library functions, 10, 24
atof(), 476-477
atoi(), 475
atol(), 475
atoll(), 476
calloc(), 400, 540-541
ctime(), 511
error-handling, 516-521

fclose(), 435
fcloseall(), 436
feof(), 443-444
fflush(), 436
fgets(), 429
flushall(), 436
fopen(), 419-421
fprintf(), 424-426
fputc(), 430
fread(), 432-436
free(), 543-545
fscanf(), 427-428
fSeek(), 440-442, 445
ftell(), 437-439
fwrite(), 431-436
getchar(), 179, 182

malloc(), 221-226, 379,
398-400, 414, 458,
539

math(), 506-509
print(), 227-228
printf(), 27, 496, 571
putc(), 430

puts(), 226-227

rand(), 182

realloc(), 541-543
remove(), 445-446
rename(), 446-447
rewind(), 437-439, 445

scanf(), 156-160,
232-235

search(), 521-529
sort(), 523-529
strcat(), 461-462
strchr(), 468-469
stremp(), 464-466
strcpy(), 254, 457-459
strcspn(), 470-471
strlen(), 456-457
strncat(), 462-464
strncmp(), 466-468
strncpy(), 459-460
strpbrk(), 473

strrchr(), 470
strspn(), 471-472
strstr(), 473-474
time, 509-515
tmpnam(), 450-452
ungetc(), 480
line-input, 336
localtime(), 510
local variables, 285
logarithmic functions, 506
log(), 507
log10(), 507
macros versus, 571-572

main(), 25, 99, 105, 114,
200, 561

command-line
arguments, 577

linked lists, 412

local variables, 285,
290-291

malloc(), 414
allocating memory, 539
arrays of pointers, 379
copying strings, 458
linked lists, 398-400
strings, 221-226

math functions
abs(), 507
ceil(), 507
exponential, 506-507
floor(), 507
fmod(), 508
hyperbolic, 507
logarithmic, 506-507
modf(), 508
pow(), 508
sqrt(), 507
trigonometric, 506

usage examples, 508-
509

memcpy(), 546-548
memmove(), 546-548
memset(), 545-548

menu(), infinite loops, 310
mktime(), 511
modf(), 508
naming, 92, 100
parameters, scope of, 288
passing

arrays to, 204-209

by reference, 489

multidimensional arrays
to with a pointer,
369-371

perror(), 519-520
placing, 114
pointers
initializing, 387-396
void pointers, 492-496
pointers to functions

calling different
functions, 389-390

controlling sort order,
393-395

declaring, 386, 396

functions that return
pointers, 499-501

initializing, 387-396

passing pointers as,
391-392, 488-492

pow(), 508
print(), 274
print_report(), 150

printf(), 10, 27, 105, 146
201, 227-228, 355-357,
571

calling, 154

conversion characters,
351-352

conversion specifiers,
151-153

escape sequences, 147-
151, 353-354

field-width specifier, 353
flags, 353
format strings, 146

functions with
variable numbers of
arguments, 496

functions

| modifier, 352
Il specifier, 352
precision specifier, 352
prototypes, 94-96
putc(), 349, 430

putchar(), 333, 347-349,
430

puts(), 108, 155, 226-227,
349-350

gsort(), 523-529
rand(), 182

realloc(), allocating
memory, 541-543

remove(), 445-446
rename(), 446-447
return keyword, 106

return statements, 94-96,
106

return types, 100
rewind(), 437-439, 445
scanf, 27, 159

scanf(), 156-161, 232-235
345-347

arguments, 338-339

conversion specifiers,
339-340

handling extra
characters, 341-343

precision modifiers,
340-341

search functions, bsearch(),
521-529

sin(), 506
sinh(), 507
sleep(), 311

sort functions, gsort(),
523-529

sqr(), 561

sqrt(), 507

square(), 110

statements, 95

strcat(), 461-462

strchr(), 468-469

strcmp(), 464-466

strepy(), 254, 380, 457-459

How can we make this index more useful? Email us at indexes@samspublishing.com

655

functions

strcspn(), 470-471

streams, input/output
functions, 328

strftime(), 511-515
string output
fputs(), 349
puts(), 349-350
strlen(), 379, 456-457
strncat(), 462-464
strncmp(), 466-468
strncpy(), 459-460
strpbrk(), 473
strrchr(), 470
strspn(), 471-472
strstr(), 473-474

structured programming,
97-99

structures, passing as
arguments to functions,
267-268

tan(), 506

tanh(), 507

third(), 110

time functions, 509-510
asctime(), 511, 515
clock(), 513-515
ctime(), 511
difftime(), 513-515
localtime(), 510
mktime(), 511
strftime(), 511-515
time(), 510, 515

usage examples,
513-515

tmpnam(), 450-452

trigonometric functions,
506

ungetc(), 335, 480
user-defined, 24, 27, 91
usleep(), 311

variables, 94

void pointers, 493
void return type, 112
writing
arguments, 100-103
body, 103-108
headers, 100-103
local variables, 103-105
names, 100
parameters, 100-103
prototypes, 109

returning values, 106-
108

return types, 100
statements, 106
fwrite() function, 431-436

garbage values, 285
getc() function, 335, 429

getchar() function, 179, 182,
330-332, 429

getche() function, 334

getch() function, 332-334
get_int() function, 480
get_menu_choice function, 150

gets() function, 228, 231-232,
336

listing, 229-230

streams, equivalence of,
329

global variables. See external
variables

goto statements, 304-306, 590
grades.c, 174-176

graphical environments,
compiling, 10

graphical IDE, command-line
arguments, 579

> (greater than operator), 70

>= (greater than or equal to
operator), 70

>> (shift operator), 548-550

half() function, 110, 495
half_of() function, 111
HALFOF macro, 568

hard drives, memory
requirements, 38

head pointers, 397-398
header files, 25

#include directive
(preprocessor), 572

modular programming,
561, 565

preprocessor, multiple
inclusions of header files,
575

headers
errno.h, 518-521
functions, 94-96, 100
of functions, 103
writing, 101-103

