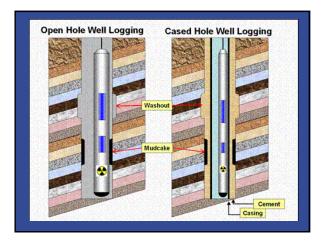


What for? (Log applications)

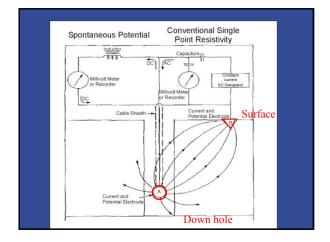
- Stratigraphic correlation
- Formation Tops
- Quantitative Oil, Gas, Water saturations
- Porosity
- · Correlation with seismic data
- Sedimentological studies
- Reservoir modeling
- Structural studies
- Economics
- etc

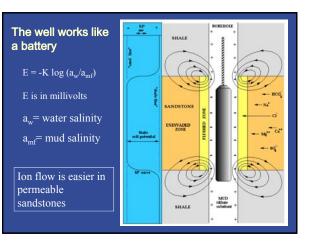

What can we measure?

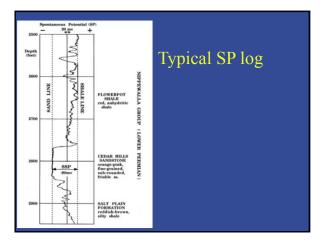
- Electrical Properties
- Natural radioactivity
- Induced radioactivity
- Acoustic Properties (sonic velocity)
- Shape of hole
- Noise
- Temperature
- Depth
- Tilt of hole
- ...

The Logging Operation

- ♦ Lower the tool to the bottom
- 100 to 200 feet repeat section measured at the bottom
- ♦ Then tool is raised through the entire well
- Casing may prevent some logs from working
- ♦ Logging speed: 1800 to 3600 ft/hour
- ♦ Information pertinent to both the logging
- run and the well is recorded on the header.
- ♦ Logs recorded digitally.



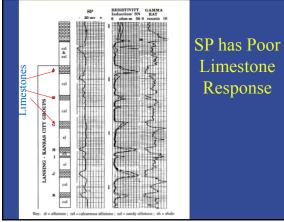

Services Associated
With Data on Log
Company, Well Name
Location
Permit Number
Other Services
During Same Trip
KB Kelly Bushing DF Derrick Floor
GL Ground Level
Logging Engineer &
Witnesses


Log Types Lithologic Logs Spontaneous Potential (SP) Gamma Ray (GR) Porosity Logs Neutron Density Sonic Resistivity Logs (Fluid Type) Resistivity Induction

Spontaneous Potential (SP)

- One of the Oldest Logging Measurements – Used Commercially in 1931
- · Discovered as Noise in Resistivity
- Found to be Related to Presence of Sandstone
- Lithology tool

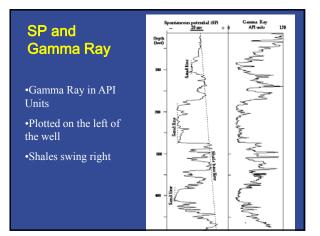
Depth (inst)

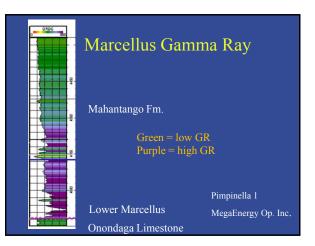

20

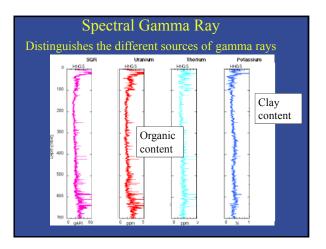
Spontaneous Potential (SP)

