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About This Book 

What Does This Book Cover? 
SAS and R are both important tools for data analysis. SAS is a programming language as well as a suite of 
software solutions that can be used for data access, data management, data analytics, statistical analysis, and 
data presentation. SAS can handle large amounts of data and perform almost any data analysis task that is 
required by researchers and companies of any size. On the other hand, R is a free, open-source tool that is 
mostly used by the research community for statistical analysis, graphing, and reporting.  

By some accounts, R is a more difficult programming language to learn than SAS. If you have learned how to 
perform analytical tasks in R and want to know how to perform the same tasks in SAS, then this is the book for 
you. This book covers a wide range of topics including the basics of the SAS programming language, how to 
import data, how to create new variables, random number generation, linear modeling, Interactive Matrix 
Language (IML), and many other SAS procedures. This book also covers how to write R code directly in the SAS 
code editor for seamless integration between the two tools.  

This book is based on the free video course “SAS® Programming for R Users” offered by SAS Education and 
also available on Lynda.com. You may prefer to follow along with the videos, which offer more practice 
exercises and example scenarios than are contained in this book. At the end of each chapter, you will find 
questions and exercises to test your knowledge. 

Is This Book for You? 
This book is designed for experienced R users who want to transfer their programming skills to SAS. Emphasis 
is on programming and not statistical theory or interpretation. You will learn how to write programs in SAS 
that replicate familiar functions and capabilities in R. You will also learn how to call R from SAS using IML. 

What Are the Prerequisites for This Book? 
Readers should have knowledge of plotting, manipulating data, iterative processing, creating functions, 
applying functions, linear models, generalized linear models, mixed models, stepwise model selection, matrix 
algebra, and statistical simulations. 

What Should You Know about the Examples? 
This book includes tutorials for you to follow to gain hands-on experience with SAS. 

Software Used to Develop the Book's Content 
The software used to develop this book’s content includes SAS 9.4 and SAS® Enterprise MinerTM.  

Example Code and Data 
You can access the example code and data for this book by linking to its author page at 
support.sas.com/bakerman.  



vi 

SAS University Edition 
Many of the advanced techniques for working with R in this book are not compatible with SAS University 
Edition. If you are using SAS University Edition to access data and run your programs, then please check the 
SAS University Edition page to ensure that the software contains the product or products that you need to run 
the code: www.sas.com/universityedition. 

Where Are the Exercise Solutions? 
The exercise solutions can be found immediately following the exercises in the same chapter. 

We Want to Hear from You 
SAS Press books are written by SAS Users for SAS Users. We welcome your participation in their development 
and your feedback on SAS Press books that you are using. Please visit sas.com/books to do the following: 

Sign up to review a book 

Recommend a topic 

Request information on how to become a SAS Press author 

Provide feedback on a book 

Do you have questions about a SAS Press book that you are reading? Contact the author through 
saspress@sas.com or https://support.sas.com/author_feedback.  

SAS has many resources to help you find answers and expand your knowledge. If you need additional help, 
see our list of resources: sas.com/books.  

Learn more about this author by visiting his author page at support.sas.com/bakerman. There you can 
download free book excerpts, access example code and data, read the latest reviews, get updates, and more. 

 



Chapter 1: Introduction to SAS 
Introduction ..................................................................................................................................................................... 1 
SAS Versus R .................................................................................................................................................................... 1 

SAS Programs .......................................................................................................................................................... 2 
SAS Syntax Rules ..................................................................................................................................................... 3 
Comments .............................................................................................................................................................. 4 

SAS Interfaces .................................................................................................................................................................. 4 
SAS Studio Interface ......................................................................................................................................................... 6 
Accessing Data in SAS Libraries ......................................................................................................................................... 8 

Accessing a Permanent Library with the LIBNAME Statement ................................................................................. 8 
Data Set Names ...................................................................................................................................................... 9 

Writing a Program in SAS Studio....................................................................................................................................... 9 
Code Editor ............................................................................................................................................................. 9 
Results .................................................................................................................................................................. 10 
Log ........................................................................................................................................................................ 11 
Adding Variables ................................................................................................................................................... 11 

Using Tasks .................................................................................................................................................................... 13 
Using Snippets................................................................................................................................................................ 15 

Preloaded Snippets ............................................................................................................................................... 16 
Custom Snippets ................................................................................................................................................... 18 

Calling R from SAS .......................................................................................................................................................... 18 
Exercises ........................................................................................................................................................................ 20 
Solutions ........................................................................................................................................................................ 21 
 

Introduction 
If you are reading this book, you most likely have never used SAS or have limited experience with SAS. So, 
what is SAS? SAS is a suite of business solutions and technologies to help organizations solve business 
problems. That is the official slogan, but it’s much broader than that. SAS is for anyone who needs to manage 
data or create advanced analytics models. SAS is powered by high-performance analytics, which are 
thoroughly tested before coming to market. SAS enables you to access and manage data across multiple 
sources as well as perform analyses and deliver information across your organization. 

The functionality of SAS is built around four data-driven tasks that are common to virtually any application: 

data access  

data management  

data analysis, including creating inferential models 

data presentation  

In SAS, all of our data sets are going to be on disk, which means they are on the hard drive. This is a little bit 
different coming from R. Data sets in SAS will need to be read into memory as needed, which will be seamless 
behind-the-scenes. 

SAS Versus R 
R is an object-oriented programming language. Results of a function are stored in an object and desired 
results are pulled from the object as needed. SAS revolves around the data table and uses procedures to 
create and print output. Results can be saved to a new data table. 
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In this section, we will briefly compare SAS and R in a general way to help you learn additional SAS 
programming skills independently. Look at Table 1.1, which outlines some of the major differences between 
SAS and R. 

Table 1.1: SAS Versus R 

SAS R 

Script compiler Command line interpreter 

Primarily driven by the data table 
and procedures 

Object-oriented 

Not case-sensitive Case-sensitive 

Here are a few other things about SAS to note: 

SAS has the flexibility to interact with objects. However, this book focuses on procedural methods. 

SAS does not have a command line. Code must be run in order to return results. 

SAS Programs 
A SAS program is a sequence of one or more steps. A step is a sequence of SAS statements. There are only two 
types of steps in SAS: DATA and PROC steps.  

DATA steps read from an input source and create a SAS data set.  

PROC steps read and process a SAS data set, often generating an output report. Procedures can be 
called an umbrella term. They are what carry out the global analysis. Think of a PROC step as a 
function in R.  

Every step has a beginning and ending boundary. SAS steps begin with either of the following statements: 

a DATA statement 

a PROC statement 

After a DATA or PROC statement, there can be additional SAS statements that contain keywords that requests 
SAS to perform an operation or give information to the system. Think of them as additional arguments to a 
procedure. Statements always end with a semicolon! 

SAS options are additional arguments and they are specific to SAS statements. Unfortunately, there is no rule 
to say what is a statement versus what is an option. Understanding the difference comes with a little bit of 
experience. Options can be used to do the following:  

generate additional output like results and plots 

save output to a SAS data table 

alter the analytical method 

SAS detects the end of a step when it encounters one of the following statements: 

a RUN statement (for most steps) 

a QUIT statement (for some procedures) 

Most SAS steps end with a RUN statement. Think of the RUN statement as the right parentheses of an R 
function. Table 1.2 shows an example of a SAS program that has a DATA step and a PROC step. You can see 
that both SAS statements end with RUN statements, while the R functions begin and end with parentheses. 
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Table 1.2: SAS Program Versus R Program 

SAS Program R Program 

data work.newemps;
infile "&path\newemps.csv" dlm=',';
input First $ Last $ Title $ Salary;

run;

proc print data=work.newemps;
run;

work.newemps = read.csv
(“C:/Users/username/
Desktop/work.newemps.csv”)

print(work.newemps)

SAS Syntax Rules 
SAS statements usually begin with a keyword, and always end with a semicolon. Keywords identify the type of 
statement, and semicolons end the statement. 

A syntax error is an error in the spelling or grammar of a SAS statement. SAS finds syntax errors as it compiles 
each SAS statement, before execution begins. Common examples of syntax errors include: 

misspelled keywords 

unmatched quotation marks 

invalid options 

missing semicolons 

The Enhanced Editor in some SAS interfaces uses the color red to indicate a potential error in your SAS code. 
Notice in Figure 1.1 that the misspelled word D-A-A-T is displayed in red. This misspelling affects other 
statements following it because those statements are only permitted in a DATA step, and this is not 
recognized as such. 

Figure 1.1: SAS Code with Errors 

 

The RUN statement in the PROC PRINT step is not the correct font or color in Figure 1.1. Code can contain 
incorrect keywords for options. The word “average” in the PROC MEANS statement is also the wrong font and 
color, because “average” is not recognized by the PROC MEANS statement. (MEAN is the correct word.) Error 
messages are written to the SAS log to describe syntax errors. 

Tip: Bookmark the SAS Documentation page at support.sas.com/documentation. You can look up 
procedures, statements, options, analytical methods, and any type of SAS syntax. 
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Comments 
R comments do not have an end and simply comment out everything to the right of the # symbol. SAS 
comments are more functional. Program 1.1 contains four comments. 

Program 1.1: Comment Types 
|*----------------------------------------*| 
|  This program creates and uses the       |
|  data set called work.newsalesemps.      |
|*----------------------------------------*; 
data work.newsalesemps;
    length First_Name $ 12 Last_Name $ 18Job_Title $ 25;
    infile "&path\newemps.csv" dlm=',';
    input First_Name $ Last_Name $ Job_Title $ Salary /*numeric*/;
run;

/*
proc print data=work.newsalesemps;
run;

*/
proc means data=work.newsalesemps;
    *var Salary;
run;

 The first comment describes the program. 
 The second comment is within a statement. 
 The third comment is commenting out a step. 
 The fourth comment is commenting out a statement. 

To comment multiple lines simultaneously in SAS, highlight the lines. Hold down the Ctrl key and press /. To 
uncomment, highlight the lines. Hold down the Ctrl and Shift keys and press /. 

SAS Interfaces 
Since its inception over 40 years ago, SAS software has evolved significantly with changes in computer 
technology. This evolution resulted in three unique SAS interfaces: 

1. SAS windowing environment 
2. SAS Enterprise Guide 
3. SAS Studio 

The SAS windowing environment is the original interface that is used to access, manage, analyze, and report 
data. For experienced programmers, the windowing environment might feel the most natural because it is the 
most basic interface of SAS. It provides an Editor window in which you can write and submit code without the 
use of any point-and-click features. 

SAS Enterprise Guide is configured to access SAS on a local or remote server. SAS Enterprise Guide has point-
and-click wizards and tasks for SAS procedures and a robust programming interface. 

SAS Studio is the newest interface. It is a web-based interface to SAS that you can use on any computer. It 
combines functionality from both the windowing environment and Enterprise Guide. SAS Studio is consistent, 
available, and assistive. You learn one interface that you can use throughout your career, as a student, an 
individual SAS user or consultant, a departmental user, and an enterprise user. You can use the same interface 
wherever you need it (a Mac in a dorm, a Windows desktop at work, a laptop at home, and an iPad on the 
road). For programmers, the code is front and center, but you can use point-and-click functions such as code-
generating tasks or process flows to help, if you need them. 
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No matter which SAS interface you use, the SAS programming is the same. In addition, they all offer these 
same basic programming tools: 

an Editor window where you write and submit SAS code 

a log where you view messages from SAS 

a page to view your results 

However, in this book, we will focus on using SAS Studio because of its accessibility and features. SAS Studio 
can be accessed from any browser. After you access the interface from the browser, you can run a program 
and SAS Studio automatically connects to SAS on your machine. The analysis is run on the machine, and then 
the results are brought back to the browsers for you to see. 

SAS University Edition is free SAS software that can be used for teaching and learning statistics and 
quantitative methods. It is designed for those who want easy access to statistical software. SAS University 
Edition uses the SAS Studio interface and gives you access to the following products: 

Base SAS: The foundation for all SAS software. It provides a highly flexible, highly extensible, fourth-
generation programming language and a rich library of programming procedures. 

SAS/ACCESS: Seamlessly connect with your data no matter where it resides or how it is saved. 
SAS/ACCESS provides tools to easily access external data. 

SAS/STAT: Provides a wide variety of statistical methods and techniques. 

SAS/IML: A matrix programming language for more specialized analyses. 

SAS/ETS: A suite of time series forecasting procedures. SAS University Edition offers only the 
TIMEDATA, TIMESERIES, ARIMA, ESM, UCM, and TIMEID procedures. 

Note: To run R with SAS, R must be installed on the same machine as SAS. Because SAS University Edition 
installs on a virtual machine where R cannot be installed, R cannot be used with SAS University Edition. 
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SAS Studio Interface 
Let’s look at the SAS Studio interface. Open your SAS Studio session. It should look similar to Figure 1.2. 

Figure 1.2: SAS Studio Interface 

The SAS Studio interface is separated into the Navigation pane on the left and the Work area on the right, also 
called the Code Editor. The Work area displays your programs with tabs for Code, Log, and Results. The 
Navigation pane provides easy access to your folders and libraries that contain your permanent and 
temporary data sets. The Files and Folders tab is displayed by default. It automatically maps to the drives on 
your computer to give you quick access to load data sets and SAS programs. 

Click the Libraries tab in the Navigation pane and select My Libraries, as shown in Figure 1.3. 

Figure 1.3: My Libraries 

 

The Libraries are where you will store all of your data. Notice that they are separated by category. The 
libraries MAPS through WEBWORK are permanent libraries. The data displayed in each library is a permanent 
data set, which users can use at their convenience. Whatever data you save in these libraries will be saved 
after you close your SAS session. The Work library is a temporary library. Any data saved to the Work library 
by the user is deleted when the user closes the SAS session. In a later demonstration, you see how to save a 
new data set to the Work library and create a new permanent library. A new permanent library enables the 
user to load external data a single time and update or use the data table each new session. This heavily 
reduces the load time and cleaning time of your data because it is done only once. 

Open the Sashelp library and navigate to the cars data set. Double-click the data set to open it in the Table 
Viewer in the Work area. The cars data set contains 428 total rows of data and 15 columns or variables. It is a 
sample of cars from the 1993 Consumer Reports magazine. You can use the arrows in the upper right to 
navigate between pages or the scroll bar at the bottom of the data table to change your view of the data. In 
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the Columns area of the Table Viewer in Figure 1.4, notice that all columns are selected by default. Simply 
clear the check box from a column to remove the column from the viewer.  

Figure 1.4: Cars Data Set 

 

Clear the Select all check box and then select Make, Model, Type, Origin, MSRP, and Invoice. 

To customize the view of the data table, select the arrow next to Columns to hide the columns area and then 
select the Maximize View icon. Your screen should now show only the selected columns, as shown in Figure 
1.5. 

Figure 1.5: Maximize View
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You can right-click a column heading to filter and sort the data table by that column. Right-click the Invoice 
column and select Add Filter. Notice that the other options are Sort Ascending, Sort Descending, and Sort by 
Data Order.  

Add a filter to select only the rows with Invoice values greater than or equal to $30,000. Use the drop-down 
menu to change the filter in the Add Filter window shown in Figure 1.6. Add the filter value in the text box. 
Then click Filter.  

Figure 1.6: Add Filter Window 

 

At the top of the table, you see that the number of filtered rows is 160. 

As you select options and customize the table, SAS Studio generates SAS code that you can use. To view the 
query code, click the Display Query button on the toolbar.  

A new Program tab is created with the code that is used to create the view of the table. This code first creates 
a new data table in the Work library and then prints the data table. You can save this code for use later with 
the Save button on the toolbar. Close the Query code. Exit the maximized view and expand the Columns pane 
to get back to the default table view. You can clear the table filter by selecting Clear Filter on the Tools table.  

Accessing Data in SAS Libraries 
SAS tables are stored in SAS libraries. A SAS library is a collection of SAS files that are referenced and stored as 
a unit. Each file is a member of the library. Work is a temporary library where you can store and access SAS 
tables for the duration of the SAS session. It is the default library. 

Note: SAS deletes the Work library and its contents when the SAS session ends. 

Sashelp is a permanent library that contains sample SAS tables that you can access during your SAS session. 
Sasuser is a permanent library that you can use to store and access SAS tables in any SAS session. 

Users can create their own SAS libraries. 

A user-defined library is permanent. Tables are stored until the user deletes them. 

A user-defined library is implemented within the operating environment’s file system. 

It is not automatically available in a SAS session. 

Accessing a Permanent Library with the LIBNAME Statement 
First, identify the location of the library. For example, a Microsoft Windows folder could be used as a SAS 
library. You can use an existing folder or create a new one. After a folder is identified or created, the Windows 
operating system knows about the folder, but SAS does not. To use this folder as a SAS library, you must tell 
SAS about it. Sometimes this is referred to as making a connection between SAS and the folder. 

To connect the folder to SAS, use a SAS LIBNAME statement to associate the libref with the physical location 
of the folder. The concept of a SAS library is the same regardless of the operating environment, but libraries 
have different physical implementations depending on the environment. In UNIX and Windows, a library is a 
directory or folder. On a mainframe, it is an operating system file.  
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The path must be written in a style appropriate for the environment and should include a full path. Examples 
are shown below.  

Windows: libname perm 'S:\workshop'; 

UNIX: libname perm '~/workshop'; 

z/OS: libname perm 'userid.workshop.sasfiles'; 

The SAS LIBNAME statement is a global SAS statement. It is not required to be in a DATA step or PROC step. It 
does not require a RUN statement. It executes immediately and remains in effect until changed, canceled, or 
until the session ends. It uses the following syntax: 

LIBNAME libref "SAS-library" <options>;

The libref must be eight characters or less and begin with a letter or underscore followed by letters, 
underscores, and digits. 

Tip: In the Microsoft Windows environment, an existing folder is used as a SAS library. The LIBNAME 
statement cannot create a new folder. 

In the UNIX environment, an existing directory is used as a SAS library. The LIBNAME statement cannot 
create a new directory. 

In the following example, we are associating the libref SP4R with the folder s:\workshop. 

libname SP4R "s:\workshop";

Check the log after submitting a LIBNAME statement to see that it executed successfully and assigned the 
libref to the physical folder. 

Data Set Names 
As a best practice, refer to both the library and the data set in DATA steps and PROC steps by using the 
convention library.data-set-name. To access data in a permanent library, you must use the library.data-set-
name convention. However, to access the temporary library Work, you do not need to use the library name. 
As a best practice, it is always encouraged to use the library name when you refer to a data set. For example, 
all of the following data set names are correct: 

SP4R.FROG 

work.cars 

cars 

Writing a Program in SAS Studio 
In this section, you will learn how to write a SAS program that enables you to see the cars data in the form of 
a report. To start a new program, go up to the top bar and click on the circle with seven dots inside and 
choose New SAS Program. You can also press F4 on your keyboard.  

In R, we generally pass a data frame matrix or vector to analyze it. In SAS, we are actually going to apply a 
procedure to a data table. 

Code Editor 
In the Program 1 workspace, type the word PROC. As you begin to type, notice the context-sensitive Help, 
which is useful when you are learning SAS programming, as shown in Figure 1.7. 
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Figure 1.7: Context-sensitive Help 

Keep typing and enter the word print. Notice how the context-sensitive Help changes. Scroll through the 
Context Help window. It gives you a little more syntax – BY statements, ID statements, SUM statements, VAR 
statements. Statements are additional arguments to a procedure. Look at the following syntax for PROC 
PRINT: 

PROC PRINT <option(s)>;
BY <DESCENDING> variable-1 <...<DESCENDING> variable-n><NOTSORTED>;
PAGEBY BY-variable;
SUMBY BY-variable;
ID variable(s) <option>;
SUM variable(s) <option>;
VAR variable(s) <option>;

The PRINT procedure prints the observations in a SAS data set, using all or some of the variables. You can 
create a variety of reports ranging from a simple listing to a highly customized report that groups the data and 
calculates totals and subtotals for numeric variables. Beginning in SAS 9.3, the PRINT procedure is now 
completely integrated with the Output Delivery System. 

The context-sensitive Help also provides links to SAS documentation and samples. To turn off the context 
Help, in the top bar select More Application Options  Preferences  Editor. Clear the Enable autocomplete 
check box. Select Save. To view the Context Help without the Autocomplete option, right-click a keyword and 
select Syntax Help.  

Finish the program by entering the following code:  

proc print data=sashelp.cars; 
run;

This program tells SAS to print the data table cars in the Sashelp library. The DATA= option tells SAS which 
data set to use for the specified procedure. Notice that the library name is followed by a period and then the 
data set name. Notice also that each statement ends with a semicolon. 

Results 
By now, you will have noticed that we do not have a command line interpreter. Instead, we are going to 
compile our code, and the results will be returned. 

Print the cars data table by clicking Run on the toolbar or pressing F3. The results are displayed on the 
RESULTS tab as shown in Figure 1.8. 



Chapter 1: Introduction to SAS   11

Figure 1.8: Program Results 

Scroll to view different parts of the table. You can open the results in another window, by clicking the Open in 
New Browser tab. In addition, the toolbar on the Results page provides several ways to save the results. You 
can download and save the results in a Word, PDF, or HTML document by selecting the appropriate icon. 

Log
As a best practice, always click the Log tab to view any errors, warnings, and notes. (See Figure 1.9.) 

Figure 1.9: SAS Log 

 

Click the Notes arrow to view the notes that were created. Notice that the log reports that there were 428 
observations read from the sashelp.cars data set. 

Tip: When the log reports errors, it is much easier to click the Errors arrow rather than searching for the 
error throughout the log. 

Adding Variables 
Let’s create a new program by selecting New Options at the top of the page and then selecting New SAS 
Program (or simply press F4).  
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Add the following code to the Program 2 workspace. Use the VAR statement to print only the desired column 
variables: Make, Model, MPG_City, and MPG_Highway.  

proc print data=sashelp.cars; 
    var 
run;

In the Libraries pane, select the arrow next to the cars data set to view the variables in the data set. Drag and 
drop the four variables into the program after the word var to complete the program. Don’t forget to put a 
semicolon at the end of the statement!  

You can see that the names of the variables are capitalized. SAS is not case-sensitive. The variable names 
could be all-caps, all-lowercase, or any combination of capitalization. This applies to the procedure name and 
any other part of the syntax. 

proc print data=sashelp.cars; 
  var Make Model MPG_City MPG_Highway; 

run;

Tip: You can also manually enter the name of each variable. 

Run the program and view the results, as shown in Figure 1.10. Notice that only the four variables specified in 
the VAR statement are printed on the Results page. 

Figure 1.10: Program Results 

 



Chapter 1: Introduction to SAS   13

Using Tasks 
In addition to features that make writing SAS code easier, SAS Studio also includes powerful point-and-click 
tasks that quickly generate reports and graphs. Let’s learn how to use tasks to generate summary statistics 
and plots. 

To see all available tasks, select Tasks in the Navigation pane and then expand Tasks (Figure 1.11). 

Figure 1.11: Tasks  

 

Notice that the tasks are separated into the following categories based on the analysis: 

Data  

Graph  

Combinatorics and Probability  

Statistics  

High-Performance Statistics  

Econometrics  

Forecasting  

Data Mining  

You can expand each node to view the possible tasks. Expand the Statistics task and double-click the 
Summary Statistics task. Notice that a new tab with some initialized code opens with the title Summary 
Statistics, as shown in Figure 1.12. All of the text in green (just like in R) is comment code. Everything between 
the /* and the */ is going to be commented out. 
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Figure 1.12: Summary Statistics Task 

 

In the Data section, click the Select a Table button and navigate to the cars data set in the Sashelp library. 
Click the plus symbol next to Analysis variables and select Weight as the analysis variable. Notice that SAS 
Studio automatically generates the code for the MEANS procedure, as shown in Figure 1.13. 

Figure 1.13: Summary Statistics Task—Data Section 

 

Click the OPTIONS tab to specify which options you want to use. Ignore the Basic Statistics options. In the 
Plots section, select the Histogram and Add normal density curve check boxes to create statistical graphics. 
Again, notice that SAS Studio automatically generates the code for the additional options, as shown in Figure 
1.14. 
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Figure 1.14: Summary Statistics Task—Options Section 

 

Run the generated code and view the results. The analysis is shown in a summary table and the plot is also 
printed on the Results page (Figure 1.15). 

Figure 1.15: Summary Statistics Task—Results  

 

Tip: You can save the program by clicking the Save button on the toolbar or by copying and pasting the 
code into an existing program. 

Using Snippets 
Code snippets enable you to quickly insert saved SAS code in your program and customize the code to meet 
your needs. Think of snippets as starter code. If there is code that you run often that you don’t want to have 
to type in every time from scratch, save it as a snippet. Let’s use snippets to create a scatterplot matrix.  
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Preloaded Snippets 
Open a new program tab by pressing F4. In the Navigation pane, select Snippets and then expand the 
Snippets arrow. In Figure 1.16 you can see the preloaded snippet categories. 

Figure 1.16: Snippets 

 

Expand Graph. Drag and drop the Scatter Plot Matrix snippet into the program workspace. The following 
code is generated:  

/*--Scatter Plot Matrix--*/ 
title 'Vehicle Profile'; 
proc sgscatter data=sashelp.cars(where=(type in ('Sedan' 'Sports'))); 
    label mpg_city='City'; 
    label mpg_highway='Highway'; 
    matrix mpg_city mpg_highway horsepower weight / 
      transparency=0.8 markerattrs=graphdata3(symbol=circlefilled); 
run;

This code will open up every time you click this snippet. It will not change. Notice that we are working with 
the sashelp.cars data. This is a complete coincidence! Click Run and view the results. (See Figure 1.17.) 
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Figure 1.17: Snippet Code Results 

 

Tip: Generally, snippets are used as a starter program. Thus, the generated code can be altered to fit 
your needs. 

Let’s go back to the code because, remember, snippets are just started code. Delete the WHERE option and 
change the Weight variable to the Length variable to create the following code: 

/*--Scatter Plot Matrix--*/
title 'Vehicle Profile'; 
proc sgscatter data=sashelp.cars; 
    label mpg_city='City'; 
    label mpg_highway='Highway'; 
    matrix mpg_city mpg_highway horsepower length / 
      transparency=0.8 markerattrs=graphdata3(symbol=circlefilled); 
run;

Click Run and view the results from the modified snippet (Figure 1.18). 
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Figure 1.18: Modified Snippet Code Results  

Custom Snippets 
Create your own snippet by clicking the New Snippet button in the Snippets pane. Copy and paste the SAS 
code that you want to use onto the Snippet 1 tab. Click Save on the Snippet 1 tab. In the Add to My Snippets 
window, type a name for your Snippet and click Save.  

Notice that the My Snippets section now has your custom snippet, which you can drag and drop onto any SAS 
Studio Program tab at your convenience. 

Calling R from SAS 
In this section, you will see how easy it is to work with R from SAS/IML. We can export our data to R and write 
R code directly in IML. This section includes advanced programs and techniques that show you what you will 
be able to do by the end of this book. We will not talk through the details of the code, but rather this will just 
show you what we are working toward at the end of this book. 

For this example, we will use the randomForest package in R. We will send the birth data set to R, use the 
randomForest() function to create a predictive model, and return the results to SAS. 

Program 1.2 invokes SAS/IML and sends the birth data set in the Work library to R and names the data frame 
birth as well. Write your R code between the SUBMIT and ENDSUBMIT statements. Use the randomForest 
package in R and the randomForest() function to estimate a model with BWT as the dependent variable and 
Smoke, HT, LWT, and PTL as independent variables. Use the SUMMARY statement to print the details of the 
analysis to the console. Finally, create a data frame with the actual and predicted values, given the model, and 
name the variables Actual and Predicted.  

Program 1.2: RandomForest Function 
proc iml; 

call ExportDataSetToR("work.birth","birth");

submit / r; 
    library(randomForest) 
    rf = randomForest(BWT ~ SMOKE + HT + LWT + PTL, 
      data=birth,ntree=200,importance=TRUE) 
    summary(rf) 
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    actual = birth$BWT 
    pred = predict(rf,data=birth) 
    actual.pred = cbind(actual,pred) 
    colnames(actual.pred) <- c("Actual","Predicted") 
endsubmit;

    call ImportDataSetFromR("Rdata","actual.pred"); 
quit;

Remember that we returned our data set, which opens in a new tab in OUTPUT DATA. Return the data frame 
to a SAS data set with the name Rdata. 

Tip: The output from the Summary function generated in the R console was printed in the SAS Results 
page as shown in Output 1.2. By default, SAS returns all the R console output directly to the SAS Results 
page, keeping it in R format. 

Output 1.2: Results from Program 1.2 
 Length Class Mode 
call 5 -none- call 
type 1 -none- character 
predicted 189 -none- numeric 
mse 200 -none- numeric 
rsq 200 -none- numeric 
oob.times 189 -none- numeric 
importance 8 -none- numeric 
importanceSD 4 -none- numeric 
localImportance 0 -none- NULL 
proximity 0 -none- NULL 
ntree 1 -none- numeric 
mtry 1 -none- numeric 
forest 11 -none- list 
coefs 0 -none- NULL 
y 189 -none- numeric 
test 0 -none- NULL 
inbag 0 -none- NULL 
terms 3 terms call 

Tip: If you are running SAS Studio in client/server mode, you do not have access to the Work library on a 
point-and-click basis. You must use the PRINT procedure to view the results. 
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Exercises 

Multiple Choice 
1. Choose the correct statement. 

a. SAS has a command line interpreter. 
b. SAS is case sensitive. 
c. SAS Studio and SAS University Edition are synonymous. 
d. SAS applies procedures to the data table for analysis. 

2. Which statement is a SAS syntax requirement? 
a. Begin each statement in column one. 
b. Put only one statement on each line. 
c. Separate each step with a line space. 
d. End each statement with a semicolon. 

Short Answer 
1. How many statements are contained this DATA step? 

data work.newsalesemps;
    length First_Name $ 12 Last_Name $ 18 Job_Title $ 25;
    infile "&path\newemps.csv" dlm=',';
    input First_Name $ Last_Name $
    Job_Title $ Salary;
run;
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Solutions 

Multiple Choice 
1. d 
2. d 

Short Answer 
1. This DATA step has five statements. 
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Introduction 
Now that you are comfortable navigating SAS Studio and have a feel for SAS syntax, in this chapter we will 
learn how to import data into SAS. We will start by creating a few data sets manually with the DATA step and 
then we will import some delimited raw data files. After we create new SAS data sets, you will learn how to 
report different features of the data, including how to change the appearance of SAS column headings and 
values with SAS labels and formats. 

For the rest of this book, you will generally see a “Duplicate the R Script” step. We will look at how to do 
something in R and then show how to do it in SAS. 

Manual Data Entry with the DATA Step 
In this section, we want to create a data set by hand. For example, suppose we want to create a data set with 
4 variables: first name, last name, age, and height. These variables are a mix of character and numeric values.  

Create a New Data Set 
To create a new SAS data set, we are going to use a DATA step. Recall from Chapter 1 that DATA steps are 
used to read in data or alter existing data sets. In SAS, the syntax of the DATA step is:  

DATA new-data-set-name;
LENGTH variable-a <$> # variable-a <$> # ...;
INPUT variable-a<$>    variable-b   ...;
DATALINES;
a1 b1 ... z1
a2 b2 ... z2
...
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an bn ... zn
;

run;

Tip: The < > symbols denote optional SAS syntax. 

We start with the DATA statement and specify a new data set name, and then we use the input statement to 
specify the variables to be in the data set. If the variables are character values, we need to specify a dollar sign 
after the variable name. 

Next, we specify a data line statement. It is a statement, so we use a semicolon. Then, we start writing our 
data in columns. So, column 1 is variable a, column 2 is variable b, and so on. After we enter all the data, add a 
semicolon. Then use a RUN statement to finish up the DATA step. 

By default, SAS only gives you 8 bytes in a single variable. Numeric values are stored in floating point notation 
storing up to 17 significant digits in 8 bytes. In a character variable, each character takes one byte. So by 
default, they can hold a maximum of 8 characters.  

If your data values are longer than 8 characters (for example, names), or shorter than 8 characters (for 
example, gender or state code), then you can use an optional LENGTH statement to specify a length for the 
variable. In the LENGTH statement, you can say variable a, then a dollar sign since it’s a character variable and 
then specify a number. How many characters do you want to be able to hold in a single variable? In general, 
you just need an upper bound. You don’t have to go into the data set and identify the largest variable. Maybe 
you just want to go up to 100 characters. But keep in mind, it’s going to save space to have fewer characters. 
So don’t specify a number of bytes that is extremely large because you don’t want to save unnecessary space. 

Tip: Character variables specified in the LENGTH and INPUT statements must be followed by the $ 
symbol. However, the INPUT statement does not require the $ symbol if the LENGTH statement is used. 

Example
In R, to create a new data set, we might create 4 vectors (first name, last name, age, and height), and then 
combine them to create a data frame, as shown in Figure 2.1. 

Figure 2.1: R Script 

Now let’s duplicate the R script in SAS. 

Program 2.1a: Duplicate the R Script in SAS 
data sp4r.example_data; 
    length First_Name $ 25 Last_Name $ 25; 
    input First_Name $ Last_Name $ age height; 
    datalines; 
    Jordan Bakerman 27 68 
    Bruce Wayne 35 70 
    Walter White 51 70 
    Henry Hill 65 66 
    JeanClaude VanDamme 55 69 
;
run;
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In Program 2.1a, we are creating a data set called EXAMPLE_DATA and saving it in the SP4R library. In the 
INPUT statement, there are 4 variables. FIRST_NAME and LAST_NAME are character-valued, so they require 
dollar signs. AGE and HEIGHT are numeric variables. 

Next, we specify the data lines and type in all the data on separate lines. Remember the final semicolon after 
the data, and don’t forget the RUN statement to finish up the DATA statement. 

You will notice that the last observation, JeanClaude, has more than 8 bytes. It has 10 characters. So we 
needed to use a LENGTH statement to change the number of bytes for the variable. In the LENGTH statement, 
we can specify lengths for FIRST_NAME and LAST_NAME. Here we used 25 characters as a length, but we 
don’t need to know the value with the maximum number of characters if you just specify an upper bound. 

Click Run to run Program 2.1a to make sure you have created your data set correctly. 

In Program 2.1b, we will create another data set. The only difference here is that you will notice we are 
reading in more than one observation per line. 

Program 2.1b: Duplicate the R Script in SAS Another Way 
data sp4r.example_data2; 
    length First_Name $ 25 Last_Name $ 25; 
    input First_Name $ Last_Name $ age height @@; 
    datalines;
    Jordan Bakerman 27 68 Bruce Wayne 35 70 Walter White 51 70 
    Henry Hill 65 66 JeanClaude VanDamme 55 69 
;
run;

In Program 2.1b, we have our first observation and then immediately following it, we have the second and 
third observations. To read in this data we need to use the trailing @@ symbol in the INPUT statement. That 
symbol tells SAS to hold the line and continue reading in data as new observations. If we didn’t use the trailing 
@@ symbol, we would only have 2 observations in this data set: Jordan Bakerman and Henry Hill. 

Tip: The @@ option at the end of the INPUT statement enables the DATA step to read in more than one 
observation per line. 

Create a New Data Set with Delimited Data 
Let’s look at another method for reading in data that uses some of the syntax we just learned, plus some 
options that will be discussed more in the next section. Perhaps you have a text file and you don’t want to 
import the file, you just want to read in the text values by copying and pasting the data into DATA step. But 
maybe that text file has delimited data. How can we read that in? 

Take a look at Program 2.2 where we create a new data set called EXAMPLE_DATA3. 

Program 2.2: Manually Creating a SAS Data Set from Delimited Data  
data sp4r.example_data3; 

length First_Name $ 25; 
infile datalines dlm='*'; 
input First_Name $ Last_Name $ age height; 
datalines; 
Jordan*Bakerman*27*68 
Bruce*Wayne*35*70 
Walter*White*51*70 
Henry*Hill*65*66 
Jean Claude*Van Damme*55*69 

;
run;

In Program 2.2, we use a LENGTH statement to change the first name variable to 25 characters maximum. 
Notice in this case that we are not setting a length for last name. Our INPUT statement has the same 4 
variables: first name, last name, age, and height. 
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In the DATALINES statement notice that the data is delimited with stars. In order to read in this data, we add 
an INFILE statement and use the keyword DATALINES. That tells SAS to read in the data under the DATALINES 
statement, as opposed to a delimited raw data file. We also use the DLM= option, which specifies the 
delimiter, which in this case is a star. 

When you run Program 2.2, the data table created should look exactly like the one created in the previous 
section. But remember, we only specified a length for the first name field. So the last name field defaults to 8 
bytes and some of the data will be truncated. 

Importing Data 
In this section, we will learn how to import a saved raw data file using either a DATA step or a PROC step to 
get back a new SAS data set. 

In R, we might use the read.csv function and create new data files from our CSV files. Once we read in the 
data, then we can use functions like COLNAMES to actually change the data frame column names. 

Import with a DATA Step 
To read in a delimited raw data file in SAS, we can use a DATA step. The syntax is very similar to the manual 
data entry syntax, but you will replace the DATALINES statement with the INFILE statement to read a raw data 
file as shown below: 

DATA output-data-set;
LENGTH variable <$> # variable <$> #…;
INFILE “data-file-path” DLM=‘delimiter’
INPUT variable <$> variable <$>…;

RUN; 

Start with the DATA statement, then specify a new SAS data set name. We will use the INPUT statement 
exactly as before and specify variable names. If the variable is a character data value, use the dollar sign. If we 
need to change the number of characters to something larger than 8, we will use a LENGTH statement. 

This time, however, instead of using the DATALINES statement, we will use the INFILE statement. In quotation 
marks, specify the path to the file. For example, an INFILE statement might look like the following:  

infile “&path/example.csv”;

The INFILE statement identifies the raw data file to be read and requires the delimiter option, DLM, if the raw 
data file is separated by something other than a space. For example, if your data is comma-delimited, your 
INFILE statement might look like the following: 

infile "&path\allnames.csv" dlm=',';

The INFILE statement must come before the INPUT statement. Some common delimiters are DLM=',' for .csv 
and DLM='09'x for tab-delimited files. 

Import with PROC IMPORT 
An alternative method to reading in delimited raw data files is the IMPORT procedure. The DATA step requires 
a bit more syntax, but gives you more control over how exactly to read in delimited raw data files. PROC 
IMPORT is a helpful method for use with files with more structure like CSV files or Excel workbooks. For 
example, if the first row in the data file has the variable names that you want to use in the SAS data set, PROC 
IMPORT makes it very easy to use those as the SAS variable names. 

For the PROC IMPORT procedure, the syntax to import a file with column names is below: 

PROC IMPORT OUT=data-set-name
DATAFILE= “data-file-path”
DBMS=identifier <REPLACE>;
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GETNAMES=<yes,no>;
SHEET=<"sheet.name">
DATAROW=<#>;

RUN; 

Start with a PROC IMPORT statement. In the OUT= option, you will specify the new SAS data set name. The 
next option, the DATAFILE= option lets you specify the full path to the data file (similar to the INFILE 
statement before). The DBMS= option is simply the identifier of the file. For example, if you are reading a CSV 
file, you simply specify CSV. If you are working with an Excel workbook, you would specify xlsx. 

If the first row of your data contains the variable names that you want to use as SAS variable names, then use 
the GETNAMES=yes option to read in those variable names and use them as the SAS data set variable names. 

SHEET is a great statement to be aware of. If you are reading in data sets from multiple sheets of an Excel 
workbook, you can specify the name of the sheet explicitly and read in only that specific data set. You can also 
specify a data row to start reading in the data. For example, if the first row has column names and the second 
row is blank, use DATAROW=3. 

Tip: The REPLACE option is used to write over existing SAS data tables with the same name. 

If you read in a delimited raw data file with PROC IMPORT and you don’t have variable names that you are 
going to use as SAS data set variable names, the variable names will default to var1, var2, var3, and so on. To 
change those after the data has been read in, you’ll need to use the DATA step. Simply specify the name of 
the data set we are working with and the SET statement tells SAS where to pull the data from. If the data set 
names and the data in the set statements are the same, it simply writes over that data set with our changes.  

You can change as many variable names in a single RENAME statement as you want. To rename the variables, 
use the RENAME statement as shown below: 

DATA data-table-name-new;
SET data-table-name-old;
RENAME old-var-1= new-var-1

old-var-2= new-var-2
…
old-var-n= new-var-n;

RUN; 
 

Examples 
Figure 2.2 shows an instance of reading in a CSV file in R. In this example, we will read in a delimited raw data 
file with a DATA step to duplicate the results from the R script in Figure 2.2. 

Figure 2.2: R Script 

 

In Program 2.3 we are printing a new data set called ALL_NAMES in the SP4R library. The allnames.csv file has 
the original five names that were used in the previous example as well as 195 other names. Of course, we 
would not want to type those out by hand! It’s much easier to save them in a CSV file and read them in with a 
DATA step. 

Program 2.3: Duplicate the R Script with a DATA Step 
data sp4r.all_names; 
    length First_Name $ 25 Last_Name $ 25; 
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infile "&path\allnames.csv" dlm=','; 
    input First_Name $ Last_Name $ age height; 
run;

The variable names are going to be the same names as in the example in the previous section: First_Name, 
Last_Name, age, and height. In the LENGTH statement in Program 2.3, we change the length of the first name 
and last name variables. In the INFILE statement, we specify the path to the data file. With the DLM= option, 
we specify the comma as the delimiter for the CSV file type. If you run this program, you should see a table 
with 200 observations in 4 columns. 

Figure 2.3 shows an instance of reading in a CSV file in R. In this example, we will read in a delimited raw data 
file with a PROC step to duplicate the results from the R script in Figure 2.3. 

Figure 2.3: R Script 

 

To duplicate this R script in SAS, let’s import a data set with the IMPORT procedure as shown in Program 2.4. 

Program 2.4: Duplicate the R Script with PROC IMPORT  
proc import out=sp4r.baseball 
    datafile= "&path\baseball.csv" DBMS=CSV REPLACE; 
    getnames=yes; 
    datarow=2; 
run;

data sp4r.baseball; 
    set sp4r.baseball; 
    rename nAtBat = At_Bats 
    nHits = Hits 
    nHome = Home_Runs 
    nRuns = Runs 

nRBI = RBIs 
    nError = Errors; 
run;

In the PROC IMPORT statement, we use the OUT= option to specify the data set name. In the DATAFILE= 
option, we specify the path to the baseball.csv data file. The file type is, of course, CSV. We use the REPLACE 
option to overwrite any existing data sets in the SP4R library with the same name. 

Now this CSV has the first row with the variable names that we want to use as SAS data set variable names, so 
we use the GETNAMES=yes option. Then we tell SAS to start reading in the data on row 2. 

Run just the IMPORT procedure portion of Program 2.4 by highlighting only that portion of the code. In the 
OUTPUT DATA tab, we can see the data set, which is from the 1986 MLB season. It includes the names of 
players, the team that they played for, and several other variables indicating player performance. You will 
notice that the performance measure variable names start with n: nAtBat, nHits, nHome, and so on. Maybe 
we don’t the n character in front of all those variable names. 

To change the variable names, we use the RENAME statement in a DATA step, as shown in the second part of 
the code in Program 2.4. In the DATA statement and the SET statement, we specify the same name, baseball. 
This overwrites the existing data set. In the RENAME statement, we change nAtBat to At_Bats, nHits to Hits, 
and so on. Once you run the second part of the code in Program 2.4, your data set will display with the new 
variable names. 
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Reporting Data 
Now that we know how to get our data into SAS, we want to report the data and bring some features into a 
report. To do this, we will use a few different PROC steps and return some results. 

In R, when we read in a data set, we can use several different functions including: 

head() to print the first 6 rows to make sure we read it in correctly 

names() to see the variable names 

dim() to see the dimension of the data set 

levels() to identify the unique levels of the classification variables 

In R, we can also print variables conditionally. We can do all this in SAS with a few different procedures. 

PROC CONTENTS 
The first reporting procedure that we will learn about is the CONTENTS procedure. It provides the same 
information as the R functions dim() and names(). It provides us the number of observations, the number of 
variables, as well as the variable names in the data set. Program 2.5 shows a simple CONTENTS procedures 
and Output 2.5 shows the results of running the program. 

Program 2.5: CONTENTS Procedure 
proc contents data=sp4r.cars varnum;
run;

Output 2.5: Results of Program 2.5 

 

As a best practice, use the VARNUM option in the CONTENTS statement so that SAS will print the variables to 
the results page in the order in which they appear in the data set. Of course, in SAS Studio, if you wanted to, 
you could simply open up your data set and view that information in the appropriate data table tab. 

