
1

C H A P T E R

1
SAS/ACCESS for SYBASE

Introduction to the SAS/ACCESS Interface to SYBASE 2
LIBNAME Statement Specifics for SYBASE 2

Arguments 2

SYBASE LIBNAME Statement Example 4

Data Set Options for SYBASE 4

Pass-Through Facility Specifics for SYBASE 5
Example 7

Autopartitioning Scheme for SYBASE 7

Overview 7

Indexes 8

Partitioning Criteria 8

Data types 8
Examples 8

Temporary Table Support for SYBASE 9

Establishing a Temporary Table 9

Terminating a Temporary Table 9

Example 9
ACCESS Procedure Specifics for SYBASE 10

Example 10

DBLOAD Procedure Specifics for SYBASE 11

Example 13

Passing SAS Functions to SYBASE 13
Passing Joins to SYBASE 14

Reading Multiple SYBASE Tables 14

Locking in the SYBASE Interface 15

Understanding SYBASE Update Rules 16

Naming Conventions for SYBASE 16

Case Sensitivity in SYBASE 17
Data Types for SYBASE 17

Character Data 17

Numeric Data 18

Abstract Data 18

User-Defined Data Types 19
SYBASE Null Values 19

LIBNAME Statement Data Conversions 20

ACCESS Procedure Data Conversions 21

DBLOAD Procedure Data Conversions 21

Data Returned as SAS Binary Data with Default Format $HEX 22
Data Returned as SAS Character Data 22

Inserting TEXT into SYBASE from SAS 22

National Language Support for SYBASE 23

2 Introduction to the SAS/ACCESS Interface to SYBASE � Chapter 1

Introduction to the SAS/ACCESS Interface to SYBASE
This document includes details only about the SAS/ACCESS interface to SYBASE. It

should be used as a supplement to the generic SAS/ACCESS documentation
SAS/ACCESS for Relational Databases: Reference.

LIBNAME Statement Specifics for SYBASE
This section describes the LIBNAME statement as supported by the SAS/ACCESS

interface to SYBASE. For a complete description of this feature, see the LIBNAME
statement section in SAS/ACCESS for Relational Databases: Reference. The following
is the SYBASE specific syntax for the LIBNAME statement:

LIBNAME libref sybase <connection-options> <LIBNAME-options>;

Arguments
libref

is any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

sybase
is the SAS/ACCESS engine name for the interface to SYBASE.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. The following are the connection
options for the interface to SYBASE:

USER=<’>SYBASE-user-name<’>
specifies the SYBASE user name (also called the login name) that you use to
connect to your database. If the user name contains spaces or
non-alphanumeric characters, you must enclose it in quotation marks.

PASSWORD=<’>SYBASE-password<’>
specifies the password that is associated with your SYBASE user name.

If you omit the password, a default password of NULL is used. If the
password contains spaces or non-alphanumeric characters, you must enclose
it in quotation marks.

PASSWORD= can also be specified with the SYBPW=, PASS=, and PW=
aliases.

DATABASE=<’>database-name<’>
specifies the name of the SYBASE database that contains the tables and
views that you want to access.

If the database name contains spaces or non-alphanumeric characters, you
must enclose it in quotation marks. If you omit DATABASE=, the default
database for your SYBASE user name is used.

DATABASE= can also be specified with the DB= alias.

SERVER=<’>server-name<’>
specifies the server that you want to connect to. This server accesses the
database that contains the tables and views that you want to access.

If the server name contains lowercase, spaces, or non-alphanumeric
characters, you must enclose it in quotation marks.

SAS/ACCESS for SYBASE � Arguments 3

If you omit SERVER=, the default action for your operating system occurs.
On UNIX systems, the value of the environment variable DSQUERY is used
if it has been set.

IP_CURSOR= YES | NO
specifies whether Implicit Proc SQL pass-through processes multiple result
sets simultaneously.

IP_CURSOR is set to NO by default. Setting it to YES allows this type of
extended processing, but will decrease performance, since cursors are being
used, and not result sets. Do not set to YES unless needed.

If you specify the appropriate system options or environment variables for your
database, you can often omit the connection options. See your SYBASE
documentation for details.

LIBNAME-options
define how DBMS objects are processed by SAS. Some LIBNAME options can
enhance performance; others determine locking or naming behavior. The following
table describes which LIBNAME options are supported for SYBASE, and presents
default values where applicable. See the section about the SAS/ACCESS
LIBNAME statement in SAS/ACCESS for Relational Databases: Reference for
detailed information about these options.