> SP readings are depth-dependent

Drift

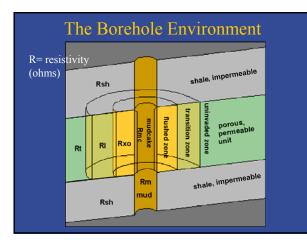

Gamma Ray API units

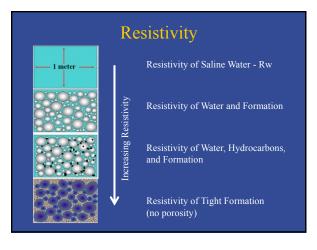



Limestone Response

Gamma Ray Log

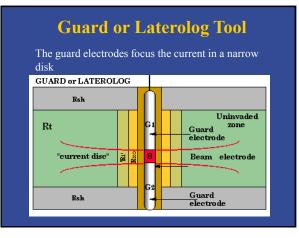
- Lithology log
- Measures natural radioactivity
- Uses a scintilometer (Geiger counter)
- Potassium (K), Uranium (U), Thorium (Th), Phosphorous (P)
- $K \rightarrow$ abundant in clay \rightarrow shales
- Unaffected by fluids
- High U \rightarrow reducing environ. \rightarrow abundant organic matter
- "API units", relative to a standard

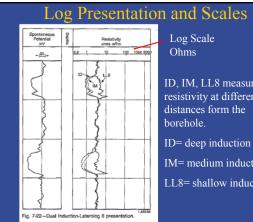




Resistivity Log Applications

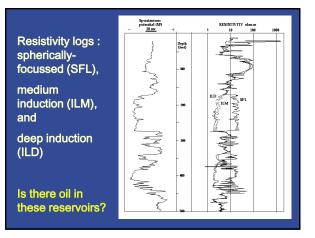
- Determination of Hydrocarbon-Bearing vs. Water-Bearing Zones
- Water Saturation $S_{\rm w}$
- Geopressure Detection
- Depth of Invasion
- Stratigraphic Correlation

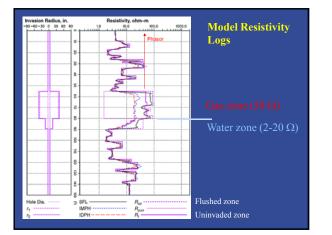


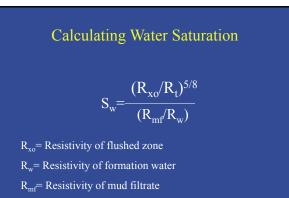

Resistivity Tool Background

- Three Classes
 - -Electrode Logs
 - Laterologs
 - Focused Electrodes
 - Induction
- Measure Resistivity in Ohms

Normal Resistivity Tool Spacing of electrodes determines penetration NORMAL Rsh Rt Rt Rt Rsh Rt Rsh

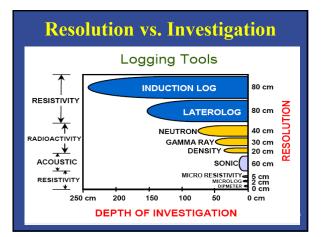

Induction (Conductivity) Tool Receiver coil measures the induced electrical field created in the rocks by the transmitter coil Works with oil based mud, or air INDUCTION Rsh Uninvaded R Receiver coil Rt 2 Ground loop Transmitter ______ coil Rsh