PROC PRINT 

FIRSTOBS= and OBS= Options 
To reproduce the head() function in R, we simply use the FIRSTOBS= and the OBS= option in the PROC PRINT 
statement. As shown in Program 2.6, in parentheses, we will say FIRSTOBS=1 and OBS=6, which will print just 
observations 1 through 6, as shown in Output 2.6. 

Program 2.6: FIRSTOBS= and OBS= Options in Print Procedure 
proc print data=sp4r.cars (firstobs=1 obs=6);
run;
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Output 2.6: Results of Program 2.6 

Of course, you can change the numbers in the FIRSTOBS= and OBS= options. If you wanted to print 
observations 10 through 20, you could simply change those options as you see fit. By default, PROC PRINT 
displays all observations and all variables if you do not use the OBS= option. 

Tip: If you start from observation 1, you do not need FIRSTOBS=1. 

WHERE Statement 
We saw in Chapter 1 that to print only specified variable, we simply list them in the VAR statement. But what 
if we wanted to print observations conditionally? We can use a WHERE statement and provide it a conditional 
expression, as shown in the syntax below: 

PROC PRINT DATA=data-table <options>;
VAR variable1 variable2 …;
WHERE conditional-expression;

RUN;

The WHERE statement is very powerful and consistent. It can be used in other procedures as well. Here are 
some examples of WHERE expressions:

where salary > 5000 

where gender=’Male’; 

where upcase(gender)=’MALE’; 

The last two examples show one of the few instances where SAS is case-sensitive. Notice that we are quoting 
the word ‘Male’. In that case, you need to specify the observations exactly as it appears in the SAS data table. 
If it appears as Male, you need to specify it exactly that way. It will not find observations for ‘male’. To avoid 
case sensitivity, you can use the UPCASE function to capitalize all observations.  

PROC SQL 
To reproduce the levels() function in R to actually find the unique levels of a classification variable, we will use 
PROC SQL (pronounced “sequel”). PROC SQL is a very large, very powerful procedure that can do lots of 
different tasks. For example, it can subset data, call data, and combine data. Any type of querying of data can 
be done using PROC SQL. If you are familiar with the open-source SQL, you can use all the same functionality 
directly in SAS. The only difference is that you have to use the PROC SQL step. 
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To print the unique levels of a classification variable, the PROC SQL syntax is shown below. 

PROC SQL;
SELECT UNIQUE variable-name FROM data-table-name;

QUIT;

Use the SELECT UNIQUE statement and then specify the variable name for which you want to print unique 
levels. Use the keyword FROM and specify the data table to be queried.  

In Program 2.7, we query the CARS database to select the unique levels of the variable ORIGIN. 

Program 2.7: PROC SQL  
proc sql;
    select unique origin from sp4r.cars;
quit;

Output 2.7: Results of Program 2.7 

 

In Output 2.7, you can see that it prints Asia, Europe, and USA. 

Comparison Operators 
Most of the comparison operators in SAS are exactly the same as in R. Greater than, less than, greater than or 
equal to, and less than or equal to are exactly the same. The ones that are different are the equal to and not 
equal to operators. In SAS, we do not use the exclamation point to denote not equal to something, but we do 
have three other options as shown in Table 2.1. Also, we do not use the double equal sign in SAS. If you are 
using multiple equal signs in SAS, the first equal sign is actually the assignment and the second equal sign acts 
as the binary operator. 

Table 2.1: Comparison Operators 

R operator SAS operator Mnemonic Definition 

== = EQ Equal to 

!= ^= ¬= ~= NE Not equal to 

> > GT Greater than 

< < LT Less than 

>= >= GE Greater than or equal to 

<= <= LE Less than or equal to 

OR  IN Equal to one of a list 
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You can also use the mnemonic terms listed in Table 2.1 if you don’t want to write out the symbols or cannot 
remember the symbols in SAS. 

Another really powerful operator is the IN operator. This asks the question, “Is it equal to one of a list?” It’s 
very similar to the OR operator in R. 

As an example, suppose we want to print observations where country is in the following list: 

where country in (‘US’, ‘CA’);

We use parentheses and specify the list: US, Canada. Again, if it’s quoted, it’s case-sensitive. So in a PROC 
PRINT statement, this WHERE statement is only going to print observations where the country is either US or 
Canada. 

The logical operators AND and OR have the symbols in SAS as they do in R, as shown in Table 2.2. Again, the 
exclamation point is not used in SAS, so you have to use one of the three symbols that are acceptable. 

Table 2.2: Logical Operators 

R 
operator 

SAS 
operator Mnemonic Priority 

! ^ ¬ ~ NOT I 

& & AND II 

| | OR III 

You can also just use the mnemonic terms NOT, AND, or OR. 

As another example, suppose we want to print observations where the country is not either the US or Canada. 
We would use the following operators in the WHERE statement: 

where country not in (‘US’, ‘CA’);

Enhanced Reporting 
In this section we will apply labels and formats to our data sets and results to alter the presentation of the 
data table or report. We will learn how to change the display of column and variable names, apply formats 
such as dollar signs to numeric variables, and change date formats. 

LABEL Statement 
The LABEL statement is used to change the display of the column variables. The syntax is as follows: 

LABEL variable-1=‘label-1’ … variable-n=‘label-n’; 

In the LABEL statement, we specify the variable name then set it equal to a new variable name. Program 2.8 
shows an example of how to change the column names from FN and LN to First Name and Last Name. 

Program 2.8: LABEL Statement 
proc print data=sp4r.business label;
    label FN='First Name' LN='Last Name'
run;
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In the LABEL statement, we specify the variable name FN and set it equal to a new display – “First Name”. We 
do the same thing for LN and set it equal to “Last Name”. This only changes the display of the columns. The 
variable names remain FN and LN.  

When you are using a LABEL statement with a PRINT procedure, you have to use the LABEL option. But in 
other procedures, you can just use the LABEL statement. 

Format Statement 
Next, let’s learn how to apply formats. Formats change the appearance of the observations in a report. They 
do not change the actual value. 

Here are few examples of using formats to change the appearance of observations: 

10866 (SAS Date)  01/10/1989 

5950.35  $5,950.35 

All SAS formats have the following syntax: 

<$>format<w>.<d>

$ Optional. Indicates a character format. 

format Names the SAS format. 

w Optional. Specifies the total format width, including decimal places and special 
characters. 

. Required syntax. Formats always contain a period (.) as part of the name. 

d Optional. Specifies the number of decimal places to display in numeric formats. 
 

Formats begin with a $ if it is a character format, followed by the name of the format, an optional width, and a 
required dot delimiter. The format also contains an optional number of decimal places for numeric formats. 

SAS has many built-in character, numeric, data and time, and ISO 8601 formats. An extensive list of these 
formats can be found on the following page: 
http://support.sas.com/documentation/cdl/en/leforinforref/64790/HTML/default/viewer.htm#p0z62k899n6
a7wn1r5in6q5253v1.htm 

So how do we actually apply a format? Program 2.9 shows an example of using a format statement in a PRINT 
procedure. 

Program 2.9: FORMAT Statement 
proc print data=sp4r.business;
    format salary dollar8. hire_date mmddyy10.;
run;

In the PRINT procedure, we specify the variable in the data set in the FORMAT statement. Then, immediately 
following the variable name (SALARY), we specify the format to be applied to the variable (DOLLAR8). Then we 
apply the format MMDDYY10 to the variable HIRE_DATE. 

As you can see in Output 2.9, Salary now has a dollar sign and a comma and Hire_Date is in a readable date 
format. 
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Output 2.9: Results of Program 2.9 

 

Tip: As a best practice, use LABEL and FORMAT statements directly in the DATA step when you are 
reading in your data. When you do this, it automatically applies these labels and formats going forward. 
If you open up your data set, you will actually see the labels and formats already applied. 

If you create a report, it will apply those labels and formats also. That way, you don’t have to explicitly 
specify LABEL and FORMAT statements going forward. 

Formats
Let’s look at an example of some common formats. The middle column of Table 2.3 is the stored value in the 
SAS data set.  

Table 2.3: SAS Format Examples  

Format Stored Value Displayed Value 

DOLLAR12.2 27134.5864 $27,134.59 

DOLLAR9.2 27134.5864 $27134.59 

DOLLAR8.2 27134.5864 27134.59 

DOLLAR5.2 27134.5864 27135 

DOLLAR4.2 27134.5864 27E3 

In the first row of Table 2.3, if we apply the DOLLAR12.2 format, it’s going to apply the DOLLAR format with a 
width of up to 12 characters and maximum of 2 decimal places. The width is for all characters and includes the 
dollar sign, comma, and period. So the displayed value includes 10 characters for this format. 

If the format width is not large enough to accommodate a numeric value, the displayed value is automatically 
adjusted to fit the width. In the second row of the table, we change the width of the format to 9. Notice in the 
displayed value that the comma is removed. In the third row, when we reduce the width to 8, notice the 
dollar sign is also removed. When we get to the last value in the table with a width of 4, it is displayed in 
scientific notation. 

SAS Date Formats 
When working with SAS date formats, the value in the data table represents the number of days since January 
1, 1960. Thus, a value of zero represents that date. Going forward in time, for example, 366 days forward will 
represent January 1, 1961. Going even further, 88,399 days represents January 11, 2022. To go back in time 
prior to January 1, 1960, we will simply use the dash. So -365 represents January 1, 1959, and so on, as shown 
in Figure 2.4. 
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Figure 2.4: SAS Date Format Timeline 

Let’s look at an example of how to use SAS date formats. The middle column of Table 2.3 is the stored value in 
the SAS data set.  

Table 2.4: SAS Date Format Examples  

Format Stored Value Displayed Value 

MMDDYY10. 0 01/01/1960 

MMDDYY8. 0 01/01/60 

MMDDYY6. 0 010160 

DDMMYY10. 365 31/12/1960 

DDMMYY8. 365 31/12/60 

DDMMYY6. 365 311260 

If we apply the MMDDYY10 format to a value of zero, it’s going to display 01/01/1960. When we reduce the 
format to the width of 8 to the same value, it simply removes the 19 in the year. When we reduce the width 
to 6, it removes the slashes. You can see that the width is extremely important when you are displaying a SAS 
date value. 

There are many different formats that you can apply to dates. Table 2.4 shows MMDDYY and DDMMYY 
formats, which display the order of the day and month differently. 

You might be asking yourself, Do I really need to know the number of days since January 1, 1960 to actually 
work with SAS date formats? The answer, of course, is no. That would be too much of a pain! We use what are 
called informats, meaning that your data is already in the appropriate format. These will be discussed in the 
example at the end of this section. 

FORMAT Procedure 
As mentioned earlier, SAS comes with many built-in formats. However, if SAS does not offer the exact format 
that you need, you can create your own format. 

PROC FORMAT enables you to create your own user-defined formats. To do so, we will use individual value 
statements and then name the format. The syntax for PROC FORMAT is as follows:  

PROC FORMAT;
VALUE <$> format-name range1 = ‘label1’ …;

RUN;
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A format name can be a maximum of 32 characters in length. Character formats must begin with a dollar sign 
followed by a letter or underscore. Numeric formats must begin with a letter or underscore, cannot end in a 
number, cannot be given the name of a SAS format, and cannot include a period in the VALUE statement.  

Labels can be a maximum of 32,767 characters in length and are enclosed in quotation marks. 

Let’s look at an example of how to use PROC FORMAT to create and apply user-defined format in Program 
2.10. 

Program 2.10: PROC FORMAT 
proc format;

value $jobformat 'SR'='Sales Rep'
'SM'='Sales Manager';

value bonusformat 0='No' 1='Yes';
run;

proc print data=sp4r.business;
    format job $jobformat. bonus bonusformat.;
run;

In Program 2.10, we create 2 formats in the FORMAT procedure. Recall that if we are working with character 
data, we start with the dollar sign. We name the first format jobformat. Then we change the display of SR to 
Sales Rep and SM to Sales Manager. 

You can have as many value statements as you want to create as many user-defined formats as you want in a 
single FORMAT procedure. Next, we create bonusformat, which changes the display of the value 0 to no and 1 
to yes. This format can be helpful when working with logistic regression so that you don’t have a meaningful 
response as a value, rather than just a binary 0 or 1. 

In the PRINT Procedure, we apply the formats that we have just created to the variables that we want to 
format. You can see the results of the formats in Output 2.10. Remember that the name of the format must 
end with a period in the FORMAT statement. After the period is added, the format name becomes green. 

Output 2.10: Results of Program 2.10

Tip: LOW, HIGH, and OTHER are built-in SAS keywords that can be helpful when you format numeric 
data. 

Example with Informats 
In this example, we are creating a data set called EMPLOYEES, as shown in Program 2.11. We have only 2 
variables in this data set: Name, a character variable, and Birthday. Notice that for Birthday, we are applying 
an informat in the first DATA step. To do this, we use the colon to tell SAS that the data we are reading in is 
already in the specified format. It’s already in MMDDYY8. 

Program 2.11: Reporting Example with Informats 
data employees; 
    input name $ bday :mmddyy8. @@; 
    datalines; 
    Jill 01011960 Jack 05111988 Joe 08221975 
;
run; 
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proc print data=employees; 
run;

 
If you go to the DATALINES statement, you will see that we have a name and then a date in an MMDDYY 
format. By using the informat, we don’t have to actually calculate the number of days from January 1, 1960. 
Remember that if you are reading in more than one observation per line, you want to use the trailing @@ 
symbol.  

Run this code to see the results in Output 2.11. Notice that it actually converts the dates to a SAS date value. 
The bday column is showing the number of days since January 1, 1960. 

Output 2.11: Results of Program 2.11 

 

To actually keep the display of labels and formats, let’s try this a different way by using the LABEL and 
FORMAT statements in the DATA step, as shown in Program 2.12. This code is the exact same DATA step as in 
Program 2.11. The only difference is that now we have a LABEL and FORMAT statements. 

Program 2.12: Reporting Example with Informats, Formats, and Labels 
data employees; 
    input name $ bday :mmddyy8. @@; 
    format bday mmddyy10.; 
    label name="First Name" bday="Birthday"; 
    datalines; 
    Jill 01011960 Jack 05111988 Joe 08221975 
;
run;

proc print data=employees label;
run;

In the first DATA step of Program 2.12, we are reading in the bday variable with the MMDDYY8. format, and 
then immediately applying a different format, the MMDDYY10. format. We use the LABEL statement to 
change the display of the column headings. Most SAS procedures apply the stored labels automatically, but 
remember that PROC PRINT is a little bit different. It only applies labels if you specify the LABEL option in the 
PROC PRINT statement. 

Run this code to see the results in Output 2.12. You will notice the appropriate displays of labels and formats. 

Output 2.12: Results of Program 2.12 

 

  



38   SAS Programming for R Users   

Exercises 

Multiple Choice 
1. Which DATA step options and statements are missing to correctly read in the Class data? (Select all 

that apply.) 
a. the @@ option to read in more than one observation per line 
b. the $ option to read in character data 
c. the semicolon after the data 
d. The data set name is case sensitive and should be CLASS. 

data class;
input grades
datalines;
B- A A+ C+ F- A- A B+ B+ B

run;

2. Which SAS procedures are used to reproduce the R functions levels(), dim(), head(), and names()? 
a. PRINT, PRINT, PRINT, CONTENTS 
b. SQL, CONTENTS, PRINT, CONTENTS 
c. CONTENTS, PRINT, PRINT, SQL 
d. SQL, SQL, CONTENTS, PRINT 

3. The PROC step below prints the variables grades, student, and year from the class data set for all 
students with grades D or higher. (Assume that the data is clean and there are no + or –grades.) 
proc print data=class;
    var grades student year;
    where upcase(grades)^='F';
run;

a. True 
b. False 

Programming Exercise 
1. Labeling, Formatting, and Conditional Printing 

Modify the DATA step, shown below, to complete the exercises. This DATA step generates the CLASS data 
table with 20 observations and four variables. 

data sp4r.class;
input student $ country $ grade bd @@;
datalines;
John Spain 95 12000 Mary Spain 82 12121 Alison France 98 12026
Nadine Spain 77 12222 Josh Italy 61 12095 James France 45 12301
William France 92 12284 Susan Italy 95 12079
Charlie France 88 12234 Alice Italy 89 12014 Robert Italy 92 12025
Emily Spain 87 12148 Arthur Italy 99 12052 Nancy France 70 12238
Kristin France 65 12084 Sara Italy 49 12322 Ashley Spain 96 12299
Aaron France 95 12052 Sean France 87 12254 Phil Italy 86 12036
;

run;

a. Use PROC FORMAT to create a format for the GRADE variable. 

Grade Grade Format 

0–59 F 
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60–69 D 

70–79 C 

80–89 B 

90–100 A 

b. Use the DATA step above to read in the Class data set. In the DATA step, label the variable bd as 
“Birthday” and apply the GradeFormat created in part a. In addition, use the SAS format WORDDATE 
for the bd variable. 

c. Print the Class data table. (Remember to use the LABEL option in the PRINT statement.) 

d. Use PROC SQL to print the unique levels of the country variable. 

e. Conditionally print the variable student, country, and grade for people with a grade above 79 and 
from France only. 
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Solutions 

Multiple Choice 
1. a, b, and c 
2. b 
3. a 

Programming Exercise 
1. 
a.  
proc format;
value gradesformat 0-59='F' 60-69='D' 70-79='C' 80-89='B'
90-100='A';

run;

b.  

data sp4r.class;
input student $ country $ grade bd @@;
label bd='Birthday';
format grade gradesformat. bd worddate.;
datalines;
John Spain 95 12000 Mary Spain 82 12121 Alison France 98 12026
Nadine Spain 77 12222 Josh Italy 61 12095 James France 45 12301
William France 92 12284 Susan Italy 95 12079
Charlie France 88 12234 Alice Italy 89 12014 Robert Italy 92 12025
Emily Spain 87 12148 Arthur Italy 99 12052 Nancy France 70 12238
Kristin France 65 12084 Sara Italy 49 12322 Ashley Spain 96 12299
Aaron France 95 12052 Sean France 87 12254 Phil Italy 86 12036
;

run;

c.  

proc print data= sp4r.class label;
run;

d.  

proc sql;
select unique country from sp4r.class;

quit;

e.  

proc print data= sp4r.class;
var student country grade;
where grade>79 and country='France';

run;
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Introduction 
The DATA step is the key to reading your data and altering existing SAS data sets to meet your specifications. 
In this chapter, we will discuss some additional DATA step techniques for managing day-to-day SAS 
programming requirements. We will learn how to create and add new variables to an existing SAS data set, 
use built-in SAS functions to transform data, create new functions, and subset and concatenate SAS data sets. 

Creating New Variables 
In this section, you will learn how to create and add new variables to the data set using a DATA step. In R, we 
typically use the dollar sign syntax to add a variable to our data frame, as seen in Figure 3.1. We will learn how 
to do the same thing with a DATA step. And by the end of this section, you will learn how to conditionally 
create a variable using syntax like IF ELSE, IF, and ELSE functions. 
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Figure 3.1: R Script 

To add a variable to a data set in SAS, we are going to start with our DATA step, specify the name of the data 
set we're working with, and the same name in the SET statement. Again, this overrides the existing data set 
with your changes. Recall from Chapter 2 that the syntax of the DATA step is as follows: 

DATA new-data-set-name;
LENGTH variable-a <$> # variable-a <$> # ...;  
INPUT variable-a<$>    variable-b   ...;
DATALINES;
a1 b1 ... z1
a2 b2 ... z2
...
an bn ... zn
;

run;

In Program 3.1, we are creating a new variable called wheelbase_plus_length by adding together two 
variables in the cars data set. You can add in as many variables as you want in a single DATA step. 

Program 3.1: Duplicate the R Script 
data sp4r.cars;
    set sp4r.cars;
    wheelbase_plus_length = wheelbase+length;
run;

Creating Conditional Numeric Variables 
Moving on, let's go ahead and create variables conditionally now. Let’s tie this to an example. Suppose car 
manufacturers receive an economic incentive for manufacturing cars with high highway miles per gallon.  

Therefore, we want to create a variable called Bonus. We want Bonus to be 2,000 if MPG Highway is greater 
than or equal to 30 and 1,000 if MPG is between 20 and 29. Otherwise, we want Bonus to be 0. 

MPG Highway Bonus 

>=30 2,000 

20–29 1,000 

<20 0 
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IF THEN Statements 
So how can we accomplish this? We can use IF THEN statements. 

IF expression THEN statement; 
 
We will use the cars data set for this example shown in Program 3.2. Using the DATA step, first initialize the 
new variable, Bonus and set it equal to 2000. This means we are setting every element in the column equal to 
2000. Next, use IF statements to change the values conditionally. In the IF statement, we give it an expression. 
IF mpg_highway is less than 20 THEN set bonus equal to 0. We will use a second IF statement for the last 
category. IF mpg_highway is greater than or equal to 20, AND (the operator that we learned in Chapter 2) 
mpg_highway is less than 30, THEN set bonus equal to 1000. 

Program 3.2: Creating a Conditional Variable with the IF THEN Statement 
data sp4r.cars;
    set sp4r.cars;
    bonus=2000;
    if mpg_highway<20 then bonus=0;
    if mpg_highway>=20 and mpg_highway<30
    then bonus=1000;
run;

Tip: The bonus = 2000 statement initializes the bonus variable. 

Using multiple IF statements is not the most efficient way to accomplish this task. Why? Well, because these 
are mutually exclusive categories. If we test that mpg_highway is less than 20 and we set bonus to 0, we then 
test another category, which, of course, cannot be possible. 

ELSE IF and ELSE Statements 
It would be much more efficient if we could fall out of the loop if we tested that the category was true. To do 
this, we will use the ELSE IF and ELSE statements, just like the ELSE IF and ELSE function in R. The syntax for 
ELSE IF statements is as follows: 

IF expression THEN statement;
<ELSE IF expression THEN statement;>
<…>
<ELSE statement;> 

In the DATA step in Program 3.3, the first thing you will notice is that the bonus variable has not been 
initialized. We do not need to do that in SAS. The first IF statement, IF mpg_highway is less than 20, THEN, the 
first instance of the bonus variable is set equal to 0. This is the first place we see the bonus variable in this 
DATA step. Again, we are assuming that Bonus is not in the cars data set in this example. 

Next, if the first IF statement is not true, we will go to the next ELSE IF statement. So IF it is greater than 20 
AND mpg_highway is less than 30, THEN bonus equals 1000. As a catch-all, the ELSE statement sets Bonus 
equal to 2000. This is much more efficient conditional processing. Again, if we test that the category less than 
20 is true, we set bonus equal to 0, fall out of the loop, and don't test any more conditions. 

Program 3.3: Creating a Conditional Variable with ELSE IF and ELSE Statements 
data sp4r.cars;
    set sp4r.cars;
    if mpg_highway<20 then bonus=0;
    else if mpg_highway<30 then bonus=1000;
    else bonus=2000;
run;

proc print data=sp4r.cars (firstobs=76 obs=81);
    var mpg_highway bonus;
run;
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Tip: The bonus = 1000 statement was removed in favor of the ELSE statement. 

Run Program 3.3 and view the results of the PROC PRINT statement to make sure it worked correctly as 
shown in Output 3.3. If mpg_highway is greater than or equal to 30, we have a bonus of 2000. If it is between 
20 and 30, it's a $1,000 bonus. And otherwise, here, mpg_highway at 17 is a bonus of 0. 

Output 3.3: Partial Results of Program 3.3 

Creating Conditional Character Variables 
The bonus variable we just created in the previous section was a numeric variable. Now let's create character 
variables conditionally by looking at another example using the cars data set. Suppose in addition to the Type 
variable, a variable that indicates whether the vehicle is associated with being a family vehicle should also be 
in the cars data set. 

Let’s create a new variable to account for this information in Program 3.4 and call that new variable Type2. If 
the car type is Hybrid, SUV, Sedan, or Wagon, we will set the Type2 variable to Family Vehicle. Otherwise, we 
will set the variable to Truck or Sports Vehicle. 

Type Type2

Hybrid Family Vehicle 

SUV  Family Vehicle 

Sedan Family Vehicle

Wagon  Family Vehicle 

Others  Truck or Sports Vehicle 

Program 3.4: Creating a Conditional Character Variable 
data sp4r.cars;
    set sp4r.cars;
    length type2 $ 25; 

if type in ('Hybrid','SUV','Sedan','Wagon') 
        then type2='Family Vehicle';
    else type2='Truck or Sports Vehicle'; 
run;

proc print data=sp4r.cars (firstobs=61 obs=64);
    var type type2;
run;

    Remember that any time we are creating new character data, as a best practice, you should use the 
LENGTH statement. Here we are changing the length of the new character variable type2 (hence, we use 
the dollar sign), to a maximum of 25 characters. 
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   To create the type2 variable conditionally, first start with the IF statement. IF type is Hybrid, SUV, Sedan, 
or Wagon, THEN type2 is set to Family Vehicle.  

   The catch-all ELSE statement will set type2 equal to Truck or Sports Vehicle. 

Looking at the data set in Output 3.4 to make sure it was processed correctly, we can see that the type2 
variable is Family Vehicle for Sedan and SUV and Truck or Sports Vehicle for the other two. 

Output 3.4: Results of Program 3.4 

Creating Conditional Variables with a DO Group 
In the previous sections when we used IF, ELSE IF, and ELSE statements, we only executed a single statement 
after the key word THEN. What if we want to create multiple variables? You will have to execute multiple 
statements. The way to do this is in SAS is to use a DO group.  

The DO group will be used often in the subsequent chapters. We will see it in Chapter 7 when we do matrix 
simulation and we want to execute something conditionally. It's a great piece of syntax to keep in your back 
pocket. The general form of conditional DO Group syntax is:  

So how do we use the DO group? Well, we begin the same way as an IF THEN statement. IF, specify our 
expression, THEN we use the keyword DO, followed by a semi-colon. And then we execute whatever 
statements we want to create as many variables as we want, as shown in the following syntax: 

IF expression THEN DO;
executable statements

END;
ELSE IF expression THEN DO;

executable statements
END;
ELSE DO;

executable statements
END; 

Remember to always end your DO groups with the END statement. The same goes for the ELSE IF and ELSE 
statements as well! 

To practice using the DO group, let's return to our cars data set. Now suppose again that car manufacturers 
receive an economic incentive for manufacturing cars with high highway miles per gallon. This time, we are 
going to say that the bonus comes in either one, two, or, if they don't get a bonus, no payments. 

If Miles Per Gallon Highway is greater than or equal to 30, we want to create a new variable called Bonus, 
which is 1,000. And we want to create a new variable called Frequency specifying that they get the bonus in 
Two Payments. If Miles Per Gallon Highway is between 20 and 29, we will set bonus to 1,000 and say that the 
frequency comes in only One Payment. And, of course, if they do not receive a bonus, we will just say No 
Payment for the Frequency variable. 

MPG Highway Bonus Frequency 

>=30 1,000 Two Payments 

20–29 1,000 One Payment 
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MPG Highway Bonus Frequency 

<20 0 No Payment 

To create these two variables conditionally, we will again use a DATA step as shown in Program 3.5.  

Program 3.5: Creating Variables with DO Groups 
data sp4r.cars;
    set sp4r.cars;
    length frequency $ 12; 
    if mpg_highway<20 then do; 
        bonus=0;
        frequency='No Payment';
    end;
    else if mpg_highway<30 then do; 
        bonus=1000;
        frequency='One Payment';
    end;
    else do; 
        bonus=1000;
        frequency='Two Payments';
    end;
run;

proc print data=cars (firstobs=65 obs=68);
    var mpg_highway frequency;
run;

    Always remember the LENGTH statement when you are creating character data.  
    In the first DO group, if miles per gallon highway is less than 20, then we want to do the following: we 

want to create two variables. Set bonus equal to zero and frequency equal to No Payment. Be sure to use 
an END statement to end the DO group. 

    Next, ELSE IF miles per gallon highway is less than 30 and greater than 20, then do the following: set 
bonus equal to 1,000 and frequency equal to One Payment.  

    Finally, ELSE do the following: bonus equals 1,000 and frequency equals Two Payments. 

When we execute the DATA step and print the data set as shown in Output 3.5, for the first observation we 
have no bonus and No Payment. The second observation is a bonus of $1,000 and One Payment. And the last 
observation is a bonus of $1000 and Two Payments. 

Output 3.5: Results of Program 3.5 

 

Creating and Using Functions  
In this section, you will learn how to use some built-in SAS functions to assist in creating new variables—
functions like SUM, ABSOLUTE, EXPONENTIATE, ROUND, and so on. We will use all these in a DATA step to 
create our new variables. By the end of this section, you will have learned how to create your own user-
defined function to be used inside a DATA step. 
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Creating a Numeric Variable 
Figure 3.2 shows a function called mydivision in R with two arguments, numerator and denominator. It 
returns a value of 0 if the denominator is 0. Otherwise, it returns the value of the numerator divided by 
denominator. 

Figure 3.2: R Function 

 

To create a new variable using a built-in SAS function, we will do it the exact same way as in R. In SAS, we will 
use it in our DATA step using the following syntax: 

new-variable = FUNCTION(arguments); 

In Program 3.6, we have our DATA statement, our SET statement, and then we are creating a variable called 
log_price, which is equal to the log of msrp, meaning we are just taking the log of every element in that 
variable. 

Program 3.6: SAS Function Example 
data sp4r.cars;

  set sp4r.cars;
    log_price = log(msrp);
run;

Most functions in SAS operate the exact same way as you would expect coming from R. For example, 
EXPONENTIATE, LOG, SQUARE ROOT, ROUND, CEILING, FLOOR—they all operate the exact same way, 
meaning that they apply that operation to every element in the variable. 

However, a few of the built-in functions do not operate the way that you would expect coming from R, 
particularly the first row of Table 3.1—SUM, MEAN, VAR, MEDIAN, MIN, and MAX. 

Table 3.1: Built-in SAS Functions 

SAS Functions

SUM, MEAN, VAR, MEDIAN, MIN, MAX

EXP, LOG, SQRT, SIN, COS, TAN

ROUND, CEIL, FLOOR, ABS

+, -, *, /, **

 

Note: SAS does not use the ^ symbol for exponentiation. It uses the double star (**). 

When we are using built-in SAS functions in a DATA step, these functions only operate on rows. For example, 
in R, if we use the SUM function on a vector, it would sum every element of that vector. In SAS, it is only going 
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to apply that operation to each individual row. Applying functions to columns is done using a SAS procedure, 
which is discussed in Chapter 5. 

Let’s look at an example to illustrate this in Program 3.7. Here we are creating mean_ miles per gallon, and, 
using the MEAN function, setting that equal to the mean of miles per gallon highway and miles per gallon city. 

Program 3.7: MEAN Function Example 
data sp4r.cars;

set sp4r.cars;
mean_mpg = mean(mpg_highway,mpg_city);

run;

The function in Program 3.7 is going to the first observation in the cars data set. It's simply taking the mean of 
those two variables—miles per gallon highway and miles per gallon city—returning the mean, and placing that 
value in the first row of the new variable, mean miles per gallon. Then it goes to the second row and does the 
exact same thing. So again, functions only operate on rows in your data set when they are used in a DATA 
step. 

This isn't the best or most efficient way to find some quick summary statistics. A better way is to use a DATA 
NULL step. Using the key word _NULL_ allows us to avoid creating or altering any SAS data to do some type of 
operation as shown in Program 3.8. 

Program 3.8: DATA NULL Step 
data _NULL_;

a=mean(1,2,3,4,5);
    b=exp(3);
    c=var(10,20,30);
    d=poisson(1,2);
    put a b c d;
run;

In Program 3.8, we are creating the variable a and setting that equal to the mean of the list. b is just equal to e 
to the third power. c is the variance of 10, 20, and 30. d is the cumulative Poisson distribution with a 
parameter of 1 and a value of 2. 

Because we are not creating a DATA set, if we want to actually see these variables, we have to use the PUT 
statement. And that just tells SAS to put these to the log so that we can view them, as shown in Output 3.8. 

Output 3.8: Log of Program 3.8 

As you can see in Output 3.8, the mean of those five numbers is 3. e to the third power is about 20.08. The 
variance of 10, 20, and 30 is 100. And the cumulative distribution function is 0.919. 

There are much more efficient ways to actually apply a function to a variable. In Chapter 5, we will talk about 
some more descriptive procedures to actually find summary statistics that will operate on the entire column 
or variable. And in Chapter 7, when we get into the interactive matrix language, the functions that we use in 
there will operate the exact same way coming from R. In IML, when we use the MEAN function, we will 
actually take the mean of the entire variable. 

Manipulating Character Variables 
In the previous section, we were just creating and manipulating numeric data. Let's move on now to 
manipulating some character values by using built-in functions like SUBSTR, LENGTH, PROPCASE, SCAN, and so 
on. These will all be used in a DATA step. 

Table 3.2 lists just a few of the available built-in functions in SAS and what they can be used to do. There are 
other functions available, and these can be found in the SAS documentation at 
support.sas.com/documentation. Click on Programmer’s Bookshelf, then under Base SAS, expand the 
Functions and CALL Routines section to learn more about built-in functions. 
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Table 3.2: Selected SAS Functions for Character Variables 

SAS Function Description 

SUBSTR Extracts a substring from an argument 

PROPCASE, UPCASE, LOWCASE Converts word casing 

SCAN Returns the nth word from a character string 

CATX 
Removes leading and trailing blanks and concatenates 
character strings 

FIND 
Searches for the location of a specific substring within a 
character string 

TRANWRD Replaces all occurrences of a substring in a character string 

PUT Returns a value using a specified format 

SUBSTR Function 
The SUBSTR function allows us to extract a certain part of a string using the following syntax:  

NewVar = SUBSTR (string, start <,length>); 

If NewVar is a new variable, it is created with the same length as the string. To set a different length for 
NewVar, use a LENGTH statement before the assignment statement in the DATA step.  

String can be a character constant, variable, or expression.  

Start specifies the starting position.  

Length specifies the number of characters to extract. If it is omitted, the substring consists of the 
remainder of string.  

Imagine you are working with a data set and one of the variables is Acct_Code, as shown below. 

ACCT_Code Org_Code 

AQI2 2 

We want to create a new variable called Org_Code and just pull out the last character of the Acct_Code 
variable. we can use the SUBSTR function to do this as shown in the following code: 

Org_Code = substr(Acct_Code,4,1);

Here you can see we are setting Org_Code equal to a SUBSTR function. We pass in the variable, or string—in 
this case Acct_Code—and then tell SAS to read in characters at the fourth position. We only want to read in 
one character.  

Tip: The SUBSTR function on the left side of an assignment statement is used to replace characters. 
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LENGTH Function 
Now imagine we have multiple observations in the Acct_Code variable. In this case, as shown below, we have 
three observations, and you will notice they are all different lengths. 

ACCT_Code Org_Code 

AQI2 2 

ES3 3 

V2 2 

So how can we still pull out that last character? Well, let's just pass the second argument of the SUBSTR 
function, the LENGTH function, which is the exact same coming from R, as shown in the following syntax: 

NewVar = LENGTH (argument); 

We pass in the length of the Acct_Code variable, and again just read one character from each string, as shown 
in the following function: 

Org_Code=substr(Acct_Code,length(Acct_Code),1);

So now our organization code is 2, 3, and 2. 

SCAN Function 
The SCAN function lets us extract a certain part of a string according to some delimiter using the following 
syntax:  

NewVar = SCAN (string, n <,charlist>); 

The SCAN function is used to extract words from a character value when the relative order of words is known, 
but their starting positions are not. The default delimiter is a blank. When using the SCAN function, the 
following conditions exist:  

A missing value is returned if there are fewer than n words in the string.  

If n is negative, the SCAN function selects the word in the character string starting from the end of 
the string.  

The length of the created variable is the length of the first argument starting in SAS 9.4.  

The length of the created variable is 200 bytes in SAS 9.3 or earlier.  

Delimiters before the first words have no effect.  

Any character or set of characters can serve as a delimiter.  

Two or more contiguous delimiters are treated as a single delimiter.  

Suppose we have a data set called Name, which contains the names of employees in a database. The first 
name in the data set is Farr, Sue, and we want to create a new variable called FName for first name by just 
pulling out the second word in the name variable. 

Name FName 

Farr,Sue Sue 
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We will do this with the SCAN function as follows: 

FName = scan(Name,2,',');

The function passes the Name variable, or string, specifies what word we are going to be extracting—in this 
case, the second word—and then the last argument is just the delimiter. The delimiter in this example is a 
comma. When we execute this statement inside a DATA step, FName is going to be Sue. 

CATX Function 
Suppose we want to combine character variables. The CATX function removes leading and trailing blanks, 
inserts delimiters, and returns a concatenated character string using the following syntax:  

NewVar = CATX(separator, string-1, … ,string-n)

Imagine we have a data set with two separate variables—the first name and last name, Sue Farr—and we 
want to go ahead and concat these two names together and create a new variable called FullName.  

FMName LName FullName 

Sue Farr Sue Farr 

We will use the CATX function as shown below. This also removes leading and trailing blanks so that you don't 
save any unnecessary space. 

FullName = catx(' ',FMName,LName);

The first argument of the CATX function is just the delimiter. Here we are just giving it a single space. The rest 
of the arguments in the CATX function are just the strings, or variables, you are going to concatenate 
together. So here we pass it the variables FMName and LName. The new FullName variable will be Sue space 
Farr.  

TRANWRD Function 
Finally, assume you want to change a certain part of a string or variable and replace it with another string or 
word. In this case, assume we want to change all instances of the word Luci in the data set below to Lucky in 
the product variable of our data set. 

 

To do this easily, we can use the TRANWRD function with the following syntax: 

NewVar = TRANWRD (source, target, replacement);
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The TRANWRD function replaces or removes all occurrences of a given word (or pattern of characters) within 
a character string.  

The TRANWRD function does not removed trailing blanks from target or replacement.  

If NewVar is not previously defined, it is given a length of 200.  

If the target string is not found in the source, then no replacement occurs.  

Let’s use the TRANWRD function as follows: 

Product = Tranwrd (Product, 'Luci ', 'Lucky ');

First, we pass the variable to the function, in this case Product, and then tell it the target value that we want 
to change, which is Lucy, and finally what we are going to be replacing it with—Lucky. The function searches 
all observations of the product variable, looks for the term Lucy, and replaces them with Lucky.  

Creating Functions for the DATA Step 
A function definition begins with the FUNCTION statement and ends with an ENDSUB statement. A SAS 
function is a routine that accepts arguments, performs a computation or other operation, and returns either a 
character or numeric value. The syntax is highly similar to the R function. The FUNCTION statement is 
followed by the function name and the arguments in parentheses. In addition, each function uses the RETURN 
statement to identify the function output.  

As we learned previously, SAS has a ton of built-in functions that you can use in your DATA step. Of course, it 
probably doesn't have all functions that you want to use. Maybe you want to customize your own function. To 
do so, you will use the FUNCTION COMPILER procedure (PROC FCMP). All the functions we create here will be 
used inside a DATA step. 

The guts of PROC FCMP are very similar to the FUNCTION function in R, as shown in Figure 3.3. 

Figure 3.3: R FUNCTION Function  

 

In SAS, we start with the FUNCTION statement and then specify the function name that we are going to 
create. Then in parentheses, we give it a list of arguments—argument 1, followed by all the other 
arguments—as shown in the following syntax:  

PROC FCMP OUTLIB=libref.data-set.package;
FUNCTION function-name(argument-1 <$>,...,

                        argument-n <$>) <$>; <length ;>
                        programming-statements;

RETURN(expression);
ENDSUB;

QUIT; 

If the input argument is a character value, it needs a dollar sign operator. Directly after the parentheses when 
you have specified your input arguments, if the output value that we are creating is also a character value, we 
need to use the dollar sign operator again. If you are creating character data, always remember your LENGTH 
statement.  

Then you create whatever SAS programming statements you want to offer to the function. Furthermore, 
PROC FCMP requires the RETURN statement, and you need to pass it the value you actually want to return. 
Here we can only return a single value. In later chapters, we will talk about macro programming for complete 
customization of SAS code where you can return as many values as you would like. And in Chapter 7 when we 
get into the interactive matrix language, you will learn how to create functions to return multiple matrices. 
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But for now, with PROC FCMP, we can only return a single value. To conclude your function, use the ENDSUB 
statement.  

To save the functions that we create in PROC FCMP, we will use the OUTLIB option in the PROC FCMP 
statement. This is a three-level name that starts with the library, followed by the DATA set. We will be saving 
our functions in DATA sets. The third name is the actual package. We can save our functions in different 
packages all in a DATA set. A package is a collection of routines that have unique names. You can call the 
second and third argument of the OUTLIB option any name that you choose. 

For example, maybe you have time series functions. You can save them in a specific package. Maybe you have 
data mining functions. You can save those in another package. And you can save all those inside a single DATA 
step in your library so that you can use them later in the days to come. 

Let’s look at an example of a PROC FCMP statement in Program 3.9. Imagine we want to switch the order of a 
string in a DATA set. We want to go from last, first name, to first space last name. 

Program 3.9: PROC FCMP 
proc fcmp outlib=work.functions.newfuncs; 
    function ReverseName(name $) $;
    length newname $ 40;
    newname=catx(' ',scan(name,2,','),scan(name,1,','));
    return(newname);
    endsub;
quit;

    We are saving this function in the sp4r library in the functions DATA set in the newfuncs package. The 
newfuncs package is a collection of routines that have unique names and are stored in the work.functions 
data set. 

    Next, we have the FUNCTION statement, and we are going to call this function ReverseName. We only 
have one input argument, which is name, and it is a character value. The value that we are returning will 
also be character, so a dollar sign is needed after the parentheses. 

    As a best practice, remember your LENGTH statement. The new value that we are creating, newname, 
can have up to 40 characters. 

    Here in the function we are creating a newname variable, which is equal to the CATX function. The first 
argument is the delimiter, which is just a space. And then we are scanning the input argument for the 
second word and assuming that these words are delimited with a comma. Then we are concatenating 
that with the first word.  

    Finally, you need to use a RETURN statement. We are returning the newname value.  
    Don't forget your ENDSUB statement!  

Accessing Newly Defined Functions 
Imagine you created the ReverseName function in Program 3.9, and now you want to use it, perhaps several 
days or weeks later. To do so, we will use the OPTIONS statement and the CMPLIB option, as shown in the 
following syntax:  

CMPLIB=libref.data-set | (libref.data-set-1 ... libref.data-set-n)

This is basically the same as the library function in R. The CMPLIB option is telling SAS to unpack the functions 
in the library in the function's DATA set. Once you unpack the functions with the OPTIONS statement, then 
you can use all the functions in that package.  

The CMPLIB= SAS system option specifies one or more data sets that SAS searches for user-defined function 
entries. The default is work.functions as shown in the example function below: 

options cmplib=work.functions;



54   SAS Programming for R Users     

The OPTIONS statement specifies or changes the value of one or more SAS system options. For example, to 
suppress the data that is normally written to SAS output and set a line size of 72, execute the following 
statement: 

options nodate linesize=72

Tip: Options are not saved. They must be run in each session. 

Using User-Defined Functions 
Suppose that we have a data set called school and we want to add a new variable called FLName for first last 
name. Let’s use the ReverseName function from Program 3.9 and pass it the variable name. 

Name … FLName 

Bakerman, Jordan … Jordan Bakerman 

As you can see, the variable name is “Bakerman, Jordan”. Program 3.10 executes the DATA step to create the 
new value “Jordan Bakerman” based on the ReverseName function that we created with PROC FCMP. 

Program 3.10: Using ReverseName Function 
options cmplib=work.functions;

data sp4r.school;
    set sp4r.school;
    FLName=ReverseName(name);
run;

Subsetting Data  
In this section, you will learn how to use a DATA step to subset columns, rows, and observations conditionally 
to a new SAS data set. 

In the previous chapter, you learned how to print the unique levels of specific variables. In this section you will 
learn how to create a data set of those unique levels. Then in the next section, you will learn how to 
concatenate them together to create a data set, which is equivalent to a list in R, as shown in Figure 3.4. 

Figure 3.4: R Script 
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Subsetting by Column: KEEP= Option 
Let’s look at an example to learn how to subset variables in SAS. Imagine we want to pull out all the 
observations in the cars data set where the origin is equal to Asia, and also perhaps Europe, and then bind 
those rows together to create a new SAS data set. 