stdarq.h, functions with
variable numbers of
arguments, 496

stdio.h, 150

heaps, 543

Hello World program, 13
compilation errors, 15-17
compiling hello.c, 14-15
linker errors, 17

hello.c source code, 14

hexadecimal constant, 48

hierarchical structures,
structured programming, 98

history of C, 6

hyperbolic functions
cosh(), 507
sinh(), 507
tanh(), 507

IDE (Integrated Development
Environments), 14, 579

if, 590

if loops, perror() function and
error-handling, 521

if statements, 71-77, 111
illustrated functions, 92-93
Imaginary, 591
implicit conversions, 534
include files. See header files
increment operators, 62
incrementing
counter variables, 124
expressions, 122
for statements, 122, 126
pointers, 198-200, 264-266

indenting styles, nesting loops,
141

independent functions, 282
indexes, 120
indirect access, 191

indirect membership operator
(->), 263, 268

indirect recursion, 112

indirection operator (*),
189-191, 259, 262, 362

functions returning pointers,
499

passing by reference, 492
precedence, 386
infinite loops, 307-310
initial expressions, 121, 126
initializing
arrays, 178
character arrays, 219

multidimensional,
179-182

of pointers, 374
of structures, 257-258
character variables, 215

memory, memset()
function, 545-548

pointers, 190, 261-262,
400

pointers to functions,
387-396

structures, 256-258

unions, 269

variables, 45-46, 215
inline functions, 115, 590
input

defining, 326

device independent
programming, 326

keyboard input, 329
fflush() function, 344
fgetc() function, 335

fgets() function,
336-338

getc() function, 335

getchar() function,
330-332

getche() function, 334

getch() function, 332-
334

gets() function, 336
line-input functions, 336
putchar() function, 333

scanf() function,
156-161, 338-347

ungetc() function, 335

standard input/output files.
See predefined streams

streams
binary streams, 327
defining, 326

equivalence of streams,
329

files, 326

input/output functions,
328-329

predefined streams,
327-328

text streams, 327

keyboard 657

strings
gets() function, 228-232

printf() function,
227-228

puts() function, 226-227

scanf() function, 232-
235

input fields, 339
instances, defining, 245
int, 590

intcmp() function, 526

integers, converting strings to,
475

integer variables, 41, 156
1/0. See input; output
isxxxx() macros, 477-480
iteration, 114

J-K
Java, 7

key arguments, 521
keyboard
character input functions
buffered, 330
echoing, 330
fgetc() function, 335

fgets() function,
336-338

getc() function, 335
getchar(), 330-332
getche() function, 334

getch() function, 332-
334

gets() function, 336
line-input, 336
putchar() function, 333
unbuffered, 330
ungetc() function, 335
formatted input functions
fflush() function, 344

How can we make this index more useful? Email us at indexes@samspublishing.com

keyboard

scanf() function,
338-347

reading from, scanf()
function, 156-161

keywords, 7, 44
asm, 589
auto, 288, 589
Bool, 591
break, 589
case, 589
char, 589
Complex, 591
const, 280, 589
continue, 589
default, 589
do, 589
double, 589
else, 589
enum, 590

extern, 283-285, 565-566,
590

float, 590

for, 590

goto, 590

if, 590

Imaginary, 591

in functions, 94

inline, 590

int, 590

long, 590

register, 289-290, 590

reserved keywords list,
589-591

restrict, 590

return, 106, 590

short, 590

signed, 590

sizeof, 590

static, 286, 289, 590
struct, 242, 245-246, 590
switch, 590

typedef, 274-275, 590
union, 271-274, 590

unsigned, 590
void, 492, 590
volatile, 590
while, 591

L

| modifier, printf() function, 352
label statements, 306
larger_of() function, 108
largest() function, 206-208
Idexp() function, 507

length of strings, determining,
456-457

less than operator (<), 70

less than or equal to operator
(<=), 70

library functions, 10, 24
atof(), 476-477
atoi(), 475
atol(), 475
atoll(), 476
calloc(), 400, 540-541
ctime(), 511
error-handling, 516-521
fclose(), 435
fcloseall(), 436
feof(), 443-444
fflush(), 436
fgets(), 429
flushall(), 436
fopen(), 419-421
fprintf(), 424-426
fputc(), 430
fread(), 432-436
free(), 543-545
fscanf(), 427-428
fSeek(), 440-442, 445
ftell(), 437-439
fwrite(), 431-436
getchar(), 179, 182

malloc(), 221-226, 379,
398-400, 414, 458, 539

math(), 506-509
print(), 227-228
printf(), 27, 496, 571
putc(), 430

puts(), 226-227
rand(), 182

realloc(), 541-543
remove(), 445-446
rename(), 446-447
rewind(), 437-439, 445
scanf(), 156-160, 232-235
search(), 521-529
sort(), 523-529
strcat(), 461-462
strchr(), 468-469
strcmp(), 464-466
strcpy(), 254, 457-459
strespn(), 470-471
strlen(), 456-457
strncat(), 462-464
strncmp(), 466-468
strncpy(), 459-460
strpbrk(), 473
strrchr(), 470