Table 1.1 SAS/ACCESS LIBNAME Options for SYBASE

Option Default Value

ACCESS= none

AUTOCOMMIT= YES

CONNECTION= SHAREDREAD

CONNECTION_GROUP= none

DBCOMMIT= 1000 (inserting) or 0 (updating)

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= NO

DBLIBINIT= none

DBLIBTERM= none

DBLINK= the local database

DBMAX_TEXT= 1024

DBPROMPT= NO

DBSASLABEL= COMPAT

DBSLICEPARM= THREADED_APPS,2 or 3

DEFER= NO

DIRECT_EXE= none

DIRECT_SQL= YES

ENABLE_BULK= YES

4 SYBASE LIBNAME Statement Example � Chapter 1

Option Default Value

INTERFACE= none

MAX_CONNECTS= 25

MULTI_DATASRC_OPT= NONE

PACKETSIZE= server setting

QUOTED_IDENTIFIER= NO

READBUFF= 100

READ_ISOLATION_LEVEL= 1

READ_LOCK_TYPE= NOLOCK

REREAD_EXPOSURE= NO

SCHEMA= none

SPOOL= YES

UPDATE_ISOLATION_LEVEL= 1

UPDATE_LOCK_TYPE= PAGE

UTILCONN_TRANSIENT= NO

SYBASE LIBNAME Statement Example
In the following example, the libref MYDBLIB uses the SYBASE engine to connect to

a SYBASE database. USER= and PASSWORD= are connection options.

libname mydblib sybase user=testuser password=testpass;

If you specify the appropriate system options or environment variables for your
database, you can often omit the connection options. See your SYBASE documentation
for details.

Data Set Options for SYBASE

The following table describes the data set options that are supported for SYBASE,
and provides default values where applicable. See the section about data set options in
SAS/ACCESS for Relational Databases: Reference for detailed information about these
options.

Table 1.2 SAS/ACCESS Data Set Options for SYBASE

Option Default Value

AUTOCOMMIT= LIBNAME option setting

BULK_BUFFER= 100

BULKLOAD= NO

DBCOMMIT= LIBNAME setting

SAS/ACCESS for SYBASE � Pass-Through Facility Specifics for SYBASE 5

Option Default Value

DBCONDITION= none

DBCREATE_TABLE_OPTS= LIBNAME setting

DBFORCE= NO

DBGEN_NAME= LIBNAME option setting

DBINDEX= LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBLINK= LIBNAME option setting

DBMASTER= none

DBMAX_TEXT= LIBNAME option setting

DBNULL= _ALL_YES

DBPROMPT= LIBNAME option setting

DBSASLABEL= COMPAT

DBSLICE= none

DBSLICEPARM= THREADED_APPS,2 or 3

DBTYPE= see “Data Types for SYBASE” on page 17

ERRLIMIT= 1

NULLCHAR= SAS

NULLCHARVAL= a blank character

READBUFF= LIBNAME option setting

READ_ISOLATION_LEVEL= LIBNAME option setting

READ_LOCK_TYPE= LIBNAME option setting

SASDATEFMT= DATETIME22.3

SCHEMA= LIBNAME option setting

SEGMENT_NAME= none

UPDATE_ISOLATION_LEVEL= LIBNAME option setting

UPDATE_LOCK_TYPE= LIBNAME option setting

Pass-Through Facility Specifics for SYBASE

See the section about the Pass-Through Facility in SAS/ACCESS for Relational
Databases: Reference for general information about this feature.

The Pass-Through Facility specifics for SYBASE are as follows:

� The dbms-name is SYBASE.

� The CONNECT statement is optional. If you omit the CONNECT statement, an
implicit connection is made using the default values for all of the connection
options.

� The interface can connect multiple times to one or more servers.

6 Pass-Through Facility Specifics for SYBASE � Chapter 1

� The database-connection-arguments for the CONNECT statement are as follows:

USER=<’>SYBASE-user-name<’>
specifies the SYBASE user name (also called the login name) that you use to
connect to your database. If the user name contains spaces or
non-alphanumeric characters, you must enclose it in quotation marks.

PASSWORD=<’>SYBASE-password<’>
specifies the password that is associated with the SYBASE user name.

If you omit the password, a default password of NULL is used. If the
password contains spaces or non-alphanumeric characters, you must enclose
it in quotation marks.

PASSWORD= can also be specified with the SYBPW=, PASS=, and PW=
aliases.

Note: If you do not wish to enter your Sybase password in uncoded text,
see PROC PWENCODE for a method to encode it. �

DATABASE=<’>database-name<’>
specifies the name of the SYBASE database that contains the tables and
views that you want to access.

If the database name contains spaces or non-alphanumeric characters, you
must enclose it in quotation marks. If you omit DATABASE=, the default
database for your SYBASE user name is used.

DATABASE= can also be specified with the DB= alias.

SERVER=<’>server-name<’>
specifies the server you want to connect to. This server accesses the database
that contains the tables and views that you want to access.

If the server name contains lowercase, spaces, or non-alphanumeric
characters, you must enclose it in quotation marks.

If you omit SERVER=, the default action for your operating system occurs.
On UNIX systems, the value of the environment variable DSQUERY is used
if it has been set.

INTERFACE=filename
specifies the name and location of the SYBASE interfaces file. The interfaces
file contains the names and network addresses of all of the available servers
on the network.

If you omit this statement, the default action for your operating system
occurs. INTERFACE= is not used in some operating environments. Contact
your database administrator to determine whether it applies to your
operating environment.

SYBBUFSZ=number-of-rows
specifies the number of rows of DBMS data to write to the buffer. If this
statement is used, the SAS/ACCESS interface view engine creates a buffer
that is large enough to hold the specified number of rows. This buffer is
created when the associated database table is read. The interface view
engine uses SYBBUFSZ= to improve performance.