Thus far in this book, we have specified the data set in the DATA statement and the SET statement as the 
same, which overwrites the existing data set with the changes. To subset a new data set, we must specify the 
data set we want to pull from in the SET statement and the new data set we are creating in the DATA 
statement, as shown in the following syntax: 

DATA new-data-table-name (KEEP=variable1 variable2 ...); 
    SET old-data-table-name; 
RUN; 

In this case, we are creating a new data set called cars2 pulling observations from cars. And as an option, we 
are using the KEEP= option to tell SAS that we only want to keep the variables make, msrp, and invoice. Only 
those three specific columns will be in the cars2 data set, as shown in Program 3.11. 

Program 3.11: Creating a New Data Set by Keeping Columns 
data sp4r.cars2 (keep=make msrp invoice);
    set sp4r.cars;
run;

Subsetting by Column: DROP= Option 
Likewise, we could also create a new data set by dropping variables. In that case, we can use the DROP option, 
which is pretty much the same as setting the variable equal to a NULL value in your R data frame. In Program 
3.12 we are creating a data set called cars2, dropping model and drive train, and keeping all other variables. 
The syntax is nearly identical to the KEEP= option. We just substitute DROP=. 

Program 3.12: Creating a New Data Set by Dropping Columns 
data sp4r.cars2 (drop=model drivetrain);
    set sp4r.cars;
run;

Subsetting by Row: FIRSTOBS and OBS= Options 
To subset by row, we can use the FIRSTOBS= and OBS= options in the SET statement as shown in the following 
syntax: 

DATA new-data-table-name;
SET old-data-table-name (FIRSTOBS=# OBS=#);

RUN; 

We have seen these options previously in the PRINT procedure. In Program 3.13 we are pulling the 
observations 25 through 50 from the cars data set and putting them into the new cars2 data set. 

Program 3.13: Creating a New Data Set by Subsetting a Group of Observations 
data sp4r.cars2;
    set sp4r.cars (firstobs=25 obs=50);
run;
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Subsetting Conditionally: WHERE Statement 
We have talked about the WHERE statement during our discussion of the PRINT procedure. In that context, it 
was used to print observations conditionally. We can use the exact same WHERE statement and conditional 
expression to subset observations conditionally as shown in the following syntax: 

DATA new-data-table-name;
SET old-data-table-name;
WHERE conditional-expression;

RUN;

In Program 3.14 we are creating a new data set called cars2, which is pulling all the observations from cars 
where mpg_city is greater than 35. 

Program 3.14: Creating a New Data Set by Subsetting Conditionally 
data sp4r.cars2;
    set sp4r.cars;
    where mpg_city > 35;
run;

The KEEP=, DROP=, FIRSTOBS=, and OBS= options can be combined with the WHERE statement to subset the 
data conditionally as well as according to column and row. 

Subsetting by Query: PROC SQL 
In the first example of PROC SQL, you learned how to print the unique levels of a specific variable. Now we 
will actually create a table from those unique levels. Previously we started with the SELECT UNIQUE 
statement, but now we will also tack on the CREATE TABLE statement as shown in the following syntax: 

PROC SQL;
CREATE TABLE new-data-table-name AS
SELECT UNIQUE variable-name FROM old-data-table-name;

QUIT; 

In Program 3.15 we are creating a new table in our sp4r library called origin, and then using the keyword AS. 
We can use the exact same syntax that we saw before to create a new table called origin and select the 
unique observations from origin from the cars data set. You can use as many CREATE TABLE statements as you 
want here to create as many new data sets as you would like as well. 

Program 3.15: Creating a New Data Set by Subsetting by Query 
proc sql;
    create table sp4r.origin as
    select unique origin from sp4r.cars;
quit;

Tip: Multiple CREATE TABLE statements can be specified to create multiple data sets in a single SQL 
procedure.  

Tip: SELECT DISTINCT is identical to SELECT UNIQUE. 

Concatenating Data Sets 
Now that we know how to subset data, what if we want to go ahead and row bind or column bind our data 
back together again? The following sections will explain how to reproduce the rbind() and cbind() functions in 
R.  
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Row Bind Data Sets
To reproduce the rbind() function in R, we will use a DATA step. In the SET statement, we will specify all the 
data sets we want to row bind, as shown in the following syntax:  

DATA new-data-table-name;
SET data-table-1 data-table-2 … ;

RUN; 

Let’s look at an example of two data sets—employees Denmark (empsdk) and employees France (empsfr). We 
want to stack them on top of each other and create a new data set called employees all, as shown in Figure 
3.5. 

Figure 3.5: Row Bind Data Sets 

 

To do this, we will pass the employees Denmark data set and the employees France data set to a single SET 
statement, and it will simply stack them on top of each other as shown in Program 3.16. The important thing 
to remember here is the data sets have to have the exact same column names. Otherwise, you will get a block 
diagonal data set for empsall. 

Program 3.16: Row Bind Data Sets 
data empsall;
    set empsdk empsfr;
run;

Column Bind Data Sets 
On the other hand, if we have two separate data sets—for example, names and home—and we want to 
column bind them together, we will use multiple SET statements. You can think of this as creating a column of 
SET statements. Each SET statement should have its own data set, as shown in the following syntax: 

DATA new-data-table-name;
SET data-table-1;
SET data-table-2;
…
SET data-table-n;

RUN;

In this case, we can set names and set home. That will column bind them to create a new SAS data set, which 
has the three observations, and in this case, two columns, as shown in Program 3.17 and Figure 3.6. 

Program 3.17: Column Bind Data Sets with Same Dimensions 
data cbind;
    set names;
    set homes;
run;
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Figure 3.6: Column Bind Data Sets with Same Dimensions 

Using a SET statement to concatenate data sets of different dimensions removes observations without 
warning. The data set length is fixed at the length of the first data set provided in the SET statement. 

To concatenate data sets of different dimensions, it is important to use the MERGE statement. For example, if 
we want to column bind the vehicle and origin data sets, notice that the unique levels of those two variables 
from the car's data set in Figure 3.6. If we use the previous syntax with multiple SET statements, SAS would 
actually reduce the number of observations in the final data set to only three observations as shown in Figure 
3.7. SAS limits the number of observations to the smallest data set that you are merging together.  

Figure 3.7: Incorrectly Column Bind Data Sets with Different Dimensions 

By using the MERGE statement, we are creating a list, and saving it as a SAS data set, as shown in the 
following syntax: 

DATA new-data-table-name;
MERGE data-table-1 data-table-2 …data-table-n;

RUN; 

Therefore, by using the MERGE statement, we can merge the vehicle and origin data sets together and not 
lose any observations as shown in Program 3.18 and Figure 3.8. 

Program 3.18: Correctly Column Bind Data Sets with Different Dimensions
data mylist;

merge vehicle origin;
run;

Figure 3.8: Correctly Column Bind Data Sets with Different Dimensions 

 

Hopefully you can see why it’s important that you use the MERGE statement for data sets with different 
dimensions. You could also simply use a MERGE statement every time you want to cbind if you would like. 
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Match-Merging Data Sets 
The MERGE statement is much more powerful than the way we used it in the previous section. Instead of just 
doing a straight cbind, we can actually merge according to a common variable in each data set. In the next few 
section, you will learn you how to do a One-to-One, One-to-Many, and Nonmatch merge, as illustrated in 
Figure 3.9. 

Figure 3.9: Types of Match-Merges 

 

To actually do match merging, you have to first sort your data by the common variable using PROC SORT. 
PROC SORT is an easy procedure, which you can explore in the online documentation if you want to learn 
more. For now, just know that after you use the SORT procedure, you can then use your DATA step and the 
MERGE statement. You will list all the data sets you want to merge according to some common variable. To 
tell SAS what that common variable is, you will list it in the BY statement.  

One-to-One Merge 
Imagine we have a data set called employees and a data set called phone, which hold the names of our 
employees and their phone numbers respectively, as shown in Figure 3.10. Notice that each data set has a 
common variable, Employee ID (EmpID). We want to merge them according to that common variable. 

Figure 3.10: One-to-One Merge Data Sets 

 

And if we did the SORT, and use the data set to do the MERGE and use the BY statement for the common 
variable Employee ID as shown in Program 3.19, we would get the final result in Figure 3.11. Notice that we 
have three observations and now only four variables. 

Program 3.19: One-to-One Merge 
proc sort data=emps;

by EmpID;
run;

proc sort data=phone;
by EmpID;

run;
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data mergedemps;
    merge emps phone;
run;

Figure 3.11: One-to-One Merge Results  

 

One-to-Many Merge 
If we do a one-to-many merge, notice in Figure 3.12 that the Employee ID and the employees' data set 
matches to at least one Employee ID in the phone's data set.  

Figure 3.12: One-to-Many Merge Data Sets 

If we do a MERGE here, the final data set would have multiple instances of the names and gender variables 
where it was necessary. In this instance, there are two observations for Togar because that person had two 
phone numbers, one for Kylie, and Birin, in this case, has three phone numbers, as shown in Figure 3.13. SAS 
populates the data in the new data set where necessary. 

Figure 3.13: One-to-Many Merge Results 

Nonmatch Merging 
Finally, to do Nonmatch merging, notice in the employees' data set in Figure 3.14 that there is one ID that 
does not match any ID in the phone data set. Likewise, the last observation in Employee ID does not match 
any Employee ID in the employees' data set.  

Figure 3.14: Nonmatch Merge Data Sets 
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When we merge these data sets, we get exactly what we would expect. SAS just fills the data set with NULL 
values where necessary as shown in Figure 3.15. So Kiley does not have a phone number, and the last 
observation in our resulting data set has no information for first name or gender for that phone number. 

Figure 3.15: Nonmatch Merge Results  
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Exercises 

Multiple Choice 
1. Choose the correct statements. (Select all that apply.) 

a. The ELSE IF and ELSE statements provide more efficient conditional processing. 
b. The DATA step uses a SET statement to add new variables to the SAS data set. 
c. You do not need to initialize the new variable. 

2. Suppose you are creating a new variable called origin2 from the existing variable origin. Here you want to 
let origin2 be Asia if origin is 'Asia'. Otherwise, let origin2 be 'Foreign Country'. Does the DATA step below 
accomplish this task? 

data sp4r.cars;
    set sp4r.cars;
    length origin2 $ 25;
    if origin='Asia' then origin2='Asia';
    else origin2='Foreign Country';
run;

a. Yes 
b. No 
 

3. Choose the correct statements. (Select all that apply.) 
a. DO groups enable the execution of multiple statements. 
b. Each DO group ends with an END statement. 
c. It is a best practice to use a LENGTH statement when you create character variables. 

 
4. Which task does the DATA step below accomplish? (Choose the correct statement.) 

data sp4r.cars;
set sp4r.cars;
mpgvar=min(mpg_city);

run;

a. Return the minimum value of MPG_City. 
b. Create a new variable that is an exact duplicate of MPG_City. 
 

5. What would the variable location be after you use the SUBSTR function? 
Location='Columbus, GA 43227';
substr(Location,11,2)='OH';

a. us 
b. GA 
c. OH 
d. 27 

6. What is the value of the variable location after you use the SUBSTR function? 
data sp4r.test;

Location='Columbus, GA 43227';
substr(Location,11,2)='OH';

run;

a. Columbus, GA 43227 
b. Columbus, OH 43227 
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c. Columbus,OH 43227 
d. an error will occur 

7. What is the value of the newname variable in the second observation of the cars data set if you run the 
DATA step below? 
data sp4r.cars;

set sp4r.cars;
newname = upcase(catx(' ',make,scan(model,1)));

run;

a. Acura RSX 
b. ACURA RSX 
c. Acura RSX Type S 2dr 
d. ACURA RSX Type S 2dr 
e. ACURA RSX TYPE S 2DR 
 

8. Choose the correct statements. (Select all that apply.) 
a. All built-in SAS functions operate the same as built-in R functions. 
b. PROC FCMP is the counterpart to the R function function(). 
c. The CMPLIB= option in the OPTIONS statement unpacks the user-defined function. 
 

9. You want to use PROC FCMP to create a function that avoids division by zero. If the divisor is zero, simply 
return a value of zero. What is wrong with the PROC step below? Select all that apply. 
proc fcmp outlib=sp4r.functions.newfuncs;

function mydiv(num,den);
      if den = 0 then val = 0;
      else val = round(num/den);

endsub;
quit;

a. It should have an ENDFUNC statement, instead of ENDSUB. 
b. It should end with a RUN statement, instead of QUIT. 
c. It is missing a RETURN statement to return val. 

 
10. Which statement and options are used to select column variables, rows, and conditional observations? 

a. SET, DROP, KEEP 
b. WHERE, FIRSTOBS= OBS=, SET 
c. KEEP, FIRSTOBS= OBS=, WHERE 
d. KEEP, WHERE, WHERE

11. Your colleague gave you three SAS data sets and wants you to combine them into one. The data sets are 
unique. This means that they are of different dimensions and contain different variables. Which DATA 
step statements should be used to combine these data sets? 
a. set dt1 dt2 dt3; 
b. merge dt1 dt2 dt3; 
c. set dt1; set dt2; set dt3; 
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Short Answer 
1. Navigate to the SAS PROC SORT online documentation. Locate the PROC SORT statement syntax and 

investigate the OUT= option. What is this option used for, and what is the default behavior if it is 
omitted? 
Read about the caution listed in the documentation, and think of a situation in which you would need to 
"use care when you use PROC SORT without OUT=. " 

Programming Exercises 
Use the Cars data set in the SP4R library to complete the exercises. 

1. Creating a New Data Set Variable  
a. Create a new variable called mpg_average in the Cars data set. This new variable should simply 

be the average gas mileage between mpg_city and mpg_highway.  
b. Print the first five observations for the variables mpg_city, mpg_highway, and mpg_average to 

ensure that the new variable is created.  

2. Creating a New Data Set Variable Conditionally  
a. Use the new variable that you created in Exercise 1. Create a new variable in the Cars data set 

called mpg_quality, which is a character variable. Set mpg_quality according to the following 
table:  

 

MPG_average MPG_quality 

<20 Low 

20–29 Medium 

>30 High 

b. Print observations 65 through 70 for the variables mpg_average and mpg_quality to ensure that 
the variable is created.  

3. Creating a New Data Set Variable Conditionally  
a. Create a function called tier with a single numeric argument, which returns a character value. 

The function should return values according to the following table:  
 

Input output 

<20 Low 

20–29 Medium 

>30 High 

b. Use the function that you created to create a new variable in the Cars data set. Name the new 
variable mpg_quality2 and name the argument of the function tier as mpg_average. As a result, 
mpg_quality and mpg_quality2 are identical.  

c. Print observations 65 through 70 for the variables mpg_average, mpg_quality, and 
mpg_quality2 to ensure that the variable is created.  
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4. Creating a List of Unique Values  
a. Use PROC SQL to create three new data tables. Let values of make be the unique levels of the 

make variable. Let the values of type be the unique levels of the type variable. Let the values of 
origin be the unique levels of the origin variable.  

b. Create a new data table called mylist, which combines the three data tables. Hint: This task 
requires you to column-bind data tables of different dimensions.  

c. Print mylist to ensure that the data table is created correctly. 

 

5. Creating and Row-Binding Data Tables  
a. Create a new data table called sports, which has only three columns from the Cars data set: 

make, type, and msrp. In addition, keep only those observations where type is equal to sports 
and msrp is greater than $100,000.  

b. Create another data table called suv, which has the same three columns. In addition, keep only 
those observations where type is equal to suv and msrp is greater than $60,000.

c. Create a new data table called expensive by row-binding sports and suv. Then print expensive to 
see the results.
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Solutions 

Multiple Choice 
1. a, b, and c 

2. a 

3. a, b, and c 

4. b 

5. c 

6. b 

7. b 

8. b and c 

9. c 

10. c 

11. b 

Short Answer 
1. The OUT= option names the output data set in a PROC SORT step. Without the OUT= option, PROC 

SORT replaces the original data set with the sorted observations. This could result in a loss of data if 
the PROC SORT step includes a WHERE statement, or the FIRSTOBS or OBS option to select only a 
subset of the observations in the data set. 

Programming Exercises 
Use the Cars data set in the SP4R library to complete the exercises. 

1. Creating a New Data Set Variable  
a. Create a new variable called mpg_average in the Cars data set. This new variable should simply 

be the average gas mileage between mpg_city and mpg_highway.  
data sp4r.cars; 

set sp4r.cars; 
mpg_average = mean(mpg_city,mpg_highway); 

run;

b. Print the first five observations for the variables mpg_city, mpg_highway, and mpg_average to 
ensure that the new variable is created.  

proc print data=sp4r.cars (obs=5); 
    var mpg_city mpg_highway mpg_average; 
run;
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2. Creating a New Data Set Variable Conditionally  
a. Use the new variable that you created in Exercise 1. Create a new variable in the Cars data set 

called mpg_quality, which is a character variable. Set mpg_quality according to the following 
table:  

 

MPG_average MPG_quality 

<20 Low 

20–29 Medium 

>30 High 

data sp4r.cars; 
    length mpg_quality $ 6; 
    set sp4r.cars; 
    if mpg_average < 20 then mpg_quality='Low'; 
    else if mpg_average < 30 then mpg_quality='Medium'; 
    else mpg_quality='High'; 
run;

b. Print observations 65 through 70 for the variables mpg_average and mpg_quality to ensure that 
the variable is created.  

proc print data=sp4r.cars (firstobs=65 obs=70); 
    var mpg_average mpg_quality; 
run;

 

3. Creating a New Data Set Variable Conditionally  
a. Create a function called tier with a single numeric argument, which returns a character value. 

The function should return values according to the following table:  
 

Input output 

<20 Low 

20–29 Medium 

>30 High 
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proc fcmp outlib=work.functions.newfuncs; 
function tier(val) $; 

length newval $ 6; 
if val < 20 then newval = 'Low'; 
else if val <30 then newval='Medium'; 

else newval='High'; 
return(newval); 

endsub;
quit;

b. Use the function that you created to create a new variable in the Cars data set. Name the new 
variable mpg_quality2 and name the argument of the function tier as mpg_average. As a result, 
mpg_quality and mpg_quality2 are identical.  

options cmplib=work.functions; 
data sp4r.cars; 

set sp4r.cars; 
mpg_quality2=tier(mpg_average); 

run;

c. Print observations 65 through 70 for the variables mpg_average, mpg_quality, and 
mpg_quality2 to ensure that the variable is created.  

proc print data=sp4r.cars (firstobs=65 obs=70); 
    var mpg_average mpg_quality mpg_quality2; 
run;

4. Creating a List of Unique Values  
a. Use PROC SQL to create three new data tables. Let values of make be the unique levels of the 

make variable. Let the values of type be the unique levels of the type variable. Let the values of 
origin be the unique levels of the origin variable.  

proc sql; 
create table make as select unique make from sp4r.cars; 
create table type as select unique type from sp4r.cars; 
create table origin as select unique origin from

sp4r.cars; 
quit;

b. Create a new data table called mylist, which combines the three data tables. Hint: This task 
requires you to column-bind data tables of different dimensions.  

data sp4r.mylist; 
merge make type origin; 

run;

c. Print mylist to ensure that the data table is created correctly. 

proc print data=sp4r.mylist; 
run;



70   SAS Programming for R Users     

 

5. Creating and Row-Binding Data Tables  
a. Create a new data table called sports, which has only three columns from the Cars data set: 

make, type, and msrp. In addition, keep only those observations where type is equal to sports 
and msrp is greater than $100,000.  

data sp4r.sports(keep= make type msrp); 
    set sp4r.cars; 
    where type='Sports' and msrp>100000; 
run;

b. Create another data table called suv, which has the same three columns. In addition, keep only 
those observations where type is equal to suv and msrp is greater than $60,000.

data sp4r.suv(keep= make type msrp); 
    set sp4r.cars; 
    where type='SUV' and msrp>60000; 
run;

c. Create a new data table called expensive by row-binding sports and suv. Then print expensive to 
see the results.

data sp4r.expensive; 
     set sp4r.sports sp4r.suv; 
run; 

proc print data= sp4r.expensive; 
run;
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Introduction 
Creating statistical graphics is vital to understanding and presenting your data. In this chapter, you will learn 
how to create a variety of both single-cell and multi-cell plots. We will create everything from histograms to 
scatter plots inside a single procedure and enhance the presentation of the plot with an assortment of 
statements and options. Before we create statistical graphics, we will first learn how to simulate new SAS data 
sets from probability distributions so that we can generate data from a desired model. We will then create 
and use these random data sets to practice building a variety of plots. 

DO Loop and Random Number Generation 
In this section, you will learn how to simulate observations from random distributions like the normal, chi-
square, gamma, and Weibull distributions and save those observations in a new SAS data table. We want to 
be able to set a seed so that we can duplicate our results. We want to create random data sets from our R 
functions in R, rnorm, rbinom, and so on. We also want to be able to add variables to an existing data frame 
as shown in Figure 4.1. Maybe we also want to use the REP function to create a classification variable. And 
finally, we want to use the other probability functions, like dnorm pnorm, and qnorm. 
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Figure 4.1: R Script 

 

DO Loop
To duplicate this script in SAS, we need to use the DO loop. The DO loop is the key to creating a new data 
table. The number of loop iterations defines the table’s row dimension and the number of variables defines 
the column dimension. The DO loop is used inside a DATA step to create new data tables or iterate through 
rows of an existing data table. 

We can create a sequence, maybe 1 to 10, 2 to 20 by 2. Or we can go in the reverse order. Maybe we want to 
create repetitive values. For example, maybe we want to add a column of 1s to a data table, which will 
represent an intercept if we are simulating a linear regression model. We want to be able to create groups 
such as, for example, a classification variable if we are simulating ANOVA data. In particular, we are going to 
focus on generating random numbers and creating a new SAS data set.  

The DO loop is equivalent to the seq() function in R. You can also think of it as a FOR loop. In SAS, we start 
with a DO statement and specify an index variable as shown in the following syntax: 

DO index-variable=start TO stop <BY increment>;
END; 

Let’s look at a simple example with an index variable, i, in the following DO loop: 

do i=1 to 5;
end;

We will set i equal to a starting value of 1. Use the keyword TO to give it a stopping value—in this case, 5. So 
we are going from i equals 1 to 5. It acts as a sequence. Always end your DO loop with the END statement. 

Below are a two more examples of DO loops. In the first loop, we add in the BY increment option. In this loop, 
we are going from i equals 2 to 10 by 2. We can also reverse direction, as shown in the second loop where i 
equals 10 to 2 by negative 2.  

do i=2 to 10 by 2;
end;

do i=10 to 2 by -2;
end;

You can create a new SAS data set using the DATA step and a DO loop, as shown in the following syntax: 

DATA data-table-name-new;
DO index-variable=start TO stop <BY increment>;

          iterated-SAS-statements;
OUTPUT;
END;

RUN; 
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Tip: Omitting the BY statement causes the DO loop to iterate by 1. 

The number of DO loop iterations determines the number of observations that are written to the data table 
when you use the OUTPUT statement. In Program 4.1, we are going from i equals 2 to 10 and giving an 
increment of 2. In order to actually output all iteration values to the data set loop, we need to use the 
OUTPUT statement. Otherwise, SAS would only write the last value of the loop. There would only be one 
observation if we forget the OUTPUT statement. You need to be explicit and tell SAS to write all iteration 
values to the data set. And again, remember to end the DO loop with an END statement. 

Program 4.1: Create New Data Set 
data loop;
    do i=2 to 10 by 2;
        x = i+1;
        rep = 1;
        output;
    end;
run;

Inside the loop in Program 4.1, we have created a new variable, x. We are saying that x is equal to the index 
variable, i, plus 1. We are also creating a new variable rep, which just equals 1 in every instance of the 
iteration. In Output 4.1, which shows the PROC PRINT of the loop data set, the index variable, i, is 2 to 10, x is 
3 to 11, and rep is just 1, which would most likely represent an intercept in the linear model.  

Output 4.1: Results of Program 4.1 

 

If you don't want to keep your index variable in your data set, you have two options. You can specify the 
KEEP= or DROP= options in the DATA statement. In Program 4.2a, we use the KEEP= option in the DATA 
statement to keep only the variables x and rep.  

Program 4.2a: KEEP= Option 
data loop (keep=x rep);
    do i=2 to 10 by 2;
        x = i+1;
        rep = 1;
        output;
    end;
run;

Likewise, you can tell SAS to drop that index variable, i, using the DROP= option as shown in Program 4.2b. 

Program 4.2b: DROP= Option 
data loop (drop=i);
    do i=2 to 10 by 2;
        x = i+1;
        rep = 1;
        output;
    end;
run;

Both DATA steps produce the same data table, as shown in Output 4.2. Use the KEEP or DROP statement 
depending on the ease of variable specification. 
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Output 4.2: Results of Program 4.2a or 4.2b 

 

Nested DO Loop 
A nested DO loop is similar to the REP function in R show in Figure 4.2. It allows us to repeat values. It's also 
similar to a nested FOR loop. A nested DO loop can be used to replicate the predecessor DO loop variables 
and to create groups.  

Figure 4.2: R REP Function 

Program 4.3 shows a nested DO loop going from i equals 1 to 2. Immediately following it, we have another DO 
loop, j equals 1 to 2. Of course, remember your OUTPUT statement to write all your values to the data table.  

Program 4.3: Nested DO Loop 
do i=1 to 2;

do j=1 to 2;
        output;
    end;
end;

Notice that in Output 4.3, in iteration i, we start with a value of 1 and iterate through j, 1 and 2. And then 
moving to a value of 2 for i, we iterate again through j, 1 and 2. This is exactly the same as the FOR loop in R. 

Output 4.3: Results of Program 4.3 

 

There is an alternative way to accomplish the nested DO loop. Applying a DO loop to an existing data table has 
the same effect as a nested DO loop. You can just use multiple DO loops in sequential DATA steps. In Program 
4.4, we are creating the data set doloop. Here we are going from i equals 1 to 2, and writing both values to 
the data table.  

Program 4.4: Create Data Set 
data doloop;

do i=1 to 2;
        output;
    end;
run;

In Program 4.5, we then apply another DO loop to an existing SAS data set-- in this case, the doloop data set 
created in Program 4.4. The DO loop will iterate through all observations in that data set. It's going to iterate 
through values of 1 and 2 for the index variable i.  
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Program 4.5: Apply Do Loop to Existing Data Set 
data doloop;
    set doloop;
    do j=1 to 2;
        output;
    end;
run;

Output 4.5 shows that we get the same data set as before in Output 4.3 when we used the nested DO loop. 

Output 4.5: Results of Program 4.5 

 

Why is this important? Well, perhaps you want to go ahead and add a sequence to an existing data set but 
you don't want to use another DO loop on that existing data set. For example, if you have a data set with 
1,000 observations and you want to create a sequence from 1 to 1,000 and add it into that data set. You do 
not want to use a DO loop. Why? It will simply create a data set with 1,000 by 1,000 observations, or simply 
1,000,000 observations. 

So how can we add in a sequence to an existing SAS data set? This will be important when plot data so that 
we can give the plots an X-axis value. To add in a sequence, we will use a SUM statement, which is discussed 
in the next section. 

SUM Statement 
The SUM statement creates a new variable. Use a SUM statement to add a sequence to 

an existing data table 

a nested DO loop 

The variable is automatically initialized to zero and its value is retained from one iteration of the DATA step to 
the next. On each iteration, the new variable is incremented by the sequence value. The SUM statement can 
be useful when you add a sequence to a data table. Use the following syntax to add a SUM statement: 

new-variable-name + sequence-value;  

In Program 4.6, we are calling our SUM statement seq. And that will be the variable name in the data set. We 
give it the sequence value of 1. So seq plus 1. When we start the DATA step, it initializes to 0. And on the first 
iteration, the value is going to be 0 plus 1. We use the OUTPUT statement so the value is written to the data 
table. And on the next iteration, the seq value is 2, 3, and so on. Basically, we use a SUM statement to add a 
sequence to an existing SAS data set. 

Program 4.6: SUM Statement
data doloop;
    do i=1 to 2;
     do j=1 to 2;
            seq + 1;
            output;
        end;
    end;
run;
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Output 4.6: Results of Program 4.6 

Random Number Generation 
Why is the DO loop so important? It specifies how many random numbers to generate. The DO loop is used to 
simultaneously create a data table and generate random numbers to let us create new SAS data sets. Now we 
can use the DO loop to assist in creating random number distribution data tables.  

RAND Function 
We will use the RAND function inside the DO loop—which is going to be used, of course, inside the DATA 
step—to create new SAS data sets. 

To sample from random probability distributions, we use the RAND function. The RAND function is very 
similar to the R functions in R. Table 4.1 shows a sample list comparing the syntax between R and SAS. 

Table 4.1: Comparing R and SAS 

R  SAS 

rbinom(n,size,p) RAND('Binomial',p,n)

rexp(n,rate) RAND('Exponential')

rnorm(n,mean,sd) RAND('Normal',mean,sd)

rpois(n,mean) RAND('Poisson',mean)

runif(n,min,max) RAND('Uniform')

The first argument in the RAND function is just the name of the distribution. And you do have to put it in 
quotation marks. The next set of arguments is the parameters for that specific distribution, as shown in the 
following syntax: 

RAND('distribution',param-1,param-2,…); 

Make sure you check the online documentation page for the RAND function so that you know what 
probability distributions you can simulate. You also need to know the order of the parameters. 

You may have noticed in Table 4.1 that not all probability distributions are the same in R as they are in SAS. 
So, for example, the Exponential distribution actually does not have a mean or rate parameter. You have to 
multiply the distribution by its mean to do the equivalent. The Uniform distribution in SAS only simulates 
values between 0 and 1. So, for example, if you wanted a distribution between 0 and 10, you would simply 
multiply all simulated values by 10. 

In Program 4.7, we are going to create a new data set called random.  

Program 4.7: RAND Function in DO Loop 
data random (drop=i); 

call streaminit(123); 
    do i=1 to 3; 
        x = rand('Normal',10,2); 
        output; 
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    end;
run;

    Here we drop the index variable, i. 
    We use the STREAMINIT subroutine to set a seed to 123.  
    Then we use a DO loop where i equals 1 to 3, creating a new variable, x, which is equal to the RAND 

function. It's going to be normally distributed data set with a mean of 10 and a standard deviation of 2.  
    Of course, don’t forget the OUTPUT statement to write all values to the data table. 

Notice in Program 4.7 that we don't have to specify a number of the values to simulate directly in the RAND 
function. That is taken care of inside the DO loop. Because we are entering from 1 to 3—that is, entering three 
total values—the RAND function is going to create three simulated values.  

If you want to add a column of random numbers to an existing data set, do not use the DO loop. Simply use 
your SET statement and create a new variable as shown in Program 4.8. In this case, we are creating the 
variable x, which is equal to the RAND function again. 

Program 4.8: RAND Function Without DO Loop 
data sp4r.cars;
    call streaminit(123);
    set sp4r.cars;
    x = rand('Normal',10,2);
run;

Again, in Program 4.8, you don't need to specify a number to simulate. It's going to simulate the total number 
of observations in the existing data set. If the cars data set has 428 observations, the RAND function will 
generate 428 observations as well. 

Other Probability Functions 
Let’s look at just a few other functions. When we generate random numbers, we can use the PDF, CDF, and 
QUANTILE functions. They operate the exact same way in SAS as they do in R. 

Let's look at an example of how to duplicate the dnorm, pnorm, and qnorm functions with the PDF, CDF, and 
QUANTILE functions in Table 4.2. 

Table 4.2: PDF, CDF, and QUANTILE Functions with R Counterparts 

R  SAS 

dnorm(q,mean, sd) PDF('Normal',q,mean,sd)

pnorm(q,mean,sd) CDF('Normal',q,mean,sd)

qnorm(p,mean,sd) QUANTILE('Normal',p,mean,sd)

As you can see in Table 4.2, we specify the distribution name. In this case, it is Normal. Then we give it either 
the quantile for the PDF and CDF function or the cumulative distribution for the QUANTILE function. The final 
two arguments are the parameters for the distribution. In this case, they are mean and standard deviation. 

TIP: You can also use these functions in a DATA _NULL_ step to print the results of these SAS functions to 
the log. 

Single-Cell Plotting with PROC SGPLOT 
Now that we know how to create our own random data sets, let's plot those data sets and practice the 
plotting capabilities in SAS. In this section, we will learn how to reproduce the base R plotting capabilities 
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shown in Figure 4.3 including a bar plot, box plot, histogram with some overlaid normal and kernel density 
estimates, simple linear regression plot with the line of best fit, confidence limits, and prediction limits. 

Figure 4.3: R Script and Plots 

 

   

    

At the end of this section, you will learn how to touch up your plots and make a nice visual presentation by 
adding a title, a different legend, and even your name so that you can take credit for your plot. You can also 
change the pattern of the lines, the symbols for the points, change the x and y labels, and so on. 

PROC SGPLOT Syntax 
All of the plotting capabilities in R can be accomplished in SAS by the SGPLOT procedure. SGPLOT stands for 
statistical graphics plot. We can create single-cell plots just like the plot function in R. We can also overlay 
plots on a single set of axes. If we want to overlay two scatterplots on a single plot, we can do that using PROC 
SGPLOT. And finally, we will enhance the presentation of the plot with different options and statements in 
PROC SGPLOT. 

Table 4.3 lists a few plots that you can create in PROC SGPLOT organized into four categories. To view the rest 
of the plots the SGPLOT procedure can produce, go to the SAS Documentation where you can also view 
options and other statements.  
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Table 4.3: SGPLOT Procedure Plot Types 

Type Plots PLOT Statement 

Basic 
scatter, series, step, needle, vector, 
bubble, and band 

SCATTER, SERIES, STEP, NEEDLE, 
VECTOR, BUBBLE, BAND 

Fit and Confidence 
regression, loess, penalized B-spline 
curves, ellipses 

REG, LOESS, PBSPLINE, ELLIPSE 

Distribution 
box plot, histogram, normal/kernel 
density 

HBOX, VBOX, HISTOGRAM, 
DENSITY 

Categorical bar chart, line chart, and dot plots HBAR, VBAR, HLINE, VLINE, DOT 

 

The SGPLOT procedure statements conform to different syntaxes depending on the plot type.  For the Basic 
and Fit-and-Confidence plot types, specify the PLOT statement followed by the X-axis variable and the Y-axis 
variable as shown below: 

PLOTNAME X=x-variable Y=y-variable </ OPTIONS>; 

For example, if you want to create a scatterplot, you would simply use the SCATTER statement in the SGPLOT 
procedure. Likewise, if you wanted to create a series plot, you would just use the SERIES statement. Under the 
PROC SGPLOT umbrella, you are just changing out your statements to use a different plot.  

For the Distribution and Categorical plot types, specify the PLOT statement followed by the response variable 
as shown in the following syntax: 

PLOTNAME response-or-category-variable </ OPTIONS>; 

For example, if you want a bivariate plot, scatter, series, regression, or loess, you use the PLOT statement that 
is appropriate. Then you use the x equal to and y equal to options to specify your X-axis and Y-axis variables. 
And you can specify options right in the statement after the forward slash. 

This syntax is very consistent going forward in SAS. We will see the forward slash to denote options both in 
PROC SGPLOT and lots of inferential procedures in Chapter 6. Be sure to look at the online documentation 
page to see all the possible options for the procedure. You can do a lot of different fancy things with different 
options, depending on the plot. 

There are two basic plot types that have slightly different syntax. The band plot, of course, is bivariate, but it 
has some different options. You do need the X-axis variable, but you also need the lower and upper option to 
specify where exactly you are going to be shading in a region. So what region are you shading in between a 
lower bound and upper bound for your band plot? For a Band plot, specify the X-axis variable followed by the 
lower and upper region to be filled, as shown below: 

BAND X=x-variable LOWER=lower-bound UPPER=upper-bound;

And finally, for the bubble plot, you do specify the x- and y-axis variables because it is a scatterplot. You also 
use the size option to specify how big you want each bubble to be, which is based on another variable in your 
existing SAS data set. For a bubble plot, specify the X-axis variable, y-axis variable, and a numeric variable to 
alter the size of the scatter plot points with the following syntax: 

BUBBLE X=x-variable Y=y-variable SIZE=size-variable; 

Scatterplot Example 
Imagine we have a data set called sales, which holds the revenue for each of the 12 months this past year. We 
want to create a scatterplot with a SCATTER statement and let the X-axis variable be month, and Y-axis 
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variable be revenue. Using the syntax in Program 4.9 will produce the exact same plot as using the plot 
function in R, as shown in Output 4.9. 

Program 4.9: PROC SGPLOT with a Single SCATTER Statement 
proc sgplot data=sales;
    scatter x=month y=revenue;
run;

Output 4.9: Results of Program 4.9 

 

In R, you generally create a plot and then iteratively add options to the plot. For example, you would create a 
scatterplot and then you could use the points or lines function to overlay either another scatterplot or a series 
plot on top of it. In SAS, we do everything in one PROC step. We don't iteratively add graphics to an existing 
plot. 

For example, if you wanted to create multiple scatterplots in a single window, which basically reproduces the 
points function in R, we would just use multiple SCATTER statements. In Program 4.10, we have the same x 
variable, but now we have two separate y variables—y equal to revenue and y equal to revenue 2. 

Program 4.10: PROC SGPLOT with a Multiple SCATTER Statements 
proc sgplot data=sales;
    scatter x=month y=revenue;
    scatter x=month y=revenue_2;
run;

Output 4.10: Results of Program 4.10 

As you can see in Output 4.10, it plots the first revenue in blue and the second revenue in red. Again, this 
would replicate the points function in R.  
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If we were simply just to switch out the SCATTER statements with SERIES statements as shown in Program 
4.11, it would reproduce the lines function in R. The SGPLOT procedure automatically populates a legend 
when multiple SCATTER or SERIES statements are provided. 

Program 4.11: PROC SGPLOT with a Multiple SERIES Statements 
proc sgplot data=sales;
    series x=month y=revenue;
    series x=month y=revenue_2;
run;

Output 4.11: Results of Program 4.11 

 

Generally, you can use whatever PLOT statements you want. However, there does have to be some structure. 
For example, you cannot use the SCATTER statement and also the BOX PLOT statement. Those two plots are 
not capable of being in the same window. 

Alternative Overlay Approach 
Alternative overlay approaches depend on the structure of the data table. Imagine we have a data set called 
sales, but this time, we have a variable called company, which is a classification variable. A value of 1 indicates 
company1. A value 2 indicates company2. Month and revenue are stacked as shown in Figure 4.4. 

Figure 4.4: Sales Data Set 

 

How can we reproduce the points function in this instance? We can one SCATTER statement, as shown in 
Program 4.12. As an option after the forward slash, we will use the group equal to option and give it the 
classification variable. This tells SAS to divide up the job. Now we are plotting revenue and revenue2 
separately on the same plot, which looks the same as Output 4.10. 

Program 4.12: PROC SGPLOT with GROUP= Option 
proc sgplot data=sales;
    scatter x=month y=revenue / group=company;
run;

If the response variables are stacked, another approach is to use the BY statement and plot the two 
companies separately. In Program 4.13, we pass the BY statement the classification variable, and SAS prints 
the scatterplot for company1 and then company2 separately as shown in Output 4.13.  
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Program 4.13: PROC SGPLOT with BY statement 
proc sgplot data=sales;
    scatter x=month y=revenue 
    by company;
run;

Output 4.13: Results of Program 4.13 

 

To review, the BY statement produces a plot for each category of the specified variable. Use the GROUP= 
option to overlay and the BY statement to output multiple plots. We will see the BY statement again going 
forward in this course. It's very consistent in most procedures. We will see it in Chapter 7 when we start using 
simulations for some more efficient SAS programming. 

Multi-Cell Plotting with Procedures and Statements 
In this section, you will learn how to create multi-cell plots. You will learn how to create a window and fill the 
window with different types of plots like a histogram, density estimate, and a box plot. We will also explore 
how to create a scatter-plot matrix, and finally, create a panel of plots based on some classification variable. 

In R, we would use the PAIRS function to create a scatter-plot matrix, and we would also be comfortable using 
the PAR MFROW option to create a window and fill that window with different types of plots. The R script that 
we will attempt to duplicate in this section is shown in Figure 4.5. 

Figure 4.5: R Script 
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PROC SGSCATTER 
First, let’s talk about the SGSCATTER procedure, which creates a paneled graph of scatter plots depending on 
the PLOT statement that you use. There are three different PLOT statements that we can use with PROC 
SGSCATTER: 

the MATRIX statement creates a scatter-plot matrix to duplicate the pairs() function in R 

the PLOT statement creates a paneled graph that contains multiple independent scatter plots 

the COMPARE statement creates a comparative panel of scatter plots based on shared axes 

MATRIX Statement 
First, in PROC SGSCATTER, if we use the MATRIX statement, we simply specify all the variables we want to 
include in the scatter-plot matrix as shown in the following syntax: 

MATRIX variable-1 variable-2 … </ options>; 

In Program 4.14, we are creating a scatter-plot matrix of mpg_city, weight, and length. Options in the MATRIX 
statement enable both histograms and density estimates to be plotted on the diagonal of the scatter plot 
matrix.  

Program 4.14: PROC SGSCATTER with MATRIX Statement 
proc sgscatter data=sp4r.cars;
    matrix mpg_city weight length;
run;

Output 4.14: Results of Program 4.14 

PLOT Statement  
Next, using the PLOT statement, we can create multi-cell scatter plots. In the PLOT statement, we cross 
whatever variables we want to create a scatter plot for in our data set, as shown in the following syntax: 

PLOT variable-i * variable-j … </ options>;

 In Program 4.15, we first create a scatter plot of mpg_city by weight, then create a scatter plot of mpg_city by 
length, and finally, weight by length. As an option, you can use the ROWS= and COLUMNS= to specify the 
structure of the graphic. 

Program 4.15: PROC SGSCATTER with PLOT Statement 
proc sgscatter data=sp4r.cars;
    plot mpg_city*weight mpg_city*length
    weight*length / columns=3;
run;
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In Output 4.15, you can see that we have one row and three columns for these three scatter plots. 

Output 4.15: Results of Program 4.15 

 

COMPARE Statement 
Finally, we can use the COMPARE statement to create a comparative panel of scatter plots according to some 
shared axes. We will always use the Y= and X= option, and in parentheses, give it the y or x variables as shown 
in the following syntax: 

COMPARE X=(variable-i…) Y=(variable-j…)… </ options>; 

The dimension of the graph is determined by the number of variables in the Y= and X= statements. So in 
Program 4.16, for the Y-axis variable, we are specifying mpg_city, which is going to be the shared axes 
variable, and the X-axis variables will be weight and length. This means we are going to create scatter plots of 
mpg_city by weight and mpg_city by length. 

Program 4.16: PROC SGSCATTER with COMPARE Statement 
proc sgscatter data=sp4r.cars;
    compare y=(mpg_city) x=(weight length);
run;

As you can see in the plot in Output 4.16, there is no Y-axis variable for the second plot because it is a shared 
axis. 

Output 4.16: Results of Program 4.16 
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ODS LAYOUT Statements 

ODS LAYOUT START 
To combine plots of different types, use the ODS LAYOUT statement. To reproduce the par(mfrow=c(,)) 
function in R, we will use the ODS LAYOUT START statement with the following syntax:  

ODS LAYOUT START ROWS= COLUMNS=
                                    <WIDTH= HEIGHT= ROW_HEIGHT=
                                    COLUMN_HEIGHT=ROW_GUTTER= 
                                    COLUMN_GUTTER=options>;

ODS LAYOUT END; 

In the same way that we pass the number of rows and columns to the PAR MFROW function in R as 
arguments, we use the ROWS= and COLUMNS= options to specify the structure of the new window. Once we 
specify the structure, we can then fill the window with whatever plots we want. 

There are lots of different options for the ODS LAYOUT statement. For example, use ROW_HEIGHT, 
COLUMN_HEIGHT to specify the heights of the plots that you are creating. Use ROW_GUTTER and 
COLUMN_GUTTER to reduce or increase the space between consecutive plots, and so on. 

Once you are done filling the window, you should use the ODS LAYOUT END statement. That lets SAS go back 
to the default plotting requirements, which is similar to turning off the PAR function in R. 

ODS REGION 
Once we use the ODS LAYOUT START statement, we will then use the ODS REGION statement to specify the 
location of each plot by using the following syntax: 

ODS REGION ROW= COLUMN=; 

So, for example, in Program 4.17, in row one, column three, we are going to fit the following plot: a horizontal 
box plot for mpg_city. 