strspn(), 471-472
strstr(), 473-474

time, 509-515
tmpnam(), 450-452
ungetc(), 480

lifetime variables, 280
line-input functions, 336
linked lists, 396-397

adding links, 398
deleting links, 398
elements, 397

adding elements to
beginning of lists,
398-399

adding elements to
empty lists, 399

adding elements to end
of lists, 400-401

adding elements to
existing lists, 400

adding elements to
middle of lists,
401-402

deleting elements from
lists, 402-403, 414

example of, 403-406
head pointers, 397
implementing, 406-414
links, 397
lists of characters, 407-414
loops, 406
modifying links, 398
nodes, 397
structures, 396
types of, 396
linkers, 11, 17
linking, 10-12
Linux source code editors, 9
list_it.c, 30-32
LISTO403.c, 73-74
listings
arithmetic expressions, 537
arrays

displaying element
addresses, 196

expenses.c, 171-172

grades.c, 174-176

of structures, 254-255
arrays of pointers

initializing char type,
374

passing to function,
374-375

sorting keyboard input,
377-379

break statements, 300-301

command-line arguments,
578-580

continue statement, 303-
304

copy_file() function, 448-
450

copying files, 448-450

data types, converting, 537

disk files, opening, 421-422

EOF, detecting, 443-444

error-handling functions
assert(), 517-518
perror(), 520

external variables, extern
keyword, 284

feof() function, 443-444
fgets() function, 337

file 1/0, reading formatted
data, 427-428

files
copying, 448-450
deleting, 445-446
renaming, 447
temporary, 451
fread() function, 433-436
fSeek() function, 440-442
ftell() function, 438-439
functions

passing by value/
reference, 490-491

returning pointers,
500-501

variable-size arguments,
497-498

fwrite() function, 433-436
getchar() function, 330-331
getch() function, 333-334
gets() function, 229-230
goto statement, 305-306
hello.c, 14-16

if statements, 73-74

if statement with else
clause, 75-76

infinite loops, 308-310
linked lists

basic elements,
404-405

list of characters,
407-414

list_it.c, 30-32

listings

local variables
defining, 292

static versus automatic,
286-287

logical operator precedence,
83-84

malloc() function, 223-224
math functions, 508-509
memory

allocating via calloc()
function, 540-541

allocating via realloc()
function, 542-543

copying, 546-548

free() function, 543-545
initializing, 546-548
moving, 546-548

modular programming,
560-561

modulus operator, 66
multidimensional arrays
determining size of, 366

passing to functions
with, 369-371

pointer arithmetic, 367
random.c, 180-182

relationship to pointers,
365

multiply.c, 24-25

numeric nature of char
variables, 215-216

passing arrays to functions,
205-207

pointers
arithmetic, 199-200
incrementing, 265-266
to functions, 387-395
usage, 191-192
preprocessor

directives, # operator in
macro, 571

header files, 575
printf() function, 354-357

displaying numerical
values, 152-153

How can we make this index more useful? Email us at indexes@samspublishing.com

659

660

listings

escape sequences,
148-149

printing extended ASCII
characters, 216-217

putchar() function, 348-349
puts() function, 227, 350
relational expressions, 78
remove() function, 445-446
rename() function, 447
rewind() function, 438-439
scanf function, 234

scanf() function, 345-347

conversion specifiers,
340

precision modifiers,
340-341

reading numerical
values, 157-160
search functions, 523-529
shift operators, 549-550
simplestruct.c, 244-245
sort functions, 523-529
stdin, clearing of extra
characters, 342-344
strings
bsearch() function,
526-529

comparing with stremp()
function, 465-466

comparing with
strncmp() function,
466-468

concatenating via
strcat() function,
461-462

concatenating via
strncat() function,
463-464

converting to double
type numeric values,
476-477

converting to floating
point numeric values,
476

converting to integers,
475

converting uppercase/
lowercase characters,
482-483

copying via strcpy()
function, 458-459

copying via strncpy()
function, 459-460

determining length of,
456-457

isxxxx() macros,
478-480

gsort() functions,
526-529
searching for first
occurrence of
characters, 469
searching for first
occurrence of
characters in second
strings, 470-471
searching for
nonmatching
characters, 472
searching for strings
within strings,
473-474
structures

arrays within structures,
251-252

passing structures
as arguments to
functions, 267-268

structures of structures,
248-249

switch statements, 312,
317-318

break statements and,
313-314

executing menu
systems, 314-317

temporary files, 451
time functions, 513-515
tmpnam() function, 451

typecasts, arithmetic
expressions, 537

unary.c, 63-64

union members, accessing,
270-271

unions, 272-274

using fprintf() function,
425-426

variables
constants, 51-52
scope, 280-281
size program, 42-43
void pointers, 493-495

literal constants, 47-48, 60,
174

literal string constants
breaking lines, 59
white space, 58
literal strings, 219
literal text, 146