If you omit this statement, no data is written to the buffer.

Note: Connection options for SYBASE are all case-sensitive. They are passed
to SYBASE exactly as you type them. �

SAS/ACCESS for SYBASE � Overview 7

� The following LIBNAME options are available with the CONNECT statement:
DBMAX_TEXT=
MAX_CONNECTS=
READBUFF=

PACKETSIZE=

See the section about the LIBNAME statement in SAS/ACCESS for Relational
Databases: Reference for information about these options.

Example
The following example retrieves a subset of rows from the SYBASE INVOICE table.

Because the WHERE clause is specified in the DBMS query (the inner SELECT
statement), the DBMS processes the WHERE expression and returns a subset of rows
to SAS.

proc sql;
connect to sybase(server=SERVER1

database=INVENTORY
user=testuser password=testpass);

%put &sqlxmsg;

select * from connection to sybase
(select * from INVOICE where BILLEDBY=457232);

%put &sqlxmsg;

Note: The SELECT statement that is enclosed in parentheses is sent directly to the
database and therefore must be specified using valid database variable names and
syntax. �

Autopartitioning Scheme for SYBASE
See the section about threaded reads in SAS/ACCESS for Relational Databases:

Reference for general information about this feature.

Overview
SYBASE autopartitioning utilizes the SYBASE MOD function (%) to create multiple

SELECT statements with WHERE clauses, which, in the optimum scenario, divide the
result set into equal chunks; one chunk per thread. For example, assume that your
original SQL statement was SELECT * FROM DBTAB, and assume that DBTAB has a
primary key column PKCOL of type integer and that you want it partitioned into three
threads. The autopartitioning scheme would break up the table into three SQL
statements as follows:

select * from DBTAB where (abs(PKCOL))%3=0
select * from DBTAB where (abs(PKCOL))%3=1
select * from DBTAB where (abs(PKCOL))%3=2

Since PKCOL is a primary key column, you should get a fairly even distribution among
the three partitions, which is the primary goal.

8 Indexes � Chapter 1

Indexes
An index on a SAS partitioning column increases performance of the threaded read.

If a primary key is not defined for the table, an index should be placed on the
partitioning column in order to attain similar benefits. Understanding and following
Sybase ASE Performance and Tuning Guide documentation recommendations with
respect to index creation and usage is essential in order to achieve optimum database
performance. The order of column selection for the partitioning column is as follows:

1 Identity column

2 Primary key column (integer or numeric)

3 integer, numeric, or bit; not nullable

4 integer, numeric, or bit; nullable

Note: If the column selected is a bit type, there will be only two partitions created
since the only values are 0 and 1. �

Partitioning Criteria
The most efficient partitioning column is an Identity column, which is usually

identified as a primary key column. Identity columns usually lead to evenly partitioned
result sets because of the sequential values they store.

The least efficient partitioning column is a numeric, decimal, or float column that is
NULLABLE, and does not have an index defined.

Given equivalent selection criteria, columns defined at the beginning of the table
definition that meet the selection criteria will take precedence over columns defined
toward the end of the table definition.

Data types
The following data types are supported in partitioning column selection:

integer

tinyint

smallint

numeric

decimal

float

bit.

Examples
The following are examples of generated SELECT statements involving various

column data types:
COL1 is numeric, decimal, or float. This example uses three threads (the default)

and COL1 is NOT NULL.

select * from DBTAB where (abs(convert(INTEGER, COL1)))%3=0
select * from DBTAB where (abs(convert(INTEGER, COL1)))%3=1
select * from DBTAB where (abs(convert(INTEGER, COL1)))%3=2

SAS/ACCESS for SYBASE � Example 9

COL1 is bit, integer, smallint, or tinyint. This example uses two threads (the default)
and COL1 is NOT NULL.

select * from DBTAB where (abs(COL1))%3=0
select * from DBTAB where (abs(COL1))%3=1

COL1 is and integer and is nullable.

select * from DBTAB where (abs(COL1))%3=0 OR COL1 IS NULL
select * from DBTAB where (abs(COL1))%3=1

Temporary Table Support for SYBASE
See the section on the temporary table support in SAS/ACCESS for Relational

Databases: Reference for general information about this feature.

Establishing a Temporary Table
When you specify CONNECTION=GLOBAL, you can reference a temporary table

throughout a SAS session, in both DATA steps and procedures. The name of the table
MUST start with the character ’#’. To reference it, use the SAS convention of an n
literal, as in mylib.’#foo’n.

Terminating a Temporary Table
You can drop a temporary table at any time, or allow it to be implicitly dropped when

the connection is terminated. Temporary tables do not persist beyond the scope of a
singe connection.