Program 4.17: ODS REGION Statement 
ods region row=1 column=3;
    proc sgplot data=sp4r.cars;
    hbox mpg_city;
run;

ODS REGION tells SAS exactly where to put the plot in your window, and if you don’t use the ODS REGION, it 
will just specify them consecutively. It will start in the top left corner, filling all the way to the bottom right 
corner of your window. 

But of course, in this example, we only have one row and three columns, so it would start by filling the 
leftmost column and ending with the rightmost column. 

PROC SGPANEL 
The SGPANEL procedure is used to create a panel of plots according to a classification variable. The SGPANEL 
procedure combines plots of the same type only. The panel automatically generates a title for each plot 
according to the classification variable. 

Imagine we have a histogram for the mpg_city variable in the cars data set that is for all the observations in 
my data set, but perhaps we want to split it up and create histograms for each level of the origin variable. 
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If we want to create a histogram for ORIGIN= Asia, Europe, and USA, we can use the SGPANEL procedure with 
the following options: 

PANELBY classification-variable;

PLOTNAME response-or-category-variable </ options>; 

PROC SGPANEL is followed by the PANELBY statement, which enables the user to specify a classification 
variable. The panel creates the same plot type for each classification and response. All the plot types from the 
“Single-Cell Plotting” section can be used with PROC SGPANEL.  

Program 4.18 shows how to create a histogram for the levels of origin separately. Here, all the observations 
for Asia, Europe, and USA are plotted separately. 

Program 4.18: PROC SGPANEL 
proc sgpanel data=sp4r.cars;

panelby origin / columns=3;
    histogram mpg_city;
run;

Output 4.18: Results of Program 4.18 

You can specify multiple classification variables in your PANELBY statement, and SAS will simply cross all 
classification levels of each variable as shown in Program 4.19. Again, use your ROWS and COLUMNS options 
to specify structure for your window. 

Program 4.19: PROC SGPANEL with Multiple Classification Variables 
proc sgpanel data=sp4r.lesscars;
    panelby origin type / rows=1 columns=4;
    reg x=weight y=mpg_city;
run;

Output 4.19: Results of Program 4.19
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Program 4.19 uses the REG statement to add in a line of best fit for simple linear regression data: X-axis 
variable (weight), and Y-axis variable (mpg_city). Notice that the title of each plot specifies the classification 
level for each variable, origin, and type.  
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Exercises 

Multiple Choice 
1. Does the following DO loop create a data table with a sequence from 50 to 100 by 5 with the variable 

name myloop? 
data doloop;

do myloop=50 to 100 by 5;
end;

run;

a. Yes 
b. No  

2. What is the dimension of the data set created below? 
data random;

do i=1 to 3;
      do j=1 to 2;
         do k=1 to 2;
            output;
        end;

      end;
end;

run;

a. 12x12 
b. 6x3 
c. 8x3 
d. 12x3 

3. Do the SAS functions rand('Beta',5,7) and CDF('Beta',.3,5,7) reproduce the R functions rbeta(1,5,7) 
and pbeta(.3,5,7)? 
a. Yes 
b. No 

4. Navigate to the SGPLOT procedure HELP documentation and examine the plotting statements. Which 
statement was used to create the following plot? 

 
a. HEATMAP 
b. POLYGON 
c. BUBBLE  
d. BLOCK 
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5. Which SGPLOT procedure statement was used to create the following plot? 

 
a. MATRIX 
b. PLOT 
c. COMPARE 

Programming Exercises 
1. Using the DO loop and Creating Random Data Sets  

a. Navigate to the SAS RAND function page and choose a few functions to practice generating 
random numbers. Create a data table with at least two variables of random numbers and at least 
10 observations. Be sure to use a random seed of your choice.  

http://support.sas.com/documentation/cdl/en/lefunctionsref/67960/HTML/default/view
er.htm#p0fpeei0opypg8n1b06qe4r040lv.htm 

b. Create a new data table with the same random variables that you specified from the previous 
step. Create a variable called Class that groups the first five observations into class 1 and the 
second five into class 2. Drop the nested DO loop index variable from the data table and add a 
sequence from 1 to 10. Print the data upon completion.  

c. Run the SAS code below. What do you notice? 
data test; 

do i=1 to 2; 
output; 

end; 
run; 

proc print data=test; 
run; 

data test; 
set test; 
do j=1 to 5; 

output; 
end; 

run; 

proc print data=test; 
run;

2. Exploring PDF, CDF, and Quantiles Variables
a. Use the DO loop to create quantiles from 0 to 10 by 1.  
b. Identify the density and the cumulative density of a binomial distribution with parameters 0.8 

and 10 by creating variables PDF and CDF.  
c. Use the CDF variable to create the variable Quantile, which mirrors the DO loop values.  
d. Print the data upon completion.  
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3. Plotting Chi-Square Random Numbers 
a. Create a data table with 1000 random deviates from a chi-square distribution with 20 degrees of 

freedom and a seed of 123. 
b. Use PROC SGPLOT to plot a histogram of the data.  

1) Alter the appearance of the plot by setting the BINWIDTH= option to 1.  
2) Add both a normal and kernel density estimate.  
3) Add the title ‘My Random Chi-Square Distribution’.  
4) Add the X-axis title ‘Random Chi-Square Deviates’.  
5) Use X-axis limits of 5 and 40.  
6) Request the frequency instead of the percent by providing the option SCALE=COUNT in 

the HISTOGRAM statement.  

 

4. Plotting Simple Linear Regression Data 

a. Create a data table with Y X where X ranges from 1 to 30, 25 , 1, and 
~ N( 0, 5) . Keep only the variables X and Y. 

b. Use PROC SGPLOT and the REG statement to plot the line of best fit for the data. Create a plot of 
the data. Use both the SCATTER and REG statement to plot the points and a line of best fit.  

a. Enhance the plot by coloring the points blue and using the symbol STARFILLED 
b. Color the regression line red and use the pattern DOT. 
c. Add a title of your choosing to the X axis, Y axis, and the main title. 
d. Use the X-axis limits from 0 to 31, and the Y-axis limits from 15 to 65. 
e. Name the legend ‘Scatter’ and ‘Line of Best Fit’ for both plot types. 
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c. Alter the previous plot by changing the SCATTER statement to NEEDLE and the REG 
statement to PBSPLINE. (This demonstrates the ease in which plot types can be altered.) 

 

5. Creating a Bubble Plot 
a. Create a data table with two groups of 20 and the random seed 123. Create two random 

variables. Let the first be exponential and the second be binomial with parameters 0.5 and 
5. 

b. Use the BUBBLE statement to create a bubble plot. Set the SIZE= to the binomial random 
variable. Also, specify the GROUP= option based on the two separate groups. Finally, 
provide the plot with titles for the X axis, Y axis, and main title.  

 

6. Using PROC SGSCATTER 
a. Create a data table with 300 observations and a seed of 123. 

i. Let X be the deviates from the standard normal distribution. 
ii. Produce a variable Y1, which is X plus standard normal deviates. 

iii.  Produce another variable such that Y2 is 5*X plus standard normal deviates. 
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b. Use PROC SGSCATTER to create a scatter plot matrix of X, Y1, and Y2. Include histograms 
and kernel density estimates on the diagonal. (Hint: Look up the DIAGONAL= option in the 
MATRIX statement of the SGSCATTER procedure.) 

 

c. Use PROC SGSCATTER to create side-by-side scatter plots of Y1 by X and Y2 by X with the 
PLOT statement. Add the regression line to both plots with the REG option.  

 

d. Use PROC SGSCATTER and the COMPARE statement to create the same scatter plot with 
shared axes.  

 

7. Using PROC SGPANEL 
a. Instead of creating Y1 and Y2 as separate variables from the previous exercise, stack the 

variables in a single column denoted Y using a nested DO loop. 
i. Create a categorical variable called Year with groups 1 and 2. 

ii. Generate 300 observations for each group with a random seed of 123. 
iii. Let X be the deviates from a standard normal distribution. 
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iv. Use IF-THEN/ELSE syntax to let Y be X plus standard normal deviates if Year is 1 and let Y 
be 5*X plus standard normal deviates otherwise. 

b. Use PROC SGPANEL to create a regression panel by year. 
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Solutions 

Multiple Choice 
1. b – In order to save all values of each iteration, you must use the OUTPUT statement. 
2. d – The number of iterations for nested DO loops is the product of the number of iterations for each 

index (3x2x2=12). In addition, we did not drop any of the three indices, so the data set dimension is 
12x3. 

3. a – The RAND and CDF function in SAS are equivalent to the r and p probability functions in R. The 
only difference is in SAS, we do not specify the number of iterations in the function when simulating 
new data. 

4. a – The heat map here color codes the cells in the bivariate plot according to the frequency of 
observations in each cell. 

5. b – This plot was created using the PLOT statement because we have a window of four independent 
scatter plots. The plot was not created using the MATRIX statement because the diagonal element 
would not be scatterplots and it was not created using the COMPARE statement because there are 
no shared axes. 

Programming Exercises 
1. Using the DO loop and Creating Random Data Sets  

a. Navigate to the SAS RAND function page and choose a few functions to practice generating 
random numbers. Create a data table with at least two variables of random numbers and at least 
10 observations. Be sure to use a random seed of your choice.  
data sp4r.random; 
    call streaminit(123); 
    do i=1 to 10; 
        rt = rand('T',5); 
        rf = rand('F',3,4); 
        ru = int(rand('Uniform')*10); 
        output; 

end; 
run; 

proc print data=sp4r.random; 
run;

 

b. Create a new data table with the same random variables that you specified from the previous 
step. Create a variable called Class that groups the first five observations into class 1 and the 
second five into class 2. Drop the nested DO loop index variable from the data table and add a 
sequence from 1 to 10. Print the data upon completion.  

data sp4r.random (drop=j); 
    call streaminit(123); 
    do class=1 to 2; 
        do j=1 to 5; 

sequence + 1; 
            rt = rand('T',5); 
            rf = rand('F',3,4); 
            ru = int(rand('Uniform')*10); 
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output; 
end; 

end; 
run; 

proc print data=sp4r.random; 
run;

 
c. Run the SAS code below. What do you notice? 

data test; 
do i=1 to 2; 

output; 
end; 

run; 

proc print data=test; 
run; 

data test; 
set test; 
do j=1 to 5; 

output; 
end; 

run; 

proc print data=test; 
run;

The loop iterates through each observation in the data table. 
 

2. Exploring PDF, CDF, and Quantiles Variables 
a. Use the DO loop to create quantiles from 0 to 10 by 1.  
b. Identify the density and the cumulative density of a binomial distribution with parameters 0.8 

and 10 by creating variables PDF and CDF.  
c. Use the CDF variable to create the variable Quantile, which mirrors the DO loop values.  
d. Print the data upon completion.  

data sp4r.random; 
do q=0 to 10 by 1; 

pdf = pdf('Binomial',q,.8,10); 
cdf = cdf('Binomial',q,.8,10); 
quantile = quantile('Binomial',cdf,.8,10); 
output; 

end; 
run; 

proc print data=sp4r.random; 
run;
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3. Plotting Chi-Square Random Numbers 
a. Create a data table with 1000 random deviates from a chi-square distribution with 20 degrees of 

freedom and a seed of 123. 
data sp4r.hist; 
    call streaminit(123); 
    do i=1 to 1000; 
        rchisq = rand('chisquare',20); 
        output; 
    end; 
run;

b. Use PROC SGPLOT to plot a histogram of the data.  
1) Alter the appearance of the plot by setting the BINWIDTH= option to 1.  
2) Add both a normal and kernel density estimate.  
3) Add the title ‘My Random Chi-Square Distribution’.  
4) Add the X-axis title ‘Random Chi-Square Deviates’.  
5) Use X-axis limits of 5 and 40.  
6) Request the frequency instead of the percent by providing the option SCALE=COUNT in 

the HISTOGRAM statement.  
proc sgplot data=sp4r.hist; 

histogram rchisq / binwidth=1 scale=count; 
density rchisq / type=normal; 
density rchisq / type=kernel; 
title 'My Random Chi-Square Distribution'; 
xaxis label='Random Chi-Square Deviates' min=5 max=40; 

run;
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4. Plotting Simple Linear Regression Data 

a. Create a data table with Y X where X ranges from 1 to 30, 25 , 1, and 
~ N( 0, 5) . Keep only the variables X and Y. 
data sp4r.simple_lin (keep=x y); 
    call streaminit(123); 
    do x=1 to 30; 
        beta01 = 25; 
        beta11 = 1; 
        y = beta01 + beta11*x + rand('Normal',0,5); 
        output; 
    end; 
run;

b. Use PROC SGPLOT and the REG statement to plot the line of best fit for the data. Create a plot of 
the data. Use both the SCATTER and REG statement to plot the points and a line of best fit.  

a. Enhance the plot by coloring the points blue and using the symbol STARFILLED 
b. Color the regression line red and use the pattern DOT. 
c. Add a title of your choosing to the X axis, Y axis, and the main title. 
d. Use the X-axis limits from 0 to 31, and the Y-axis limits from 15 to 65. 
e. Name the legend ‘Scatter’ and ‘Line of Best Fit’ for both plot types. 

proc sgplot data=sp4r.simple_lin; 
scatter x=x y=y / legendlabel='Scatter' name='Scatter’ 
markerattrs=(color=blue symbol=starfilled); 

reg x=x y=y / legendlabel='Line of Best Fit' name='Line' 
lineattrs=(color=red pattern=dot); 

title 'My Scatter Plot'; 
xaxis label='X Values' min=0 max=31; 
yaxis label='Y Values' min=15 max=65; 
keylegend 'Scatter' 'Line'; 

run;
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c. Alter the previous plot by changing the SCATTER statement to NEEDLE and the REG 
statement to PBSPLINE. (This demonstrates the ease in which plot types can be altered.) 
proc sgplot data=sp4r.simple_lin; 
    needle x=x y=y / legendlabel='Needle' name='Needle' 
markerattrs=(color=blue symbol=starfilled); 
    pbspline x=x y=y / legendlabel='Line of Best Fit' 
        name='Line' 
        lineattrs=(color=red pattern=dot); 

    title 'My Needle Plot'; 
xaxis label='X Values' min=0 max=31; 

    yaxis label='Y Values' min=15 max=65; 
    keylegend 'Needle' 'Line'; 
run;

5. Creating a Bubble Plot 
a. Create a data table with two groups of 20 and the random seed 123. Create two random 

variables. Let the first be exponential and the second be binomial with parameters 0.5 and 
5. 
data sp4r.bubble; 
    call streaminit(123); 
    do group=1 to 2; 
        do x=1 to 20; 
            y = rand('Exponential'); 
            z = rand('binomial',.5,5); 
            output; 
        end; 
    end; 
run;

b. Use the BUBBLE statement to create a bubble plot. Set the SIZE= to the binomial random 
variable. Also, specify the GROUP= option based on the two separate groups. Finally, 
provide the plot with titles for the X axis, Y axis, and main title.  
proc sgplot data=sp4r.bubble; 

bubble x=x y=y size=z / group=group; 

title 'My Bubble Plot'; 
xaxis label='X Values'; 
yaxis label='Y Values'; 

run;
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6. Using PROC SGSCATTER 
a. Create a data table with 300 observations and a seed of 123. 

i. Let X be the deviates from the standard normal distribution. 
ii. Produce a variable Y1, which is X plus standard normal deviates. 

iii.  Produce another variable such that Y2 is 5*X plus standard normal deviates. 
data sp4r.random; 

call streaminit(123); 
do i=1 to 300; 

x = rand('Normal'); 
y1 = x + rand('Normal'); 
y2 = 5*x + rand('Normal'); 
output; 

end; 
run;

b. Use PROC SGSCATTER to create a scatter plot matrix of X, Y1, and Y2. Include histograms 
and kernel density estimates on the diagonal. (Hint: Look up the DIAGONAL= option in the 
MATRIX statement of the SGSCATTER procedure.) 
proc sgscatter data=sp4r.random; 

matrix x y1 y2 / diagonal=(histogram kernel); 
title 'Scatter Plot Matrix'; 

run; 
title;

Selected PROC SGSCATTER statement and option: 
MATRIX specifies the variables used to create a scatter plot matrix. Use the DIAGONAL= 
option to include a histogram, density estimates, or both as the diagonal elements of the 
scatter plot matrix. 
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c. Use PROC SGSCATTER to create side-by-side scatter plots of Y1 by X and Y2 by X with the 
PLOT statement. Add the regression line to both plots with the REG option.  
proc sgscatter data=sp4r.random; 

plot (y1 y2) * x / reg; 
title 'Scatter Plots'; 

run; 
title;

d. Use PROC SGSCATTER and the COMPARE statement to create the same scatter plot with 
shared axes.  
proc sgscatter; 
    compare y=(y1 y2) x=x / reg; 
    title 'Scatter Plots'; 
run; 
title;
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7. Using PROC SGPANEL 
a. Instead of creating Y1 and Y2 as separate variables from the previous exercise, stack the 

variables in a single column denoted Y using a nested DO loop. 
i. Create a categorical variable called Year with groups 1 and 2. 

ii. Generate 300 observations for each group with a random seed of 123. 
iii. Let X be the deviates from a standard normal distribution. 
iv. Use IF-THEN/ELSE syntax to let Y be X plus standard normal deviates if Year is 1 and let Y 

be 5*X plus standard normal deviates otherwise. 
data sp4r.random; 

call streaminit(123); 
do year=1 to 2; 

do j=1 to 300; 
x = rand('Normal'); 
if year=1 then y = x + rand('Normal'); 
if year=2 then y = 5*x + rand('Normal'); 

output; 
end; 

end; 
run;

b. Use PROC SGPANEL to create a regression panel by year. 
proc sgpanel data=sp4r.random; 

panelby year; 
reg x=x y=y; 
title 'Regression Panels'; 

run; 
title;
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Introduction 
You might find this chapter to be more challenging than the previous ones. We will start by talking about the 
four go-to procedures for generating summary statistics: PROC CORR, PROC FREQ, PROC MEANS, and PROC 
UNIVARIATE.  

Next, we will talk about the Output Delivery System (ODS), which from an R user's perspective can be used to 
customize and save the generated output. Remember, SAS does not save output in objects, so to parallelize 
the approach of pulling fields from an object, we can use ODS statements.  

The second half of this chapter examines macro variables and macro programs. By now you have noticed that 
the scope of variables is specific to the data set that you are working with. What if we want to create a global 
variable that can be passed to any procedure or DATA step? We can use macro variables. 

Finally, we will learn how to create macros programs, which you can think of simply as an R function. This will 
enable you to customize and automate the generation of SAS code. We will write macro programs that 
generate and execute DATA and PROC steps automatically based on the parameters that we pass in the macro 
call. 
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Summary Statistics Procedures 
This section introduces four different procedures to analyze variables and generate summary statistics. We 
will reproduce the COR and COV functions in R as shown in Figure 5.1, as well as the TABLE function for 
frequency tables of classification variables. We will also generate the qqnorm plot, which is not in PROC 
SGPLOT. And we will compute summary statistics like mean, median, mode, range, and so on. These will be 
applied to the entire column or variable of your data set. 

Figure 5.1: R Script 

Remember in Chapter 3 that we used functions in the DATA step, and they were only applied across rows. In 
this section, for these procedures, they will operate on the entire variable. 

PROC CORR 
PROC CORR does exactly what you expect: it makes a correlation matrix. In the VAR statement of PROC CORR, 
we list all the variables we want added into the correlation matrix, as shown in the following syntax: 

PROC CORR DATA=SAS-data-set <options>;
VAR variable-1 … variable-n;

RUN; 

Tip: If no VAR statement is included, all numeric variables in the data set are included. 

For example, in Program 5.1 using the cars data set, we list the variables horsepower, weight, and length in 
the VAR statement.  

Program 5.1: PROC CORR 
proc corr data=sp4r.cars;

var horsepower weight length;
run;

Output 5.1: Results of Program 5.1 
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Notice that the second table in Output 5.1 is the Correlation Matrix. There are two values in each cell. The first 
value is the estimated correlation, and the second is the hypothesis test p-value, testing the population 
correlation coefficient. For example, the correlation coefficient between Horsepower and Weight is 0.63. And 
the p-value is less than 0.001, meaning it is highly significant.  

Also, by default in the output, we get the Simple Statistics table. This shows the number of observations (N), 
the Mean, Standard Deviation, Sum, Minimum, and Maximum for our three variables as well.  

Program 5.2 and Output 5.2 show that if you tack on the COV option in the PROC CORR statement, in addition 
to the previous tables, we get the Covariance Matrix, which is the same as the COV function in R.  

Program 5.2: PROC CORR with COV Option 
proc corr data=sp4r.cars cov;
    var horsepower weight length;
run;

Output 5.2: Partial Results of Program 5.2 

 

As you can see, there are lots and lots of different options that you can specify in these Summary Statistics 
procedures.  

PROC FREQ 
Next, when working with categorical data, we can use PROC FREQ to create frequency tables. Instead of the 
VAR statement as we did with PROC CORR, we use the TABLES statement as shown in the following syntax: 

PROC FREQ DATA=SAS-data-set <options>;
TABLES variable-1 … variable-n / <options>;

RUN; 

Tip: If the TABLES statement is omitted, a one-way frequency table is produced for every variable in the 
data set. This is seldom preferred. Therefore, simply specify all the one-way frequency tables that you 
want to generate in the TABLE statement.

In Program 5.3, we will generate two separate tables for Origin and Type shown in Output 4.3.  

Program 5.3: PROC FREQ 
proc freq data=sp4r.cars;
    tables origin type;
run;
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Output 5.3: Results of Program 5.3 

As you can see in Output 5.3, we get the Frequency for each level of each variable. By default, we also get the 
percentage of observations in that level, as well as the Cumulative Frequency and Cumulative Percent.  

Cross Tabulation 
If you want to do a cross tabulation, simply cross your variables in the TABLE statement with the star 
operator. Program 5.4 and Output 5.4 shows how to cross Origin and Type.  

Program 5.4: PROC FREQ Cross Tabulation 
proc freq data=sp4r.cars;

tables origin*type;
run;

Output 5.4: Results of Program 2.4 

 

In each cell of Output 5.4, we have the Frequency, Percent, Row Percent, and Col Percent, just like we saw 
before. For example, all three vehicles that were hybrid vehicles came from Asia. And that corresponded to 
only 0.7% of our data. And on the bottom, and far right of the table, we get the totals. 

Options 
If you want to reproduce your tables exactly like you would see them in R, you can use options in the TABLES 
statement to suppress the display of selected default statistics. Specifically, we can suppress the rows, 
columns, the percentage, and the frequency if we want, as shown in Table 5.1. 
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Table 5.1: Options to Suppress Statistics 

Option Description

NOROW Suppresses the display of the row percentage.

NOCOL Suppresses the display of the column percentage.

NOPERCENT Suppresses the percentage display.

NOFREQ Suppresses the frequency display 

 

It's unlikely that you would want to use the NOFREQ option, but you can if you would like. In Program 5.5, we 
are reproducing the table() function exactly as you would see it in R. In the TABLE statement, we are crossing 
Origin and Type. After the forward slash, specify norow, nocol, and nopercent so that all we have in each cell 
are the Frequencies. 

Program 5.5: PROC FREQ with Suppress Statistics Options 
proc freq data=sp4r.cars;
tables origin*type / norow nocol nopercent;
run;

Output 5.5: Results of Program 5.5 

 

Previously with PROC SQL, you saw how to print the unique levels of a variable. But perhaps there are 
hundreds, maybe even thousands, of levels in a specific variable. What if we just want to print the number of 
levels in each variable? In the PROC FREQ statement, use the nlevels option as shown in Program 5.6.  

Program 5.6: PROC FREQ with NLEVELS Option 
proc freq data=sp4r.cars nlevels;
tables origin*type /
norow nocol nopercent noprint;
run;

Output 5.6: Results of Program 5.6 

Output 5.6 shows the number of variable levels. For Origin, of course, there's only three levels, and for Type, 
there's only six levels. If you don't want to print the original frequency tables, you can use the NOPRINT 
option in the TABLE statement. 
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PROC MEANS 
The MEANS procedure is an excellent procedure for requesting summary statistics. This procedure can 
reproduce the following R functions: Mean(), Median(), Mode(), Range(), Var(), sd(), Sum(), Min(), Max(), and 
Quantile(). PROC MEANS will apply the function to the entire variable. So if we take the mean of the variable, 
it will take the mean of the entire column vector. 

As shown in the following syntax, in the VAR statement of the MEANS procedure, we specify all the variables 
we want to use: 

PROC MEANS DATA=SAS-data-set <options>;
VAR variable-1 … variable-n;

RUN; 

Program 5.7 shows an example using the cars data set and MPG city and MPG highway. If we run this 
procedure in Program 5.7, we get the default output. Specifically, it would reproduce the Mean, Standard 
Deviation, Min, and Max function. And it would also give the number observations used to estimate those 
values. 

Program 5.7: PROC MEANS 
proc means data=sp4r.cars maxdec=2;
    var mpg_city mpg_highway;
run;

Output 5.7: Results of Program 5.7 

As you can see in Output 5.7, MPG City Mean is 20.06, the Standard Deviation is 5.24, and so on. The 
maxdec=2 option in the PROC MEANS statement makes everything a maximum of two decimal places. 
Otherwise, you can get more decimal places than you need. 

There are many different options to customize the output in a PROC MEANS procedure. You can generate all 
these descriptive statistics with these keywords shown in Table 5.2. You can specify Confidence Limits (CLM), 
the RANGE, the SKEWNESS of the distribution, the Variance (VAR), the Standard Error (STDERR), and so on. 
You can also request percentiles with these pre-determined keywords. 

Table 5.2: PROC MEANS Statement Options 

Descriptive Statistic Keywords 

CLM CSS CV LCLM MAX 

MEAN MIN MODE N NMISS 

KURTOSIS RANGE SKEWNESS STDDEV STDERR

SUM SUMWGT UCLM USS VAR 

Quantile Statistic Keywords 

MEDIAN | P50 P1 P5 P10 Q1 | P25 

Q3 | P75 P90 P95 P99 QRANGE 
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For example, you can request the first percentile with the P1 keyword, the fifth percentile with the P5 
keyword, and so on. Again, these are predefined, so you cannot simply say P15 to get the 15th percentile. But 
later you will learn how to request your own percentiles. 

To customize the MEANS procedure output, simply tack on options to the MEANS procedure statement as 
shown in Program 5.8. In Program 5.8, we are requesting only the mean, median, and var options, which is 
going to give us the mean, median, and variance in the table shown in Output 5.8. It's not going to print the 
other default output. 

Program 5.8: PROC MEANS with Options 
proc means data=sp4r.cars maxdec=2 mean median var;
    var mpg_city mpg_highway;
run;

Output 5.8: Results of Program 5.8 

PROC UNIVARIATE 
The final procedure that we will talk about in this section is the UNIVARIATE procedure. You can generate lots 
of different output with this procedure, more than we can cover in this section. 

You can generate moments like means, skewness, kurtosis. You can generate basic statistical measures, for 
example, mean, median, standard deviation. You can do testing for location. It gives you predefined quantiles 
by default, and it also prints the extreme observations—the five highest and lowest observations of the 
variable. Some example output from PROC UNIVARIATE is shown in Figure 5.2. 

Figure 5.2: Example PROC UNIVARIATE Output 

 

The UNIVARIATE procedure is used same way as the MEANS procedure. Just list all the variables you want to 
use in the VAR statement as shown in the following syntax: 

PROC UNIVARIATE DATA=SAS-data-set <options>;
VAR variable-1 … variable-n;

RUN; 

You can also generate some graphics in PROC UNIVARIATE. For example, you can use the HISTOGRAM 
statement similarly to PROC SGPLOT to create a histogram. You can also generate a QQ Plot directly in the 
UNIVARIATE procedure using the QQPLOT statements syntax as follows: 

HISTOGRAM variable-1 … variable-n / <options>;
QQPLOT variable-1 … variable-n / <options>;
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For examples of how to use PROC UNIVARIATE, see the SAS documentation. We will also discuss how to 
control the output of this procedure in the next section. 

Output Delivery System 
In this section, you will learn how to customize your PROC step output, specifically, how to return only specific 
tables and graphics and create new tables from PROC step results. 

In R, we typically create a model object and then print the default output. We can also pull fields from the 
object, like the names, or the residuals, and so on. Then we can create data frames from those fields as shown 
in Figure 5.3. In this section, the SAS equivalent is pulling fields from an object to customize your results. 

Figure 5.3: R Script 

First, to customize our results in SAS, we need to talk about the Output Delivery System (ODS). SAS 
procedures and DATA steps simply produce raw data. For example, when we run the CORR procedure, we get 
the output shown in Figure 5.4. But PROC CORR only produces the raw data for the table cells, in this case, 
1.00000, 0.63080, 0.38155, and so on. It's the Output Delivery System that actually provides structure to the 
table, the color, titles, headings, and so on. 

Figure 5.4: PROC CORR Output 

 

Why is this important? 

Well, we can actually get inside the Output Delivery System and alter the appearance of the output, for 
example, the style, color, font, and so on. We can also change the destination file type of the output. In this 
section, you will learn how to select specific output and also create new data tables from that output. 

Customizing Output with the ODS SELECT Statement 
PROC UNIVARIATE produces a lot of default output. For example, it produces the Quantiles table, the 
Moments table, the QQ Plot graphic, and so on. Maybe we don't actually want to print all this material. 
Maybe we only want to print the Basic Statistical Measures table and the QQ Plot graphic. How can we 
customize these results? 

To do this, we use the ODS SELECT statement before running the procedure. Then specify the object name, 
specifically the table or graphic name, and SAS will only print those tables or graphics to the results page as 
shown in the following syntax: 

ODS SELECT object-name-1 … object-name-n;
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You can specify as many tables and graphics as you want in a single ODS SELECT statement. 

Tip: This is identical to using the $ symbol in R to pull output from an object. 

One way to determine what the table and graphic names are is to use the ODS TRACE ON statement. When 
we run this statement, any output that is generated to the results page, the tables and graphic names, are 
printed to the log as shown in Program 5.9 and Output 5.9.  

Program 5.9: ODS TRACE Statement 
odstrace on;

proc univariate data=ameshousing;
    varsaleprice;
    qqplotsaleprice/normal(mu=estsigma=est);
run;

odstrace off;

Output 5.9: Log of Program 5.9 

 

 

Then we can grab those table and graphics names from the log and use ODS SELECT to customize the output 
by printing only the BasicMeasures table and QQ plot in the next run as shown in Program 5.10 and Output 
5.10. 

Program 5.10: ODS SELECT Statement 
ods select basicmeasures qqplot; 

proc univariate data=sp4r.ameshousing; 
    var saleprice; 
    qqplot saleprice / normal(mu=est sigma=est); 
run;
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Output 5.10: Results of Program 5.10 

If you don't want to keep printing all this output to the log, simply use the ODS TRACE OFF statement after. 

Saving Results with the ODS OUTPUT Statement 
Next, we will use the Output Delivery System to create new data tables from the PROC STEP results tables and 
choose specific summary statistics to include in the tables. Perhaps when you ran the UNIVARIATE procedure 
in Program 5.10 and generated the Basic Statistical Measures table, you also wanted to save it as a new SAS 
data set. To save an output table as a SAS data set, we will use the ODS OUTPUT statement prior to running 
our procedure as shown in the following syntax: 

ODS OUTPUT output-object-name = data-set-name; 

In the ODS OUTPUT statement you will first specify the object name, which is the same table name that we 
used in ODS SELECT. Then you will set that table name equal to a new SAS data set name. For example, in 
Program 5.11, our new table name will be SP_BasicMeasures. SP is going to be for sale price, the variable that 
we are analyzing in the UNIVARIATE procedure.  

Program 5.11: ODS OUTPUT Statement 
ods output basicmeasures = SP_BasicMeasures;

proc univariate data=ameshousing;
    var saleprice;
run;

If you are familiar with R, then it looks a little bit peculiar that the new data set name is on the right side of 
the assignment statement and the object name is on the left, but just be aware that that is the syntax in SAS. 
You can specify as many object names equal to data set names as you would like in a single ODS OUTPUT 
statement. After you finish your ODS OUTPUT statement, then run the appropriate procedure to generate the 
table and save it.  

Saving Results with the OUTPUT Statement 
What if you don’t want to save the entire table? What if all you want to do is save a single summary statistic, 
like the mean? It might not make sense to only save one summary statistic to an entire data table, but in the 
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next section, you will see a good reason why you would want to do it. To save a single summary statistic, use 
the OUTPUT statement (not to be confused with the ODS OUTPUT statement) to customize the new data 
table. The OUTPUT statement enables the user to select which individual values from the results tables to 
place in the new data table. This avoids keeping unwanted statistics from default results tables. Immediately 
following the OUTPUT statement, use the OUT equal to option, and specify a new SAS data set name as 
shown in the following syntax: 

OUTPUT OUT=new-data-set-namekeyword-1= variable-name-1… keyword-n= variable-name-n; 

For example, in Program 5.12, we use the OUTPUT statement to create a new table called stats.  

Program 5.12: OUTPUT Statement 
procunivariate data=ameshousing;
    varsaleprice;
    output out=stats mean=sp_mean;
run;

Program 5.12 uses the keyword mean to save the mean. You can find more keywords listed on the SAS 
documentation page. We set the SAS data set variable name equal to sp_mean. You can request as many 
summary statistics as there are keywords in the OUTPUT statement.  

We will see the OUTPUT statement in a later chapter when we get into modeling. For example, we will save 
residuals and predicted values, and then generate residual-by-predicted plots with those new SAS data sets. 

Creating Macro Variables 
By this point, you have probably noticed that the scope of the variables in SAS are exclusive to the data set 
they were created in. For example, if we create a new data set called myvars and specify mymean and mysd 
as two numeric values, we cannot then use them in other DATA or PROC steps with a different data set. For 
example, we cannot go into the test data set and standardize the value y with mymean and mysd from the 
myvars data set. Likewise, we cannot use mymean in the PRINT procedure when we use a different data set as 
well. 

How can we circumvent this problem in SAS? In R, we would just create the new variables. For example, 
mymean and mysd are just numeric values that we could use to standardize value y as shown in Figure 5.5. 

Figure 5.5: R Script 

 

This section shows you how to replicate this process manually in SAS. You will also learn how to automate the 
process. What if your data changes? You do not want to have to type out 123.45. You just want to take the 
mean of y and the standard deviation of y then use it to standardize values. 

Manually Create a Macro Variable 
In this section, you will learn an easy way to manually create a macro variable. Then we will automate the 
process using the SQL procedure.  

To create this variable like you would in R, in SAS you will create a macro variable with the %LET statement. 
Specify the new variable name and just set it equal to whatever value you want using the following syntax: 

%LET variable-name = value;
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Suppose you have a numeric variable, for example, height=67. To create the variable height=67, simply use 
the %LET statement and set height equal to 67 as follows: 

%let height=67;

To create a character macro variable, you will use the exact same syntax with the %LET statement. Because 
macro variables are stored as text, the same syntax is used for both numeric and character macro variables. 
We will call this macro variable name and set it equal to Jordan Bakerman.  

%let name = Jordan Bakerman;

Notice that we do not use quotation marks like we would in R. SAS stores everything as a text string, so we do 
not need to quote anything. If you do add quotation marks, the quotation marks are going to be saved inside 
the macro variable as part of the text string. SAS also saves the capitalization of J and B in the macro variable. 
Whatever you type in is going to be saved exactly as-is. 

Let's look at some of the following characteristics of macro variables: 

Number tokens are stored as text strings.  

The minimum length is 0 characters (null value). 

The maximum length is 64k characters. 

Case is preserved. 

Leading and trailing blanks are removed. 

Quotation marks are stored as part of the value. 

Using Macro Variables 
Now that we know how to create a macro variable, how do we use it? Macro variable references begin with 
an ampersand followed by the macro variable name as shown in the following syntax: 

&myvar

Imagine we have the variable myvar. To use it inside a DATA or PROC step, or wherever you want, say 
&myvar. Then when you run the script, it is going to resolve to the variable that you have specified. 

Macro variable references are also called symbolic references, but we will refer to them simply as macro 
variable references. Here are some other qualities of macro variable references: 

They can appear anywhere in a program so that you can use them in any DATA or PROC step that you 
want. When you use the %LET statement, the macro variable is global. 

The macro variable name is not case sensitive. For example, myvar is not case sensitive. But the 
values that you have stored in that variable are case sensitive.  

They are passed to the macro processor to be resolved by SAS. So &myvar will resolve to whatever 
you specified. 

Examples 
Let's look at a few examples of using a macro variable. In the first example, we will use the PRINT procedure in 
Program 5.13.  

Program 5.13: Code Without a Macro Variable 
proc print data=ameshousing;
    where yr_sold = 2010;
    var yr_sold saleprice;
    title "Price of Homes Sold in 2010";
run;
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Output 5.13: Partial Results of Program 5.13 

Notice in Program 5.13 there are two instances of the year 2010—one in the WHERE statement and one in 
the TITLE statement. Of course, you can imagine we might have much more code where we want to change 
the value 2010 several times—even 10, 20, or 30 times. This is just a small example. 

So how would update Program 5.13 to use a macro variable to change 2010 in both instances easily? First, use 
the %LET statement to create a new macro variable called year and let it equal 2010. Now, as you can see in 
Program 5.14, we can replace all instances of 2010 in the PRINT procedure with &year in the WHERE 
statement and the TITLE statement. 

Program 5.14: Macro Variable 
%let year = 2010;

proc print data=ameshousing;
    where yr_sold = &year;
    var yr_sold saleprice;
    title "Price of Homes Sold in &year";
run;

If you run Program 5.14, the output will be identical to Output 5.13.

But what if you wanted to change the year to 2011, 2012, and so on? Simply change the macro variable in the 
%LET statement. That way you don’t have to change it in every spot of the PRINT procedure.  

Let's look at another example using character data. 

Program 5.15: Code Without Macro Variable 
proc print data=ameshousing;
    where garage_type_2 = "Attached";
    var yr_sold saleprice;
    title "Homes Sold with Attached Garage";
run;

Output 5.15: Partial Results of Program 5.15 

 

In Program 5.15 we are running the PRINT procedure again, but you will notice this time in the WHERE 
statement, we are using garage_type_2. That variable is either Attached or Detached. Because we are 
specifying character data in the WHERE statement, we need to quote the value Attached. Notice also the 
word Attached is in the TITLE statement. 

How can we use a macro variable to make it easier to change that value? The %LET statement, of course. Let’s 
create a new macro variable called gtype and let it be equal to Attached as shown in Program 5.16. It is very 
important that you keep the A capitalized because that is how it appears in your data set. Then supply the 
gtype macro variable into the PRINT procedure where the word Attached was, as well as in the WHERE and 
TITLE statement.  
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Program 5.16: Macro Variable 
%let gtype = Attached;

proc print data=ameshousing;
    where garage_type_2 = "&gtype";
    var yr_sold saleprice;
    title "Homes Sold with &gtype Garage";
run;

It's extremely important when you are quoting a macro variable to use double quotation marks. Why? 
Because this allows the macro variable to resolve. &gtype will resolve to the word Attached. If you used single 
quotation marks, it would leave it as &gtype. There is no value in your data set for garage_type_2 called 
&gtype. When in doubt when working with macro variables, use double quotation marks. 

Tip: You must use double quotation marks when you refer to a macro variable. 

Creating Global Macro Variables 
In the previous section, we saw how to create macros variables manually with the %LET statement. Now let's 
automate the process using SQL and the following steps: 

Step 1: Create a SAS data table. In order to query a data set, we need to actually have a data set with 
useful information. 

Step 2: Use PROC SQL to create a macro variable. Use the following syntax: 

PROC SQL;
    SELECT variable-name
    INTO :macro-variable-name
    FROM data-table-name;

Step 1: Create a SAS Data Table 
In Program 5.17, we run the MEANS procedure using the OUTPUT statement to create a new SAS data set 
with the values for mean and standard deviation. The variable names in this data set stats are going to be 
mean and sd.  

Program 5.17: Create SAS Data Table 
proc means data=ameshousing;
    var saleprice;
    output out=stats mean=mean std=sd;
run;

Step 2: Use PROC SQL to Create a Macro Variable 
Now we can query the data and create new macro variables. To do so, we will use PROC SQL. Start with the 
SELECT statement and specify the variable-name in the data set, in this case mean, as shown in Program 5.18. 
Use the keyword into, and the colon operator, and specify a new macro variable, sp_mean. Finally, tell it what 
data set to look at, stats. Likewise, select the standard deviation and put that into a new macro variable called 
sp_sd, again, from the stats data set. 

Program 5.18: PROC SQL 
proc sql;
    select mean into :sp_mean from stats;
    select sd into :sp_sd from stats;
quit;

Just like the %LET statement that we used when creating a macro variable manually, these macro variables 
are also global. You can use them in any data or PROC steps that you would like. 
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%PUT Statement 
If you create a macro variable automatically, and perhaps put your program away for a week or two, when 
you come back, to remind yourself of what you have done, you can use the %PUT statement to write a nice 
message to yourself in the log using the following syntax:  

%PUT text; 

In this case, let’s remind ourselves that the mean and standard deviation of the sale price variable is 
&sp_mean and &sp_sd. When you run this %PUT statement in Program 5.19, it's going to print that text and 
resolve the macro variables. 

Program 5.18: %PUT Statement 
%put The mean and sd of the Sale Price
variable is &sp_mean and &sp_sd;

Output 5.18: Log of Program 5.18 
The mean and sd of the Sale Price variable is 
137524.87 and 37622.64 

Writing a message to the log is an easy way to remind yourself what program you created. Quotation marks 
are not required in your %PUT statement. It will print it as is. And the %PUT statement is valid in open code on 
its own line. You do not need to include it in a DATA or PROC step.  

_USER_ Argument 
Another useful piece of syntax in SAS is the _USER_ argument in the %PUT statement that uses the following 
syntax: 

%PUT _USER_; 

That piece of code prints all the macro variables that you have created in your current SAS session. In this 
chapter, we have created the GTYPE, YEAR, SP_MEAN, and SP_SD macro variables thus far, so those would be 
printed in the log.  

You could also use the argument _ALL_ to see the included built-in SAS macro variables as well. 

Automatic Macro Variables 
The built-in macro variables in SAS are called automatic macro variables. Visit the online SAS documentation 
page to view all of them. Table 5.3 shows just a small subset of the long list of automatic macro variables. 

Table 5.3: Selected Automatic Macro Variables 

Name Description 

SYSDATE Date of SAS invocation (06JAN14)

SYSDATE9 Date of SAS invocation (06JAN2014)

SYSDAY Day of the week of SAS invocation (Friday)

SYSTIME Time of SAS invocation (10:47)

SYSSCP Operating system abbreviation (WIN, OS, HP 64)

SYSVER Release of SAS software (9.3)

SYSUSERID Login or user ID of current SAS process 
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For example, if you wanted to know the day of the week, you would use the automatic macro variable 
SYSDAY. It would print the day of the week, in this case, Friday. If you want to print the date with a width of 
nine, you could use SYSDATE9, and so on. We will use a couple of automatic macro variables later in this book 
when we do some conditional processing. 

Tip: The macro variables SYSDATE, SYSDATE9, and SYSTIME store text, not SAS date or time values. 

Creating Macro Programs 
In this section, you will learn how to create a macro program in order to run SAS code repetitively. We can 
also run SAS DATA and PROC steps conditionally or iteratively. 

Think of a macro program simply as an R function to provide whatever customization you want. For example, 
in Figure 5.6 we are creating a macro program called randnorm and passing it a single parameter. It's simply 
the number of observations we are going to simulate from a normal distribution. And then we will use that 
data set to generate some reports. For example, in Figure 5.6, we want a table and graphic. We do all of this 
inside a single program. Of course, once you type this R function up once, you can use the function and pass it 
whatever parameter you want. In Figure 5.6, we change n to be 10,000. 

Figure 5.6: R Script 

 

By the end of this section, you should be able to write a program like this in SAS. To do this in SAS, we will 
need to use a DATA step to generate the data, PROC MEANs to print some summary statistics, and PROC 
SGPLOT to create the plots. So in SAS, we are going to be combining lots of different DATA and PROC steps in 
one single macro program—or, again, think of it as an R function. 

The macro facility is a text processing facility for automating and customizing the generation of SAS code. You 
should be thinking, “What code do I actually want to generate and compile inside my macro program?” The 
macro facility minimizes the amount of code that you need to enter. 

The macro facility supports the following: 

Symbolic substitution within SAS code. For example, we can pass it a macro variable or parameters.  

Automated production of SAS code. We can run an unsupervised script.  