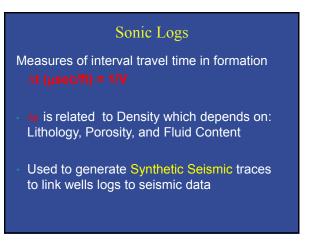


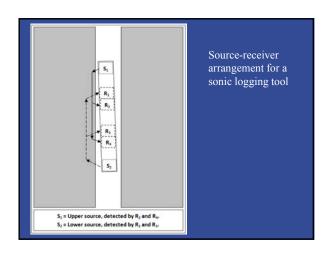

ID, IM, LL8 measure resistivity at different distances form the

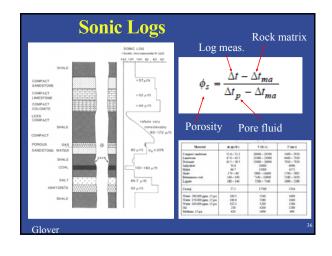
IM= medium induction

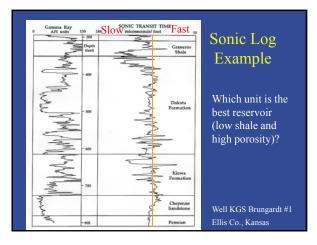
LL8= shallow induction

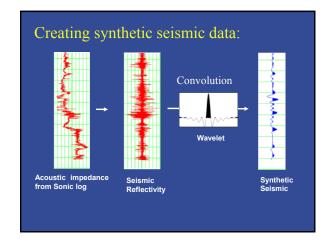


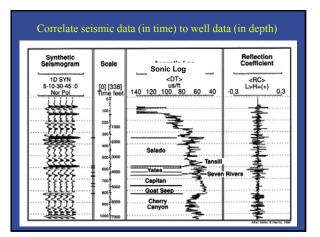


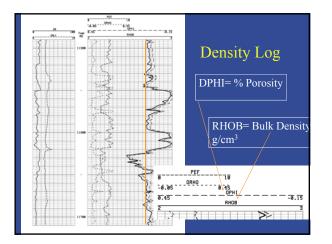

Rt= Resistivity of uninvaded zone


	Company Well Field County	Abercrombie Energy, LLC Floyd #1-7 Wildcat	uction	Mu Resisti Dat	vity
Permanent Log Measu Dising Mea San Lump Sept. Driv Sept. Driv	ed From Inery sured Fromkely r r geo Interval er er	751° FSL & 1808° FWL Tel: 275 Page 3004 74. 275 Page 3004 9.44% 5 Ft toxes frem Salar 10.44% 5 Ft toxes frem Salar 10.5% 5 Ft toxes frem Salar 1	084 Series 094 (-02) VEL / 8-CS Elevation 5.9 3225 8 L 3220	Wellbore Env Depth, Diamet Temperature, Mud Paramete	er,
Type Two Services Centor IV Printed Tim & Me Two We	n GL Accesty Jas Gampa as emp Br Tong Sar Jawe Ang Tine Ang Tine A	Operation Operation 100 0 11 10 12 10 13 10 14 10 15 10 16 10 17 10 10<	pH / Fi Source Rm @ Rmf @ Rmc @ Source Rm @ Operati	I viscosky id Loss of Sample Meas Temp Meas Temp Meas Temp of Rmf / Rmc BHT ng Pig Time w. Temp F	9.0 9.0 9.6 9.0 9.6 Flowline 1.2 2.80 9 9.0 80 16 90 1.6 9.0 Charts 7 2 7 2 134 6 Hours 134 5 Hours 134

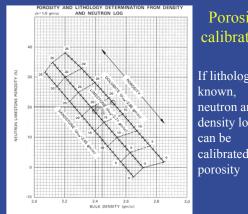




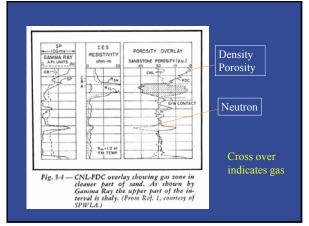


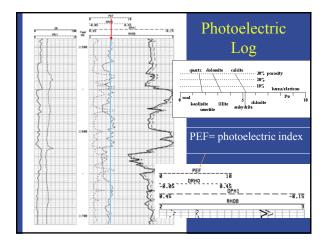


Density Log

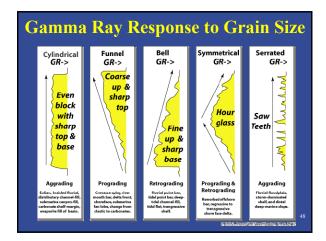

- Tool emits gamma rays
 - Detects returning scattered gamma rays
 - Gamma ray absorption is proportional to rock density
- Measures Density -
- Tied to Lithology, Porosity, and Fluid Content

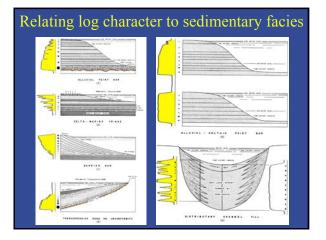
		y Calcu	lation					
$DPHI = \phi_D = \frac{RhoMa - RHOB}{RhoMa - RhoFi} = \frac{\rho_{ma} - \rho_b}{\rho_{ma} - \rho_{ff}}$								
DPHI = φ _D = density porosity								
RHOB = ρ_b = bulk density (from the log)								
RhoMa = ρ_{ma} = matrix density								
RhoFI =	ρ _{fl} = fluid densi	ty (often assume	ed to be mud filtr	ate density)				
		k Value oMa	Fluid Value RhoFl					
Sandstone	2.65	2650	, in the second s					
Limestone	2.71	2710						
Dolomite	2.87	2870						
Dololline								
Anhydrite	2.98	2980						
	2.98 2.04	2980 2040						
Anhydrite								
Anhydrite Halite Coal Barite	2.04	2040						
Anhydrite Halite Coal Barite Gas	2.04 ~1.2	2040 ~1200	.2	200				
Anhydrite Halite Coal Barite Gas Oil	2.04 ~1.2	2040 ~1200	~0.85	~850				
Anhydrite Halite Coal Barite Gas	2.04 ~1.2	2040 ~1200						