Example
The following example demonstrates how to use temporary tables:

/* clear any connection */
libname x clear;

libname x sybase user=test pass=test connection=global;

/* create the temp table. You can even use bulk copy */
/* Notice how the name is specified: ’#mytemp’n */

data x.’#mytemp’n (bulk=yes);
x=55;
output;
x=44;
output;

run;

/* print it */
proc print data=x.’#mytemp’n;
run ;

/* The same temp table persists in PROC SQL, */

10 ACCESS Procedure Specifics for SYBASE � Chapter 1

/* with the global connection specified */
proc sql;

connect to sybase (user=austin pass=austin connection=global);
select * from connection to sybase (select * from #mytemp);

quit;

/* use the temp table again in a procedure */
proc means data=x.’#mytemp’n;
run;

/* drop the connection, the temp table is automatically dropped */
libname x clear;

/* to convince yourself it’s gone, try to access it */
libname x sybase user=austin password=austin connection=global;

/* it’s not there */
proc print data=x.’#mytemp’n;
run;

ACCESS Procedure Specifics for SYBASE

See the section about the ACCESS procedure in SAS/ACCESS for Relational
Databases: Reference for general information about this feature.

The SYBASE interface supports all of the ACCESS procedure statements. The
SYBASE interface specifics for the ACCESS procedure are as follows:

� The DBMS= value for PROC ACCESS is SYBASE.

� The database-description-statements used by PROC ACCESS are identical to the
Pass-Through Facility’s CONNECT statement database-connection-arguments on
page 6.

� The TABLE= statement for PROC ACCESS is:

TABLE= <’>table-name<’>;
specifies the name of the SYBASE table or SYBASE view on which the access
descriptor is based.

Example
The following example creates access descriptors and view descriptors for the

EMPLOYEES and INVOICE tables. These tables have different owners and are stored
in PERSONNEL and INVENTORY databases that reside on different machines. The
USER= and PASSWORD= statements identify the owners of the SYBASE tables and
their passwords.

libname vlib ’sas-data-library’;

proc access dbms=sybase;
create work.employee.access;

server=’server1’;
database=’personnel’;
user=’testuser1’;

SAS/ACCESS for SYBASE � DBLOAD Procedure Specifics for SYBASE 11

password=’testpass1’;
table=EMPLOYEES;

create vlib.emp_acc.view;
select all;
format empid 6.;
subset where DEPT like ’ACC%’;

run;

proc access dbms=sybase;
create work.invoice.access;

server=’server2’;
database=’inventory’;
user=’testuser2’;
password=’testpass2’;
table=INVOICE;
rename invoicenum=invnum;
format invoicenum 6. billedon date9.

paidon date9.;
create vlib.sainv.view;

select all;
subset where COUNTRY in (’Argentina’,’Brazil’);

run;

options linesize=120;
title ’South American Invoices and

Who Submitted Them’;

proc sql;
select invnum, country, billedon, paidon,

billedby, lastname, firstnam
from vlib.emp_acc, vlib.sainv
where emp_acc.empid=sainv.billedby;

SYBASE is a case-sensitive database. The PROC ACCESS database identification
statements and the SYBASE column names in all of the statements except SUBSET
are converted to uppercase unless the names are enclosed in quotation marks. The
SUBSET statements are passed to SYBASE exactly as you type them, so you must use
the correct case for the SYBASE column names.

DBLOAD Procedure Specifics for SYBASE
See the section about the DBLOAD procedure in SAS/ACCESS for Relational

Databases: Reference for general information about this feature.
The SYBASE interface supports all of the DBLOAD procedure statements. The

SYBASE interface specifics for the DBLOAD procedure are as follows:
� The DBMS= value for PROC DBLOAD is SYBASE.
� The TABLE= statement for PROC DBLOAD is:

TABLE= <’>table-name<’>;

12 DBLOAD Procedure Specifics for SYBASE � Chapter 1

� PROC DBLOAD uses the following database-description-statements:

USER=<’>SYBASE-user-name<’>
specifies the SYBASE user name (also called the login name) that you use to
connect to your database. If the user name contains spaces or
non-alphanumeric characters, you must enclose it in quotation marks.

PASSWORD=<’>SYBASE-password<’>
specifies the password that is associated with the SYBASE user name.

If you omit the password, a default password of NULL is used. If the
password contains spaces or non-alphanumeric characters, you must enclose
it in quotation marks.

PASSWORD= can also be specified with the SYBPW=, PASS=, and PW=
aliases.

DATABASE=<’>database-name<’>
specifies the name of the SYBASE database that contains the tables and
views that you want to access.

If the database name contains spaces or non-alphanumeric characters, you
must enclose it in quotation marks. If you omit DATABASE=, the default
database for your SYBASE user name is used.

DATABASE= can also be specified with the DB= alias.

SERVER=<’>server-name<’>
specifies the server that you want to connect to. This server accesses the
database that contains the tables and views that you want to access.

If the server name contains lowercase, spaces, or non-alphanumeric
characters, you must enclose it in quotation marks.

If you omit SERVER=, the default action for your operating system occurs.
On UNIX systems, the value of the environment variable DSQUERY is used
if it has been set.

INTERFACE=filename
specifies the name and location of the SYBASE interfaces file. The interfaces
file contains the names and network addresses of all of the available servers
on the network.

If you omit this statement, the default action for your operating system
occurs. INTERFACE= is not used in some operating environments. Contact
your database administrator to determine whether it applies to your
operating environment.