Conditional construction of SAS code. We can generate certain code, plots, or reports, depending on 
whatever parameters we pass the macro. 
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Defining a Macro 
So how do we actually create a macro? We are going to use %MACRO to start and %MEND to end as shown in 
the following syntax: 

%MACRO macro-name;
macro-text

%MEND <macro-name>; 

In Program 5.19, we use the %MACRO to start and then name the macro today. Anything between %MACRO 
and %MEND will be the programming statements. In this program we have %put, so all this macro does is 
write a message to the log.  

Program 5.19: Defining a Macro 
%macro today;
    %put Today is &sysday &sysdate9;
%mend;

Tip: Macro names follow SAS naming conventions and cannot be reserved names such as names of 
macro statements or functions (for example, LET and SCAN). 

Calling a Macro 
After the macro is compiled, the macro is stored in the Work library with the name sasmacr. To call the macro 
variable, we will simply tack on a percent sign to the macro name as shown in the following syntax: 

%macro-name

To run the today macro created in Program 5.19, simply use the name with the percent sign as shown in 
Program 5.20. 

Program 5.20: Macro Call 
%today

Output 5.20: Log of Program 5.20 

 

When we Program 5.20, it is going to run the %PUT statement within the macro. Therefore, it generates to 
the log the message that today is Friday, 01 January, 2016—or whatever day it happens to be when you run 
the program. 

A macro call can appear anywhere in code. It does not have to be in a DATA or PROC step. It can just be on its 
own line. It's passed to the macro processor, so it can run the statements inside the macro. It's not a 
statement. You do not need to use a semi-colon after you call the macro. Notice there is no semi-colon after 
%today in Program 5.20. It runs just as it is. 

Customizing with Parameter Lists 
A parameter list is a list of macro variables referenced within the macro. There are three types of parameter 
lists: 

1. positional – must appear in the same order as their corresponding parameter names 
2. keyword – assigned a default value after an equal sign 
3. mixed – has both positional parameters and keyword parameters 

Just like in R, we can pass macros a parameter list to customize the program even further. And just like in R, 
we can use positional keyword or a mixture of those parameter lists. In R, you probably don't know the exact 
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names of the parameters. You have probably just bypassed that part. But in SAS, there is more structure, so 
you need to be more aware of what a positional and keyword parameter is. 

Positional Parameters 
In Program 5.21 we are creating a macro called calc. Notice that it is just the MEANS procedure. There are two 
positional parameters—DSN for Data Set Name separated by a comma and vars for the variables that we are 
going to put in the VAR statement. 

Program 5.21: Creating a Macro with Positional Parameters 
%macro calc(dsn,vars);
    proc means data=&dsn;
       var &vars;
    run;
%mend calc;

%calc(business,yield)

Notice that when we pass in those parameters, we are passing them in as if they are macro variables. We are 
tacking on an ampersand to DSN and vars in the MEANS procedure. 

When we call the macro with %calc, we simply list the data set name—in this case, business—and the 
variables—in this case, just yield. 

Why are these positional parameters? Well, the parameter values must appear in the same order as their 
corresponding parameter names. So the first argument in the macro call of %calc—business—has to 
correspond to the first parameter in the macro definition—in this case, DSN. The same can be said for the 
second argument. Yield must correspond to vars. 

Keyword Parameters 
Keyword parameters, on the other hand, are assigned a default value after an equal sign. In Program 5.22, we 
are creating a macro program called count, which is simply the FREQ procedure.  

Program 5.22: Creating a Macro with Keyword Parameters 
%macro count(opts=,start=01jan08,stop=31dec08);
    proc freq data=orion.orders;
        where order_date between
             "&start" and "&stop";
        table order_type / &opts;
        title1 "Orders from &start to &stop";
    run;
%mend count;

Notice in Program 5.22 there are three keyword parameters—opts equal to the null value, start equal to 
01jan08, and stop equal to the 31st of December, '08. In the FREQ procedure, we use those dates in the 
WHERE statement to provide condition. In the TABLE statement after the forward slash, we provide the opts 
as the keyword parameter. So all three parameters have a default value. 

The first parameter has a null value by default. On the final call, all parameters receive their default value. The 
empty parentheses are important because this macro “knows” that it has a parameter list. If you omit the 
parentheses, the macro does not execute but patiently waits for its expected parameter list. If the next token 
submitted does not begin a parameter list, the macro “knows” that a parameter list is not forthcoming and 
executes using default parameter values. Parentheses, even if empty, are recommended as explicit and 
unambiguous, and they guarantee immediate execution of the macro. 

So how do we call the macro when we are using keyword parameters? A few different ways are shown in 
Program 5.23. 
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Program 5.23: Call a Macro with Keyword Parameters 
options mprint;
%count(opts=nocum)
%count(stop=01jul08,opts=nocum nopercent)
%count()

The first way is to run %count with just a single keyword parameter—opts equal to nocum. And 
then the other two keyword parameters just stick to their default values. 

 A second way to call the macro is to change the order of the keyword parameters as they are 
listed in the macro definition. So first, we start with stop equal to changing the date. Then we 
specify the options NOCUM and NOPERCENT. Keyword parameters can be out of order, whereas 
positional parameters cannot. 
Also, if you want to change the keyword parameter in the macro call, you have to use the 
keyword parameter name and set it equal to a new value. For example, you cannot just say 
nocum. It will not default to the first parameter opts. You have to literally say opts equal to 
nocum. 

 And finally, if you run %count with empty parentheses, it will just default to the parameters in the 
macro definition. 

Mixed Parameters 
In a mixed parameter list, we have both positional parameters and keyword parameters. You are required to 
list the positional parameters first in the macro definition followed by the keyword parameters. The same is 
true for the macro call, as shown in Program 5.24. 

Program 5.24: Creating and Calling a Macro with Mixed Parameters 
%macro count(opts,start=01jan08,stop=31dec08);
    proc freq data=orion.orders;
        where order_date between
            "&start" and "&stop";
        table order_type / &opts;
        title1 "Orders from &start to &stop";
    run;
%mend count;
options mprint;
%count(nocum)
%count(stop=30jun08,start=01apr08)
%count(nocum nopercent,stop=30jun08)
%count()

    Notice in the %MACRO statement, opts is now a positional parameter. We are not setting it equal to the 
null value. But we are leaving start and stop as keyword parameters.  

    In our first macro call of %count, we are only changing the positional parameter opts to nocum. Start and 
stop keyword parameters will be at their default values. 

    In the second macro call, we are changing the stop and start keyword parameters to two different dates. 
Notice that we have not specified anything for the positional parameter opts. If we do not change the 
positional parameter, it defaults to the null value. 

    In the third macro call, notice we have changed both the opts positional parameter and the stop keyword 
parameter. This is important. The positional parameter must come first. So we have to change opts to 
nocum and nopercent, and then we can change the keyword parameters—in this case, stop. 

    In the final macro call, we will run it with the null value. opts will default to the null value. And both start 
and stop keyword parameters will be left at their default values. 
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Macro Statements: An Example 
A macro language statement instructs the macro processor to perform an operation. It consists of a keyword 
and begins with the percent sign, just like our macro call and macro definition, and ends in a semicolon. 
Macro statements enable the following actions: 

conditional processing – choose which PROC or DATA steps to run based on certain parameters 

parameter validation – check if a value is outside a specific range, and if it is, tell SAS to throw an 
error so that it doesn't keep processing 

iterative processing – use loops to create a dynamic program that executes for a number of 
iterations based on some conditions 

For more information, look up macro statements on the online documentation page. There are many 
different macro statements that you can incorporate into your own macro programming. 

This example will focus on iterative processing. We want to read in multiple CSV files in a single macro 
program so that we don't have to keep typing out PROC IMPORT or the appropriate DATA steps. This is one 
instance where macro programming can help quite a bit. 

For example, imagine you work in a business where a daily sales report is generated every night. Every Friday, 
a weekly report is generated. Let's determine the best method to automate both of these reports.  

For the daily report, we want to create a macro program that runs a PRINT procedure. But if it is Friday, we 
also want the macro program to generate the MEANS procedure.  

What are a few different ways that we could accomplish this? In this example, we will look at two different 
methods, but you could probably come up with several more solutions of your own.  

Method 1: We will create multiple macros, including a driver macro, meaning the driver macro will 
call the appropriate macro conditionally where necessary. 

Method 2: We will create a single macro and use macro statements like %DO and %END to run SAS 
syntax conditionally. 

Method 1 
First, let’s create separate macros for the daily and weekly programs. The daily macro program will simply be 
the PRINT procedure shown in Program 5.25. Likewise, the weekly macro program will be the MEANS 
procedure.  

Program 5.25: Method 1 – Separate Macros 
%macro daily;
    proc print data=orion.order_fact;
        where order_date="&sysdate9";
        var product_id total_retail_price;
        title "Daily sales: &sysdate9";
    run;
%mend daily;

%macro weekly;
    proc means data=orion.order_fact n sum mean;
        where order_date between
            "&sysdate9"-6 and "&sysdate9";
        var quantity total_retail_price;
        title "Weekly sales: &sysdate9";
    run;
%mend weekly;

%macro reports;
    %daily
    %if &sysday=Friday %then %weekly;
%mend reports;
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Notice in Program 5.25 that we created a DRIVER macro called REPORTS that always calls the daily macro and 
conditionally calls the weekly macro. Program 5.25 is a true macro program, with a macro call and a macro 
language statement. This is a “system-driven” macro insofar as it is driven by or makes a decision according to 
system information, such as the day of the week. 

In order to conditionally run the weekly macro, we need to use macro statements. A lot of the macro 
statements are very similar to what we have seen in SAS syntax already. The only difference in the macro 
programming language, is that we will tack on a percent sign. So notice we use %IF and provide it an 
expression. If our automatic macro variable SYSDAY is equal to Friday, we use %THEN and then run the weekly 
macro that uses the MEANS procedure. Use the following syntax within macro statements: 

%IF expression %THEN action;
%ELSE action; 

Table 5.4 shows some of the differences between macro expressions and SAS expressions. For example, in 
macro expressions, character constants are not quoted or case-sensitive. The %ELSE statement is optional and 
%IF-%THEN and %ELSE statements can be used inside a macro definition only. 

Table 5.4: Macro Expressions 

 Macro Expressions SAS Expressions 

Arithmetic operators 

Logical operators 
(Do not precede AND or OR with %.)

Comparison operators 
(symbols and mnemonics)

Case sensitivity

Special WHERE operators

Quotation marks 

Ranges such as 1<=x<=10 

IN operator: parentheses required  

Method 2 
Program 5.26 shows an alternative method to accomplish the same goal. Here we put everything in a single 
macro instead of creating three separate macros. We are creating the macro reports, and if we run reports, 
we automatically want it to execute the PRINT procedure. Again, we want to use macro statements to tell SAS 
to conditionally run the MEANS procedure. The %DO %END syntax enables users to write multiple statements 
between the %DO and %END. This is useful for conditionally running DATA or PROC steps. 

Program 5.26: Method 2 – Single Macro 
%macro reports;
    proc print data=orion.order_fact;
        where order_date="&sysdate9";
        var product_id total_retail_price;
        title "Daily sales: &sysdate9";
    run;
%if &sysday=Friday %then %do;
    proc means data=orion.order_fact n sum mean;
        where order_date between
            "&sysdate9"d - 6 and "&sysdate9"d;
        var quantity total_retail_price;
        title "Weekly sales: &sysdate9";
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    run;
%end;

%mend reports;

In Program 5.26 we have an entire PROC step, so we need to use a DO group. If it is true, then the program 
runs the MEANS procedure. Don’t forget the %END statement! Now when we run the report's macro, it will 
automatically run the PRINT procedure and conditionally run the MEANS procedure. Everything is under one 
roof. 
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Exercises 

Multiple Choice 
1. Which SAS procedures are used to reproduce the R functions min(), cov(), table(), and sd()? 

a. FREQ, MEANS, CORR, MEANS 
b. MEANS, CORR, FREQ, MEANS 
c. MEANS FREQ, CORR, MEANS 
d. CORR, FREQ, FREQ, MEANS 

2. Which statements are true regarding macro variables? Select all that apply. 
a. Macro variables must be assigned in a DATA or PROC step. 
b. Case is preserved. 
c. To reference a macro variable, you must use the & symbol. 
d. Macro variables can be used only three times or less in a PROC step. 

3. The SAS code below creates the PROC CORR and PROC MEANS analyses. 
%let cont_var = saleprice garage_area basement_area gr_liv_area;

ods select pearsoncorr;
proc corr data=sp4r.ameshousing;

var cont_var;
run;

proc means data=sp4r.ameshousing;
var cont_var;

run;

a. True 
b. False 

Short Answer 
1. Navigate to the TABLES statement on the SAS documentation page for the FREQ procedure. What 

does the PROC step below do? 
proc freq data=sp4r.cars;
     tables origin*type / chisq;
run;

2. What types of functions do you make in R that call R functions and packages? How can this be 
translated into SAS PROC and DATA steps? 

3. There are three mistakes in the SAS code below. Can you find all three? 
%macro test(condition=50000,dt);
    proc means data=dt;
        where msrp > &condition;
    run;
%mend;
%test(cars,100000)

Programming Exercises 
Use the AmesHousing data set to complete Exercises 1, 2, 3, and 5. Use the Cars data set to complete  
Exercise 4. 

1. Using Descriptive Procedures and ODS  
a. Navigate to the SAS Help documentation and view the TABLES statement options for the FREQ 

procedure. Which option enables you to create a frequency plot? Use PROC FREQ to create one-
way frequency tables for the variables central_air and house_style along with frequency plots. 
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What percentage of homes in this sample have central air? What percent are only one story?  

 

 

 

 

b. The default PROC CORR output gives a table of simple statistics and correlation coefficients. Use 
ODS SELECT to print only the correlation coefficients for the variables saleprice, garage_area, 
basement_area, and gr_liv_area. (Hint: It might be easiest to use the ODS TRACE statement to 
learn the table name instead of going to the documentation page.) Is there a statistically 
significant correlation between saleprice and each of the other variables?  
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c. Use PROC MEANS to print the 10th percentile, median, and 90th percentile for the variables 
saleprice and gr_liv_area. In addition, use the CLASS statement to separate the summary 
statistics by the yr_sold variable. Finally, save the output using ODS OUTPUT and name the table 
summary_table. Print the table to ensure it is saved. Which year had the highest median sale 
price?  

 

d. Use PROC UNIVARIATE to analyze the gr_liv_area variable and create both a histogram and a 
QQPlot. For the histogram, overlay a normal and density kernel estimate. Use the OUTPUT 
statement to create a new data table of percentiles called gr_percs. Instead of providing the 
PCTLPTS= option a list, use the following syntax: PCTLPTS= 40 to 60 by 2. Let the 
prefixes for the saved percentiles be gr_. Print the table to ensure that it is saved.  

 

2. Creating and Using a Macro Variable for Unsupervised Scripting  
a. Use the MEANS procedure to create a new data table with the median of the SalePrice variable.  
b. Use PROC SQL to create a macro variable of the median SalePrice value.  
c. In the AmesHousing data set, create a new variable that is a value of 1 if the SalePrice is greater 

than the median and 0 otherwise. Use PROC FREQ to create a frequency table of the new 
variable.  
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3. Using the SYMPUTX Subroutine  
a. The SYMPUTX subroutine enables you to create a macro variable inside a DATA step. Navigate to 

the online documentation for a complete description. Run the SAS code below (SP4R05e03.sas) 
and analyze both the code and log output. What does this code do?  
data _NULL_; 

x=-3; 
df=5; 
p=(1-probt(abs(x),df))*2; 
call symputx('sig_level',p); 

run; 

%put The significance level for the two-tailed t test is 
&sig_level;

b. An alternative method to creating the macro variable in Exercise 2 is to use the SYMPUTX 
subroutine. Use a DATA _NULL_ step, a SET statement, and the SYMPUTX routine to create a 
macro variable for the median of the saleprice variable. Use the %PUT statement to ensure that 
the macro variable is created correctly.  

4. Creating a Macro to Generate Summary Statistics and Plots of Any Data Table  
a. Open SP4R05e04.sas. Create the mystats macro. It should have a single positional parameter 

(dt) and four keyword parameters (freq=no, means=no, opts= , and scatter=no). Use the %IF, 
%THEN, and %END macro statements to validate the positional parameter. If no data table (dt) is 
supplied by the user, use %PUT to write the sentence “dt is a required argument” to the log and 
use the %RETURN statement to terminate the macro.  

b. Use PROC CONTENTS with the OUT= option to write the contents of the input data table (dt) to a 
new data table called dtcontents. Use PROC SQL to use the Name field from dtcontents to 
create two macro variables. Let vars_cont be the unique names of continuous variables in the 
data set separated by a space. Let vars_cat be the unique names of the categorical variables in 
the data set separated by a space.  

c. Use macro statements to generate a PROC FREQ step if the user supplied freq=yes when calling 
mystats. In this case, use PROC FREQ to create frequency tables for the categorical variables.  

d. Use macro statements to generate a PROC MEANS step if the user supplies means=yes. In this 
case, specify the continuous variables in the VAR statement. In addition, use the opts parameter 
in the PROC MEANS statement to easily change the descriptive statistics.  

e. Use macro statements to set a condition if the user supplies scatter=yes. In this case, use PROC 
SGSCATTER to create a scatter plot matrix of the continuous variables. End the creation of the 
macro with %MEND.  

f. Call the mystats macro to create frequency tables for the cars data set.  
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Partial Model Table 

 

 

g. Call the mystats macro to create the means output with opts=mean median maxdec=2. 
Generate a scatter plot matrix for the continuous variables.  
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Tip: A macro variable created inside a macro program is local in scope. For example, 
vars_cont and vars_cat can be referenced only inside the macro program. To create a 
global macro variable, you must use the SYMPUTX subroutine. The third argument 
enables the user to specify a global option for the macro variable that is being created. 
View the SAS online documentation for a complete description. 

5. Creating a Macro for Iterative Processing  
Import a series of Excel workbook sheets into corresponding SAS data sets. The amesbyyear Excel 
workbook contains five separate sheets. Each sheet holds only the information for homes sold in a 
specific year. Each sheet is named according to the year (2006, 2007, 2008, 2009, 2010). The data 
begins on row 2, and row 1 contains all the variable names. 
a. Create a macro to iteratively call PROC IMPORT to read in each sheet of the amesbyyear 

spreadsheet. Call the macro myimport and give it two positional parameters (firstyear, lastyear). 
Let each new data set (one for each sheet) be named year20## where ## refers to each specific 
year.  

b. Call myimport to read in each sheet of the Excel file.  

Tip: Remember that the iteration index value can be referenced as a macro variable.

c. Check the SP4R library to ensure that all five data sets are created.  
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Solutions 

Multiple Choice 
1. b – The MEANS procedure can reproduce the min and sd functions, the covariance matrix is 

generated in the CORR procedure, and tables are created in the FREQ procedure. 
2. b and c – Macro variables can be assigned in the %LET statement outside of DATA or PROC steps. 

Case is preserved for the text saved inside the macro variable however, the macro variable name is 
not case sensitive. To resolve the macro variable when you compile your code, you must use the & 
symbol. 

3. b – Macro variables must be referenced with the & symbol. 

Short Answer 
1. The CHISQ option requests chi-square tests of homogeneity or independence and measures of 

association that are based on the chi-square test statistic. The four summary statistics procedures in 
this section can also be used for conducting hypothesis tests by supplying specific options to the 
procedures. 

2. Answers will be vast and vary; here is one possible response. Imagine you want to create a function 
that generates simple linear regression data for various values of the population intercept, slope, 
model error, and the number of sampled observations. You then want to fit the model with the 
simulated data to see the estimated parameters and a simple linear regression plot. 
In R, you would create a function with four parameters: intercept, slope, error, observations. You 
would then create a data frame with the observed values Y and covariates X. These would be created 
by simulating values with the random function rnorm(). You would then pass this data frame to the 
lm() function to fit the model and print results. Finally, you create a plot of Y by X with the plot() 
function and use the abline() function to add on a line of best fit. Each time you call this R function, 
you can create a new data set and see different results. 
To create an equivalent function in SAS, we will use a SAS macro program. To accomplish the same 
tasks, we will first create a data set with the values of Y and X using a DATA step and the RAND 
function. Next, we will use the REG procedure (discussed in chapter 6) to fit the model. Finally, we 
can use the SGPLOT procedure with the REG statement to plot the data and line of best fit. A macro 
program will automatically generate all the necessary code according to the parameters we pass it. 

3. Since DT is a positional parameter, it must be referenced first in the macro definition. 
Macro parameters must be used as if they are macro variables. Thus, dt in the PROC MEANS 
statement must be referenced with the & symbol. 
To change the keyword parameter's default value in the macro call, you must use the parameter 
name. 
%macro test(dt, condition=50000);

proc means data=&dt;
      where msrp > &condition;

run;
%mend;
%test(cars,condition=100000)

Programming Exercises 
1. Using Descriptive Procedures and ODS  

a. Navigate to the SAS Help documentation and view the TABLES statement options for the FREQ 
procedure. Which option enables you to create a frequency plot? Use PROC FREQ to create one-
way frequency tables for the variables central_air and house_style along with frequency plots. 
What percentage of homes in this sample have central air? What percent are only one story?  

proc freq data=sp4r.ameshousing; 
    tables central_air house_style / plots=freqplot; 
run;
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Selected PROC FREQ option:  
PLOTS: use the FREQPLOT option to display a frequency plot (bar chart) of the 
corresponding frequency table. 

 

 

 

 

b. The default PROC CORR output gives a table of simple statistics and correlation coefficients. Use 
ODS SELECT to print only the correlation coefficients for the variables saleprice, garage_area, 
basement_area, and gr_liv_area. (Hint: It might be easiest to use the ODS TRACE statement to 
learn the table name instead of going to the documentation page.) Is there a statistically 
significant correlation between saleprice and each of the other variables?  
ods select pearsoncorr; 
proc corr data=sp4r.ameshousing; 
     var saleprice garage_area basement_area gr_liv_area; 
run;
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c. Use PROC MEANS to print the 10th percentile, median, and 90th percentile for the variables 
saleprice and gr_liv_area. In addition, use the CLASS statement to separate the summary 
statistics by the yr_sold variable. Finally, save the output using ODS OUTPUT and name the table 
summary_table. Print the table to ensure it is saved. Which year had the highest median sale 
price?  
ods output summary=summary_table; 
proc means data=sp4r.ameshousing p10 median p90; 

var saleprice gr_liv_area; 
class yr_sold; 

run; 

proc print data=summary_table; 
run;

Selected PROC MEANS statement:  
CLASS specifies the variables whose values define the subgroup combinations for the analysis. 
Class variables are numeric or character. Class variables can have continuous values, but they 
typically have a few discrete values that define levels of the variable. 

 

d. Use PROC UNIVARIATE to analyze the gr_liv_area variable and create both a histogram and a 
QQPlot. For the histogram, overlay a normal and density kernel estimate. Use the OUTPUT 
statement to create a new data table of percentiles called gr_percs. Instead of providing the 
PCTLPTS= option a list, use the following syntax: PCTLPTS= 40 to 60 by 2. Let the 
prefixes for the saved percentiles be gr_. Print the table to ensure that it is saved.  
proc univariate data=sp4r.ameshousing; 

var gr_liv_area; 
histogram gr_liv_area / normal kernel; 
qqplot gr_liv_area / normal(mu=est sigma=est); 
output out=gr_percs pctlpts= 40 to 60 by 2      

pctlpre=gr_liv_area_; 
run; 

proc print data=gr_percs; 
run;
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Selected PROC UNIVARIATE statements and options:  
OUT specifies the name of the new SAS data table.  
PCTLPTS specifies the percentiles to be calculated for the VAR statement variables.  
PCTLPRE specifies one or more prefixes for the name of the variable to be created followed 
by the percentile listed in the PCTLPTS option.  
VAR specifies numeric variables to analyze.  
HISTOGRAM specifies the numeric variable that is used to create a histogram. Use the 
NORMAL and KERNEL option to overlay a normal density and kernel density estimate.  
INSET specifies which statistics to include in the histogram plot. Use the POSITION= option 
to provide a location. Provide the option with a compass direction (NE = North East).  
QQPLOT specifies numeric variables to create a Q-Q plot. Use the NORMAL option to add a 
line to the Q-Q plot. Use the MU= and SIGMA= options to specify the parameters of the 
distribution for which quantiles are compared. 
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2. Creating and Using a Macro Variable for Unsupervised Scripting  
a. Use the MEANS procedure to create a new data table with the median of the SalePrice variable.  

proc means data=sp4r.ameshousing; 
    var saleprice; 
    output out=sp4r.stats median=sp_med; 
run;

b. Use PROC SQL to create a macro variable of the median SalePrice value.  
proc sql; 
    select sp_med into :sp_med from sp4r.stats; 
quit;

 

c. In the AmesHousing data set, create a new variable that is a value of 1 if the SalePrice is greater 
than the median and 0 otherwise. Use PROC FREQ to create a frequency table of the new 
variable.  
data sp4r.ameshousing; 
    set sp4r.ameshousing; 
    if saleprice > &sp_med then sp_bin = 1; 
    else sp_bin = 0; 
run; 

proc freq data=sp4r.ameshousing; 
    tables sp_bin; 
run;

3. Using the SYMPUTX Subroutine  
a. The SYMPUTX subroutine enables you to create a macro variable inside a DATA step. Navigate to 

the online documentation for a complete description. Run the SAS code below (SP4R05e03.sas) 
and analyze both the code and log output. What does this code do?  
data _NULL_; 
    x=-3; 
    df=5; 
    p=(1-probt(abs(x),df))*2; 
    call symputx('sig_level',p); 
run; 

%put The significance level for the two-tailed t test is 
     &sig_level;

 

This code uses a DATA _NULL_ step to create a macro variable for the significance level of a two-
sided t test with five degrees of freedom and a test value of -3. 
Selected functions and subroutines:  
PROBT(x,df) returns the probability that an observation form a Student’s distribution, with 
degrees of freedom df, is less than or equal to x.  
SYMPUTX assigns a value to a macro variable and removes both leading and trailing blanks. 
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b. An alternative method to creating the macro variable in Exercise 2 is to use the SYMPUTX 
subroutine. Use a DATA _NULL_ step, a SET statement, and the SYMPUTX routine to create a 
macro variable for the median of the saleprice variable. Use the %PUT statement to ensure that 
the macro variable is created correctly.  
proc means data=sp4r.ameshousing; 

var saleprice; 
output out=stats median=sp_med; 

run; 

data _null_; 
set stats; 
call symputx('med',sp_med); 

run; 

%put The median of the Sale Price variable is &med;

 

4. Creating a Macro to Generate Summary Statistics and Plots of Any Data Table  
a. Open SP4R05e04.sas. Create the mystats macro. It should have a single positional parameter 

(dt) and four keyword parameters (freq=no, means=no, opts= , and scatter=no). Use the %IF, 
%THEN, and %END macro statements to validate the positional parameter. If no data table (dt) is 
supplied by the user, use %PUT to write the sentence “dt is a required argument” to the log and 
use the %RETURN statement to terminate the macro.  
%macro mystats(dt,freq=no,corr=no,means=no,opts=,scatter=no); 

%if &dt= %then %do; 
%put dt is a required argument; 
%return; 

%end;

b. Use PROC CONTENTS with the OUT= option to write the contents of the input data table (dt) to a 
new data table called dtcontents. Use PROC SQL to use the Name field from dtcontents to 
create two macro variables. Let vars_cont be the unique names of continuous variables in the 
data set separated by a space. Let vars_cat be the unique names of the categorical variables in 
the data set separated by a space.  
proc contents data=&dt varnum out=dtcontents; 
run; 

proc sql; 
select distinct name into: vars_cont separated by ' ' 

from dtcontents where type=1; 
select distinct NAME into: vars_cat separated by ' ' 

from dtcontents where type=2; 
quit;

c. Use macro statements to generate a PROC FREQ step if the user supplied freq=yes when calling 
mystats. In this case, use PROC FREQ to create frequency tables for the categorical variables.  
%if %upcase(&freq)=YES %then %do; 

proc freq data=&dt; 
tables &vars_cat; 

run; 
%end;

d. Use macro statements to generate a PROC MEANS step if the user supplies means=yes. In this 
case, specify the continuous variables in the VAR statement. In addition, use the opts parameter 
in the PROC MEANS statement to easily change the descriptive statistics.  
%if %upcase(&means)=YES %then %do; 

proc means data=&dt &opts; 
var &vars_cont; 

run; 
%end;
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e. Use macro statements to set a condition if the user supplies scatter=yes. In this case, use PROC 
SGSCATTER to create a scatter plot matrix of the continuous variables. End the creation of the 
macro with %MEND.  
%if %upcase(&scatter)=YES %then %do; 

proc sgscatter data=&dt; 
matrix &vars_cont; 

run; 
%end; 
%mend;

f. Call the mystats macro to create frequency tables for the cars data set.  
%mystats(sp4r.cars,freq=yes)

 

 

Partial Model Table 
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g. Call the mystats macro to create the means output with opts=mean median maxdec=2. 
Generate a scatter plot matrix for the continuous variables.  
%mystats(sp4r.cars,means=yes,opts=mean median 
    maxdec=2,scatter=yes)

 

 

5. Creating a Macro for Iterative Processing  
Import a series of Excel workbook sheets into corresponding SAS data sets. The amesbyyear Excel 
workbook contains five separate sheets. Each sheet holds only the information for homes sold in a 
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specific year. Each sheet is named according to the year (2006, 2007, 2008, 2009, 2010). The data 
begins on row 2, and row 1 contains all the variable names. 
a. Create a macro to iteratively call PROC IMPORT to read in each sheet of the amesbyyear 

spreadsheet. Call the macro myimport and give it two positional parameters (firstyear, lastyear). 
Let each new data set (one for each sheet) be named year20## where ## refers to each specific 
year.  

Remember that the iteration index value can be referenced as a macro variable. 

%macro myimport(firstyear,lastyear); 
    %do i=&firstyear %to &lastyear; 
        proc import datafile = "&path\amesbyyear.xlsx" 
            out = sp4r.year&i 
            dbms = xlsx REPLACE; 
            getnames = yes;
            sheet = "&i"; 
            datarow = 2; 
        run; 
     %end; 
%mend;

b. Call myimport to read in each sheet of the Excel file.  
options mprint; 
%myimport(2006,2010)

 

c. Check the SP4R library to ensure that all five data sets are created.  
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Introduction 
In the previous chapters, you learned how to import your data into SAS, alter the data to meet your 
specifications, and create graphics and summary statistics to get a feel for the data. You are now ready to 
begin creating some statistical models. We will practice using inferential procedures in SAS with a whole slew 
of linear, generalized linear, and mixed models. 

SAS modeling procedure syntax is very consistent. After you master the syntax required to create these 
models, you will have no problem extending your own statistical knowledge to time series, Bayesian, or 
survival procedures, to name a few. 

Linear Models 
In this section, we will create lots of different linear models including a multiple linear regression, analysis of 
variance, analysis of covariance, and finally, we will get into a little bit of effect selection. We will hypothesize 
a linear model, use an appropriate PROC step to create the linear model and generate both tables and 
statistical graphics, and then save the important model information with the OUTPUT statement that we have 
learned before.  

For linear models, we would use the LM function in R for regression, polynomial regression, ANOVA, and so 
on, as shown in Figure 6.1. We just tack on the AS.FACTOR function to indicate a classification variable, and an 
analysis of covariance when we have both classification variables and continuous variables. You will learn how 
to reproduce the ANOVA, SUMMARY, and PLOT functions applied to your model object. 
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Figure 6.1: R Script 

 

PROC REG 
PROC REG can be used to create a simple linear regression or multiple linear regression model. In PROC REG, 
we are only going to specify continuous predictors. If you wanted to dummy-code your own variable to create 
classification variables, you could do that, but we will see how to create a classification variable explicitly in 
SAS using PROC GLM a little bit later. 

To specify your model, we will simply use the MODEL statement as shown in the following syntax: 

PROC REG DATA=data-set-name;
MODEL dependent-variable = regressors </ options>;

RUN; QUIT; 

Tip: Variables specified in the MODEL statement must be numeric variables. 

Simple Linear Regression 
In Program 6.1, we are creating a simple linear regression model using the ameshousing data set. The 
dependent variable is on the left (saleprice), and we set that equal to all the regressors in the model. In this 
case, there is only one: the gr_liv_area, and you do not need to use your plus symbols to add in predictors. 
You just simply list them after the equal sign. 

Program 6.1: PROC REG 
proc reg data=ameshousing;
    model saleprice = gr_liv_area;
run;quit;

Output 6.1: Results of Program 6.1 
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As shown in Output 6.1, by default we get similar output to the SUMMARY and ANOVA functions applied to 
the model object (for example, when you get the analysis of variance table), and also our parameter estimates 
with standard errors, t values, and p-values. We also get a little bit of other information like the root mean 
square error, R square, and so on. By default, PROC REG will give you a diagnostics panel, and a lot of this 
information is the same as plotting the model object in R. For example, we get the Residual by Predicted plot, 
R studentized Residuals by the Predicted Values, R studentized Residuals by Leverage, and so on. 

Tip: Use the PLOTS(UNPACK) option in the PROC REG statement to plot the default output individually, 
without a panel. 

The one output that you do not get from plotting the model object in R is the Cook's Distance plot by 
Observation, but this is just a measure of how predicted scores change when observations are removed from 
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the model, so it is trying to identify outliers. You can see in the Fit Diagnostics in Output 6.1, at observation 
125, the Cook's Distance is very large, indicating this is a possible outlier.  

Also, by default, you will get the Residual by the Predictor Value graphic, so for every regressor that you have 
in your model, it will create a single Residual by Regressor plot. And if you are doing a simple linear regression 
model, SAS will go ahead and give you the simple linear regression plot. It will tack on that line of best fit, your 
confidence limits, and prediction limits, by default. 

Polynomial Regression 
To do polynomial regression in SAS, we have to begin the same way as we would in R. Specifically, we had to 
add those regressors to our existing SAS data set. In Program 6.2, you can see we are adding x squared, x 
cubed, all the way through x to the fifth power. We are adding those polynomial regressors to our data set, 
and then we can use them in PROC REG. 

Program 6.2: Preparation for Polynomial Regression 
data mydata;
    set mydata;
    x2 = x**2; x3 = x**3; x4 = x**4; x5 = x**5;
run;

Tip: Recall that SAS does not use the ^ symbol for exponentiation. It uses the double star symbol.  

PROC PLM 
To reproduce the PREDICT function in R, we can use the PLM procedure to score new SAS data sets. We begin 
the same way as we would in R. Specifically, in R, we create a model object. In SAS, we are going to store the 
model with the STORE statement inside the procedure using the following syntax: 

STORE item-store-name; 

In Program 6.3, we are running PROC REG with whatever MODEL statement you want to use, and storing the 
model with the STORE statement under the mymod name. Once we save the model, then we can pass it to 
the PLM procedure like we would pass the model object to the PREDICT function. 

Program 6.3: Save the Model with the STORE Statement 
proc reg data=ameshousing;
    ...
    store mymod;
run;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The 
resulting item store has a binary file format that cannot be modified. The contents of the item store can be 
processed with the PLM procedure. 

In the R Script in Figure 6.1, we passed the model object to the PREDICT function, and then the new data set 
we want to score. In SAS, we are going to pass the model to the PLM procedure using the RESTORE= option 
with the following syntax: 

PROC PLM RESTORE=item-store-specification;
SCORE DATA=new-data-set

                   OUT =predicted-data-set <keywords>;
RUN; 

In Program 6.4, we restore mymod, which we specified in the STORE statement of the SAS procedure PROC 
REG in Program 6.3. We use the SCORE statement, and specify the DATA= option to tell SAS the new SAS data 
set we are scoring—in this case, newdata. SAS is going to use the model specified in the RESTORE option to 
predict values for the new data set. You can also use the OUT= option to save the new scored values. We are 
calling the new data set pred, for predicted. 
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Program 6.4: PROC PLM 
proc plm restore=mymod;
    score data=newdata out=pred;
run;

You can also pass a bunch of other keywords to the PROC PLM SCORE statement to generate other output. 
For example, you can generate predicted values, standard errors, residuals, confidence limits, and also 
prediction limits as shown in Table 6.1. 

Table 6.1: SCORE Statement Keywords 

Keyword Description 

PREDICTED Linear predictor

STDERR Standard Error

RESIDUAL Residual

LCLM Lower confidence limit

UCLM Upper confidence limit

LCL Lower prediction limit

UCL Upper prediction limit 

 

Tip: If you want to change from an alpha level of 0.05, just use the ALPHA= option for your limits. 

The STORE statement to save your model is supported by most of the SAS/STAT procedures. In this book, we 
are going to use it in PROC REG, GLM, GLMSELECT, LOGISTIC, GENMOD, and MIXED. There are a few 
procedures where you can score data right in the procedure where you are creating your model. Specifically, 
you can use the SCORE statement in PROC GLMSELECT and PROC LOGISTIC to bypass the use of PROC PLM. In 
this book we will always use the STORE statement in the modeling procedure, and then pass that to PROC 
PLM to score new data set. This is very similar to using the PREDICT function in R, but you should be aware of 
the SCORE statement in both the GLMSELECT and LOGISTIC procedures. 

PROC GLM 
In this section, we move on from PROC REG to PROC GLM, which stands for the general linear model. In this 
case, we are going to perform an ANOVA and also an analysis of covariance. So we are moving away from 
PROC REG with just continuous variables and now we can use classification variables in PROC GLM as shown in 
the following syntax: 

PROC GLM DATA=data-table-name;
CLASS variables <options>;
MODEL dependent-variable = independent-variables </options>;

RUN; 

In Program 6.5, we continue working with the ameshousing data set. To do an analysis of variance, choose the 
heating_qc (for quality control) in that data set. This variable has four levels: Excellent, Good, Average, and 
Fair. To tell SAS explicitly that it is a classification variable, use the CLASS statement and specify the variable 
heating_qc.  
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Program 6.5: PROC GLM 
proc glm data=ameshousing;
    class heating_qc (ref='Fa'); 

model saleprice = heating_qc / solution; 
run;quit;

    The CLASS statement is identical to the AS.FACTOR function in R, so it is going to create a column in the 
design matrix for each classification level. As an option in parentheses, we specify the reference level. In 
this case, we set it equal to Fa for fair. That is case sensitive and it is as appears in the data set. 

    Next, we use the MODEL statement the same way as in PROC REG. Set saleprice equal to the classification 
variable, heating_qc.  

Tip: The CLASS statement in PROC GLM creates columns in the design matrix for each classification 
variable. The number of columns is the same as the number of levels in the CLASS variable. The value of 
each design column is either 0 or 1 across all observations.

Output 6.5: Results of Program 6.5 
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By default, in Output 6.5 we get the analysis of variance table, which has an overall significant F test. We also 
get the R square, coefficient of variation, root mean square error, and the mean sale price. We also get the 
Type 1 and Type 3 sums of squares, which of course, when we only have one variable, are going to be 
identical. 

One of the great things about SAS is that it is always giving you relevant statistical graphics. SAS knows we are 
doing a one-way analysis of variance, so in this case, it outputs a side-by-side box plot. For Excellent, it 
appears that the sale price on average is greater than Good, Average, and Fair. It appears that Good and 
Average are quite similar. And of course, the sale price for the Fair heating_qc (the lowest level) is associated 
with the lowest sale prices. 

As a best practice, use the SOLUTION option in the MODEL statement to print the parameter estimates table. 
It displays the intercept, four levels, estimate, standard error, t value, and p-value. Notice the column in the 
middle that has the letter B In each element. That simply means that those terms are not uniquely estimable 
and there are no linear combinations of predictors to estimate those parameters individually.  

MEANS Statement 
There are lots of different statements that can be used in PROC GLM, and going forward in this book, they will 
be quite consistent. Let’s use the MEANS statement to specify our classification variables (in this case, 
heating_qc) using the following syntax: 

MEANS class-variable < / HOVTEST=test-name >; 

Using the MEANS statement in Program 6.6 gives us the default table shown in Output 6.6.  

Program 6.6: MEANS Statement 
proc glm data=ameshousing;
    ...
    means heating_qc / hovtest=bf;
run;quit;

Output 6.6: Partial Results of Program 6.6  

 

Output 6.6 shows us the number of observations in each level (for example, Excellent has 107 observations), 
and it also gives me the mean and standard deviation. Another reason to use the MEAN statement is that you 
can use the HOVTEST option, the homogeneity of variance test. To test the assumption of equal variances, we 
have four options here as shown in Table 6.2. 
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Table 6.2:  HOVTEST Options 

HOVTEST= Homogeneity of Variance Test 

BARTLETT Bartlett’s Test 

BF Brown and Forsythe’s Test 

LEVENE Levene’s Test 

OBRIEN O’Brien’s Test 

 

Check out the SAS documentation to see which option you might want to use. 

LSMEANS Statement 
Another statement that can be used in PROC GLM is the LSMEANS statement, which stands for the least 
square means. Use the statement to add in the classification variables that you want to find the least square 
means for, as shown in the following syntax: 

LSMEANS class-variable < / options>;  

As an option, you can use the ADJUST= option to request multiple simultaneous comparisons. We can use the 
Tukey, Bonferroni, Dunnett, or Scheffe adjustments as shown in Table 6.3.  

Table 6.3:  ADJUST= Options 

ADJUST=  
Homogeneity of 

Variance Test Description 

TUKEY  

Tukey Adjustment Tukey is probably the test most users are familiar with. It 
tends to be the most powerful in most cases. 
 

BON  
Bonferroni 
Adjustment 

This adjustment specifies an overall alpha and then that 
alpha is divvied up for each comparison. 

DUNNET  

Dunnett 
Adjustment 

Dunnet is most frequently used when comparing 
everything to a control group. For example, if you are 
testing three drugs against a control, use the Dunnett 
adjustment because you would actually only be testing 
three comparisons in that case. 

SCHEFFE  

Scheffé 
Adjustment 

The Scheffé adjustment controls for all possible 
comparisons. This is useful if you engage in data 
snooping. 

 

Also, by default, when you use the LSMEANS statement, of course, you get the least square mean for saleprice 
for each level of the classification variable, and you also get the comparison. In Program 6.7 and Output 6.7, 
we are comparing group 1 to group 2, and it has a p-value of 0.002 for the hypothesis test, which indicates the 
Excellent heating quality and Good heating quality are significantly different. On the other hand, comparing 
levels 2 to 3, comparing Good to Average, we can see that the p-value is definitely not less than 0.05, so these 
are not significantly different from each other. 
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Program 6.7: LSMEANS Statement 
proc glm data=ameshousing;
    ...
    lsmeans heating_qc / adjust=tukey;
run;quit;

Output 6.7: Results of Program 6.7 

      

 

In Output 6.7, you can also see the default graphic, which has the same information as the comparison table. 
For example, Fair is significantly different from Average, Good, and Excellent, and we see that Average and 
Good are not significantly different. 

ESTIMATE Statement 
Previously we talked about using PROC PLM to score new data sets. But what if you want to test a linear 
function of the parameters or a linear combination? In R, you could multiply the coefficients beta hat by a 
vector of coefficients L. That would give you your linear combination. In SAS, if you want to test main effects 
or simply estimate one single home price, you could do that directly in the ESTIMATE statement of the 
procedure. We will specify the vector L in the ESTIMATE statement using the following syntax: 

ESTIMATE 'estimate-name' class-variable
linear-combination < / options>;  

This method is not for scoring entire data sets. The ESTIMATE statement only enables you to estimate linear 
functions of the parameters by creating the L matrix. The linear function is checked for estimability. The 
estimate of L , where    is displayed along with its associated standard error, 

2( ' ) 'L X X L s , and t test. 

Let’s look at an example. We want to test the linear combination mu1 equal to mu2, so we run PROC GLM 
with the appropriate statements as shown in Program 6.8. 
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Program 6.8: ESTIMATE Statement 
proc glm data=ameshousing;
    ... 
    estimate 'mu1 vs the rest'
        heating_qc 3 -1 -1 -1 / divisor=3; 
run;quit;

    Here we are leaving out the MODEL statement just for space.  
    In the ESTIMATE statement, we are going to test the main effects for mu1 equal to mu2. So first, we 

name the estimate. In quotation marks, specify mu1 minus mu2, and then pass it the classification 
variable, heating_qc. Then specify the coefficients for the L vector. We want a coefficient 1 for Excellent 
and -1 for Good; the rest all set as 0. If we omit the zeros, it would simply set all the remaining 
coefficients to zero where necessary. 