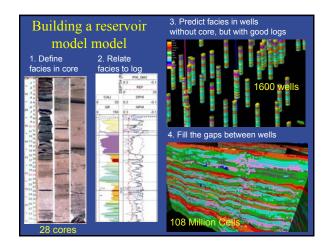

Neutron Log (CNL)

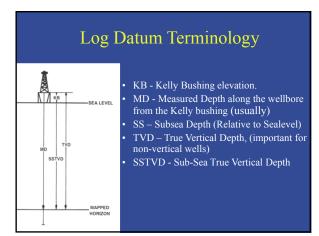

- Tool has a neutron source
- H absorbs neutrons and emits gamma rays
- Tool detects the emitted gamma rays
- H is mostly in formation fluids (water and hydrocarbons)
- Can be run through casing
- Reads low in gas zones
- Cannot distinguish oil from water

Porosity calibration

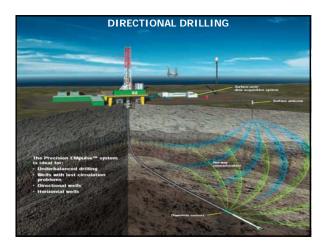

If lithology is neutron and density logs calibrated for

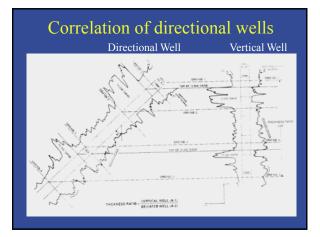





Applications of logs • Stratigraphic studies

- Sedimentary facies
- Well correlation
- Reservoir models
- Structural interpretation - Fault recognition

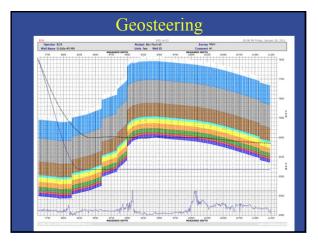


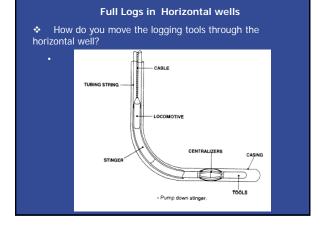


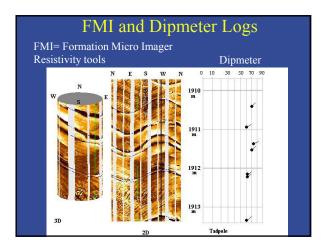
Correlation Example Major Sands on SP

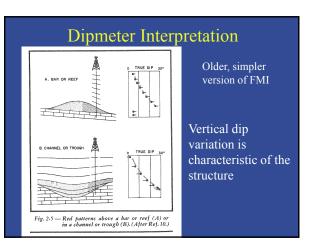
MWD (or LoggingWD) Measurement While Drilling

- ♦ Tools are part of bottom hole assembly (BHA).
- Gamma ray, directional survey, tool face, borehole pressure, temperature, vibration, shock, torque etc.
- ♦ Telemetry for steering well
- Results transmitted digitally
 mud pulser telemetry




Logging While Drilling Data Transmission


Mud Pulse Telemetry (Pressure pulses)


Electromagnetic Telemetry (Using conductivity of drill pipe)

Wired Drill Pipe (The future. Faster and better, but delicate)

Take Home Ideas

- Well logs provide key data for understanding the subsurface
- Lithology, porosity and fluids are 3 important log families
- Usually you can't measure these properties directly, so you must use proxies or indirect measurements
- Multiple logs used in combination are most powerful