BULKCOPY= Y|N;
uses the SYBASE bulk copy utility to insert rows into a SYBASE table. The
default value is N.

If you specify BULKCOPY=Y, BULKCOPY= calls the SYBASE bulk copy
utility in order to load data into a SYBASE table. This utility groups rows so
that they are inserted as a unit into the new table. Using the bulk copy
utility can improve performance.

You use the COMMIT= statement to specify the number of rows in each
group (this argument must be a positive integer). After each group of rows is
inserted, the rows are permanently saved in the table. While each group is
being inserted, if one row in the group is rejected, then all of the rows in that
group are rejected.

If you specify BULKCOPY=N, rows are inserted into the new table using
Transact-SQL INSERT statements. Refer to your SYBASE documentation for
more information about the bulk copy utility.

SAS/ACCESS for SYBASE � Passing SAS Functions to SYBASE 13

Example
The following example creates a new SYBASE table, EXCHANGE, from the

DLIB.RATEOFEX data file. An access descriptor ADLIB.EXCHANGE is also created,
and it is based on the new table. The DBLOAD procedure sends a Transact-SQL
GRANT statement to SYBASE. You must be granted SYBASE privileges to create new
SYBASE tables or to grant privileges to other users.

Note: The DLIB.RATEOFEX data set is included in the sample data that is shipped
with your software. �

libname adlib ’SAS-data-library’;
libname dlib ’SAS-data-library’;

proc dbload dbms=sybase data=dlib.rateofex;
server=’server1’;
database=’testdb’;
user=’testuser’;
password=’testpass’;
table=EXCHANGE;
accdesc=adlib.exchange;
rename fgnindol=fgnindolar 4=dolrsinfgn;
nulls updated=n fgnindol=n 4=n country=n;
load;

run;

Passing SAS Functions to SYBASE
The interface to SYBASE passes the following SAS functions to SYBASE for

processing. See the section about optimizing SQL usage in SAS/ACCESS for Relational
Databases: Reference for information.

ABS

ARCOS

ARSIN

ATAN

AVG

CEIL

COS

DATETIME

EXP

FLOOR

LOG

MAX

MIN

SIGN

14 Passing Joins to SYBASE � Chapter 1

SIN

SQRT

TAN

SUM

COUNT

Passing Joins to SYBASE
In order for a multiple libref join to pass to SYBASE, all of the following components

of the LIBNAME statements must match exactly:

user ID

password

database

server.

See the section about performance considerations in SAS/ACCESS for Relational
Databases: Reference for more information about when and how SAS/ACCESS passes
joins to the DBMS.

Reading Multiple SYBASE Tables
SAS opens multiple SYBASE tables for simultaneous reading in the following

situations:
� When you are using PROC COMPARE. For example:

proc compare base=syb.data1 compare=syb.data2;

� When you are running an SCL program that reads from more than one SYBASE
table simultaneously.

� When you are joining SYBASE tables in SAS (when implicit pass through is not
used (DIRECT_SQL=NO)). For example:

proc sql ;
select * from syb.table1, syb.table2 where table1.x=table2.x;

or

proc sql;
select * from syb.table1 where table1.x = (select x from syb.table2
where y = 33);

or

proc sql;
select empname from syb.employee where empyears > all (select empyears
from syb.employee where emptitle = ’salesrep’);

or

proc sql ;
create view myview as

SAS/ACCESS for SYBASE � Locking in the SYBASE Interface 15

select * from employee where empyears > all (select empyears from
syb.employee where emptitle = ’salesrep’);

proc print data=myview ;

In order to read two or more SYBASE tables simultaneously, you must specify either
the LIBNAME option CONNECTION=UNIQUE or the LIBNAME option
READLOCK_TYPE=PAGE. Because READLOCK_TYPE=PAGE can degrade
performance, it is generally recommended that you use CONNECTION=UNIQUE
(unless there is a concern about the number of connections that are opened on the
database).

Locking in the SYBASE Interface
The SAS/ACCESS interface to SYBASE supports the following LIBNAME and data

set locking options. See the section about the LIBNAME statement in SAS/ACCESS
for Relational Databases: Reference for additional information about these options.

READ_LOCK_TYPE= PAGE | NOLOCK
The default value for SYBASE is NOLOCK.

UPDATE_LOCK_TYPE= PAGE | NOLOCK

PAGE
SAS/ACCESS uses a cursor that can be updated. When you use this setting,
it is recommended that the table have a defined primary key. PAGE is the
default value for SYBASE.

NOLOCK
SAS/ACCESS uses SYBASE browse mode updating, in which the table that
is being updated must have a primary key and timestamp.

READ_ISOLATION_LEVEL= 1 | 2 | 3
For reads, SYBASE supports isolation levels 1, 2, and 3, as defined in the
following table. Refer to your SYBASE documentation for more information.