Running Program 6.8 produces the table shown in Output 6.8.  

Output 6.8: Results of Program 6.8 

In Output 6.8, we get an estimate of about $24,000. It appears that the sale price for homes with the Excellent 
heating condition are about $24,000 greater, on average, than homes with the Good heating condition. We 
also get the standard error, t value, and p-value. Here the p-value indicates that the main effect difference is 
statistically significant. 

Let’s look at another example testing the linear combination for  2 3 4
1 3 3 3

. In Program 6.9, we 

have coefficients of minus a third for each of the other three levels, And in the ESTIMATE statement, we will 
specify the integer values: 3 minus 1 minus 1 minus 1. As an option, we will give it the divisor equal to 3. This 
is simply going to divide each one of the coefficients by 3 and produce the appropriate fractions.   

Program 6.9: ESTIMATE Statement for Linear Combination 
proc glm data=ameshousing;
    ...
    estimate 'mu1 vs the rest'
        heating_qc 3 -1 -1 -1 / divisor=3;
run;quit;

Output 6.9: Results of Program 6.9 

 

In Output 6.9, we get an estimate of about $35,000, standard error, t value, and a significant p-value. 

As a best practice, it is a good idea to use the E option in the ESTIMATE statement. That option will print your 
L vector to make sure you specify the coefficients correctly. In Program 6.10, we have an intercept with a 
coefficient of 0. Excellent has a coefficient of 1, And of course, the rest have coefficients of -1/3. Output 6.10 
will be printed to the results page when you use the E option. 
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Program 6.10: E Option in ESTIMATE Statement 
proc glm data=ameshousing;
    ...
    estimate 'mu1 vs the rest'
        heating_qc 3 -1 -1 -1 / e divisor=3;
run;quit;

Output 6.10: Partial Results of Program 6.10 

 

Tip: The E option is useful when you confirm the ordering of parameters for specifying L. 

So far, we have been talking about analysis of variance with just a single classification variable. In PROC GLM, 
we can add in continuous variables to an analysis of covariance such as the following ANCOVA model: 

ij i i ij i ij ijY X X .  So, we can add in the predictor Xij. We still have the classification 

variable represented by alpha. Now we can estimate an overall slope and the slope adjustment for each level, 
but everything is going to be very consistent in PROC GLM. We are still going to use the CLASS, MODEL, 
LSMEANS, ESTIMATE, and OUTPUT statements. 

PROC GLMSELECT 
To finish up this section on linear models, let's talk about stepwise model selection. Imagine we have lots and 
lots of different predictors. We want to run those predictors through some type of procedure and get back a 
more parsimonious model. To do so, we are going to use PROC GLMSELECT to perform effect selection. This is 
only for general linear models framework, but fitting the model is exactly the same as the procedures that we 
discussed earlier in this section. We are going to use the same CLASS and MODEL statements. The only 
difference here is we are going to specify different options to do the effect selection. 

PROC GLMSELECT, in general, combines the features of PROC GLM and PROC REG, so you can do all your 
general linear models, all your multiple linear regression, ANOVA, analysis of covariance right in PROC 
GLMSELECT using the following syntax: 

PROC GLMSELECT DATA=data-table-name;
CLASS categorical-variables;
MODEL dependent-variable = model-effects / options;

RUN; 

On the other hand, you might prefer to use the three separate procedures that we have talked about so far in 
this section because they tend to give you different graphical output. For example, in PROC GLM, when it 
knows you are doing a one-way analysis of variance, it automatically gives you a side-by-side box plot. That 
might not be the case when using in PROC GLMSELECT. 

SELECTION= Option 
If you want to do multiple linear aggression, ANOVA, ANCOVA, in PROC GLMSELECT, choose the SELECTION= 
option to specify a selection method and specify it as NONE. So, no model selection; just simply fit the model. 

On the other hand, if you want to do effect selection in PROC GLMSELECT, we can use the following methods 
shown in Table 6.4.  
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Table 6.4: SELECTION= Options 

SELECTION= Description 

NONE No model selection.

FORWARD 
Forward selection. The model starts with no effects and 
iteratively adds in effects according to some criteria.

BACKWARD 
Backward selection. The model starts with all effects in the 
model already and deletes effects according to some criteria.

STEPWISE 

Stepwise regression; similar to the FORWARD method except 
effects in the model do not necessarily stay in the model. That 
is not the case in FORWARD selection. In FORWARD 
selection, if it is in the model, it stays in the model.

LAR 
Least angle regression; similar to the FORWARD method 
except parameter estimates are shrunk. 

LASSO

Specifies the LASSO method, which adds and deletes 
parameters based on a version of ordinary least squares 
where the sum of the absolute regression coefficients is 
constrained.

ELASTICNET
An extension of LASSO. Both the sum of the absolute 
regression coefficients and the sum of the squared regression 
coefficients are constrained.

GROUPLASSO
A variant of LASSO. Based on a version of ordinary least 
squares in which the sum of the Euclidean norms, a group of 
regression coefficients is constrained.

 

Tip: If the SELECTION= option is omitted, the default is SELECTION=STEPWISE. 

Some of the more modern selection methods are LASSO, ELASTICNET, and GROUPLASSO. All three of these 
selection methods apply a penalty to your likelihood to shrink your model parameter estimates down to 0 and 
find a more parsimonious model representation.  

SELECT= Option 
After you specify your SELECTION= option and your selection method, you are then going to use the SELECT= 
option to specify the criteria. This is the criteria used to determine the order in which effects either enter or 
leave (or both) at each step of the selection method.  

The SELECT= options are shown in Table 6.5. 

Table 6.5: SELECT= Options 

SELECT= Description 

ADJRSQ adjusted R-square statistic

AIC Akaike information criterion

AICC corrected Akaike information criterion

BIC Sawa Bayesian information criterion
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SELECT= Description 

CP Mallow’s C(p) statistic

CV predicted residual sum of square with k-fold cross validation

CVEX predicted residual sum of square with k-fold external cross validation

PRESS predicted residual sum of squares

SBC Schwarz Bayesian information criterion

SL

significance level

The SELECT=SL option must be followed by either of the following options:
SLE= specifies significance level for entry
SLS= specifies significance level for removal

VALIDATE average square error for the validation data.

 

Tip: The default value of the SELECT= criterion is SELECT=SBC. 

Tip: The SELECT= option is not valid with the LAR and LASSO methods. 

For example, if we choose SELECT=ADJRSQ, and we are using forward selection, it is going to add parameters 
into the model iteratively, as long as the adjusted R square continues to increase. The second adjusted R 
square decreases, the model selection process stops, and the model at the final step will be the model that 
you deploy. 

On the other hand, if you use the AIC option and you are using forward selection, parameters will be 
iteratively added into the model, as long as the AIC continues to reduce. The second it increases, the model 
selection process stops.  

CHOOSE= Option 
You can also use the CHOOSE= option in the MODEL statement to choose the model that yields the best value 
of the specified criteria from the selection process. The CHOOSE= options are shown in Table 6.6. 

Table 6.6: CHOOSE= Options 

SELECT= Description 

ADJRSQ adjusted R-square statistic

AIC Akaike information criterion

AICC corrected Akaike information criterion

BIC Sawa Bayesian information criterion

CP Mallow’s C(p) statistic

CV predicted residual sum of square with k-fold cross validation

CVEX predicted residual sum of square with k-fold external cross validation
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SELECT= Description 

PRESS predicted residual sum of squares

SBC Schwarz Bayesian information criterion

SL significance level

VALIDATE

average square error for the validation data

This option requires the user to specify a data set in the PROC 
GLMSELECT statement with the VALDATA= option or use the 
PARTITION statement to enable the procedure to split the data into 
training and validation data sets.

 

Tip: If no CHOOSE= option is specified, then the model selected is the model at the final step in the 
selection process. 

Behind the scenes when you are doing the selection process, SAS is actually saving model fit statistics. If you 
use the CHOOSE= AIC option, it actually ignores the model at the final step and simply chooses the model with 
the best AIC, regardless of where it came in the selection process. 

If you ignore the CHOOSE= option, the model selected is the model at the final step. That might not be the 
same model when you use the CHOOSE= option. Regardless of the final selection process, it will evaluate the 
specified criteria at each step and choose the best model.  

EFFECTS Statement 
Remember when we were creating a Polynomial Regression in PROC REG, we had to first create the quadratic 
in cubic effects using a DATA step? We can use PROC GLMSELECT to make this process a little bit simpler. 
Specifically, we can use the EFFECTS statement to bypass creating new variables in the DATA step using the 
following syntax: 

EFFECT name = effect-type(variables </ options>) ; 

In Program 6.11, we use the EFFECTS statement, and the first thing we do is give it a name. In this case, this 
will be x_new.  

Program 6.11: EFFECTS Statement in PROC GLMSELECT 
proc glmselect data=paper outdesign=des;
    effect x_new = polynomial(amount / degree=5); 
    model strength = x_new / selection=none; 
run;quit;

    x_new represents a new set of predictors that the EFFECT statement is creating, and then we will set that 
equal to an effect type. In this case, we to set it equal to polynomial, but you could also use splines. In 
parentheses, when we specify the keyword polynomial, give it the variable amount, which is the 
predictor. After the forward slash we will say degree= to 5. We want to create polynomial regressors for 
the amount variable up to degree 5, and those will be contained in the x_new variable. 

    In the MODEL statement, we specify strength and set it equal to the new set of regressors, x_new. Here, 
we are not doing the selection process, so we will say selection= to none. We just want to fit a polynomial 
model up to degree 5. If you wanted to alter more than one variable, you can simply pass a list to the 
polynomial effect type, and be sure to use the outdesign= to option. This is going to create the design 
matrix or a new SAS data set according to the model that you have created. So in this case it is going to 
create a new SAS data set with all regressors up to degree 5 without needing to use a DATA step. 
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If you use the EFFECTS statement in PROC GLMSELECT, it creates a macro variable representing the predictors 
that you have specified. In this case, in Program 6.11, &_glsmod is representing X, X2, X3, X3, all the way to X5. 
We can pass that macro variable into a MODEL statement in PROC REG as shown in Program 6.12. If you are 
passing the variable in to PROC REG, make sure your data set is the OUTPUT data set from the out design 
option from PROC GLMSELECT. Remember, we called it des, for design matrix. 

Program 6.12: PROC REG Using Macro Variable from Program 6.11 
proc reg data=des;
    model y = &_glsmod;
run;quit;

In Programs 6.11 and 6.12, we use PROC GLMSELECT to create new regressors and a new SAS data set, and 
then pass that information to PROC REG to do a Polynomial Regression. We could have stayed in PROC 
GLMSELECT to do this, but in PROC REG we can get more graphics. If you use the EFFECTS statement to create 
a set of variables in PROC GLMSELECT and you also do an effects selection process, the new macro variable 
and SAS data set that it creates will only have the predictors from the final model selection. 

So, for example, if it deleted the amount to the fourth and amount to the fifth power in a backward effect 
selection, the new macro variable and the output data set des would only have the variables amount, amount 
squared, and amount cubed, which is very convenient. 

Generalized Linear Models 
The previous section covered linear models, and now we are going to move on, both in models and 
procedures. We are going to create generalized linear models now. This is when we are assuming that the 
response is not Gaussian, but we are going to do the exact same thing. We are going to create models, create 
statistical graphics, and save other information, create tables, reports, and so on. 

In R, we would use the GLM function for the generalized linear model as shown in Figure 6.2. Remember, 
when you are using the GLM function, you need to specify the appropriate distribution family, with the 
FAMILY= option. In this section, we will talk about logistic regression for binomial data and Poisson regression, 
but in SAS, we can use the STORE statement just like we have done before, and use that information in PROC 
PLM to score new data sets 

Figure 6.2: R Script 

 

PROC LOGISTIC 
Most likely, the first model you worked with when you learned generalized linear models was logistic 
regression. The assumption in logistic regression is that the logit has a linear relationship with the predictor 
variables. For binary data, and of course, for binomial distributions, we have a probability of success. To 
model binary variables, we want to model the probability of success, and you will notice in the graph on the 
left side of Figure 6.3, the probability is not linearly associated with its covariates. It's also bounded between 0 
and 1.  
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Figure 6.3: Logit Transformation 

We make the logit transformation and predict the logit, or the log odds. The logit is generally linearly 
associated with our covariates. Then we can simply specify a linear model as before.  

In this section, we will continue to use the ameshousing data set. We use the binary variable for the 
dependent variable, bonus, and this is simply a value of 1 if the saleprice was greater than $175,000, and a 0 
otherwise. We call this variable bonus because home buyers receive a tax incentive for buying a home that is 
greater than $175,000. To conduct logistic regression, we are going to use the LOGISTIC procedure, so we 
don't need to specify a family of distributions in this procedure. In the MODEL statement, we specify bonus, 
and as a best practice in parentheses, you want to tell it what event you are modeling, as shown in the 
following syntax: 

PROC LOGISTIC DATA=data-table-name <options>;
MODEL dependent-variable(EVENT=) = effects;

RUN; 

In Program 6.13, we want to model the probability of success, or an actual bonus-eligible home, which has a 
value of 1, and set that equal to just one continuous variable, basement_area. 

Program 6.13: PROC LOGISTIC 
proc logistic data=ameshousing;
    model bonus(event='1') = basement_area;
run;

Output 6.13: Results of Program 6.13 

 

 

By default, we get the model fit statistics table and the global null hypothesis tests shown in Output 6.13. One 
thing to be aware of is that the residual deviance in R is the same as the value 157.838 in SAS. Also, the 
deviance in R is the likelihood ratio test statistic here at 95.787. There is other information about these tables 
that you might want to look into as well, but the values will be the same. 
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Also, by default, we get the odds ratio estimates for each variable in our model. In this case, we only have 
one, basement_area. This is the odds ratio for a single unit increase in the predictor, which has a point 
estimate of 1.007. We also get the analysis of maximum likelihood estimates, simply our parameter estimates, 
standard errors, Wald chi-square test statistic, and our p-value.  

The odds ratios for a single unit increase in the predictor, basement_area, are not the most meaningful. You 
are probably not going to want to compare two houses where one is simply one square foot larger in 
basement area. Use the UNITS statement to specify the units of change for a continuous variable and the 
CLODDS= option in the MODEL statement to request a confidence interval. As shown in Program 6.14, to 
change the units of measurement, we will use the UNITS statement and specify the variable, basement_area, 
equal to 100.  

Program 6.14: PROC LOGISTIC with UNITS Statement and CLODDS= Option  
proc logistic data=ameshousing;
    model bonus(event='1') = basement_area
        /clodds=wald;
    units basement_area=100;
run;

Output 6.14: Partial Results of Program 6.14 

 

 

In the odds ratio estimates in Output 6.14, we get an odds ratio estimate for a home that is 100 square feet 
larger in basement area. As you can see, the odds for a bonus-eligible house are more than two times the 
odds with a 100-square-foot difference in basement area. Based on our confidence limits, it is significant. It 
does not cover a value of 1.  

We also get the association of predicted probabilities and observed responses, and this table is just additional 
output containing model fit. These values are not in the default output in R, so you might not be familiar with 
them. We will talk more about this first column, the percent concordant, discordant, tied, and pairs in the 
next section. If you want to look up the statistics for Summers D, Gamma, Tau-a, and C, take a look at the 
online documentation. 

Comparing Pairs 
To find the concordant, discordant, and tied pairs, we are going to compare all homes in this data set that are 
bonus eligible versus not bonus eligible. In this case, that means we are comparing 45 bonus-eligible homes 
with 255 non-bonus-eligible homes. That is 11,475 total comparisons. But what exactly are we comparing? 

In each comparison, we will find the probability of being bonus eligible. In Figure 6.4, we have a bonus-eligible 
home with 1,200 square feet. We will say the probability of being bonus eligible is 0.28, and the probability of 
being bonus eligible for the non-bonus-eligible home is 0.02.  
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Figure 6.4: Concordant Pair 

This sorting agrees with our model. We said the probability of being bonus eligible was higher for the actual 
bonus-eligible home. We will chalk this up to a good model fit and say this is a concordant pair. 

On the other hand, if the probability of being bonus eligible for the actual bonus-eligible home is less than the 
probability of being bonus eligible for the non-bonus-eligible home, this sorting does not agree with our 
model. We will say the pair shown in Figure 6.5 is a discordant pair.  

Figure 6.5: Discordant Pair 

 

As you can see, we want as many concordant pairs as possible, and as few discordant pairs also. These values 
are just additional summaries of model fit. 

Effect Selection 
Another feature of the LOGISTIC procedure is that you can do effect selection right in the procedure. In the 
MODEL statement, you can use the SELECTION= option and specify FORWARD, BACKWARD, or STEPWISE 
model selection. By default, if you are doing FORWARD or BACKWARD selection, the significance level for 
entry and stay is going to be 0.05, which is different from PROC REG and PROC GLMSELECT. 

But again, you can do FORWARD, BACKWARD, and STEPWISE selection right in PROC LOGISTIC. Otherwise, 
you have to use a different procedure to do more modern effect selection like LASSO, ELASTICNET, and so on. 

PROC GENMOD 
Now we are going to move away from PROC LOGISTIC and into the GENMOD procedure. With PROC 
GENMOD, we can specify any distribution, not just a binomial distribution, but we are going to be doing the 
exact same things. We are going to run the GENMOD procedure, get graphics, tables, create new data sets, 
and so on. 

In this section, we will look at a new research example. The data come from a study that was conducted about 
the mating habits of female horseshoe crabs. The population of horseshoe crabs is monitored because they 
provide a critical food source for migrating birds. Each year, at the end of May and during June, hundreds of 
thousands of horseshoe crabs emerge from Delaware Bay to lay and fertilize their eggs. Each female 
horseshoe crab had a male crab resident in her nest. The study investigated factors affecting whether the 
female horseshoe crab had any other males, called satellites, residing nearby. The response variable for each 
female horseshoe crab is her number of satellites. The data are stored in Crab. 

Figure 6.6 is a partial view of the data. Width and weight are continuous variables. Satellite is a count variable, 
so as you can tell, we are probably going to be doing Poisson regression. We have two classification variables: 
color and spine. Color is light medium, medium, dark medium, or dark, but we will use numeric values to 
indicate those. Spine can be both good, one worn or broken, and both worn or broken. 
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Figure 6.6: Female Horseshoe Crab Data 

To use PROC GENMOD, we are going to first specify our MODEL statement as shown in the following syntax: 

PROC GENMOD DATA=data-table-name;
MODEL dependent-variable = effects

/ DIST=probability-distribution LINK=link-function;
RUN; 

For the crab data set, we want to predict satellites and will set that equal to the regressor, weight. To specify 
the distribution, we use the DIST= option the same way we would use the FAMILY= option in R. In Program 
6.15, we are sending it to poi for Poisson data. We get all the same default output as PROC LOGISTIC, such as 
parameter estimates, goodness-of-fit assessments, and so on. 

Program 6.15: PROC GENMOD 
proc genmod data=crab;
    model satellites = weight / dist=poi;
run;

DIST= Option 
There are several different distributions that we can use as options in the MODEL statement as shown in 
Table 6.7. 

Table 6.7: DIST= Option 

DIST= Distribution Default Link Function 

BINOMIAL Binomial Logit

GAMMA Gamma Inverse

GEOMETRIC Geometric Log

IGAUSSIAN Inverse Gaussian Inverse squared

MULTINOMIAL Multinomial Cumulative logit

NEGBIN Negative Binomial Log

NORMAL Normal Identity

POISSON Poisson Log

ZIP Zero-inflated Poisson Log/Logit

ZINB Zero-inflated Negative Binomial Log/Logit
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You can actually specify the binomial distribution to do logistic regression, if you want. Using PROC LOGISTIC is 
highly recommended instead though, because it knows you are doing a logistic regression and it will give you 
more relevant graphics. You will notice in Table 6.7 that the right-hand most column is the default link 
function. When you specify your distribution, it is going to automatically use that appropriate link function. 
For binomial, it uses the logit. For Poisson, it's going to use the log, and so on.  

If, for whatever reason, you wanted to change the link function, just use the LINK= option in the MODEL 
statement. The LINK= Option options are shown in Table 6.8. 

Table 6.8: Link= Option 

LINK= Link Function 

CUMLL, CCLL Cumulative Complementary Log-Log

CUMLOGIT, CLOGIT Cumulative Logit

CUMPROBIT, CPROBIT Cumulative Probit

CLOGLOG, CLL Complementary Log-Log

IDENTITY, ID Identity

LOG Log

LOGIT Logit

PROBIT Probit

POWER Power

 

Tip: The cumulative LINK functions are appropriate only for the multinomial distribution. 

For example, if you read an article and you want to change the link function to cumulative logit, you would 
just specify the appropriate keyword, CUMLOGIT. Most likely, though, you will not be using the link function. 
You will just be using the default link from the DIST option. 

Mixed Models 
In this section we will briefly talk about mixed models and how to create a linear mixed model. We will 
estimate some variance components and test fixed effects and random effects for significance, but we will be 
doing all the same things that you have seen in the previous chapters: running a PROC step, generating 
output, saving new SAS data sets, and so on. We are going to see a lot of the same statements as before. 

In R, you probably use the LME4 package, the linear mixed effects model R package, to conduct your mixed 
models, and then use the LMER function as shown in Figure 6.7. Until now in this book, we have been 
considering fixed effects only. Fixed effects are those factors whose levels are selected deliberately to 
evaluate the differences. All levels of interest are in your data set. The researcher is interested in comparing 
the effects of the factors on the response variable only for those levels included in the study.  
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Figure 6.7: R Script 

Suppose that you are working for a pharmaceutical company and you are testing three drugs: A, B, and C. 
These are the only three drugs that you care about. Of course, they did not combine a random process, and 
these are the only three drugs that you are including in the study. These are fixed effects. A model containing 
only fixed effects is called a fixed effects model. Models in which some factors are fixed effects and other 
factors are random effects are called mixed models. 

To make this example a mixed model, we need to build in a random effect into our model.  Suppose that we 
want to test our drugs in different clinics. Of course, we can't test our drug in all possible clinics, so the 
hospital itself is not of direct interest, nor is actually comparing clinic to clinic. We will assume that these 
clinics are sampled randomly from the population of possible hospitals. To generalize our results beyond the 
set of clinics included in the study, we will specify these as random. 

In some situations, a factor might have a large number of levels and the researcher or data analyst selects a 
subset of the levels to be included in the study. They represent a sample (although often an imperfect sample) 
from a population with a probability distribution. The inference about fixed effects from the data analysis 
applies to all population levels of random effects and not only the subset of levels included in the study. 
Effects such as these are random effects. For example, in the same drug study, four clinics are randomly 
selected from a population of clinics in a region. The researcher wants to make an inference for the drug 
effects across the population of clinics, not only the ones included in the study. Then Clinic is a random effect. 

Mixed Procedure Model 
Previously, we have been considering only x beta. Beta are fixed effects, X our fixed effects design matrix. 
Now, we are including into the model, Z, our random effects design matrix, and gamma are random effects, 
and we will actually refer to those specific values on the results page as well. 

 Y X Z

We assume that gamma is normally distributed with a mean of 0 and a G-matrix for variance components, 
and epsilon is normally distributed with a mean of 0 and residual matrix, R. The expected value is the same, 
just X-Beta, because the expected value of gamma is 0, and if you were to do the matrix multiplication for the 
variance of y, you would get ZGZ prime plus R. We will call all of this V. 

G 0
0  and 

0 R
E Var  

( ) ,   ( ) GZ' R=VE y Var y  

There are a few different estimation methods for the covariance parameters in PROC MIXED. We have 
method of moments and likelihood-based methods, as follows: 

Methods of Moments 

MIVQUE0 

Type 1 

Type 2 

Type 3 
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Likelihood-based Methods 

ML 

REML (default) 

For the fixed-effects parameters and standard errors 

Generalized least squares (GLS) method 

MIVQUE performs minimal variance quadratic unbiased estimation of the covariance parameters, so it 
produces method of moments estimates that are invariant with respect to the fixed effects. That is, the mean 
squares associated with the random effects are adjusted for the fixed effects. For Type 1, Type 2, and Type 3 
method of moments, SAS uses expected mean squares to estimate the variance components. 

The likelihood-based methods, in particular ML, can be biased. Most people use REML, residual maximum 
likelihood, and this is the default method in SAS. It's also the default method in the LME4 package that you 
probably use in R. REML constructs the likelihood function based on the residuals and obtains maximum 
likelihood estimates of the variance components from this likelihood. Again, this is the default option because 
it tends to be the most unbiased. 

PROC MIXED 
After you estimate your covariance parameters, you can then estimate your fixed effects parameters and 
standard errors using the generalized least squares method. PROC MIXED is very similar to the procedures 
that we have seen thus far, as shown in the following syntax: 

PROC MIXED DATA=data-table-name;
CLASS variables;
MODEL dependent-variable= fixed-effects/ solution;

RANDOM random-effects/ <options>;

ESTIMATE 'label' fixed-effect-values| random-effect-values / <options>;
LSMEANS fixed-effects/ options;

RUN; 

Notice in the syntax that we are building in the RANDOM statement into the model, and as you can expect, 
we are going to specify all our random effects right in the RANDOM statement. In the MODEL statement, we 
set the dependent variable equal to only the fixed effects. Your model will look a little bit empty, but again, 
you only specify your fixed effects in the MODEL statement and your random effects in the RANDOM 
statement. SAS will then go ahead and combine them to create your complete model. 

Let’s look at an agricultural example using PROC MIXED. Three seed growth methods are applied to seeds 
from each of five varieties of turf grass. Six pots are planted with seeds from each method by a variety 
combination. These 90 pots are randomly placed in a uniform growth chamber and dry matter yields, our 
response, are measured from clippings at the end of four weeks. 

And here is the key sentence: Assume that the five varieties were randomly chosen from a broader population 
of varieties. Thus, varieties is going to be our random effect and method is going to be our fixed effect. We are 
only concerned with these specific methods and we want to compare them in our model. 

So we are going to do a two-way mixed model. In the equation below, we have mu, the overall mean. Alpha-i 
is the method effect, b-j is the variety effect, and the inner action, alpha-b, is also going to be random because 
b is a random effect.  

 ( )ijk i j ij ijky b b   

We also want to identify our variance components, interaction, variety effect, and error variance components. 

 2 2 2(0, ) (0, ) (0, )b j b ijkij
b N b N N   
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First, we use PROC SGPLOT to explore the data in the data set Grass in Program 6.16. 

Program 6.16: PROC SGPLOT 
proc sgplot data=sp4r.grass; 
    vline variety / group=method stat=mean response=yield; 
run;

Output 6.16: Results of Program 6.16 

 

As evidenced in Output 6.16, there seems to be some variability among varieties. In addition, the yield for 
Method A is largest for all five varieties.  

Now we will use PROC MIXED to create a two-way mixed model and use the METHOD=REML option in 
Program 6.17. (This method reproduces the R package lmer.) Remember that the random effects appear only 
in the RANDOM statement, not the MODEL statement. However, all classification variables, fixed and random 
effects, are listed in the CLASS statement. Use an LSMEANS statement to compute the least square means for 
METHOD and use the PDIFF option to evaluate the difference in methods. Finally, use an ESTIMATE statement 
to compare Method A versus B and C.  

Program 6.17: PROC MIXED 
proc mixed data=sp4r.grass method=REML; 
    class method variety; 
    model yield = method / solution ddfm=kr2; 
    random variety method*variety; 
    lsmeans method / pdiff; 
    estimate 'A vs. B and C' method 1 -.5 -.5; 
run;

Output 6.17: Results of Program 6.17 
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Other Procedures 
At this point, you are probably getting the knack for using SAS procedures. You have seen lots of the same 
statements and the modeling procedures are very consistent. Once you pick up the syntax, you are going to 
be able to learn others, especially if you have the modeling background. In this section, we are going to look 
at a couple of other procedures briefly to get you started in the right direction without going into great detail 
one each one. Maybe you want to look at generalized linear mixed models, Bayesian models, survival data, 
multivariate data, or work with time series. What procedures should you start with? Let’s find out! 

PROC GLIMMIX 
If you want to do generalized linear mixed models, meaning that you want to create a mixed model for a 
response that is not Gaussian, use the GLIMMIX procedure. Everything is very similar to the other PROCs that 
we have previously discussed. The only difference is that in the MODEL statement now you are using the 
DIST= option to specify a probability distribution, and the LINK= option to specify your link, as shown in the 
following syntax: 

PROC GLIMMIX DATA=data-table-name;
CLASS variables;
MODEL dependent-variable = fixed-effects / SOLUTION

DIST=probability-distribution LINK=link-function;
RANDOM random-effects / <options>;
ESTIMATE 'label' fixed-effect-values | random-effect-values

/ <options>;
LSMEANS fixed-effects / options;

RUN; 

In the generalized linear mixed model, you apply a LINK function to the conditional mean E(y| ). The 
conditional distribution of y|  plays the same role as the distribution of y in the fixed-effects generalized 
linear model. You apply the same basic strategies for fitting a generalized linear model to  in a fixed effect 
model to fitting a mixed model to conditional mean E(y| ). 

However, to obtain the parameter estimates, you must obtain the marginal log-likelihood function, which is a 
challenge when you fit generalized linear mixed models (and nonlinear mixed models). By default, the 
GLIMMIX procedure uses the linearization technique to approximate the generalized linear mixed model as a 
linear mixed model. Two maximum likelihood methods are also available for fitting generalized linear mixed 
models in PROC GLIMMIX. 

( ) ( )
( )

( )
f x

p x
m x

 

The above equation is often expressed as follows: 

posterior density=(likelihood*prior)/marginal likelihood 

The marginal density of x is an integral defined as follows: 

( ) ( )f x d  

PROC MCMC 
The posterior density or distribution describes the distribution of the parameter of interest with respect to 
the data and prior. The posterior distribution is necessary for probabilistic prediction and for sequential 
updating.  

Although the name prior suggests a temporal relationship, it is feasible for a prior distribution to be decided 
after seeing the results of the study (for example, empirical Bayes methods. Prior distribution refers to a 
situation where you assess what the evidence would be if you had no data. This assessment can be made after 
seeing the data, but there are issues in this.  
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There is no such thing as the “correct” prior. In fact, researchers suggest using a “community of priors” to 
describe the range of reasonable opinions.  

Even though Bayesian analysis is driven by the prior distribution, it is sometimes not important in the analysis. 
As the sample size increases, the prior usually is overwhelmed by the likelihood and exerts a negligible 
influence on the conclusions. However, Bayesian analysis is not based on this assumption.  

The development of the posterior distribution might be difficult. The specific problem is carrying out the 
integrations that are necessary to obtain the posterior distributions of quantities of interest in situations 
where nonstandard prior distributions are used. For many years, these problems in integration restricted 
Bayesian applications to rather simple examples involving conjugate priors.  

Most Bayesian analyses require sophisticated computations, including the use of simulation methods such as 
the Monte Carlo methods, to generate samples from the posterior distribution. The basic idea of Monte Carlo 
is to simulate the sampling process from a defined population repeatedly by using a computer instead of 
actually drawing multiple samples to estimate the population summaries of the events of interest.  

Markov Chain Monte Carlo methods (MCMC) enable researchers to directly sample sequences of values from 
the posterior distribution of interest, foregoing the need for closed-form analytic solutions. With MCMC, you 
use these samples to estimate the posterior distribution’s quantities of interest. MCMC methods sample 
successively from a target distribution. Each sample depends on the previous one, hence, the notion of the 
Markov chain. You can think of a Markov chain applied to sampling as a mechanism that traverses randomly 
through a target distribution without having any memory of where it was given the immediate past value. 
Where it moves next is entirely dependent on where it is now.  

The Markov chain method is quite successful in modern Bayesian computing. One reason is that if the 
simulation algorithm is implemented correctly, the Markov chain is guaranteed to converge to the target 
distribution under rather broad conditions, regardless of the initial values of the parameters. Therefore, the 
Markov chain is able to improve its approximation to the true distribution at each step in the simulation. 
Furthermore, the simulation algorithm is easily extensible to models with a large number of parameters or 
high complexity. 

Program 6.18 is an example of a simple linear regression model.  

 
2

0 1( , )i iY normal X   

Here we want to estimate three parameters: the intercept, Beta0, the slope, Beta1, and the error, sigma-
squared. Use PROC MCMC, specify the number of Monte Carlo simulations, tell SAS what parameters you are 
working with, give those prior distributions, set a model, and give it a model distribution. SAS will do all the 
work for you behind the scenes to sample from that posterior. 

Program 6.18: PROC MCMC 
proc mcmc data=slrnbi=2000 nmc=10000;
    parms beta0 0 beta1 0;
    parms sigma2 1;
    prior beta0 beta1 ~ normal(mean=0, var=1e6);
    prior sigma2 ~ igamma(shape=2.001, scale=1.001);
    mu=beta0 + beta1*X1;

model Y ~ normal(mu, var=sigma2);
run;
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Output 6.18: Partial Results of Program 6.18 

 

PROC MCMC gives you relevant graphics like the trace plot, the autocorrelation plot, and the density 
estimates of each parameter.  

PROC LIFETEST 
If you are doing survival analyses, you might want to start with PROC LIFETEST. This procedure computes and 
plots survival function and tests for difference between survival functions. Survival analysis is a collection of 
specialized methods that are used to analyze data in which time until an event occurs is the response variable 
of interest. The response variable (often called, in survival analysis, a failure time, survival time, or event time) 
is usually continuous and can be measured in days, weeks, months, years, and so on. Events can be deaths, 
onset of disease, marriages, arrests, and so on. What is unique about survival analysis is that even if the 
subject did not experience an event, the subject’s survival time or length of time in the study is taken into 
account. 

Survival analysis is used heavily in clinical and epidemiological follow-up studies. Other fields that use survival 
analysis methods include sociology, engineering, and economics. Survival analysis is also known as time-to-
event analysis, reliability analysis, durability analysis, event history analysis, and lifetime analysis, among 
others. Regardless of the field, the common objective of a survival analysis study is not only whether an event 
occurred, but also when it occurred. For example, subjects who die five years after surgery are different from 
subjects who die one month after surgery. An analysis that simply counted deaths ignores valuable 
information about survival time.  

Survival analysis can also be used to analyze outcomes other than time. For example, an engineer might want 
to analyze the amount of mileage until a tire fails or the number of cycles until an engine requires repair. 
What is common across these studies is that you are analyzing an outcome until an event occurs, and that 
outcome does not necessarily have to be time.  

Survival analysis allows the response variable to be incompletely determined for some subjects. Exact failure 
time remains unknown. When this occurs, it is called censoring. These subjects should not be ignored. The 
time at which they are observed contributes information to the study. Ignoring them completely adds bias to 
the estimates of population survival time. They should not be assumed to have the event at the closest 
observed time point because event times (assuming an event eventually occurs) reported that way would be 
inaccurately measured.  

Censoring is categorized into three main types: right, left, and interval, depending on where the lack of 
information exists on the timeline relative to the observed follow-up times.  

Usually, the first step in the analysis of survival data is to estimate and plot the survival function. The survival 
function gives the probability that a subject survives longer than some specified time t. This can be defined by 
the formula where T is a random variable for a person’s survival time and t is any specific value of interest. At 
t=0, S(0)=1 (at the start of the study, because no one experienced the event yet, the probability of surviving 
past time 0 is 1), while at 
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must fall to 0). As t increases, S(t) never increases and usually decreases. The factors that influence the shape 
of the survival function are when the subjects experience the event, when the subjects were censored, and 
the pattern of enrollment in the follow-up study. In practice, the survival function resembles a decreasing step 
function rather than a smooth curve. Furthermore, because not everyone might experience the event by the 
end of the study (they are Type I censored), the survival function might not reach 0.  

A useful graph in exploratory data analysis is a graph that compares survival functions across groups as shown 
in Figure 6.8. In the plot at the upper left, the female survival function lies above the male survival function, 
which means that females had a more favorable survival experience. If the event was death, then at any point 
in time, the proportion of females estimated to be alive is larger than the proportion of males estimated to be 
alive.  

Figure 6.8: Survival Function Plots 

 

A graph comparing survival functions can also give insight into how time is related to the survival experience 
across groups. It can indicate interactions with time. In the plot at the upper right, subjects in Clinic 1 have a 
more favorable survival experience than subjects in Clinic 2. However, the differences between the groups are 
relatively small in the early time points and become progressively larger in the later time points. Early in the 
study, both clinics lost a similar proportion of patients. However, as the study progressed, the patients in 
Clinic 1 had much longer survival times compared to the patients in Clinic 2. 

PROC PHREG 
If you are comfortable with survival data, check out the PHREG procedure. The PHREG procedure performs 
regression analysis of survival data based on the Cox proportional hazard model.  

Figure 6.9: PROC PHREG Output 
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In many situations, either the true form of the hazard function is unknown, or it is so complex that the 
distributions covered in PROC LIFEREG do not adequately describe your data. This is a problem in parametric 
models because one of the assumptions is that the true form of the underlying hazard function is correctly 
specified. Therefore, the parameter estimates of the survival model might be biased if the wrong distribution 
is specified.  

This problem was addressed in 1972 by the British statistician Sir David Cox in a paper called “Regression 
Models and Life Tables.” In his paper, Cox proposed a model (now called the Cox proportional hazards model) 
that does not require that the distribution of survival times be known. It is a semi-parametric model because 
it makes a parametric assumption concerning the effect of the predictor variables on the hazard function. (It 
assumes that the predictor variables act multiplicatively on the hazard function.) However, the model makes 
no assumption regarding the nature of the hazard function. For example, the model does not assume that the 
hazard function is constant (the exponential model), or that it follows the form specified in a Weibull model or 
any other parametric model.  

The Cox model is extremely popular because, in many instances, the modeling goal of survival data is to 
characterize how the distribution of survival times changes as a function of the predictor variables. For 
example, suppose a clinical trial was designed to test whether one drug therapy improves the survival of AIDS 
patients when compared to another drug therapy. The primary importance of the survival model is to 
estimate parameters that compare the survival experience of the two treatment groups. The description of 
the underlying distribution of survival time is not important. Therefore, the actual form of the baseline hazard 
function is not important.  

Another reason that the Cox model is popular is because the model is as efficient in estimating and testing 
regression coefficients as the parametric models even when the distribution is correctly specified. When the 
distribution of survival times is incorrectly specified, the Cox model is more efficient than the parametric 
models.  

The Cox model also uses only the rank ordering of the event and censoring times. This property makes the 
model less affected by outliers in the event times than in parametric models. 

Multivariate Analysis Procedures 
Multivariate analysis refers to a broad category of statistical methods used when more than one variable at a 
time is analyzed for a subject. Although many physical and virtual systems studied in scientific and business 
research are, by their very nature, multivariate (that is, there are many responses influenced by many 
different variables simultaneously), most analyses are univariate (analyzing only one response at a time) in 
practice. Examples of common multivariate procedures are as follows: 

PROC FACTOR for factor analysis 

PROC CANCORR for canonical correlation 

PROC CANDISC for canonical discrimination 

PROC DISCRIM, in general, to discriminate between different groups  

PROC PLS for partial least squares 

PROC ARIMA for time series so that you can estimate moving average, autoregressive, seasonal 
components. Once you create the model, you can then go ahead and forecast. 

When in doubt, search for a procedure in the documentation at 
https://support.sas.com/en/documentation.html. Also, check out some of the free videos at 
support.sas.com/training. These are great resources for learning additional SAS syntax. 
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Exercises 

Multiple Choice 
1. Which statements are correct? Select all that apply. 

a. The PLM procedure uses the model specified by the STORE statement. 
b. PROC REG uses a CLASS statement to specify categorical variables. 
c. The PLM procedure SCORE statement keywords provide interval output. 
d. The PLM procedure scores new data sets. 

2. Choose the correct statements. Select all that apply. 
a. The CLASS statement is equivalent to the as.factor() function in R. 
b. The MEANS statement provides the same default output as PROC MEANS. 
c. The ADJUST= option in the LSMEANS statement is used to adjust for multiple comparisons. 
d. The SOLUTION option in the MODEL statement is used to display parameter estimates. 

3. The GLMSELECT procedure can be used to create a regression model, a polynomial regression model, 
an ANOVA model, an ANCOVA model, and to conduct stepwise model selection. 
a. True 
b. False 

4. Consider a logistic regression model where the binary response is whether a person is a dog owner. 
You sample 140 people and find that 95 people are dog owners. How many total concordant and 
discordant pairs are considered? 
a. 140 
b. 95*45 = 4275 
c. (95*45)/140 = 30.53 
d. 95*45*140 = 598500 

5. Logistic regression can be conducted in both PROC LOGISTIC and PROC GENMOD. 
a. True 
b. False 

Programming Exercises 
1. Fitting a Regression Model  

Percentage of body fat, age, weight, height, and 10 body circumference measurements were 
recorded for 252 men by Dr. Roger W. Johnson of Calvin College in Minnesota. The data are in the 
BodyFat data set, which consists of the following variables: 

Case   Case number  
PctBodyFat2  Percent body fat using Siri’s equation (495/density -450)  
Age   Age in years  
Weight   Weight in pounds   
Height   Height in inches  
Neck   Neck circumference (cm)  
Chest   Chest circumference (cm)  
Abdomen  Abdomen circumference (cm)  
Hip   Hip circumference (cm)  
Thigh   Thigh circumference (cm)  
Knee   Knee circumference (cm)  
Ankle   Ankle circumference (cm)  
Biceps   Extended biceps circumference (cm)  
Forearm  Forearm circumference (cm)  
Wrist   Wrist circumference (cm) 
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a. Generate PROC CORR output for the variables Height, Neck, Chest, and Weight. Which variables 
are highly correlated with Weight? 

 

 

b. Generate PROC UNIVARIATE output with the same variables. Use the ODS SELECT statement to 
request only the BasicMeasures table. Do any of the variables appear to be skewed judging only 
from the mean and median summary statistics? 
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c. Use PROC SGSCATTER to plot Weight by Height, Neck, and Chest separately. Add the regression 
line to each plot. Does each variable appear to be linearly associated with Weight? 

 

d. Use PROC REG to create a multiple linear regression model with Weight as the dependent 
variable and Height, Neck, and Chest as independent variables. Use the ODS SELECT statement 
to request only the tables ANOVA, FitStatistics, and ParameterEstimates. Use the OUTPUT 
statement to create a new data set with the predicted and residual values. Which variables are 
statistically significant for this model?  

 
e. Use PROC UNIVARIATE to create a histogram with a normal density estimate and a Q-Q plot 

compared to a normal distribution of the residuals. Use the ODS SELECT statement to request 
only the histogram and Q-Q plot. Do the residuals appear to be normally distributed? 
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2. Predicting New Data  
a. Rerun the model from Exercise 1, but this time use a STORE statement to save the model. 
b. The data set Newdata_Bodyfat_Reg contains five new observations. Use PROC PLM to score the 

new data. Use the PREDICTED keyword in the SCORE statement and save the scored data set as 
Pred_Newdata_Bodyfat.  

c. Print the predicted values from the scored data set and the response and independent variables.  

 
 

3. Fitting an ANOVA Model  
The data set Cars contains information about a sample of 1993 model cars from the 1993 Cars 
Annual Auto Issue published by Consumer Reports and from Pace New Car and Truck 1993 Buying 
Guide. The data set consists of the following variables: 
Make   Name of the manufacturer  
Model   Name of the model  
Type   Vehicle type (Hybrid, SUV, Sedan, Sports, Truck, or Wagon)  
Origin   Vehicle origin (Asia, Europe, or USA)  
DriveTrain  Drivetrain type (All, Front, or Rear)  
Invoice   Invoice  
MSRP   Manufacturer’s suggested retail price  
EngineSize  Engine displacement size in liters  
Cylinders  Number of Cylinders  
Horsepower Maximum horsepower  
MPG_City  Average city miles per gallon (EPA rating)  
MPG_Highway  Average highway miles per gallon (EPA rating)  
Weight   Weight of vehicle in pounds  
Wheelbase  Wheelbase in inches  
Length   Length of the vehicle in inches 

a. Generate a frequency table for the variable Type. Are the counts of each vehicle in this sample 
evenly distributed? 