Il specifier, printf() function,
352

local scope, function
parameters, 288

local variables, 94, 282
blocks and, 291-293
creating, 285
functions, writing, 103-105
main function, 290-291

static versus automatic,
285-288

localtime() function, 510
logarithmic functions, 506
log(), 507
log10(), 507
logical operators, 80, 550-552
precedence, 82-84
true/false values, 81-82
long longs
converting strings to, 476
type promotion, 535
longs, 590
converting strings to, 475
type promotion, 535
loops

do...while, 136, 138-142,
150

break statements,
300-302

continue statements,
302-304

infinite loops, 307-310
structure, 137

ending early, 300-301

for loops, 121, 124, 177

break statements,
300-302

character test functions,
481

continue statements,
302-304

infinite loops, 307-310
local variables, 287

pointers and arrays of
structures, 264

uppercase/lowercase
character conversions
in strings, 483

if loops, perror() function
and error-handling, 521

infinite, 307-310
linked lists, 406
nesting, 141-142
while loops, 132, 150

break statements, 300-
302

continue statements,
302-304

converting strings to
double type numeric
values, 477

copying files, 450
detecting EOF, 444
infinite loops, 307-310
linked lists, 412

partial string
comparisons, 468

random file access, 442

lowercase/uppercase
characters, ANSI support for,
481-483

machine language, 9
macros

functions, #define directive
(preprocessor), 568-572

HALFOF, 568
isxxxx(), 477-480
NDEBUG, 518
predefined macros
_ DATE__, 576
__FILE__, 576
__LINE__, 576
__TIME__, 576
substitution macros

creating symbolic
constants, 567-568,
572

#define directive
(preprocessor),
567-568, 572

tolower(), 481-483
toupper(), 481-483
va arg(), 497

va end(), 497-499
va list, 497

va start(), 497-499

main() function, 25, 99, 105,
114, 200, 561

command-line arguments,
577

linked lists, 412

local variables, 285,
290-291

main modules, 560-561, 565
malloc() function, 414
allocating memory, 539
arrays of pointers, 379
copying strings, 458
linked lists, 398-400
listing, 223-224
strings, 221-226
managing files
copying files, 447-450

memcpy() function

deleting files, 445-446
renaming files, 446-447

manifest constants. See
symbolic constants

math functions
abs(), 507
ceil(), 507
exponential functions, 506
exp(), 507
frexp(), 507
Idexp(), 507
floor(), 507
fmod(), 508
hyperbolic functions
cosh(), 507
sinh(), 507
tanh(), 507
logarithmic functions, 506
log(), 507
log10(), 507
modf(), 508
pow(), 508
sqrt(), 507
trigonometric functions
acos(), 506
asin(), 506
atan(), 506
atan2(), 506
cos(), 506
sin(), 506
tan(), 506
usage examples, 508-509
mathematical operators
binary, 65-67
unary, 62-65

member operator (.). See dot
operator (.)

members (structures)
accessing, 243-244
pointers as, 259-261

members (unions), accessing,
269-271

memcpy() function, 546-548

How can we make this index more useful? Email us at indexes@samspublishing.com

661

memmove() function

memmove() function, 546-548
memory, 38

addresses, 188
allocation for strings
at compilation, 220-221

malloc() function,
221-226

arrays, 169
arrays of pointers, 372
binary-mode files, 431
bitwise operators

bit fields, 552-554

complement operator
(~), 552

logical operators,
550-551

shift operators, 548-550
buffers, 546
bytes, 38

copying, memcpy() function,
546-548

data storage, space
requirements, 38

dynamic allocation, 220
file buffers, 435

freeing via free() function,
543-545

heaps, 543

initializing, memset()
function, 545-548

linked lists, 414
deleting elements, 403
freeing memory, 412
memory leaks, 403

moving, memmove()
function, 546-548

multidimensional arrays,
173

numeric variables, 40-44
pointers, 190-192

arithmetic operations,
202

array element storage,
195-198

array hames as,
194-195

comparisons, 201
creating, 188-189

dangers of uninitialized,

202-203
data types, 193-194
declaring, 189-190

decrementing, 199-201

differencing, 201
incrementing, 198-199
initializing, 190
passing arrays to
functions, 204-209
RAM
addresses, 38, 188

allocating memory
storage space, 539

register variables, 289
stacks, 488
storage space, allocating

calloc() function,
540-541

dynamic memory
allocation, 538

malloc() function, 539

realloc() function,
541-543

static memory
allocation, 538

type conversions

automatic conversions,
534-536

explicit conversions via
typecasts, 536-538

memset() function, 545-548

menu() function, infinite loops,

310

menu systems, executing with
switch statements, 314-317

menus, structured
programming, 99

messages, displaying on
screen, 146

military time, 511
mktime() function, 511
mode

arguments, fopen()
function, 420

values, 420
modf() function, 508

modifying links in linked lists,
398

modular independence,
external variables, 283

modularity, 7

modular programming,
562-564. See also structured
programming

advantages of, 560
external variables, 565-566
header files, 561, 565

main modules, 560-561,
565

secondary modules,
560-561, 564

modules, 560-561

main, 565

secondary, 564
modulus operator (%), 65

moving memory, memmove()
function, 546-548

msg arguments, 519
multidimensional arrays, 178

functions, passing arrays to,
369-371

initializing, 179-182
memory, 173

pointers, 363-365, 368,
371

determining size of, 366
pointer arithmetic, 367
printing elements, 368
subscripts, 173
multiple indirection, 363

multiplication operator (*),
48, 65

naming
arrays, 174-178
functions, 92, 100
naming conventions, 40
pointers, 188
source files, 9
variables, 39-40
NDEBUG macro, 518
nesting