Table 1.3 Isolation Levels for SYBASE

Isolation Level Definition

1 Prevents dirty reads. This is the default transaction isolation level.

2 Uses serialized reads.

3 Also uses serialized reads.

UPDATE_ISOLATION_LEVEL= 1 | 3
SYBASE uses a shared or update lock on base table pages that contain rows
representing a current cursor position. This option applies to updates only when
UPDATE_LOCK_TYPE=PAGE because cursor updating is in effect. It does not
apply when UPDATE_LOCK_TYPE=NOLOCK.

For updates, SYBASE supports isolation levels 1 and 3, as defined in the
preceding table. Refer to your SYBASE documentation for more information.

16 Understanding SYBASE Update Rules � Chapter 1

Understanding SYBASE Update Rules
To avoid data integrity problems when updating and deleting data in SYBASE

tables, take the following precautionary measures:
� Always define a primary key.
� If the updates are not taking place via cursor processing, define a timestamp

column as well.

It is not always obvious whether or not updates are utilizing cursor processing.
Cursor processing is never used for LIBNAME statement updates if
UPDATE_LOCK_TYPE=NOLOCK. Cursor processing is always used in the following
situations:

� Updates using the LIBNAME statement with UPDATE_LOCK_TYPE=PAGE. Note
that this is the default setting for this option.

� Updates using PROC SQL views.
� Updates using PROC ACCESS view descriptors.

Naming Conventions for SYBASE
SYBASE database objects that can be named include tables, views, columns, indexes,

and database procedures. Use the following SYBASE naming conventions:
� Database names must be unique. For each owner within a database, names of

database objects must be unique. Column names and index names must be unique
within a table.

� A name must be from 1 to 30 characters long (or 28 characters if quoted).
� A name must start with an alphabetic character or an underscore (_), unless the

name is enclosed in quotation marks.
� After the first character, a name may contain the letters A through Z (in uppercase

or lowercase), the digits 0 through 9, the underscore (_), the dollar sign ($), the
pound sign (#), the at sign (@), the yen sign (¥), and the monetary pound sign (£).

� Embedded spaces are not permitted unless the name is enclosed in quotation
marks.

� A name cannot be a SYBASE reserved word unless the name is enclosed in
quotation marks. See your SYBASE documentation for more information about
reserved words.

� Embedded quotation marks are not permitted.
� Case sensitivity is set when a server is installed. By default, the names of

database objects are case sensitive. On a case-sensitive server, the names
CUSTOMER and customer are different.

Note: By default, column and table names are not quoted in the SAS/ACCESS
interface to SYBASE. To quote the table and column names, you must use the
LIBNAME statement QUOTED_IDENTIFIER= option when you assign a libref. �

When you use the DATASETS procedure to list your SYBASE tables, the table
names appear exactly as they exist in the SYBASE data dictionary. If you specified the
LIBNAME option SCHEMA=, SAS/ACCESS lists the tables for the specified schema
user name.

To reference a table or other named object that you own, or for the specified schema,
refer to the table name (for example, CUSTOMERS). If you use the LIBNAME
statement DBLINK= option, all references to the libref refer to the specified database.

SAS/ACCESS for SYBASE � Character Data 17

Case Sensitivity in SYBASE
SAS names can be entered in either uppercase or lowercase. When you reference

SYBASE objects through the SAS/ACCESS interface, objects are case-sensitive and
require no quotation marks.

However, SYBASE is generally set for case sensitivity, and special consideration
should be given to the names of objects (such as tables and columns) when they are to
be used in SAS by the ACCESS or DBLOAD procedures. The ACCESS procedure
converts SYBASE object names to uppercase unless they are enclosed in quotation
marks. Any SYBASE objects that were given lowercase names, or whose names contain
national or special characters, must be enclosed in quotation marks. The only
exceptions are the SUBSET statement in the ACCESS procedure and the SQL
statement in the DBLOAD procedure. Arguments or values from these statements are
passed to SYBASE exactly as you type them, with the case preserved.

In the Pass-Through Facility, all SYBASE object names are case sensitive. The
names are passed to SYBASE exactly as they are typed.

For more information about case-sensitivity and SYBASE names, see “Naming
Conventions for SYBASE” on page 16.

Data Types for SYBASE
Every column in a table has a name and a data type. The data type indicates to the

DBMS how much physical storage to reserve for the column and the format in which
the data is stored.

Note: SAS/ACCESS does not support the following SYBASE data types: BINARY,
VARBINARY, IMAGE, NCHAR(n), and NVARCHAR(n). SAS/ACCESS provides an error
message when it attempts to read a table that has at least one column that uses an
unsupported data type. �

Character Data
You must enclose all character data in single or double quotation marks.

CHAR(n)
CHAR(n) is a character string that can have 1 to 255 letters, symbols, and
numbers. You specify the maximum length of the string with n. Storage size is
also n, regardless of the actual entry length.

VARCHAR(n)
VARCHAR(n) is a varying-length character string that can have 1 to 255 letters,
symbols, and numbers. You specify the maximum length of the string with n.
Storage size is the actual entry length.

TEXT
TEXT stores character data of variable length up to two gigabytes. SAS supports
the TEXT data type provided in SYBASE. However, SAS only allows a maximum
of 32,767 bytes of character data.