 
 

b. Use PROC UNIVARIATE to analyze the MPG_Highway variable. Request only the Moments table 
and the histogram plot with a density estimate. Does MPG_Highway appear to be normally 
distributed?  
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c. Use PROC GLM to create a one-way ANOVA model. Use MPG_Highway as the dependent 

variable and Type as the independent variable. Use the PLOTS(ONLY)= option in the PROC GLM 
statement to request only the ANCOVA plot and use the hybrid vehicle as the reference 
category. Use the SOLUTION and CLPARM options in the MODEL statement to view parameter 
estimates and confidence limits. Identify the least squares means (LS-means). Use the 
ADJUST=TUKEY option and the PDIFF and CL options in the LSMEANS statement. Finally, use the 
ESTIMATE statement to see whether there is a significant difference in MPG_Highway for SUV 
versus Truck. Are all parameter estimates statistically significant? Are SUV and Truck significantly 
different?  
 
Partial PROC GLM Output 

 
4. Fitting an ANCOVA Model  

a. Extend the ANOVA model above to an ANCOVA model by adding the HorsePower variable into 
the set of independent variables. First, create a macro variable of the mean value of the 
HorsePower variable.  

 
b. Use PROC GLM to fit an ANCOVA model. Use the PLOTS(ONLY)= option to request only the 

ANCOVA plot from the GLM procedure. Identify the LS-means for the variable Type. Use the AT 
option to hold the variable HorsePower fixed at the mean and use the ADJUST=TUKEY option. 
Estimate the significance of the same linear combination as before, SUV versus Truck. Are all 
parameter estimates statistically significant? Is SUV still significantly different from Truck? 
 
Partial PROC GLM Output 
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5. Fitting a Logistic Regression Model  
The Safety data set is created by an insurance company that wants to relate the safety of vehicles to 
various features. The data set consists of the following variables:  
Unsafe  1=Yes, 0=No  
Size  Size of vehicle (1, 2, or 3)  
Weight  Weight of Vehicle (1, 2, 3, 4, 5, or 6)  
Region  Asia or North America  
Type  Vehicle type (Large, Medium, Small, Sport/Utility, or Sports) 

 
a. Use PROC FREQ to create a table of each variable. What percentage of vehicles in the sample are 

rated as safe? 

 

 
 

b. Use PROC LOGISTIC to model the unsafety of a vehicle with independent variables Weight, 
Region, and Size. Specify Region and Size as categorical variables with reference categories Asia 
and 3 respectively. Request only the effect plot for the analysis and use the CLODDS=WALD 
option in the MODEL statement. Use the ESTIMATE statement to estimate the probability of a 
vehicle from North America with Weight=4 and Size=1 as unsafe.  
 
Partial PROC Logistic Output 
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c. Because the significance of the parameter estimates was weak for the model above, conduct 
backward selection with a significance level to stay in the model of 0.05. Use ODS SELECT to 
request only the ModelBuildingSummary, ModelAnova, and ParameterEstimates values of the 
final model. Which variables were removed from the model?  

 

 
6. Fitting a Generalized Linear Model  

A Survey was undertaken to examine which factors are related to ear infections among swimmers. 
The response variable is the number of self-diagnosed ear infections reported by the participant. The 
data are stored in the EarInfection data set. The data set consists of the following variables:  
Infections  Number of self-diagnosed ear infections  
Swimmer  Frequent or Occasional swimmer  
Location  Typical swimming location (NonBeach or Beach)  
Age   Age in years  
Gender   Gender of swimmer (Male or Female) 

The data were obtained with permission from the OZDATA website. This website is a collection of 
data sets and is maintained in Australia. 

a. Create a frequency table for the variables Swimmer, Location, Age, Gender, and Infections. 
What is the range of the number of infections for swimmers in this sample?  
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b. Request only the BasicMeasures table and a histogram with a normal density estimate from 
PROC UNIVARIATE for the Infections variable. Does this variable appear to be normally 
distributed?  

 

 
c. Create a Poisson regression model with Infections as the dependent variable and Swimmer, 

Location, Age, and Gender as the independent variables. For the variables Swimmer, Location, 
and Gender use the reference categories Occas, NonBeach, and Female respectively. Be sure to 
use the STORE statement to predict the number of Infections using PROC PLM. Which variables 
are statistically significant?  
 
Partial PROC GENMOD Output 

 
d. Create a new data set with the following observations:  

 

Swimmer Location Age Gender 

Freq NonBeach 25 Female

Occas Beach 15 Male 

 
e. Use PROC PLM to score the new data set and predict the number of Infections on the original 

data scale. Finally, print the predicted values from the PROC PLM output data set.  
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Solutions 

Multiple Choice 
1. a, c, and d. The PLM procedure scores new data by using the model saved in the STORE statement of 

the modeling procedures. The REG procedure is generally used to create models with continuous 
predictors only. Categorical variables would need to be dummy coded by the user for this procedure. 
The PLM procedure can generate confidence and prediction limits by using options in the SCORE 
statement. 

2. a, c, and d. The CLASS statement is equivalent to the as.factor function in R because it dummy codes 
your variables for the model. It creates a column in your design matrix for each unique level of each 
categorical variable that you specify. As a best practice, use the SOLUTION option in the model 
statement to print your model parameter estimates. The ADJUST= option is used to control the 
overall type one error for multiple simultaneous comparisons. 

3. a. The GLMSELECT procedure can be used to create all the models in PROC REG and PROC GLM, as 
well as to conduct stepwise effect selection. 

4. b. The number of pairs is equal to the number of success times the number of failures (95*45). 
5. a. The GENMOD procedure can be used to create any generalized linear model including logistic 

regression models. However, the LOGISTIC procedure will generate tables and graphics specific to 
logistic regression models that PROC GENMOD will not. 

Programming Exercises 
1. Fitting a Regression Model  

Percentage of body fat, age, weight, height, and 10 body circumference measurements were 
recorded for 252 men by Dr. Roger W. Johnson of Calvin College in Minnesota. The data are in the 
BodyFat data set, which consists of the following variables: 

Case   Case number  
PctBodyFat2  Percent body fat using Siri’s equation (495/density -450)  
Age   Age in years  
Weight   Weight in pounds   
Height   Height in inches  
Neck   Neck circumference (cm)  
Chest   Chest circumference (cm)  
Abdomen  Abdomen circumference (cm)  
Hip   Hip circumference (cm)  
Thigh   Thigh circumference (cm)  
Knee   Knee circumference (cm)  
Ankle   Ankle circumference (cm)  
Biceps   Extended biceps circumference (cm)  
Forearm  Forearm circumference (cm)  
Wrist   Wrist circumference (cm) 

a. Generate PROC CORR output for the variables Height, Neck, Chest, and Weight. Which variables 
are highly correlated with Weight? 
proc corr data=sp4r.bodyfat; 
    var height neck chest weight; 
run;
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b. Generate PROC UNIVARIATE output with the same variables. Use the ODS SELECT statement to 
request only the BasicMeasures table. Do any of the variables appear to be skewed judging only 
from the mean and median summary statistics? 
ods select basicmeasures; 
proc univariate data=sp4r.bodyfat; 
var height neck chest weight; 
run;

 
c. Use PROC SGSCATTER to plot Weight by Height, Neck, and Chest separately. Add the regression 

line to each plot. Does each variable appear to be linearly associated with Weight? 
proc sgscatter data=sp4r.bodyfat; 

plot weight * (height neck chest) / reg; 
run;
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d. Use PROC REG to create a multiple linear regression model with Weight as the dependent 
variable and Height, Neck, and Chest as independent variables. Use the ODS SELECT statement 
to request only the tables ANOVA, FitStatistics, and ParameterEstimates. Use the OUTPUT 
statement to create a new data set with the predicted and residual values. Which variables are 
statistically significant for this model?  
ods select anova fitstatistics parameterestimates; 
    proc reg data=sp4r.bodyfat; 

model weight = height neck chest; 
    output out=sp4r.out predicted=pred residual=res; 
run;quit;

 
e. Use PROC UNIVARIATE to create a histogram with a normal density estimate and a Q-Q plot 

compared to a normal distribution of the residuals. Use the ODS SELECT statement to request 
only the histogram and Q-Q plot. Do the residuals appear to be normally distributed? 
ods select histogram qqplot; 
proc univariate data=sp4r.out; 
    var res; 
    histogram res / normal kernel; 
    qqplot res / normal(mu=est sigma=est); 
run;
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2. Predicting New Data  

a. Rerun the model from Exercise 1, but this time use a STORE statement to save the model. 
proc reg data=sp4r.bodyfat; 

model weight = height neck chest; 
store mymod; 

run;quit;

b. The data set Newdata_Bodyfat_Reg contains five new observations. Use PROC PLM to score the 
new data. Use the PREDICTED keyword in the SCORE statement and save the scored data set as 
Pred_Newdata_Bodyfat.  
proc plm restore=mymod; 

score data=sp4r.newdata_bodyfat_reg 
out=sp4r.pred_newdata_bodyfat predicted; 

run;

c. Print the predicted values from the scored data set and the response and independent variables. 
proc print data=sp4r.pred_newdata_bodyfat; 

var weight height neck chest predicted; 
run;
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3. Fitting an ANOVA Model  
The data set Cars contains information about a sample of 1993 model cars from the 1993 Cars 
Annual Auto Issue published by Consumer Reports and from Pace New Car and Truck 1993 Buying 
Guide. The data set consists of the following variables: 
Make   Name of the manufacturer  
Model   Name of the model  
Type   Vehicle type (Hybrid, SUV, Sedan, Sports, Truck, or Wagon)  
Origin   Vehicle origin (Asia, Europe, or USA)  
DriveTrain  Drivetrain type (All, Front, or Rear)  
Invoice   Invoice  
MSRP   Manufacturer’s suggested retail price  
EngineSize  Engine displacement size in liters  
Cylinders  Number of Cylinders  
Horsepower Maximum horsepower  
MPG_City  Average city miles per gallon (EPA rating)  
MPG_Highway  Average highway miles per gallon (EPA rating)  
Weight   Weight of vehicle in pounds  
Wheelbase  Wheelbase in inches  
Length   Length of the vehicle in inches 

a. Generate a frequency table for the variable Type. Are the counts of each vehicle in this sample 
evenly distributed? 
proc freq data=sp4r.cars; 
    table type; 
run;

 
b. Use PROC UNIVARIATE to analyze the MPG_Highway variable. Request only the Moments table 

and the histogram plot with a density estimate. Does MPG_Highway appear to be normally 
distributed?  
ods select moments histogram; 
    proc univariate data=sp4r.cars; 

var mpg_highway; 
    histogram mpg_highway / normal; 
run;
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c. Use PROC GLM to create a one-way ANOVA model. Use MPG_Highway as the dependent 

variable and Type as the independent variable. Use the PLOTS(ONLY)= option in the PROC GLM 
statement to request only the ANCOVA plot and use the hybrid vehicle as the reference 
category. Use the SOLUTION and CLPARM options in the MODEL statement to view parameter 
estimates and confidence limits. Identify the least squares means (LS-means). Use the 
ADJUST=TUKEY option and the PDIFF and CL options in the LSMEANS statement. Finally, use the 
ESTIMATE statement to see whether there is a significant difference in MPG_Highway for SUV 
versus Truck. Are all parameter estimates statistically significant? Are SUV and Truck significantly 
different?  
proc glm data=sp4r.cars plots(only)=boxplot; 

class type (ref='Hybrid'); 
model mpg_highway = type / solution clparm; 
lsmeans type / adjust=tukey pdiff cl; 
estimate 'SUV vs Truck' type 1 0 0 -1 0 0; 

run;quit;
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4. Fitting an ANCOVA Model  

a. Extend the ANOVA model above to an ANCOVA model by adding the HorsePower variable into 
the set of independent variables. First, create a macro variable of the mean value of the 
HorsePower variable.  
proc sql; 

select mean(horsepower) into :hp_mean from sp4r.cars; 
quit;

 
b. Use PROC GLM to fit an ANCOVA model. Use the PLOTS(ONLY)= option to request only the 

ANCOVA plot from the GLM procedure. Identify the LS-means for the variable Type. Use the AT 
option to hold the variable HorsePower fixed at the mean and use the ADJUST=TUKEY option. 
Estimate the significance of the same linear combination as before, SUV versus Truck. Are all 
parameter estimates statistically significant? Is SUV still significantly different from Truck? 
proc glm data=sp4r.cars plots(only)=ancovaplot; 

class type (ref='Hybrid'); 
model mpg_highway = type|horsepower / solution clparm; 
lsmeans type / at horsepower=&hp_mean 

adjust=tukey pdiff cl; 
estimate 'SUV vs Truck' type 1 0 0 -1 0 0 type*horsepower 
&hp_mean 0 0 -&hp_mean 0 0; 

run;quit;
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5. Fitting a Logistic Regression Model  

The Safety data set is created by an insurance company that wants to relate the safety of vehicles to 
various features. The data set consists of the following variables:  
Unsafe  1=Yes, 0=No  
Size  Size of vehicle (1, 2, or 3)  
Weight  Weight of Vehicle (1, 2, 3, 4, 5, or 6)  
Region  Asia or North America  
Type  Vehicle type (Large, Medium, Small, Sport/Utility, or Sports) 
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a. Use PROC FREQ to create a table of each variable. What percentage of vehicles in the sample are 
rated as safe? 
proc freq data=sp4r.safety; 
run;

 
 

b. Use PROC LOGISTIC to model the unsafety of a vehicle with independent variables Weight, 
Region, and Size. Specify Region and Size as categorical variables with reference categories Asia 
and 3 respectively. Request only the effect plot for the analysis and use the CLODDS=WALD 
option in the MODEL statement. Use the ESTIMATE statement to estimate the probability of a 
vehicle from North America with Weight=4 and Size=1 as unsafe.  
proc logistic data=sp4r.safety plots(only)=effect; 
    class region(ref='Asia') size(ref='3') / param=ref; 
    model unsafe(event='1') = weight region size /
       clodds=wald; 
    estimate 'My Estimate' intercept 1 weight 4 region 1 
        size 1 0 / e alpha=.05 ilink; 
run;
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c. Because the significance of the parameter estimates was weak for the model above, conduct 
backward selection with a significance level to stay in the model of 0.05. Use ODS SELECT to 
request only the ModelBuildingSummary, ModelAnova, and ParameterEstimates values of the 
final model. Which variables were removed from the model?  
ods select modelbuildingsummary modelanova 
        parameterestimates; 
proc logistic data=sp4r.safety; 
    class region(ref='Asia') size(ref='3') / param=ref; 
    model unsafe(event='1') = weight region size / 
        selection=backward sls=.05 clodds=wald; 
run;
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6. Fitting a Generalized Linear Model  

A Survey was undertaken to examine which factors are related to ear infections among swimmers. 
The response variable is the number of self-diagnosed ear infections reported by the participant. The 
data are stored in the EarInfection data set. The data set consists of the following variables:  
Infections  Number of self-diagnosed ear infections  
Swimmer  Frequent or Occasional swimmer  
Location  Typical swimming location (NonBeach or Beach)  
Age   Age in years  
Gender   Gender of swimmer (Male or Female) 
 

The data were obtained with permission from the OZDATA website. This website is a collection of data 
sets and is maintained in Australia. 

a. Create a frequency table for the variables Swimmer, Location, Age, Gender, and Infections. 
What is the range of the number of infections for swimmers in this sample?  
proc freq data=sp4r.earinfection; 

tables swimmer location age gender infections; 
run;
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b. Request only the BasicMeasures table and a histogram with a normal density estimate from 
PROC UNIVARIATE for the Infections variable. Does this variable appear to be normally 
distributed?  
ods select basicmeasures histogram; 
proc univariate data=sp4r.earinfection; 
    var infections; 
    histogram infections / normal; 
run;
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c. Create a Poisson regression model with Infections as the dependent variable and Swimmer, 
Location, Age, and Gender as the independent variables. For the variables Swimmer, Location, 
and Gender use the reference categories Occas, NonBeach, and Female respectively. Be sure to 
use the STORE statement to predict the number of Infections using PROC PLM. Which variables 
are statistically significant?  
proc genmod data=sp4r.earinfection; 

class swimmer(ref='Occas') location(ref='NonBeach') 
gender(ref='Female') / param=ref; 

model infections = swimmer location age gender / 
dist=poisson type3; 

store mymod; 
run;
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d. Create a new data set with the following observations:  

Swimmer Location Age Gender 

Freq NonBeach 25 Female

Occas Beach 15 Male

data sp4r.newdata_inf; 
    input Swimmer $ Location $ Age Gender $; 
    datalines; 
Freq NonBeach 25 Female 
Occas Beach 15 Male 
;run;

e. Use PROC PLM to score the new data set and predict the number of Infections on the original 
data scale. Finally, print the predicted values from the PROC PLM output data set.  
proc plm restore=mymod; 
    score data=sp4r.newdata_inf out=sp4r.scores / ilink; 
run;

 
proc print data=sp4r.scores; 
run;
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Introduction 
This chapter is all about SAS Interactive Matrix Language (SAS IML). Because R is a matrix language, it is 
important to know how to accomplish similar matrix-based tasks in SAS. The IML procedure enables you to 
completely customize analyses and run code interactively. 

We will start with the basics of working in the IML procedure, such as creating and printing matrices. Then, we 
will practice using built-in SAS modules and creating our own. Next, we will explore more of the nuances of 
working with SAS IML from an R user's perspective. In particular, you will learn how to read in SAS data sets to 
an IML matrix to run customized analyses and how to save those results in a SAS data set. Finally, we will learn 
how to run Monte Carlo simulations. 

The Basics of IML 
In this section, we will review the basics of working in the interactive matrix language. We want to use matrix 
algebra to customize our statistical analyses, so in the equation below, for example, we have a hypothesized 
model.  

0 1 1 ... k kY X X  
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We could pass the model to PROC REG or PROC GLM. But instead, in this chapter, we will do all the matrix 
algebra to find our parameter estimates. In the equation below, the beta hat vector is x transpose x inverse, x 
transpose y, where x is the design matrix and y is the vector of observed values. 

ˆ ( )T TX X X Y  

PROC IML 
In this section, we will create a matrix manually. We will do some elementwise operations, matrix operations. 
We will access and pull out elements of matrices, and finally, we will talk about some reduction operators, so 
how to use basic functions like MAX, SUM, and COLMEANS. 

Here is the general form of the PROC IML step: 

PROC IML;
IML syntax

QUIT; 

To save space, the examples in this chapter tend to omit the PROC IML; and QUIT; lines. 

We start with the PROC IML statement, and then we have all of our IML syntax. This could be many, many, 
many lines of code. Once we are done working in the interactive matrix language, we run a single QUIT 
statement to get out, but everything between PROC IML and QUIT is going to be a matrix. Very different from 
what we have seen in the previous chapters. 

PROC IML can be used interactively or in batch mode. Using IML in batch mode entails submitting the PROC 
IML call, a set of IML statements, and finally a QUIT statement. PROC IML does not require a RUN statement. 
To use IML in interactive mode, submit the PROC IML call. IML statements can then be submitted one at a 
time or in groups. When IML is no longer needed, submit the QUIT statement to exit IML. 

Brackets, braces, and parentheses have distinct uses in SAS/IML.  

Brackets { } are used for making a matrix from literal values.  

Braces [ ] are used to pull elements out of a matrix. 

Parentheses ( ) are used to specify the order of operations, or as part of a built-in or user-defined 
function. 

To create a matrix by hand, we will simply specify a matrix as shown in Program 7.1. Call it x and set it equal to 
the following using the brackets. Specify the first row of the matrix (1, 2, 3), followed by a comma to go to the 
second row of the matrix (4, 5, 6). Now, x is a 2-by-3 matrix. 

Program 7.1: Matrix with Numerical Data 
PROC IML;
x = {1 2 3,
     4 5 6}

QUIT;

We can also enter in character data as well. In Program 7.2, we have a vector that is 3-by-1, which is all 
character data: Jordan, Baker, and finally Man. The only thing to remember about character data is the size is 
the number of characters for the longest word, in this case six characters. 

Program 7.2: Matrix with Character Data 
PROC IML;
x = {“Jordan”,
     “Baker”,
     “Man}
QUIT;
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SAS/IML matrices must contain either character or numeric elements. A matrix cannot contain both types of 
elements. Numeric elements are stored in double-precision floating point-format using eight bytes. Elements 
of character matrices can be from 1 to 32,767 bytes long. Matrices are referenced by valid SAS names. Names 
can be from 1 to 32 characters long, beginning with a letter or an underscore and continuing with any 
combination of letters, underscores, or digits. 

If you assigned character values to a matrix, and then you assign an element, the value 2 not enclosed in 
quotation marks, the element contains the character '2', not the floating point numeric representation of 2, 
because matrices cannot be of mixed type. 

The length of each element in a character matrix is determined dynamically to be the length of the longest 
element. For example, if you assign the value dog to element 1 of a matrix and the value horse to element 2, 
then the first element is five bytes long, and the last two bytes are blank characters. If you later change 
element 2 to cat, the length of elements remains five unless a longer element was assigned. The LENGTH 
statement can be used to determine the length of each element in a character matrix. 

If you want to view a matrix, use the PRINT statement because, remember, SAS does not have a command-
line interpreter. In Program 7.3, we have the x equal to the 2-by-3 matrix from Program 7.1. If we want to 
print it to the results page, we just say PRINT X. There are lots of other options that you can use in the PRINT 
statement. 

Program 7.3: PRINT Statement 
PROC IML;
x = {1 2 3,
     4 5 6}
print x;
QUIT;

If you don't want to use an assignment statement, meaning you don't want to set your matrix equal to a 
variable (in this case, x), and you just want to print something, use parentheses in your PRINT statement as 
shown in Program 7.4.  

Program 7.4: Alternative PRINT Statement 
print ( {1 2 3,
         4 5 6});

Everything between the parentheses in your PRINT statement will be printed to the results page. It doesn't 
have to just be a matrix. You can also do mathematical operations, for example, but again, you have to use 
parentheses if you are not assigning it to a variable. 

Accessing Matrix Elements 
Figure 7.1 shows how to create and access matrices in R. SAS has a few similarities to R in the way it accesses 
elements. 

Figure 7.1: R Script 
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In SAS, we also have our X matrix, which we created and is 2 by 3.  

1 23
456

X  

To access matrix elements, we use the following syntax:  

matrix-name[row,column]; 

For example, X[2,1] goes to matrix X and pulls out the second row, first column element, which is 4. 

If we leave the COLUMN or ROW argument open, it simply takes out all the columns or rows, as shown in the 
following syntax: 

matrix[row,];
matrix[,column]; 

For example, X[2, ] goes into the second row and pulls out the entire row (4, 5, 6). 

Finally, to find dimensions, use NROW and NCOL on the matrix, as shown in the following syntax: 

nrow(matrix);
ncol(matrix); 

In practice, we need to use an assignment statement such as D1=nrow(X) or D1=ncol(X). Otherwise, we would 
have to use a PRINT statement followed by the parentheses. 

Tip: SAS/IML does not have a dim() function. 

Creating a Sequence 
The index operator in SAS is identical to R, as shown in the following syntax: 

value1:value2; 

X = 1:5; creates a sequence from 1 to 5 using the colon, and it simply creates the row vector.  

You can also use the DO function with following syntax: 

vector = DO(start,stop,increment);

X = do(2, 10, 2); goes from 2 to 10, by an increment of 2 to create a row vector [2 4 6 8 10]. 

Basic Operators 
Table 7.1 shows a comparison of basic operators that are used in both SAS and R. 

Table 7.1: Basic Operators 

Description SAS Operator R Operator 

Elementwise +, -, #, /, ## +, -, *, /, ^

Matrix Multiplication * %*%

Matrix Exponentiation **

Transpose t() or ` t()

Horizontal Concatenation || rbind()
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Description SAS Operator R Operator 

Vertical Concatenation // cbind() 

 

The first thing you should notice in Table 7.1 is the star operator in red. In R, the star does elementwise 
multiplication, but SAS uses the hashtag. R uses the double hashtag to exponentiate a matrix, but SAS uses 
the single star operator to do matrix multiplication. You need to be very conscious of which software language 
you are working in because if you are in R and you use the star, it's elementwise operations. If you use the 
star in SAS, it's matrix multiplication. 

Comparison Operators 
Comparison operators perform elementwise comparisons and produce a new matrix that contains only 0s and 
1s. If an element comparison is true, the corresponding element of the new matrix is 1. If the comparison is 
not true, the corresponding element is 0. Unlike in Base SAS, in IML, you cannot use the mnemonic 
equivalents (GT, LT, GE, LE, NE, EQ). Table 7.2 shows comparison operators in both SAS and R. 

Table 7.2: Comparison Operators 

Description SAS Operator R Operator 

Less than < <

Less than or equal to <= <=

Equal to = ==

Not equal to ^= !=

Greater than > >

Greater than or equal to >= >= 

 

As you can see in Table 7.2, the comparison operators in SAS are similar to R, specifically the less than, less or 
equal to, greater than, or greater than or equal to. Again, just like we saw in Chapter 2, we do not use the 
double equal sign, and we do not use the exclamation point for not equal to. Here, we just have the up caret 
for not equal to. 

Using these comparison operators is very similar to R. See the following example: 

Z = {2 7, 3 5} > {4 6, 5 8}

2 7 4 6 0 1
3 5 5 8 0 0

 

Here, we are specifying a matrix Z, and saying, "Is this matrix greater than the following matrix?" Each 
element of the matrix is compared and returns a binary result. Because two is not greater than four, it returns 
a zero. Seven is greater than six, so it returns a one, and so on. 

Implicit Looping 
Some matrix operations can be performed on matrices that are not conformable to the operation. We have 
actually been doing matrix and scalar operations in R all along. For example, see the following operation: 
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2 6 5 9
3

5 9 8 12
 

In this case, if we add a scalar to a matrix, it is simply going to add 3 to every element of the matrix.  

The next two operations are new if you have never worked in SAS. The first is matrix and row vector, an 
example of which is shown in the following operation: 

2 6 3 4
5 2

5 9 0 7
 

Here we have a 2 by 2 matrix and a 1 by 2 row vector. Notice that we have the same number of columns in 
each. We can do a matrix in row vector operation, meaning we are going to apply the operation to each row 
of the matrix. So 2 minus 5 is minus 3, 6 minus 2 is 4, and then we apply the same row vector operation to the 
next row in the matrix. 

If X is an m-by-n matrix, and Y is a 1-by-n row vector, then the expression X+Y evaluates to the addition of Y to 
each row of X. This change was introduced to reduce the need for explicit loops and increase the efficiency of 
this type of calculation. 

The second type of operation is matrix and column vector. It works similarly to matrix and row vector, as you 
can see in the following example: 

2 6 2 1 3
/

5 9 4 1.25 2.25
 

Notice in this case that we have the same number of rows, so we are going to apply this operation to each 
column in the matrix. 2 divided by 2 is 1, 5 divided by 4 is 1.25, and then moving on to the second column in 
the matrix. 

Subscript Reduction Operators 
Subscript reduction operators are a good way to find some summary statistics quickly on a matrix. The 
operators are listed in Table 7.3. 

Table 7.3: Subscript Reduction Operators 

Operator Description 

+ Sum

# Product

<> Maximum

>< Minimum

<:> Index of maximum

>:< Index of minimum

: Mean

## Sum of squares 
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Let's use the following 3 by 3 matrix as an example: 

1 2 3
6 5 9
7 8 4

X  

To help you decide whether to specify an operator in the row or column dimension, remember that if a 
dimension's subscript is missing, that dimension remains unchanged in the new matrix. In the example below, 
the subscript for the column dimension is missing, so the resulting matrix has the same number of columns, 
three. 

You can use reduction operators to reduce either rows or columns or both. When both rows and columns are 
reduced, row reduction is done first. 

Let’s look at a few examples of operations on the example matrix: 

Y=X[+, ] produces   Y=[14 15 16] 

Y=X[, <>] produces  Y=[3, 9, 8] 

Y=X[#,]  produces  Y=[42 80 108] 

Y=X[:,]  produces  Y=[14/3 5 16/3] 

In the first example operation, the first argument for the rows is the plus symbol followed by a comma, which 
means we are leaving the column argument open. This is saying we want to sum each row for all columns. So 
1 plus 6 plus 7 is 14, 2 plus 5 plus 8 is 15, and so on. 

The next example uses the maximum operator, so we want to take the maximum of the columns for each 
row. The max for the first row is 3, the second row is 9, and so on. 

Modules and Subroutines 
In this section, we will learn how to apply a SAS module, or user-defined module, to a matrix and bring back a 
result. We will also see how to simulate random numbers from probability distributions. We can create 
random matrices or vectors, just like in R, as shown in Figure 7.2. Then we will use some base R functions like 
SOLVE, which solves a linear system of equations, or SVD, to do the singular value decomposition. Finally, at 
the end of the section, you will learn how to create a user-defined function. 

Figure 7.2: R Script 

 

Modules 
In SAS, the term module is more of an umbrella term that refers to either a function or subroutine, but they 
both perform a specific task, just like a function in R. IML functions and subroutines perform common  
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operations that would otherwise require many lines of IML code. There are a few differences, though, 
between a function and a subroutine. 

General form of an IML function: 
result = function-name(argument-1, argument-2, …); 

General form of an IML subroutine: 
CALL subroutine-name<(argument-1, argument-2, …)>; 

Function 
First, notice that a function uses an assignment statement. IML functions are not valid without an assignment 
statement. We need to specify a new variable name (in this case, the result), and set it equal to the function 
that we are using, and then supply the arguments to actually use the function. Whereas with the subroutine, 
we do not use the assignment statement. We just run it with a CALL statement. 

More importantly, there is a subtle distinction. Functions return matrices. Subroutines create matrices. We 
will see the difference going forward. 

Again, function modules return only a single matrix. They must have at least one argument and require an 
assignment statement. Here is an example of a function module: 

X = {3 4 5,
2 4 9};

numberRows = nrow(X);
numberCols = ncols(X);

We have the X matrix, which is 2 by 3, and we are using the NROW and NCOLS functions. In order for this to 
be valid, to actually use the built-in function, we are setting it equal to new matrices that we are calling 
numberRows and numberCols. 

Subroutine 
Subroutine modules, on the other hand, do not return a matrix. They create or alter a matrix. They can have 
no arguments, and they cannot be called in an assignment statement, so you cannot set it equal to a new 
variable. In the example below, we use the SORT subroutine and call it with the CALL statement. 

call sort(X);

Here we supply the single argument X. It's going to re-sort the matrix X, so the new matrix will be 2 3 4, 4 5 9. 

Some subroutines create matrices without an assignment statement. Let’s look at an example of using the 
EIGEN subroutine to create a matrix with the following syntax: 

CALL EIGEN (eigenvalues, eigenvectors, matrix); 

Notice that the syntax has three arguments: the eigenvalues, eigenvectors, and matrix. In Program 7.5, we 
have a 2-by-2 matrix x, and we will run the Eigen subroutine with the CALL statement. Notice that we are only 
passing it one argument x. The other two arguments, evals and evecs, are the matrices being created. 

Program 7.5: EIGEN Subroutine 
x = {1 2,3 4};
call eigen(evals,evecs,x);
print evals evecs;

Output 7.5: Results of Program 7.5 
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When we do the eigenvalue decomposition, it creates the evals matrix and evecs matrix, which are the 
eigenvalues and eigenvectors. Then when we run that subroutine, we have access to use them in SAS. Output 
7.5 shows the results of printing those new matrices, evals and evecs. 

Random Number Generation Functions 
In Chapter 4, we talked about simulating random numbers in a DATA step. Notice in Table 7.4 that the PDF, 
CDF, and QUANTILE functions are exactly the same. (This table is the same as Table 4.2 in Chapter 4.) 

Table 7.4: PDF, CDF, and QUANTILE Functions with R Counterparts 

R  SAS 

dnorm(q,mean, sd) PDF('Normal',q,mean,sd)

pnorm(q,mean,sd) CDF('Normal',q,mean,sd)

qnorm(p,mean,sd) QUANTILE('Normal',p,mean,sd)

 

We specify a distribution, either the quantile or the cumulative density, followed by the parameters. The 
point here is that some of the functions we have already used in DATA steps, you can use directly in IML as 
well, but be sure to check the documentation. 

J Function 
Let’s take a closer look at a function. The J function creates a matrix with n rows and p columns, and it fills 
every element of the new matrix with the same value using the following syntax: 

J(nrows,ncols,<value>)

In Program 7.6, we are creating matrix X with the J function. Of course, it's not case sensitive, so we could use 
a little j. In parentheses, specify the number of rows 2, the number of columns 3, and fill every element with 
the value 0. If we leave off the optional value, it will simply fill the matrix with a default value of 1. 

Program 7.6: J Function 
X = J(2,3,0)

On the surface, the J function might not seem like it is extremely helpful, but in combination with the 
RANDGEN subroutine, it is very useful.  

RANDGEN Subroutine 
The RANDGEN subroutine can be used to fill a matrix with random numbers using the following syntax: 

CALL RANDGEN(result, dist-name<,parm1><,parm2><,parm3>); 

The result matrix must be created by the user before calling RANDGEN. RANDGEN produces the number of 
samples required to fill each cell in the matrix. The result matrix must be numeric and should have a number 
of cells equal to the desired number of samples. The number of parameters that are specified is dependent on 
the distribution. For example, specifying the Cauchy distribution does not require any parameters whereas 
specifying a normal mixture distribution requires three parameters. 

To create a matrix with simulated random values, first initialize a matrix with the J function as shown in 
Program 7.7. 

Program 7.7: RANDGEN Subroutine 
X = J(2,3,0);
call randgen(X,"Normal",10,2);
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You can see that Program 7.7 creates a new matrix X, which is 2 by 3, using the J function. We then pass that 
matrix to the RANDGEN subroutine as its first argument and fill every element of that matrix with simulated 
values by specifying the distribution name, Normal, and its parameters, 10 and 2. This has a very similar 
syntax to the RAND function that we learned about in Chapter 4.  

There are lots of different distributions that you can use with the RANDGEN subroutine. Table 7.5 lists the 
univariate probability distributions, and of course, you want to check the online documentation to make sure 
you know how to use the parameters, what order they should be in, and to see the multivariate distributions 
as well. 

Table 7.5: Univariate Distributions 
Bernoulli Beta Binomial
Cauchy Chi-Square Erlang
Exponential F Gamma
Geometric Hypergeometric Laplace
Logistic Lognormal Negative Binomial
Normal Normal Mixture Pareto
Poisson T Table
Triangle Tweedie Uniform
Wald Weibull

RANDFUN Function 
If you want to vectorize your code, just like you would in R, for example, using RNORM, you can use the 
RANDFUN function to simulate random vectors using the following syntax: 

result = RANDFUN(n, dist-name<,parm1><,parm2><,parm3>); 

In Program 7.8, we want a vector that is 10 by 1, so we pass it the argument 10, and the same arguments as 
before on the RANDGEN subroutine (the distribution name and its parameters).  

Program 7.8: RANDFUN function 
X = randfun(10,"Normal",10,2);

Notice that because this is a function, we have to use an assignment statement with the RANDFUN function, 
unlike the RANDGEN module, which is a subroutine. 

Tip: Inside loops, it is more efficient to use the RANDGEN subroutine. 

Common IML Modules  
In this section, we will discuss some other useful modules that you might want to be aware of. Most modules 
are intuitive and identical to R. For example, the ABS() function returns the absolute value for each element in 
a matrix and is identical to R syntax. EXPonentiate, LOG, SQuare RooT, MAX, MIN, PROD, and SUM all operate 
the exact same way as R. Table 7.6 lists some useful modules to know. 

Table 7.6: IML Modules 
Mathematical ABS, EXP, LOG, SQRT
Reduction MAX, MIN, PROD, SUM
Matrix Inquiry ALL, ANY, LOC, COUNTN
Matrix Reshaping VECDIAG, REPEAT, SHAPE
Random Number Generation CALL RANDGEN, CALL RANDSEED

Statistical CORR, COV, MEAN, CALL QNTL
Numerical Analysis CALL SPLINE, BSPLINE
Linear Algebra DET, TRACE, INV, CALL EIGEN, 

SOLVE, CALL SVD, CALL QR, ROOT
Optimization CALL NLPNRA
… …

 



Chapter 7: Interactive Matrix Language (IML)   205 

You should see some familiar modules in Table 7.6. We have already talked about random number 
generation, some statistical functions, and how find the correlation and covariance. You can use the MEAN 
function (the same as colMeans in R), which takes the mean of each column of your matrix. You can find any 
quantile that you want using the QNTL subroutine. 

You can do some numerical analysis with splines, lots of modules for linear algebra like the DETerminant, 
TRACE, INVerse, the Eigen subroutine, and solve a linear system of equations. You can do QR decomposition 
or the Cholesky root. And there are lots and lots of optimization subroutines as well, with many more listed in 
the documentation. 

Matrix Reshaping 

REPEAT Function 
This section covers some very simple but useful modules. The REPEAT function is similar to RET function in R, 
and uses the following syntax: 

result = REPEAT(matrix, nrow, ncol);

or

result = REPEAT(matrix, freq);  

In the following code, we have a matrix X, which is 2 by 2. We create a new matrix Y using the first form of the 
REPEAT function, and are repeating X as if it were a 2-by-2 matrix. 

Y = repeat (X,2,2);

1 2 1 2
1 2 3 4 3 4
3 4 1 2 1 2

3 4 3 4

X Y  

The first form of the REPEAT function creates a new matrix by repeating the values of matrix nrow times 
across the rows and ncol times across the columns. Repeating that matrix gives us the 4-by-4 matrix. Notice 
each 2-by-2 cell is the same X matrix.  

Likewise, we can repeat each element of the matrix using the alternative syntax. The second form of the 
REPEAT function returns a row vector with each value in matrix repeated the number of times specified in 
freq. 

Y = repeat (X, {2 2 3 3});

1 2
    1 1 2 2 3 3 3 4 4 4

3 4
X Y  

Here we are repeating the first element two times, the second element two times, the third and fourth 
element three times each, and that simply returns a row vector. 
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CONCAT Function 
If you are working with character data in IML and you need to concatenate vectors, you are going to use the 
CONCAT function using the following syntax: 

result = CONCAT(matrix1, matrix2,…); 

This function is helpful when you are creating column or row headers. Program 7.9 shows an example of using 
the CONCAT function. 

Program 7.9: CONCAT Function 
pre = j(1,3,"data");
post = char(1:3);
result = concat(pre,post);

In the first line of Program 7.9, we create a vector, pre, which is a 1-by-3 vector where every element is the 
word, data. Then we use the sequence 1 to 3, using the CHAR function to say it is character data. Finally, we 
concatenate these two character vectors, pre and post. The result is the following vector, which can be used a 
column or row header: 

 result = data 1 data 2 data 3   

Matrix Inquiry  
Matrix inquiry functions are extremely useful when you are doing conditional processing. We will look at five 
matrix inquiry functions: ANY(), ALL(), ISEMPTY(), SAMPLE(), and UNIQUE(). Let’s look at how the first three 
functions work using the 2 by 2 matrix X.  

1 2
3 4

X  

ANY Function 
The ANY function says, "Is any element in X greater than 3?" using the following syntax: 

A = any(X>3); A=1

Because it’s true that there is an element in matrix X that is greater than 3, it returns the binary result 1.  

ALL Function 
Are all elements of the matrix X greater than 3?  

B = all(X>3); B=0

No, all elements of matrix X are not greater than 3, so it returns the element 0.  

ISEMPTY Function 
The ISEMPTY function checks to see whether a matrix is empty, that is, if it has no rows or columns.  

c = isempty(X); C=0

Of course, we have already made X, so it's not empty. Therefore, it returns a value of 0.  
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SAMPLE and UNIQUE Functions 
The SAMPLE and UNIQUE functions are identical to R. They use the following syntax: 

result= SAMPLE(matrix, n, <method>,<prob>);

result= UNIQUE(matrix); 

The SAMPLE function generates a random sample of the elements of the matrix. The SAMPLE function 
method can be “REPLACE”, “NOREPLACE”, or “WOR”. The method of “WOR” specifies a simple random 
sampling without replacement. After the elements are randomly selected, their order is randomly permuted. 
The prob argument is a vector with the same number of elements as the matrix. The vector specifies the 
sampling probability for the elements of the matrix. The SAMPLE function scales the elements of prob so that 
they do not need to sum to 1. 

The UNIQUE function returns a row vector with the sorted set of all elements in the matrix without duplicates. 
The matrix can be either numeric or character. 

The COUNTUNIQUE function returns the number of unique values in a matrix, or the length of the returned 
matrix from the UNIQUE function. 

Linear Algebra Modules 
Table 7.7 shows the general form of some useful linear algebra modules in SAS. There are many more 
modules available on the documentation page. 

Table 7.7: Linear Algebra Modules 

INV(X) Computes the inverse of a square nonsingular matrix. 

SOLVE(A,B) Solves a system of linear equations. 

ROOT(X) Performs the Cholesky decomposition of a symmetric positive definite 
matrix. 

GINV(X) Computes the Moore-Penrose generalized inverse of a matrix. 

SVD(X) Computes the singular value decomposition
of a matrix. 

 

You can use the INV for inverse and SOLVE to solve a linear system of equations the same way as in R. For 
example, you can just replace the inverse of x transpose x with the INV function, as opposed to doing the 
singular value decomposition if you wanted.  

The SAS documentation lists all the IML functions and subroutines. Another great resource is the SAS/IML blog 
at blogs.sas.com/content/iml. Finally, if you are not too comfortable with IML or simply matrix language 
operations in general, another helpful resource is the book Statistical Programming with SAS/IML® Software 
by Rick Wicklin. 

Create a Module 
SAS is not going to have all the built-in modules that you're going to want to use, so now you’ll learn how to 
create your own modules to implement analyses from a journal article or implement a proprietary algorithm 
developed at your company. Creating a module can assist in creating any type of IML script. 
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A module always begins with the START statement and ends with the FINISH statement. The START statement 
instructs IML to enter a module-collect mode. In this mode, IML gathers the statements of a module rather 
than executing them immediately. The FINISH statement signals the end of a module, as shown in the 
following syntax: 

START name <(argument1, argument2,…)>
<GLOBAL(argument1, argument2,…)>;
statements;
<RETURN(matrix);>

FINISH;

Name is the user-defined module name. Arguments are input or output matrices (or both) that are used or 
created by the module. 

Create a Function Module 
Let's first create a SAS function module. Remember, function modules return only a single matrix. They 
require the RETURN statement and are executed using an ASSIGNMENT statement. Program 7.10 is an 
example of a function module. 

Program 7.10: Function Module 
start add(a,b);
    c = a + b;

return(c);
finish;

x = {1 2, 3 4};
y = {5 6, 7 8};
z = add(x,y);

In Program 7.10, we start with the START statement and create a new function called ADD. We have two 
arguments, a and b. Inside the module creation, we create a new variable, c, which is equal to a plus b, and 
because this is a function, we have to use the RETURN statement, so we are returning c, and then finishing 
with the FINISH statement. 

Recall that in R, all matrices outside of the function are global but are also pulled into the local symbol table. 
For example, in R as shown in Figure 7.3, we have a function called ADD with one argument, a, and you will 
notice we are adding a to the variable y. This was created outside the function, but R automatically pulls it 
into the function and uses it.  

Figure 7.3: R Script 

 

To do the same thing in SAS, we just have to use the GLOBAL option in the START statement. The GLOBAL 
clause is used to specify variables that are used in the module but not specified as inputs. In Program 7.11, we 
have two matrices in IML, x and y, which are both 2 by 2. We create a new matrix z, set that equal to the new 
ADD function, and specify the arguments x and y. Then we have access to use the z matrix. 

Program 7.11: GLOBAL Option 
x = {1 2, 3 4};
y = {5 6, 7 8};
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start add(a) global(y);
    c = a + y;
    return(c);
finish;

z = add(x);

In Program 7.10, we are creating the ADD function, but only one argument, a. We are pulling y into the local 
symbol table, and have c equal to a plus y, returning that new variable c. 

Create a Subroutine Module 
Subroutine modules are used to output multiple matrices. This is similar to returning a list in R. The symbols X, 
Y, A, and B are local symbols, meaning that they are not recognized outside of the user-defined module. As a 
result, you can specify any symbol as the output matrices in the CALL statement.  

If you create a module without any arguments, all the matrices defined outside the creation of the module are 
pulled into the local symbol table. In Program 7.12, we create x and y. We have module ADD with no 
arguments, and are adding x plus y, which was defined outside the module c. Notice that this is the first 
instance of a subroutine, so we are executing it with a CALL statement, and don't have the RETURN 
statement. 

Program 7.12: Subroutine Module 
x = {1 2, 3 4};
y = {5 6, 7 8};

start add;
    c = x + y;
finish;

call add;

Recall that subroutine modules do not return a matrix. They create matrices—a very subtle distinction, but 
important for the programming. When you are creating a subroutine, you do not use the RETURN statement, 
nor do you use an ASSIGNMENT statement to call it. You use the CALL or the RUN statement. 