#include directive
(preprocessor), 572

comments, 28
for statements, 127-130

#include directive
(preprocessor), 572

loops, 141-142
statements

assignment statements,
61

if, 77
while, 134-136

newline character (\n),
146-147, 418

nodes, linked lists, 397
not equal to operator (!=), 70
NOT operator (!), 81
null character (\0), 218, 456
null statements, 59
NULL values
fopen() function, 420
head pointers, 397-398
strpbrk() function, 473
strstr() function, 473
num arguments, 521
numerical data, 41, 157-160

numerical values, displaying
with printf() function,
152-153

numeric variables, 40-44
floating-point, 41

integer, 41
register keyword, 290
void pointers, 492

o

o extension, 10

.obj extension, 10

object code, 10

object files, 10

object-oriented programming, 7

objectives, programming
steps, 8

octal integers, 48
op keyword, 84
opening disk files, 419-423
operands
modes, 63
type promotion, 535

operating systems, memory
allocation, 539

operators, 61

address of (&), pointers,
362

AND (&), 550-551

assignment operators, 62,
84-85

binary, 65-67
bitwise operators
bit fields, 552-554

complement operator
(~), 552

logical operators,
550-551

shift operators, 548-550
comma (,), 85-86, 126, 130
complement (~), 552
concatenation (##), 570
conditional, 85
decrement, 62
defined(), 574
dot (.), 243-244
double indirection (**), 362

output 663

double indirection operator
(**), 371

>> shift operator, 548-550
increment, 62

indirection (*), 189-191,
259, 262, 386

indirect membership (->),
263, 268

logical, 80
bitwise, 550-552
precedence, 82-84
true/false values, 81-82

<< shift operator, 548-550

OR (]), 550-551

pointer arithmetic, 202

precedence, 67-68
subexpressions, 69
summary, 86-87

relational, 70-71
evaluating, 77-79
precedence, 79-80

shift, 548-550

sizeof(), 521-522

stringizing (#), 569-571

ternary, 85

unary operator (-), 62-65

unary operator (++), 62,
65, 264

XOR (), 550-551
OR operator (|), 550-551
OR operator (| |), 81

output
controlling, 348, 351-354
defining, 326

device independent
programming, 326

formatted output, 354

fprintf() function, 350-
352, 357-358

printf() function, 350-
357

printf() function, 146, 350-
357

How can we make this index more useful? Email us at indexes@samspublishing.com

output

conversion specifiers,
151-153

escape sequences,
147-151

format strings, 146
puts() function, 155
screen output

fputc() function, 349

fputs() function, 349

putc() function, 349

putchar() function,
347-349

puts() function, 349-350

standard input/output files.
See predefined streams

streams
binary streams, 327
defining, 326

equivalence of streams,
329

files, 326

input/output functions,
328-329

predefined streams,
327-328

text streams, 327
strings
gets() function, 228-232

printf() function,
227-228

puts() function, 226-227

scanf() function,
232-235

P

parameters
functions
scope of, 288
writing, 100-103
receiving arguments, 102
parentheses (), 94

functions, passing
arguments, 110

operator precedence, 68
pointer declaration, 368
passing

arguments as variables,
488

arrays

passing by reference,
489

to functions, 204-209
listing, 205-207

data types to functions,
493-495

functions, passing by
reference, 489

pointers to functions,
488-492

reference, passing by,
489-492

value, passing by, 488-491
paths

backslash (\), 419

filenames, 419

forward slash (/), 419

percent sign (%), conversion
specifiers, 147

performance, macros versus
functions, 571

perror() function, 519-520

planning structured
programming, 97-99

pointer constants, 201
pointers, 190-193
arithmetic operations, 202
arrays
allocating memory, 372

arrays of structures and,
264-266

char type, 372-375
declaring, 373

element storage,
195-198

example of, 372,
375-381, 386

initializing, 374

names as pointers,
194-195

passing to functions,
204-209, 374-375

sorting, 376

sorting keyboard input,
377-379

strings, 372

compared to array subscript
notation, 203

comparisons, 201
creating, 188-189

dangers of uninitialized
pointers, 202-203

data types, 193-194

declaring, 189-190, 262,
371

char type, 372

pointers to pointers,
362-363

decrementing, 199-201
defining, 259-261

dereferencing void pointers,
493-495

differencing, 201
formatted output, 424
functions

passing pointers to,
488-492

returning pointers,
499-501

head pointers, 397-398

incrementing, 198-200,
264-266

initializing, 190, 261-262,
400

linked lists

adding elements to
beginning of lists,
398-399

adding elements to
empty links, 399

adding elements to end
of lists, 400-401

adding elements to
existing links, 400

adding elements to
middle of lists,
401-402

adding links, 398

deleting elements from
lists, 402-403, 414

deleting links, 398
elements, 397
example of, 403-406
head pointers, 397
implementing, 406-414
links, 397

lists of characters,
407-414

loops, 406
modifying links, 398
nodes, 397
structures, 396
types of, 396
listing, 191-192
malloc() function, 221
memory addresses, 188

multidimensional arrays,
363-365, 368, 371

determining size of, 366
pointer arithmetic, 367
naming, 188
pointer arithmetic, 198-199
pointers to functions

calling different
functions, 389-390

controlling sort order,
393-395

declaring, 386, 396
initializing, 387-395

passing pointers as,
391-392

strings, 219-220, 259
structures, 261

creating pointers to,
262-263

members, 259-260

to functions, initializing,
396

typecasts and, 538

uninitialized, 202-203, 400
variables, declaring, 497
void, 492-496, 521, 538
portability, 6
postfix mode, 63
pow() function, 508
precedence
brackets ([]), 368

indirection operator (*),
386

logical operators, 82-84
operators, 67-69, 86-87
relational operators, 79-80
subexpressions, 69

precision modifiers, scanf()
function, 340-341

precision specifier, printf()
function, 352

precision variables, 42
predefined functions, 10
predefined macros, 576
predefined streams, 327-328
prefix mode, 63
preprocessor

#define directive, 574

function macros,
568-572

macros versus functions,
571572

substitution macros,
567-568, 572

#elif directive, 573
#else directive, 573
#endif directive, 573
#if directive, 573