18 Numeric Data � Chapter 1

Numeric Data

NUMERIC(p,s), DECIMAL(p,s)
Exact numeric values have specified degrees of precision (p) and scale (s).
NUMERIC data can have a precision of 1 to 38 and scale of 0 to 38, where the
value of s must be less or equal to than the value of p. The DECIMAL data type is
identical to the NUMERIC data type. The default precision and scale are (18,0) for
the DECIMAL data type.

REAL, FLOAT
Floating-point values consist of an integer part, a decimal point, and a fraction
part, or scientific notation. The exact format for REAL and FLOAT data depends
on the number of significant digits and the precision that your machine supports.
You can use all arithmetic operations and aggregate functions with REAL and
FLOAT except modulus. The REAL (4 byte) range is approximately 3.4E−38 to
3.4E+38, with 7-digit precision. The FLOAT (8 byte) range is approximately
1.7E−308 to 1.7E+308, with 15-digit precision.

TINYINT, SMALLINT, INT
Integers contain no fractional part. The three integer data types are TINYINT (1
byte), which has a range of 0 to 255; SMALLINT (2 bytes), which has a range of
-32,768 to +32,767; and INT (4 bytes), which has a range of -2,147,483,648 to
+2,147,483,647.

BIT
BIT data has a storage size of one bit and holds either a 0 or a 1. Other integer
values are accepted but are interpreted as 1. BIT data cannot be NULL and
cannot have indexes defined on it.

Abstract Data
SYBASE date and money data types are abstract data types and are described in

this section. Refer to your documentation on Transact-SQL for more information about
abstract data types.

SMALLDATETIME
SMALLDATETIME data is 4 bytes long and consists of one small integer that
represents the number of days after January 1, 1900, and one small integer that
represents the number of minutes past midnight. The date range is from January
1, 1900, to December 31, 2079.

DATETIME
DATETIME data has two 4-byte integers. The first integer represents the number
of days after January 1, 1900, and the second integer represents the number of
milliseconds past midnight. Values can range from January 1, 1753 to December
31, 9999.

DATETIME values are input as quoted character strings in various alphabetic
or numeric formats. Time data must be entered in the prescribed order (hours;
minutes; seconds; milliseconds; AM, am, PM, pm) and must include either a colon
or an AM/PM designator. Case is ignored, and spaces can be inserted anywhere
within the value.

When you input DATETIME values, the national language setting determines
how the date values are interpreted. You can change the default date order with
the SET DATEFORMAT statement. See your Transact-SQL documentation for
more information.

SAS/ACCESS for SYBASE � SYBASE Null Values 19

You can use SYBASE built-in date functions to perform some arithmetic
calculations on DATETIME values.

TIMESTAMP
TIMESTAMP data is used by SAS in UPDATE mode. If you select a column that
contains TIMESTAMP data for input into SAS, the values are displayed in hex
format.

SMALLMONEY
SMALLMONEY data is 4 bytes long and can range from -214,748.3648 to
214,748.3647. When displayed, it is rounded up to two places.

MONEY
MONEY data is 8 bytes long and can range from -922,337,203,685,477.5808 to
922,337,203,685,477.5807. When input, a dollar sign ($) must appear before the
MONEY value. For negative values, the minus sign must follow the dollar sign.
Commas are not allowed.

MONEY values are accurate to a ten-thousandth of a monetary unit. However,
when they are displayed, the dollar sign is omitted and MONEY values are
rounded up to two places. A comma is inserted after every three digits.

You can store values for currencies other than U.S. dollars, but no form of
conversion is provided.

User-Defined Data Types
You can supplement the SYBASE system data types by defining your own data types

with the SYBASE system procedure sp_addtype. When you define your own data type
for a column, you can specify a default value (other than NULL) for the column and
define a range of allowable values for the column.

SYBASE Null Values
SYBASE has a special value that is called NULL. A SYBASE NULL value means an

absence of information and is analogous to a SAS missing value. When SAS/ACCESS
reads a SYBASE NULL value, it interprets it as a SAS missing value.

By default, SYBASE columns are defined as NOT NULL. NOT NULL tells SYBASE
not to add a row to the table unless the row has a value for the specified column.

If you want a column to accept NULL values, you must explicitly define it as NULL.
Here is an example of a CREATE TABLE statement that defines all of the columns for
a table to be NULL except for CUSTOMER. In this case, SYBASE only accepts a row if
it contains a value for CUSTOMER.

create table CUSTOMERS
(CUSTOMER char(8) not null,
STATE char(2) null,
ZIPCODE char(5) null,
COUNTRY char(20) null,
TELEPHONE char(12) null,
NAME char(60) null,
CONTACT char(30) null,
STREETADDRESS char(40) null,
CITY char(25) null,
FIRSTORDERDATE datetime null);

When creating a SYBASE table with SAS/ACCESS, you can use the DBNULL= data set
option to indicate whether NULL is a valid value for specified columns.

20 LIBNAME Statement Data Conversions � Chapter 1

For more information about how SAS handles NULL values, see in SAS/ACCESS
for Relational Databases: Reference.