#if...#endif directive,
573-575

#include directive, 572
#undef directive, 576

directives
checks, 575-576
defining, 567

header files, multiple
inclusions of, 575

programming

print_report() function, 150

printf() function, 10, 27, 105,
201, 227-228, 274, 350,
355-357, 571

arguments, 154
calling, 154

conversion characters,
351-352

conversion specifiers,
151-153

escape sequences,
147-151, 353-354

field-width specifier, 353
flags, 353
format strings, 146

functions with variable
numbers of arguments,
496

| modifier, 352

Il specifier, 352

precision specifier, 352
printf() statements, 27, 177
printing

extended ASCII characters,
listing, 216-217

multidimensional array
elements, 368

processor registers, 289

program control statements,
71-77

Program Development Cycle,
812

program statements, 26
printf(), 27
return, 27
scanf(), 27
programming

device independent
programming, 326

modular programming,
562-563

advantages of, 560

external variables,
565-566

header files, 561, 565

How can we make this index more useful? Email us at indexes@samspublishing.com

665

666 programming

main modules, 560-
561, 565

secondary modules,
560-561, 564

steps of, 8

structured programming
advantages, 97
bugs, 97

functions, entries/exits,
108

hierarchical structure,
98

menus, 99

planning, 97-99

tasks and subtasks, 98

top-down approach, 99

programs

arrays, for statements, 120
C, creating programs via, 8
executing

controlling, 121

do...while loops,
136-142

do...while statements,
140

for statements, 121-130
loops, nesting, 141-142

while statements, 130-
136

exiting, 320
for statements, 120
Hello World, 13

compilation errors,
15-17

compiling hello.c, 14-15
linker errors, 17

terminating, exit() function,
320-321

promoting types in expressions,
534-535

prototype functions, 94-96,
109

ptr arguments, 541
putc() function, 349, 430

putchar() function, 333,
347-349, 430

puts() function, 108, 226-227,
349-350

calling, 155
escape sequences, 155
listing, 227

Q

gsort() function, 523-529

wn

quotation marks (
strings, 146

), format

radians, trigonometric
functions, 506

RAM (Random Access Memory)
addresses, 38, 188

memory storage space,
allocating, 539

rand() function, 182
random.c, 180-182
random arrays, 182
random file access, 436-442
reading
data in disk files, 423
strings, 228
gets() function, 228-232

scanf() function,
232-235

realloc() function, allocating
memory, 541-543

recursion, calling functions,
112-114

reference, passing by, 489-492

register keyword, 289-290,
590

register variables, 289-290

relational operators, 70-71
evaluating, 77-79
precedence, 79-80

remove() function, 445-446

rename() function, 446-447
renaming files, 446-447

reserved keywords list,
589-591

reserved words, 7
restrict, 590
return keyword, 106, 590

return statements, 27, 94-96,
106

return type functions, writing,
100

returning values, writing
functions, 106-108

rewind() function, 437-439,
445

Ritchie, Dennis, 6
running programs, 29

S

scanf() function, 27, 156-159,
232-235, 345-347

arguments, 160-161,
338-339

conversion specifiers,
339-340

handling extra characters,
341-343

listing, 234

precision modifiers,
340-341

scanf() statements, 27, 177
scope

local scope, function
parameters, 288

variables, 280-282
errors, 281
external variables, 283

screen output

character output functions
fputc() function, 349
putc() function, 349
putchar(), 347-349

formatted output functions
fprintf(), 350-352

fprintf() function,
357-358

printf() function,
350-357

string output functions
fputs(), 349
puts(), 349-350
searching

functions, bsearch(),
521-529

strings

first occurrence of
characters, 468-469

first occurrence of
characters in second
strings, 470-471

first occurrence of
strings within strings,
473-474

last occurrence of
characters, 470

nonmatching characters,
471-472

strchr() function,
468-469

strespn() function,
470-471

strpbrk() function, 473
strrchr() function, 470

strspn() function,
471-472

strstr() function,
473-474

secondary modules, 560-561,
564

seconds.c, 66
semicolon (;), 130
function headers, 101

function prototypes,
writing, 109

sequences, trigraph, 161
sequential file access, 436-442
shift operators, 548-550

short, 590

short type pointers, 193
signed, 590

signed decimal integer,
displaying, 151

simple expressions, 60
simplestruct.c, 244-245
sin() function, 506

single-dimensional arrays,
169-173

sinh() function, 507
size arguments, 431-432
size_t data type, 456

sizeof() operators, 521-522,
590

sleep() function, 311

sorting
arrays of pointers, 376
functions, gsort(), 523-529

pointers to functions,
controlling sort order,
393-395

source code
accuracy, 30
compiling, 9-11
creating, 9
editors, 9

external variables, scope,
283

hello.c, 14
linking, 10

modular programming,
562-563

advantages of, 560

external variables,
565-566

header files, 561, 565

main modules,
560-561, 565

secondary modules,
560-561, 564

white space, 58
source file, naming, 9
spaghetti code, 306
sqr() function, 561
sqrt() function, 507
square() function, 110

statements

src arguments
memcpy() function, 546
memmove() function, 546
stacks, 488

standard input/output files.
See predefined streams

statements, 58
#define, 178
assignment, 231
nesting, 61
operator precedence, 67
blocks, 59-60, 72, 573

branching, goto statements,
304-306

break, 300-302, 313-314

case, switch statements,
319-320

compound, 59-60
continue, 302-304
do...while loops, 140
for statements
arrays, 120

executing programs,
121-126

nesting, 127-130
structure, 121
functions, 95, 106
goto, 304-306
if statements, 71-77, 111
iteration, 114
label, 306
nested statements

assignment statements,
61

for statements, 127-130
if statements, 77
while, 134-136

null, 59

printf(), 177

program control, if
statements, 71-72

return, 94-96, 106
scanf(), 177

How can we make this index more useful? Email us at indexes@samspublishing.com

667

668 statements

switch, 312

break statements and,
302, 313-314

case statements,
319-320

exit() function, 318
expressions, 311

menu systems,
executing, 314-317

while statements, 131-133
nesting, 134-136
structure, 130

white space, 58-59

static keyword, 286, 289, 590

static memory allocation,
220-221, 538

static variables
automatic versus, 285-288
external static, 289

stdarg.h header file, functions
with variable numbers of
arguments, 496

stdaux streams, 327
stderr streams, 327, 357-358
stdin streams, 327
stdio.h header, 150, 227
stdlib.h header

bsearch() function, 521

multidimensional arrays,
182

stdout streams, 327
stdprn streams, 327

storage classes (variables),
291

storage space (memory), 38
allocating

calloc() function,
540-541

dynamic memory
allocation, 538

freeing via free()
function, 543-545

malloc() function, 539

realloc() function,
541-543

static memory
allocation, 538

bitwise operators
bit fields, 552-554

complement operator
(~), 652

logical operators,
550-551

shift operators, 548-550
strcat() function, 461-462
strchr() function, 468-469
strcmp() function, 464-466

strcpy() function, 254, 380,
457-459

strcspn function, 470-471
streams
binary, 418
binary streams, 327
defining, 326
disk files, 418

character input,
428-429

character output, 423,
430-431

closing files, 435-436
detecting EOF, 443-444
direct I/0, 431-434
direct output, 423

file buffering, 435-436

formatted input,
427-428

formatted output,
423-426

opening, 419-423

random file access,
436-442

reading/writing data,
423

sequential file access,
436-442

equivalence of streams,
329

files, defining, 326

input/output functions,
328-329

predefined streams,
327-328

stdaux, 327
stderr, 327, 357-358
stdin, 327
stdout, 327
stdprn, 327
text streams, 327, 418
types of, 327
strftime() function, 511-515

stringizing operator (#),
569-571

strings

arguments, functions with
variable numbers of
arguments, 496

arrays of
characters, 218-219
pointers, 372

bsearch() function, 526-529

character test functions,
477-481

comparing
entire strings, 464-466
partial strings, 466-468
strcat() function, 464

stremp() function,
464-466

strncmp() function,
466-468

concatenating

strcat() function,
461-462

strncat() function,
462-464

converting to numbers

double type numeric
values, 476-477

floating point numeric
values, 476

integers, 475
long longs, 476
longs, 475

copying
strcpy() function,
457-459

strncpy() function,
459-460

defining, 213, 259
displaying

printf() function,
227-228

puts() function, 226-227
filenames, 420

functions with variable
numbers of arguments,
496

length, determining,
456-457

literal, 219

lowercase/uppercase
characters, ANSI support
for, 481-483

memory allocation, 221
at compilation, 220

malloc() function,
222-226

output functions

fputs(), 349

puts(), 349-350
pointers to, 219-220
qsort() function, 526-529
reading, 232

gets() function, 228-231

scanf() function,
233-235

searching
first occurrence of
characters, 468-469

first occurrence of
characters in second
strings, 470-471

first occurrence of
strings within strings,
473-474

last occurrence of
characters, 470

nonmatching characters,
471-472

strchr() function,
468-469

strcspn() function,
470471

strpbrk() function, 473
strrchr() function, 470

strspn() function,
471-472

strstr() function,
473-474

times, converting to strings,
511

uppercase/lowercase
characters, ANSI support
for, 481-483

white space, 58
strlen() function, 379, 456-457
strncat() function, 462-464
strncmp() function, 466-468
strncpy() function, 459-460
strpbrk() function, 473
strrchr() function, 470
strspn() function, 471-472
strstr() function, 473-474

struct keyword, 242, 245-246,
590

structure member operator (.).
See dot operator (.)

structure point operator. See
indirect membership operator

(->)
structured programming. See
also modular programming

advantages, 97

arrays of pointers, 375
bugs, 97

functions, entries/exits, 108
hierarchical structure, 98
menus, 99

planning, 97-99
tasks/subtasks, 98
top-down approach, 99

subscripts

structures

arrays of structures,
252-256

initializing, 257-258
pointers and, 264-266

arrays within structures,
250-252

bit fields, 552-554
complex structures

arrays within structures,
250-252

structures within
structures, 246-249

declaring, 242-245
defining, 241-243
FILE, 420

functions, passing
structures as arguments
to, 267-268

initializing, 256-258
instances, defining, 245
linked lists, 396
members, 242
accessing, 243-244
pointers as, 259-261
pointers