Note: To control how SAS missing character values are handled by SYBASE, use
the NULLCHAR= and NULLCHARVAL= data set options. �

LIBNAME Statement Data Conversions
The following table shows the default SAS variable formats that SAS/ACCESS

assigns to SYBASE data types during input operations when you use the LIBNAME
statement.

Table 1.4 LIBNAME Statement: Default SAS Formats for SYBASE Server Data Types

SYBASE Column Type SAS Data Type Default SAS Format

CHAR(n) character $n. (n <= 255)

$255. (n > 255)

VARCHAR(n) character $n. (n <= 255)

$255. (n > 255)

TEXT character $n. (where n is the value of the DBMAX_TEXT=
option)

BIT numeric 1.0

TINYINT numeric 4.0

SMALLINT numeric 6.0

INT numeric 11.0

NUMERIC numeric w, w.d (if possible)

DECIMAL numeric w, w.d (if possible)

FLOAT numeric

REAL numeric

SMALLMONEY numeric DOLLAR12.2

MONEY numeric DOLLAR24.2

SMALLDATETIME numeric DATETIME22.3

DATETIME numeric DATETIME22.3

TIMESTAMP hex $HEXw

The following table shows the default SYBASE data types that SAS/ACCESS assigns
to SAS variable formats during output operations when you use the LIBNAME
statement.

Table 1.5 LIBNAME STATEMENT: Default SYBASE Data Types for SAS Variable
Formats

SAS Variable Format SYBASE Data Type

$w., $CHARw., $VARYINGw.,
$HEXw.

VARCHAR(w)

any datetime, date, or time format DATETIME

SAS/ACCESS for SYBASE � DBLOAD Procedure Data Conversions 21

SAS Variable Format SYBASE Data Type

any numeric with a SAS format name
of w.d or w.

NUMERIC(p,s)

any other numeric FLOAT

You can override these default data types by using the DBTYPE= data set option.

ACCESS Procedure Data Conversions
The following table shows the default SAS variable formats that SAS/ACCESS

assigns to SYBASE data types when you use the ACCESS procedure.

Table 1.6 PROC ACCESS: Default SAS Formats for SYBASE Server Data Types

SYBASE Column Type SAS Data Type Default SAS Format

CHAR(n) character $n. (n <= 200)

$200. (n > 200)

VARCHAR(n) character $n. (n <= 200)

$200. (n > 200)

BIT numeric 1.0

TINYINT numeric 4.0

SMALLINT numeric 6.0

INT numeric 11.0

FLOAT numeric BEST22.

REAL numeric BEST11.

SMALLMONEY numeric DOLLAR12.2

MONEY numeric DOLLAR24.2

SMALLDATETIME numeric DATETIME21.2

DATETIME numeric DATETIME21.2

The ACCESS procedure also supports SYBASE user-defined data types. The
ACCESS procedure uses the SYBASE data type on which a user-defined data type is
based in order to assign a default SAS format for columns.

Note: The DECIMAL, NUMERIC, and TEXT data types are not supported in PROC
ACCESS. The TIMESTAMP data type is not displayed in PROC ACCESS. �

DBLOAD Procedure Data Conversions
The following table shows the default SYBASE data types that SAS/ACCESS assigns

to SAS variable formats when you use the DBLOAD procedure.

22 Data Returned as SAS Binary Data with Default Format $HEX � Chapter 1

Table 1.7 PROC DBLOAD: Default SYBASE Data Types for SAS Variable Formats

SAS Variable Format SYBASE Data Type

$w., $CHARw., $VARYINGw.,
$HEXw.

CHAR(w)

w. TINYINT

w. SMALLINT

w. INT

w. FLOAT

w.d FLOAT

IBw.d, PIBw.d INT

FRACT, E format, and other numeric
formats

FLOAT

DOLLARw.d, w<=12 SMALLMONEY

DOLLARw.d, w>12 MONEY

any datetime, date, or time format DATETIME

The DBLOAD procedure also supports SYBASE user-defined data types. Use the
TYPE= statement to specify a user-defined data type.

Data Returned as SAS Binary Data with Default Format $HEX
BINARY

VARBINARY

IMAGE

Data Returned as SAS Character Data
NCHAR

NVARCHAR

Inserting TEXT into SYBASE from SAS

TEXT data can only be inserted into a SYBASE table by using the BULKLOAD=
data set option, as in the following example:

data yourlib.newtable(bulkload=yes);
set work.sasbigtext;

run;

If the BULKLOAD= option is not used, you receive the following error message:

ERROR: Object not found in database. Error Code: -2782
An untyped variable in the PREPARE statement ’S401bcf78’
is being resolved to a TEXT or IMAGE type.
This is illegal in a dynamic PREPARE statement.

SAS/ACCESS for SYBASE � National Language Support for SYBASE 23

National Language Support for SYBASE

To support output and update processing from SAS into SYBASE in languages other
than English, special setup steps are required so that date, time, and datetime values
can be processed correctly. In SAS, you must ensure that the DFLANG= system option
is set to the correct language. This can be globally set by the system administrator or
set by a user within a single SAS session. In SYBASE, the default client language, set
in the locales.dat file, must match the language that is used in SAS.

24