arrays of structures and,
264-266

as structure members,
259-261

to structures, 261-263
struct keyword, 245-246

structures within structures,
246-249

synonyms, creating for
structures, 274-275

tags, 242
tm, 509-511
typedef keyword, 274-275

subexpressions, precedence,
69

subscripts, 120
arrays, 169, 203

multidimensional arrays,
173

How can we make this index more useful? Email us at indexes@samspublishing.com

669

670

substitution macros

substitution macros, 567-568,
572

subtasks/tasks, structured
programming, 98

subtraction operator (-), 65
switch statements, 312, 590

break statements and, 302,
313-314

case statements, 319-320
exit() function, 318
expressions, 311

menu systems, executing,
314-317

symbolic character constants,
215

symbolic constants, 48, 60

conditional compilation,
573

creating, 567-568, 572
declaring arrays, 174
#define directive, 49
defining, 49

defining with const
keyword, 50-52

errno.h header file, 518
external variables, 283

synonyms, creating for
structures, 274-275

syntax (functions), calling,
95-96

functions
calling, 95-96

T

tags, 242
tan() function, 506
tanh() function, 507

tasks and subtasks, structured
programming, 98

temporary files, 450-452

terminating null character,
strncat() function, 462

terminating programs, 320-321

ternary operator, 85

test-mode streams, 327
text
literal, 146
text-mode files

character input,
428-429

character output, 423,
430-431

CR-LF, 418
detecting EOF, 443-444

formatted input,
427-428

formatted output,
423-426

streams, 327, 418
third() function, 110
Thompson, Ken, 6
time functions, 509

asctime(), 511, 515

clock(), 513-515

ctime(), 511

difftime(), 513-515

localtime(), 510

mktime(), 511

strftime(), 511-515

time(), 510, 515

usage examples, 513-515
tm structures, 509-511
tmpnam() function, 450-452
tolower() macro, 481-483

top-down approach, structured
programming, 99

toupper() macro, 481-483
trigonometric functions
acos(), 506
asin(), 506
atan(), 506
atan2(), 506
cos(), 506
sin(), 506
tan(), 506
trigraph sequences, 161
ANSI standards, 162
codes, 162

true/false values (logical
operators), 81-82

two-dimensional arrays,
173-176, 364

type conversions
automatic

conversion by
assignment, 535-536

type promotion in
expressions, 534-535

explicit conversions via
typecasts, 536

arithmetic expressions,
536-537

pointers, 538
type names. See tags
typecasts

arithmetic expressions,
536-537

explicit type conversions

arithmetic expressions,
536-537

pointers, 538
void pointers, 493
typedef keyword, 590
structures, 274-275
variables, 45
typographical errors, 30

unary.c, 63-64

unary increment operator (++),
62-65, 264

unary operator (-), 62-65

unbuffered character input
functions, 330

unconditional jumps. See
branching statements

ungetc() function, 335, 480

uninitialized pointers, 202-203,
400

union keyword, 271-274, 590

unions
accessing members, 271
declaring, 269
defining, 268-269
initializing, 269
members, accessing,
269-271
union keyword, 271-274
UNIX
memory allocation, 539
source code editors, 9
strings, comparing, 466

unsigned decimal integer, 151,
590

uppercase/lowercase
characters, ANSI support for,
481-483

user-defined functions, 24, 27,
91-93

usleep() function, 311

'/

va arg() macro, 497
va end() macro, 497-499
va list macro, 497
va start() macro, 497-499
values

passing by, 488-491

returning, writing functions,
106-108

variables, 26, 39, 51-52
accessibility, 280-281
approximate range, 42

arguments, passing
variables as, 488

arrays, 168

automatic variables versus
static variables, 285-288

char data type, 214

character variables,
215-218

counter variables, 124
declaring, 44

displaying with printf()
function, 151

external, 282
declaring, 283
external static, 289

extern keyword,
283-285

modular independence,
283

modular programming,
565-566

scope, 283

symbolic constants, 283

when to use, 283
external static, 289
floating, 537
floating-point, 41

global. See external
variables

in functions, 94

initializing, 45-46

integer, 41

lifetime, 280

local, 94
blocks and, 291-293
creating, 285
main function, 290-291

static variables versus
automatic variables,

285-288
writing functions, 103-
105
memory addresses, 188
naming, 39-40

numeric, 40-44
floating-point, 41
integer, 41
register keyword, 290
void pointers, 492

pointers, 191-192
creating, 188-189
data types, 193-194
declaring, 189-190, 497
initializing, 190

variables

precision, 42
register, 289-290
scope, 280-282
errors, 281
external variables, 283
static variables

automatic variables
versus, 285-288

external static variables,
289

storage classes, choosing
between, 291

structures

accessing members,
243-244

arrays of, 255

arrays of structures,
252-258, 264-266

arrays within structures,
250-252

complex structures,
246-252

declaring, 242-245
defining, 241-245
initializing, 256-258
members of, 242

passing as arguments to
functions, 267-268

pointers and arrays of
structures, 264-266

pointers as structure
members, 259-261

pointers, creating to
structures, 261-263

struct keyword, 245-246

structures within
structures, 246-249

tags, 242

typedef keyword, 45,
274-275

unions. See also arguments

accessing members,
269-271

declaring, 269
defining, 268-269
initializing, 269

How can we make this index more useful? Email us at indexes@samspublishing.com

671

672

variables

union keyword, 271-274 X-Y-2
visibility, 280
visibility, variables, 280 XOR operator (), 550-551

void pointers, 492-496, 521,
538, 590

void return type, 112
volatile, 590

w

while loops, 132, 150, 591
break statement, 300-302

continue statement,
302-304

copying files, 450
detecting EOF, 444
infinite loops, 307-310
linked lists, 412

partial string comparisons,
468

random file access, 442

strings, converting to
double type numeric
values, 477

while statements, 131-133
nesting, 134-136
structure, 130

white space, 58-59, 156

Windows, source code
editors, 9

writing

data to disk files, 423

functions
arguments, 100-103
body, 103-108
headers, 100-103
local variables, 103-105
names, 100
parameters, 100-103
prototypes, 109

returning values, 106-
108

return types, 100
statements, 106

	Table of Contents
	Introduction
	LESSON 2: The Components of a C Program
	A Short C Program
	The Program’s Components
	A Review of the Parts of a Program
	Summary
	Q&A
	Workshop
	Quiz
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