Program 7.13 shows an earlier subroutine that we covered, the EIGEN subroutine. We have a 2-by-2 matrix 
and are using the EIGEN subroutine in the CALL statement. We are passing it one argument, x, and creating 
two matrices, evals and evecs, which represent the eigenvalue decomposition. Then we will have access to 
actually use them. 

Program 7.13: Eigen Subroutine 
x = {1 2,3 4};
call eigen(evals,evecs,x);
print evals evecs;

Remember that if you want more than one matrix, you can return only one in a function, but you can create 
several in a subroutine. In Program 7.14, we will create the subroutine called ADDSUB. The output matrices 
are on the left of the arguments, x and y, and then the input matrices are on the right, a and b. It's completely 
fine to mismatch these, but it is the syntax used on the online doc page, so you might want to use the same 
syntax to avoid any confusion. 

Program 7.14: ADDSUB Subroutine 
start addsub(x,y,a,b);
    x = a + b;
    y = a - b;
finish;
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matOne = {1 2, 3 4};
matTwo = {5 6, 7 8};

call addsub(add,sub,matOne,matTwo);

Notice that the output matrices have to be the same exact name as the matrices inside the module, so x 
corresponds to x and y corresponds to y. After you call the subroutine, then you can change the created 
matrices' names. We are creating ADD and SUB and passing in the arguments matOne and matTwo, which are 
both 2-by-2 matrices. 

Storage Techniques 
Just like we save SAS data sets on disk, we can also save modules and matrices on disk for later retrieval. We 
can store and reload IML modules and matrices, save work for a later session, and conserve memory by saving 
large intermediate results for later use. 

SAS/IML storage catalogs are specially structured SAS files that are located in a SAS library. A SAS/IML catalog 
contains entries that are either matrices or modules. Like other SAS files, SAS/IML catalogs have two-level 
names in the form libref.catalog. The first-level name, libref, is a name assigned to the SAS library to which the 
catalog belongs. The second-level name, catalog, is the name of the catalog file. 

When you store a matrix, IML automatically stores the matrix name, its type, its dimension, and its current 
values. Modules are stored in the form of their compiled code. After modules are loaded, they do not need to 
be parsed again, making their use very efficient. 

The default libref is initially work, and the default catalog is imlstor. Thus, the default storage catalog is called 
work.imlstor. You can change the storage catalog (or both the library reference and catalog) with the RESET 
STORAGE command. You can list all modules and matrices in the current storage catalog using the SHOW 
STORAGE command. 

To create a new catalog to save modules or matrices, use the RESET STORAGE statement. Set that statement 
equal to a library (work or another library), followed by a period and then the catalog name using the 
following syntax: 

RESET STORAGE = <libref.>catalog;

This statement saves everything in a catalog as specially structured SAS files, located in your SAS library. 

You can also use the RESET STORAGE statement to tell SAS what existing catalog you are pointing to. After you 
create a catalog and you want to load a matrix back into IML, run the same RESET STORAGE statement. The 
name RESET is a bit unfortunate in that regard because it’s not actually resetting anything in that instance. 

If you want to see everything in your catalog, you can just run the SHOW STORAGE statement on its own line 
as follows: 

SHOW STORAGE;

Catalog Management Statements 
In addition to the RESET STORAGE and SHOW STORAGE catalog managements, Table 7.8 shows three 
additional keywords that you should know—LOAD, REMOVE, and STORE.  

Table 7.8: Catalog Management Keywords 

Keyword Description 

LOAD recalls entries back into the IML workspace. 
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Keyword Description 

REMOVE deletes entries from the catalog. 

STORE 
places IML modules, matrices, or both into catalog 
storage 

 

For example, if you are working with the STORE keyword, you can say STORE and then list your matrices. You 
can also say STORE, specify the keyword MODULE, set that equal to in parentheses a list of modules, or you 
can do both. You can say STORE MODULE equal to, list the modules, and then after, specify the matrices. 

Notice the following:  

A statement with no operands acts on all modules and matrices.  

The special operand _ALL_ can be used to specify all modules, all matrices, or all modules and 
matrices.  

If only one module is specified, then the parentheses around the module name are not required.  

Table 7.9 shows a few more specific examples of how to use statements. 

Table 7.9: STORE Statement Examples 

Statement Description 

reset storage=sp4r.cat1; Specifies the storage catalog to be in libref sp4r with the 
catalog name cat1 

store expense; Saves the matrix EXPENSE onto disk, in sp4r.cat1 

store module=impute; Saves the user-defined module IMPUTE in sp4r.cat1 

store module=_all_; Saves all modules in the current IML session in sp4r.cat1 

store module=(impute) x y; Saves the module IMPUTE and the matrices x and y in 
sp4r.cat1 

store; Saves all matrices and modules in the current IML session 
in sp4r.cat1. This can help you save your complete IML 
environment before exiting an IML session. Then you can 
use the LOAD statement in a subsequent session to 
restore the environment and resume your work. 

load; Can be used to restore matrices and modules from 
storage back into the IML active workspace 

remove; Can be used to remove modules or matrices that are no 
longer needed from the catalog. The REMOVE command 
has the same form as the STORE command and the LOAD 
command. 
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Tip: The keyword STORE can be replaced with either LOAD or REMOVE, and the syntax still holds. 

Remember that IML is in RAM. SAS data sets are on disk. You need to be a little bit more conscious of how 
much memory you are using in IML. Here are a few tips to reduce memory use for computers that have less 
than 8GB of RAM: 

Use the FREE statement to free matrices that are no longer needed.  

Use the STORE statement to store matrices on disk and then use the FREE statement to free their 
values. Restore the matrices later using the LOAD statement. 

Reformulate your approach to use smaller matrices (for example, by using VAR and WHERE clauses 
where applicable). 

The FREE statement frees matrix storage spaces to make room for more data (matrices) in the workspace. The 
FREE statement is used mostly in large applications or under tight memory constraints using the following 
syntax: 

FREE matrices;

FREE / <matrices>; 

The FREE statements are very easy to use. If you wanted to get rid of the matrices x and y, you would say the 
following: 

FREE X Y;

If you wanted to free all the matrices in your IML workspace, use the forward slash: 

Free /;

If you want to free everything except matrix a and b, just list those matrices after the forward slash like so: 

FREE / A B;

Notice that the STORE statement stores only matrices and modules. It does not free them from memory, so 
you can still reference them later in the same IML session. If you also issued the FREE statement afterward, 
the matrices are no longer in the memory, and you must use the LOAD statement to restore them. 

Call SAS Data Sets and Procedures 
In this section, you will learn how to create a matrix using a SAS data set, export a matrix to a SAS data set, or 
add data to an existing SAS data set by stacking it underneath. First, we have to talk about Open data sets. An 
Open data set is one that is ready for Read or Write access or both. You can use one of the following three 
statements to open a data set: 

USE enables Read access. That lets us open our SAS data set and read values into an IML matrix.  

EDIT enables Read and Write access to an existing data set.  

CREATE gives both Read and Write access. It simply creates a new data set. 

Regardless of which of these three statements you use, you want to use the CLOSE statement immediately 
following it. That will simply close the Open data set. If you do not close, you might not have access to either 
use it or open it with your mouse. If you forget to use the CLOSE statement, SAS closes the open data set 
when you exit SAS/IML with the QUIT statement. 
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If you open a data set with the USE statement, you can still open the data set manually to view the table. 
However, opening a data set with the EDIT statement does not permit you to open and view the data table 
manually. 

Create a Matrix Using a SAS Data Set 
To create a matrix using a SAS data set, we will use the USE, READ, and CLOSE statements. Program 7.15 uses 
a data set called CLASS. We read in the data with the READ statement and close the Open data set with the 
CLOSE statement. 

Program 7.15: Create a Matrix using Class Data Set 
use class;
read all var {height weight}
    where (sex='M') into imlClass;
close class;

Let’s talk more about the READ statement. This is where all the action happens. There are lots of different 
options, as you can see in the following syntax: 

READ <range> <VAR operand> <WHERE(expression)> 
<INTO name <[ROWNAME=row-name COLNAME=col-name]>>;

In Program 7.15, we want to read in a specified range, read in all observations, and only read in the variables 
with the VAR option. We give it a character vector and read in only the variables height and weight from that 
CLASS data set. Then we use a WHERE option to read in observations conditionally where sex is equal to M. 
Finally, we use the keyword INTO to throw all of that data into a new matrix called IMLClass. You can also use 
ROWNAME and COLNAME options to create new ROWNAME and COLNAMES to be printed using the PRINT 
statement in IML. 

Save a Matrix as a SAS Data Set 
If you have a matrix that you want to save as a SAS data set, we will use the CREATE statement to do that. If 
you want to add data to an existing SAS data set, we will use the EDIT statement.  

CREATE Statement  
There are two forms of the CREATE statement, depending on the data you are writing to a SAS data set. The 
first form uses the following syntax:  

CREATE SAS-data-set <VAR {operand}>; 

We run the CREATE statement and specify the new SAS data set we are creating. And if we are writing vectors 
to the new SAS data set, use the VAR option and specify the names of the vectors as a row vector. The good 
thing about this option is that the names of the vectors will be used as the SAS data set variable names. If the 
VAR option is not used, a variable is created for every SAS/IML matrix that is in scope,and the matrix names 
are used as variable names in the new data set. 

Each matrix used to create the data set corresponds to a single variable in the data set. If a matrix with 
multiple rows and multiple columns is used as a data set variable, its contents are written to the data set in 
row-major order. 

The second form of the CREATE statement appends a matrix to a SAS data set, using the following syntax: 

CREATE SAS-data-set FROM matrix-name
              <[ROWNAME=row-name
                 COLNAME=column-name]>;

When the FROM keyword is used in the CREATE statement, each column in the source matrix is treated as a 
distinct variable in the newly created data set. As a best practice, you should use the COLNAME option. That 
will let you set the SAS data set variable names directly in the CREATE statement. This way, you don't have to 
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use a DATA step to change the names. Why? Because if you append a matrix to a data set, the default names 
will be col1, col2, col3, and so on.  

APPEND Statement 
The CREATE statement opens a data set only for input or output. You need to use the APPEND statement to 
write to the data set. 

There are three different forms of the APPEND statement, but they depend on the CREATE statement that 
you are using. Let's look at the syntax of the three different forms below: 

APPEND; 

APPEND VAR matrix-list;

APPEND FROM append_matrix <[ROWNAME=row-name]>; 

To create a SAS data set using an IML matrix, use the statements CREATE, APPEND, and CLOSE. Here is an 
example of creating a SAS data set using the first form of the APPEND Statement: 

create data1 var{name age};
append; 
close data1;

In the example above, we are creating a new data set called data1, and writing two vectors to that data set 
with a VAR option, name and age. Then we have to explicitly tell SAS to append that data with the APPEND 
statement, and finally, close the open data set. 

The VAR option can be used in either the CREATE statement or the APPEND statement but not both. The VAR 
option specifies which vectors to pass to a SAS data set. The VAR option is not used to pass a matrix to a SAS 
data set. Here is an example of the APPEND statement using the VAR option: 

create data2;
append var{name age};
close data2;

The only difference from the previous example is that we have brought the VAR option down into the APPEND 
statement.  

In the third example, we are creating a new data set called data3 from a matrix called matrix3. To change the 
SAS data set variable names right in the CREATE statement, use the COLNAME option as shown below: 

create data3 from matrix3[colname={week1, week2, week3, week4}];
append from matrix3;
close data3;

Set the COLNAME option equal to a vector of the variable names week1 through week4. Use the APPEND 
FROM statement to append a matrix and list the same matrix from the CREATE statement. Again, close the 
open data set. 

EDIT Statement 
If a data set already exists, you can open the data set with the EDIT statement, add data, and then close the 
data set as shown in the following example: 

edit data2;
append from matrix4;
close data2;

In the example, we are editing the SAS data set, data2, and using the APPEND FROM statement to stack the 
matrix4 matrix underneath the existing SAS data set. The important thing to remember is that the matrix has 
to have the same number of columns as the existing SAS data set. 
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Call SAS Procedures 
Now that we know how to put matrices into a SAS data set, how do we run procedures on those SAS data sets 
without exiting IML? Remember, once we exit IML, everything in that workspace that is not saved is deleted. 

Here are a few benefits of calling SAS procedures directly from IML: 

You can call SAS procedures without exiting IML. 

SAS procedures can be used within IML modules. 

Matrix values can be used as parameters for SAS procedures. 

You can execute SAS procedures conditionally or within loops. 

To call SAS procedures from IML, we will use the SUBMIT and ENDSUBMIT statements. In the SUBMIT 
statement, we can pass it parameters, specifically, matrices that are in IML. And then we can refer to those 
matrices as arguments with the following syntax: 

SUBMIT <parameters> / <options>;
statements;
ENDSUBMIT; 

The statements between the SUBMIT and ENDSUBMIT statements are referred to as a SUBMIT block. The 
parameters value specifies one or more option matrices whose values are substituted into language 
statements in the SUBMIT block. SUBMIT blocks can contain the following: 

SAS procedures 

DATA steps 

ODS commands 

Other SAS statements 

A SUBMIT block executes only after the ENDSUBMIT; line is run. 

Statistical Graphics in SAS/IML 
In R, when we generate data, we can plot it with a PLOT function. In SAS/IML, we cannot directly plot data. 
We have to export that matrix to a SAS data set and then run the SGPLOT procedure to create a graphic. 

SAS/IML provides subroutines that enable you to create statistical graphics. The following subroutines use the 
SUBMIT and ENDBUSMIT statements to call PROC SGPLOT: 

BAR call 

BOX call 

HISTOGRAM call 

SERIES call 

HEATMAPCONT call 

HEATMAPDISC call 

This is going to create a new SAS data set, and then pass that data set to the SGPLOT procedure. All you have 
to do is use the single subroutine. Go to the following web page to see an overview of statistical graphics in 
SAS/IML: 
http://support.sas.com/documentation/cdl/en/imlug/68150/HTML/default/viewer.htm#imlug_graphics_sect
001.htm. 

Let’s look at an example using the SCATTER subroutine. Imagine we have read the Cars data set into IML and 
we want to quickly create a scatter plot directly in IML. We will use the SCATTER subroutine s shown in 
Program 7.16.  
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Program 7.16: SCATTER Subroutine 
title "Scatter Plot with Default Properties";
call Scatter(MPG_City, MPG_Highway)
label={"MPG_City" "MPG_Highway"};

Output 7.16: Results of Program 7.16 

In Program 7.16, we assign MPG_City as the x-axis variable and MPG_Highway as the y-axis variable. Notice 
that we are also passing the subroutine the label and title option. You can pass the subroutine whatever 
options that you would use in the SGPLOT procedure. It creates a SAS data set behind the scenes and then 
uses SGPLOT to create the graphic shown in Output 7.16. You can use whatever SGPLOT options you want 
directly in the IML subroutine, all of which can be found in the documentation. 

Simulations 
In this section, we want to use Monte Carlo Simulation and SAS/IML to do the following—obtain an 
approximate solution to a problem or evaluate statistic methods. By the end of this section, you should be 
able to create your own function or subroutine and then use it inside a simulation in some type of loop and 
save the data for each iteration then analyze all the data you have saved. 

Conditional Processing Syntax 

IF, ELSE IF, and ELSE Statements 
The good thing about the IML simulations is that we already have all the syntax requirements. Recall that we 
can use IF, ELSE IF, and ELSE statements directly in IML using the following syntax: 

IF expression THEN statement;
<ELSE IF expression THEN statement;>
<ELSE statement;> 

In Program 7.16, we use conditional processing statements in IML that are identical to the statements used in 
a DATA step. As in a DATA step, the ELSE IF and ELSE statements are completely optional for conditional 
processing. In addition, the user can specify multiple ELSE IF statements. 

Program 7.17: Conditional Processing 
X = {1 2, 3 4};
miss = loc(x=.);
flag = isempty(miss);

if flag=0 then print x;
else print "empty matrix!";
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In Program 7.17, we are saying that if the matrix flag is equal to zero, then print x. Otherwise, the catchall 
ELSE statement prints the empty matrix. 

DO Loops 
The DO loop will be our main tool for doing simulation. To execute multiple statements conditionally, use a 
DO statement with the following syntax: 

DO;
statements;

END; 

The DO statement specifies that the statements following the DO statement are executed as a group until a 
matching END statement appears. DO statements often appear with clauses invoking iterative execution or in 
IF-THEN/ELSE statements so that the group of statements is executed only when the IF condition is satisfied. 

The DO loop in IML is identical to the FOR loop in R. In Program 7.18, DO i equals 1 to 10 with the specified 
increment of 1. Then we print i every iteration, and use the END statement to end the DO group.  

Program 7.18: DO Loop 
do i=1 to 10 by 1;
print i;
end;

Remember when we talked about the DO loop in Chapter 4, we said use an OUTPUT statement to write all the 
data from those iterations to a data set? In IML and in a simulation, we are not going to use the OUTPUT 
statement. You will have to tell SAS explicitly what data from the iteration you want to save, just like in R. 

SUBMIT Blocks with Loops and Conditions 
SUBMIT blocks can be combined with IF statements to execute SAS procedures and DATA steps conditionally. 
SUBMIT blocks can be combined with loops to execute SAS procedures and DATA steps repeatedly. 

Let’s look at an example in Program 7.19. 

Program 7.19: SUBMIT Block 
proc iml;
    do i = 1 to 1000;
        if i <= 500 then do;
            submit block;
        end;
        else do;
            submit block;
        end;
    end;
quit;

In Program 7.19, do i equals 1 to 1,000. If i is less than or equal to 500, then do the following— execute 
multiple statements. Otherwise, when the iteration value is 501 or greater, do something else. So we simply 
combine all these ideas for a simulation. 

DO WHILE Loops 
A DO WHILE statement duplicates the while() function in R using the following syntax:  

DO WHILE(expression);
statements;

END; 
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In Program 7.20, we pass the DO WHILE statement an expression. While x is less than 5, we want to print x.  
Don't forget to increment your expression-- x is equal to x plus 1. This way, it actually turns off eventually. 
Don't forget your END statement. 

Program 7.20: DO WHILE Loop 
x=1;
do while(x<5);
    print x;
    x = x+1;
end;

Example: Monty Hall Problem 
Let's do a fun simulation with an example that you are probably familiar with: the Monty Hall problem. You 
are a guest on a game show, and the host presents you with three doors. One door hides a car; the other two 
doors hide goats. 

The host asks you to pick a door. You pick door number 1. The host, who knows what is behind each door, 
opens one of the two doors that you did not pick and always reveals a goat. The host will never show you the 
car. Then, the host gives you the option of staying with your initial choice or switching to the remaining closed 
door. What should you do, stay or switch? 

If we were to solve this problem analytically, we would find that switching yields a 2/3 chance of winning the 
car and staying with the initial choice yields a 1/3 chance of winning a car. But maybe we don't want to solve 
the analytical method, or maybe we are working on a much harder problem, so let's do a simulation to find an 
empirical result for this problem. 

Tip: Make your simulations more efficient by removing DO loops when possible. 

1. Let the number of simulations be 10,000 and set the random number seed to 802.  

proc iml; 
    numberIterations=10000; 
     call randseed(802); 

2. Start the simulation loop, which runs the number of times equal to numberIterations. The first 
step in simulating the Monty Hall problem is to choose which of the three doors hides the car. 
Use the SAMPLE function to draw a random door, {1 2 3}.  

*Begin simulation; 
do iteration=1 to numberIterations; 
    doors = {1 2 3}; 

  carDoor=sample(doors,1); 

3. For the sake of simplicity, always choose door 1. Monty Hall never opens the chosen door and 
never opens the door hiding the car. If the chosen door (door 1) hides the car, Monty randomly 
chooses between doors 2 and 3 (represented by a draw from a Bernoulli distribution with 
probability .5). If the car is hidden behind door 2, Monty Hall must open door 3. (He cannot open 
the door hiding the car or the door that you chose). If the car is hidden behind door 3, Monty 
Hall must open door 2.  

*Pick door for Monty Hall to open; 
if carDoor=1 then openDoor=randfun(1,"Bernoulli",.5) + 2; 
else if carDoor=2 then openDoor=3; 
else if carDoor=3 then openDoor=2; 
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4. Using a switching strategy requires switching to the unopened door that was not previously 
chosen. If Monty Hall opened door 2, switch to door 3. If Monty Hall opened door 3, switch to 
door 2.  

*Determine door for switching strategy; 
if openDoor=2 then switchDoor=3; 
else if openDoor=3 then switchDoor=2; 

5. If the car is behind door number 1, then the staying strategy wins because door number 1 was 
initially chosen. If the car is behind the door that would be chosen based on the switching 
strategy, then the switching strategy wins.  

*Determine which strategy wins; 
if carDoor=1 then stayWin=1; 
else stayWin=0; 
if carDoor=switchDoor then switchWin=1; 
else switchWin=0; 
/*switchWin=carDoor=switchDoor;*/

6. Append the results for the current iteration to a matrix called results and end the simulation 
loop.  

*Collect results to a single matrix; 
results=results // (iteration || carDoor || openDoor || stayWin 

|| switchWin); 
end; 

7. Print the first 10 rows of the results matrix to show the outcome for every iteration. Calculate 
and print the percentage of iterations for which each strategy won.  

reset noname; 
resultsSubset = results[1:10,]; 
print resultsSubset [colname={iteration carDoor openDoor 

stayWin switchWin}]; 
percentageWins=results[:,{4 5}]; 
print percentageWins [colname={stay switch}
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IML Simulations 
There are three simulation methods in IML. 

1. The first method is to simulate entirely in IML and ignore SAS procedures. Just code everything 
yourself. 

2. The second method is to iteratively call SAS procedures. This is most similar to using R functions in 
your simulation, but it is the most inefficient method in SAS. 

3. Finally, you can use a SAS procedure and a BY statement to avoid any type of looping. That tells SAS 
to analyze each data set independently. First output all simulated data to a single SAS data set with a 
variable indicating the iteration number. Analyze the data using a SAS procedure (for example, PROC 
GLM) with a BY statement, and output the results to a SAS data set. Separate results are output for 
each iteration. 

Analyzing each simulated data set one at a time is very inefficient. If you have to use a SAS procedure, the 
third method is the most efficient method.  

For example, if each SAS data set is 20 observations, and you are doing 1,000 simulations, you want to output 
all 20,000 observations, and an index variable specifying which observation comes from which data set. The 
first 20 observations should have a variable indicating the number one. The second 20 should have a variable 
indicating the number two, and so on. Then, you pass all this data to a single procedure like PROC GLM and 
pass to the BY statement the index variable iteration number. When you do that, SAS is going to analyze each 
one of those data sets independently. And SAS will output the results for each data set to a single SAS data 
set. So separate results are output for each iteration. 
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Exercises 

Multiple Choice 
1. Suppose you want to print your salary for the week. Assume that you worked 40 hours and earn 

$9.35 per hour. Which of the following show the correct syntax for printing your salary? Keep in mind 
that brackets are not required to assign a scalar. Select all that apply. 
a. Y=40*9.35; Print Y; 
b. 40*9.35; 
c. Print (40*9.35); 
d. Print 40*9.35; 

2. Let X be an m-by-n matrix. How would you use a SAS reduction operator to reproduce the 
rowMeans() and min() functions in R? 
a. X[,:] and X[><,] 
b. X[:,] and X(>:<,>:<) 
c. X{,:} and X[><,><] 
d. X[,:] and X[><,><] 

3. The PROC IML code below prints the 0.75 quantile from matrix X. 

Q = call qntl(X,{0.75});
print Q;

a. True 
b. False 

4. Which of the following statements about SAS modules are true? Select all that apply. 
a. Modules are defined by START and FINISH keywords. 
b. Functions use the RETURN statement 
c. The RETURN statement can handle multiple arguments. 
d. Subroutines can be executed by the CALL statement. 

5. How do you recall the module rock and the matrix pony into a new SAS/IML session from the mycat 
catalog in the Work directory? 
a. RESET STORAGE; LOAD module=(rock) pony; 
b. RESET STORAGE=mycat; LOAD module=(rock) pony; 
c. STORAGE=mycat; LOAD module=(rock) pony; 
d. RESET STORAGE=mycat; LOAD rock pony; 

6. Which statements are true regarding importing SAS data sets and exporting IML matrices? Select all 
that apply. 
a. The statements USE, READ, and CLOSE are used to pass a SAS data set into IML. 
b. The statements CREATE, APPEND, and CLOSE are used to pass an IML matrix to a SAS data set. 
c. Names of IML vectors are passed to the SAS data set as variable names. 
d. The user must specify the column names when creating a SAS data set from an IML matrix. 

Short Answer 
1. Navigate to the SAS/IML documentation and peruse the statements, functions, and subroutines. 

Choose a few that look familiar to you and see what they do. Next, find the LOC function and see 
what it does. 
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Programming Exercises 
1. Practicing with Basic Operations 

In this exercise, you perform operations on the data used in the previous demonstration. Use the 
code below at the beginning of the exercise program. 
proc iml; 
items = {'Groceries','Utilities','Rent','Car Expenses', 
              'Fun Money','Personal Expenses'}; 
weeks = {'Week 1','Week 2','Week 3','Week 4'}; 
amounts = { 96 78 82 93, 
              61 77 62 68, 
             300 300 300 300, 
              25 27 98 18, 

55 34 16 53, 
             110 85 96 118}; 
weeklyIncome ={900 850 1050 950}; 
weeklyExpenses=amounts[+,];

a. Create a 1 x 4 matrix named proportionIncomeSpent whose elements are the proportion of 
each week’s income that went to expenses. Use the RESET statement to suppress the automatic 
printing of matrix names. Print the proportionIncomeSpent matrix with the values of weeks 
used as column labels and PERCENT7.2 used as a format.  

 PROC IML Output 

 
b. Create a 1 x 4 matrix named proportionIncomeSaved whose elements are equal to the 

proportion of each week’s income that did not go to expenses. That is, use an implicit loop to 
subtract the values of proportionIncomeSpent from one. Print the proportionIncomeSaved 
matrix with the values of weeks used as column labels and PERCENT7.2 used as a format. 

PROC IML Output 

 
c. Create a 6 x 4 matrix named proportionSpentPerItem whose elements are the proportion of 

each week’s income spent on each item, by week. That is, use an implicit loop to divide the 
amounts matrix by the weeklyIncome matrix. Print the proportionSpentPerItem matrix with the 
values of items used as row labels, the values of weeks used as column labels, and PERCENT7.2 
used as a format.  
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d. Create a matrix named weeklyExpenseChange with the same number of rows as amounts but 
with one less column than amounts (in other words, a 6 x 3 matrix). Fill it with missing numeric 
values. This should be done with a matrix literal. Fill each column of weeklyExpenseChange with 
each column of amounts minus the previous column of amounts. That is, column 1 of 
weeklyExpenseChange should equal column 2 of amounts minus column 1 of amounts, and so 
on. Print a title and print the matrix. Use columns 2 through 4 of weeks as column labels and use 
items as row labels.  

 

2. Generating a Multiple Regression Data Matrix and Computing Parameter Estimates 
This exercise extends the ideas from the previous demonstration. 

a. Generate data from a multiple regression model, 0 1 1 2 2i i i iy x x  , with 20 

samples where 0 3  , 1 2 , 2 1 , and (0, 5)i N  . Let 

1 (0, 20)ix Uniform  and 2 (10,30)ix Uniform . Use the seed 27606 to duplicate your 
results. Generate the random numbers using the RANDFUN function. Print the generated values. 
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b. Create the design matrix and compute ( )T TX X X Y  using the INV function. Print your 
results. 

 

c. Compute and print the estimates 
2

 and  where 
2

1

1

n

i i
i

y y

n
. Recall that SAS does 

not use the ^ operator to exponentiate matrix elements. 

 

3. Creating User-Defined Functions and Subroutines 

Standardized values are computed as 
( )

x x
std x

 where ( )
1

x x
std x

n
 . 

a. Create a function, STANDARDIZE, that takes a matrix as an input and returns the matrix with 
each column standardized. 

b. Create a 10 x 3 matrix of random numbers where the first column is 123, the second column is 
123, and the third column is 123. Use the seed 802 to duplicate your results. Print the matrix and 
then use the STANDARDIZE function to create and print the standardized matrix. 
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c. Alter the STANDARDIZE function and create the subroutine STANDSUB. Let the subroutine take a 
matrix as input and output the standardized matrix, as well as the column means and standard 
deviations.  

d. Generate the same data matrix and use the subroutine to create and print the three matrices.  

 

4. Using a SAS Data Set, Creating an IML Module, and Exporting Results to a New Data Table  
a. Print the govtDemand data set and notice that each continuous variable has missing values.  
b. Read the govtDemand data set into an IML matrix named govt.  
c. Create a function that takes a vector as input and imputes all missing values with the mean of 

the vector and returns the imputed vector.  
d. Impute columns 2 through 4 and create a new SAS data set named govtImputed, with the same 

names as govtDemand, which contains the imputed matrix. Because a matrix is being exported 
to a SAS data set, be sure to use the COLNAME= option in the CREATE statement.  

e. Finally, print the SAS data set and also run PROC CORR on the variables agric, manu, and labor.  
submit; 

proc print data=sp4r.newGovt;run; 
proc corr data=sp4r.newGovt; 

var agric manu labor; 
run; 

endsubmit; 
quit;
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5. Calling Statistical Graphics from SAS/IML  
a. Read the variables saleprice, overall_qual, gr_liv_area, garage_area, basement_area, 

deck_porch_area, and age_sold from the AmesHousing data set into an IML matrix named 
imlAmes.  

b. Create a correlation matrix from imlAmes named corrAmes and print it.  

 

c. Navigate to the SAS/IML documentation and review the HEATMAP subroutine. Create a heat 
map of the correlation matrix. Use the XVALUES= and YVALUES= options to set appropriate 
labels for the rows and columns of the plot. Also, provide the map with a title. Finally, change 
the color coding of the heat map to "Temperature".  

 

d. Go to the Work directory and open the _heatmap data set. SAS/IML exported the data set 
required to be used by the SGPLOT procedure to create the heat map.  
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6. Simulating the Birthday Problem  
a. Use simulation to calculate the empirical probability of two people sharing the same birthdate in 

a group of 23 people. Use 1000 iterations. Assume that none of the people is born on Leap Day 
and every birthdate is equally likely. 

b. Invoke PROC IML, set the random seed, and begin a DO loop with 1000 simulations. Create a 
vector named pair to hold the results of each iteration.  

c. Draw 23 birthdates using the SAMPLE function. (Dates can be represented as the numbers 1 
through 365.)  

d. Check whether any two birthdates are the same. (Hint: Use the UNIQUE function.)  
e. If at least two birthdates are the same, set the variable pair to 1. Otherwise, set pair to zero.  
f. Calculate the proportion of iterations in which a pair was found.  

     
g. How can you avoid using the DO loop for this simulation?  
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Solutions 

Multiple Choice 
1. a and c. There are two options for printing in SAS. First, you can assign a value to a matrix and then 

print the matrix. Second, if you do not want to create a new variable, you can use parentheses in the 
PRINT statement to print the specified value. 

2. d. To find the mean of each row use the : operator in the second argument of the braces. To find the 
minimum of all elements of a matrix, you can use the >< symbol in each argument of the braces or 
simply use one >< symbol and ignore the comma. 

3. b. A SAS/IML subroutine cannot be used in an assignment statement. 
4. a, b, and d. To create a user-defined module, use the START and FINISH statement. Functions require 

the RETURN statement and can only return a single matrix. Subroutines on the other hand do not use 
the RETURN statement and can create multiple matrices. Also, functions require an assignment 
statement and subroutines cannot be used with an assignment statement. They are executed with 
either the CALL or RUN statements. 

5. b. To specify the catalog that we want to create or call from, use the RESET STORAGE statement. To 
load a module and matrix back into your IML session use the LOAD statement and set the keyword 
MODULE equal to the desired modules in parentheses followed by your matrices. 

6. a, b, and c. For answers A and B remember to use all three statements to do each task. Names of IML 
vectors are passed to the SAS data set as variable names. On the other hand, the user must set the 
names as an option in the CREATE statement to specify the data set variable names when passing a 
matrix to a data set. Otherwise, the SAS data set names default to COL1, COL2, COL3, and so on. 

Short Answer 
1. In general, the LOC function returns a row vector containing indices of the elements in a matrix that 

satisfy a criterion. If an expression is not specified, the LOC function finds elements that are nonzero 
and nonmissing. 

Programming Exercises 
1. Practicing with Basic Operations 

In this exercise, you perform operations on the data used in the previous demonstration. Use the 
code below at the beginning of the exercise program. 
proc iml; 
items = {'Groceries','Utilities','Rent','Car Expenses', 
              'Fun Money','Personal Expenses'}; 
weeks = {'Week 1','Week 2','Week 3','Week 4'}; 
amounts = { 96 78 82 93, 
              61 77 62 68, 
             300 300 300 300, 
              25 27 98 18, 
              55 34 16 53, 
             110 85 96 118}; 
weeklyIncome ={900 850 1050 950}; 
weeklyExpenses=amounts[+,];

a. Create a 1 x 4 matrix named proportionIncomeSpent whose elements are the proportion of 
each week’s income that went to expenses. Use the RESET statement to suppress the automatic 
printing of matrix names. Print the proportionIncomeSpent matrix with the values of weeks 
used as column labels and PERCENT7.2 used as a format.  
proportionIncomeSpent=weeklyExpenses / weeklyIncome; 
reset noname; 
print "Proportion of income spent each week", 
    proportionIncomeSpent[colname=weeks format=percent7.2];
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 PROC IML Output 

 
b. Create a 1 x 4 matrix named proportionIncomeSaved whose elements are equal to the 

proportion of each week’s income that did not go to expenses. That is, use an implicit loop to 
subtract the values of proportionIncomeSpent from one. Print the proportionIncomeSaved 
matrix with the values of weeks used as column labels and PERCENT7.2 used as a format. 
proportionIncomeSaved=1 - proportionIncomeSpent; 
print "Proportion of income saved each week", 

proportionIncomeSaved[colname=weeks format=percent7.2];

PROC IML Output 

 
c. Create a 6 x 4 matrix named proportionSpentPerItem whose elements are the proportion of 

each week’s income spent on each item, by week. That is, use an implicit loop to divide the 
amounts matrix by the weeklyIncome matrix. Print the proportionSpentPerItem matrix with the 
values of items used as row labels, the values of weeks used as column labels, and PERCENT7.2 
used as a format.  
proportionSpentPerItem=amounts/weeklyIncome; 
print "Percentage of income spent on each item, by week", 

proportionSpentPerItem [rowname=items 
colname=weeks format=percent7.2];

 
d. Create a matrix named weeklyExpenseChange with the same number of rows as amounts but 

with one less column than amounts (in other words, a 6 x 3 matrix). Fill it with missing numeric 
values. This should be done with a matrix literal. Fill each column of weeklyExpenseChange with 
each column of amounts minus the previous column of amounts. That is, column 1 of 
weeklyExpenseChange should equal column 2 of amounts minus column 1 of amounts, and so 
on. Print a title and print the matrix. Use columns 2 through 4 of weeks as column labels and use 
items as row labels.  
weeklyExpenseChange={. . ., 

. . ., 
               . . ., 

. . ., 

. . ., 

. . .}; 
weeklyExpenseChange [,1]=amounts[,2] - amounts[,1]; 
weeklyExpenseChange [,2]=amounts[,3] - amounts[,2]; 
weeklyExpenseChange [,3]=amounts[,4] - amounts[,3]; 
print "Change in spending from previous week, by item", 

weeklyExpenseChange [rowname=items 
colname={"Week 2","Week 3", "Week 4"}]; 

quit;
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2. Generating a Multiple Regression Data Matrix and Computing Parameter Estimates 
This exercise extends the ideas from the previous demonstration. 

a. Generate data from a multiple regression model, 0 1 1 2 2i i i iy x x  , with 20 

samples where 0 3  , 1 2 , 2 1 , and (0, 5)i N  . Let 

1 (0, 20)ix Uniform  and 2 (10,30)ix Uniform . Use the seed 27606 to duplicate your 
results. Generate the random numbers using the RANDFUN function. Print the generated values. 
proc iml; 
    call randseed(27606);
    n = 20; 
    beta0 = 3; 
    beta1 = 2; 
    beta2 = -1; 
    xvals1 = randfun(n,"Uniform"); 
    xvals1 = xvals1*20; 
    xvals2 = randfun(n,"Uniform"); 
    xvals2 = (xvals2*20) + 10; 
    error = randfun(n,"Normal",0,5); 
    y = beta0 + beta1*xvals1 + beta2*xvals2 + error; 
    print y beta0 beta1 beta2 xvals1 xvals2 error;

 

b. Create the design matrix and compute ( )T TX X X Y  using the INV function. Print your 
results. 
x = j(n,1,1)||xvals1||xvals2; 
betaHat = inv(x`*x)*(x`*y); 
print x, betaHat; 
*Alternative SAS Function; 
*betaHat = solve( (x`*x)*(x`*y) ); 
*print betaHat;
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c. Compute and print the estimates 
2

 and  where 
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. Recall that SAS does 

not use the ^ operator to exponentiate matrix elements. 
pred = x*betaHat; 
sse = sum( (y-pred)##2 ); 
sigma2Hat = sse / (n-1); 
sigmaHat = sqrt(sigma2Hat); 
print sigma2Hat sigmaHat; 

quit;

 

3. Creating User-Defined Functions and Subroutines 

Standardized values are computed as 
( )

x x
std x

 where ( )
1

x x
std x

n
 . 

a. Create a function, STANDARDIZE, that takes a matrix as an input and returns the matrix with 
each column standardized. 
proc iml; 

start standardize(x); 
n=nrow(x); 
mean=x[:,];            /* means for all columns */ 
xbar=repeat(mean,n,1); /* n rows of means */ 
x=x-xbar;              /* center x to mean zero */ 
stdv=std(x);    /* standard deviations for columns */ 
x=x/stdv;             /* scale to std dev 1 */ 
return(x); 

finish;

The mean of each column here is computed using the reduction operator [ : , ]. 
b. Create a 10 x 3 matrix of random numbers where the first column is 123, the second column is 

123, and the third column is 123. Use the seed 802 to duplicate your results. Print the matrix and 
then use the STANDARDIZE function to create and print the standardized matrix. 

n = 10; 
call randseed(802); 
mymat = randfun(n,"Normal",5,5)

||randfun(n,"Uniform",10,15)
||randfun(n,"Exponential",7); 
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    print mymat; 
    stand = standardize(mymat);
    print stand; 
quit;

 
c. Alter the STANDARDIZE function and create the subroutine STANDSUB. Let the subroutine take a 

matrix as input and output the standardized matrix, as well as the column means and standard 
deviations.  
proc iml;
    start standsub(stand,mean,stdv,x); 
        n=nrow(x); 
        mean=x[:,];            /* means for all columns */ 
        xbar=repeat(mean,n,1); /* n rows of means */ 
        x=x-xbar;              /* center x to mean zero */ 
        stdv=std(x);    /* standard deviations for columns */ 
       stand=x/stdv;           /* scale to std dev 1 */ 
     finish;

d. Generate the same data matrix and use the subroutine to create and print the three matrices.  
    n = 10; 
    call randseed(802); 
     mymat = randfun(n,"Normal",5,5) 
        ||randfun(n,"Uniform",10,15)
        ||randfun(n,"Exponential",7); 
    call standsub(standardized,m,s,mymat); 
    print m, s, standardized; 
quit;
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4. Using a SAS Data Set, Creating an IML Module, and Exporting Results to a New Data Table  
a. Print the govtDemand data set and notice that each continuous variable has missing values.  

proc print data=sp4r.govtDemand; 
run;

 
b. Read the govtDemand data set into an IML matrix named govt.  

proc iml; 
use sp4r.govtDemand; 
read all into govt; 
close sp4r.govtDemand;

c. Create a function that takes a vector as input and imputes all missing values with the mean of 
the vector and returns the imputed vector.  
start impute(colvec); 

colvec[loc(colvec=.)] = mean(colvec); 
return(colvec); 

finish impute;

The LOC function is to find the index of all missing values in the vector. 
d. Impute columns 2 through 4 and create a new SAS data set named govtImputed, with the same 

names as govtDemand, which contains the imputed matrix. Because a matrix is being exported 
to a SAS data set, be sure to use the COLNAME= option in the CREATE statement.  
govtImputed = govt[,1]||impute(govt[,2]) 

||impute(govt[,3])||impute(govt[,4]); 
create sp4r.newGovt from govtImputed 

[colname={year, agric, manu, labor}];
append from govtImputed; 
close sp4r.newGovt;

e. Finally, print the SAS data set and also run PROC CORR on the variables agric, manu, and labor.  
submit; 

proc print data=sp4r.newGovt;run; 
proc corr data=sp4r.newGovt; 
    var agric manu labor; 

run; 
endsubmit; 

quit;
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5. Calling Statistical Graphics from SAS/IML  
a. Read the variables saleprice, overall_qual, gr_liv_area, garage_area, basement_area, 

deck_porch_area, and age_sold from the AmesHousing data set into an IML matrix named 
imlAmes.  
proc iml; 
    use sp4r.ameshousing; 
    read all var {saleprice overall_qual gr_liv_area
       garage_area basement_area deck_porch_area age_sold}

into imlAmes; 
    close sp4r.ameshousing;

b. Create a correlation matrix from imlAmes named corrAmes and print it.  
corrAmes = corr(imlAmes); 
print corrAmes;

 

c. Navigate to the SAS/IML documentation and review the HEATMAP subroutine. Create a heat 
map of the correlation matrix. Use the XVALUES= and YVALUES= options to set appropriate 
labels for the rows and columns of the plot. Also, provide the map with a title. Finally, change 
the color coding of the heat map to "Temperature".  
    varNames = {"Sale Price" "Overall Quality" 
         "Ground Living Area" "Garage Area" "Basement Area"
        "Deck Porch Area" "Age Sold (years)" }; 
    call heatmapcont(corrAmes) xvalues=varNames
         yvalues=varNames 
      colorramp="Temperature" title="Heatmap for Ames Data"; 
quit;
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d. Go to the Work directory and open the _heatmap data set. SAS/IML exported the data set 
required to be used by the SGPLOT procedure to create the heat map.  

6. Simulating the Birthday Problem  
Use simulation to calculate the empirical probability of two people sharing the same birthdate in a 
group of 23 people. Use 1000 iterations. Assume that none of the people is born on Leap Day and 
every birthdate is equally likely. 
a. Invoke PROC IML, set the random seed, and begin a DO loop with 1000 simulations. Create a 

vector named pair to hold the results of each iteration.  
proc iml; 

n=23; 
numberIterations=1000; 
call randseed(802); 
pair = j(numberIterations,1,.); 
do iteration=1 to numberIterations;

b. Draw 23 birthdates using the SAMPLE function. (Dates can be represented as the numbers 1 
through 365.)  
dates = 1:365; 
birthDates=sample(dates,n);

c. Check whether any two birthdates are the same. (Hint: Use the UNIQUE function.)  
uniqueDates=unique(birthDates);

d. If at least two birthdates are the same, set the variable pair to 1. Otherwise, set pair to zero.  
if ncol(uniqueDates) < n then pair[iteration]=1; 
else pair[iteration]=0; 

end;

e. Calculate the proportion of iterations in which a pair was found.  
proportion=pair[:]; 
print proportion; 

quit;

 
f. How can you avoid using the DO loop for this simulation?  

Simulate dates in a matrix with dimension (number of iterations) by (number of people). 
proc iml; 

n=23; 
numberIterations=1000; 
call randseed(23571113); 
prob=j(364,1,1/365); 
birthDates=j(numberIterations,n,.);
call randgen(birthDates,"Table",prob);

After you enter IML and set the random number seed, this version of the birthday problem 
simulation creates a vector of probabilities, prob, to be used as a parameter for the table 
distribution. The program then creates a 1000 x 23 matrix of missing values and assigns it to 
birthDates. The program then fills the birthDates matrix with values drawn from the table 
distribution with parameter prob. 

rowUnique=countunique(birthDates,"ROW"); 
proportion=(rowUnique < n)[+] / numberIterations; 
print proportion; 

quit;
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Specifying the “ROW” option for countunique tells the function to calculate the number of 
unique elements in each row of the argument matrix. Then rowUnique is assigned the number 
of unique birthdates for each row in birthDates. The syntax (rowUnique < n) [+] counts the 
number of rows that contain fewer than 23 unique birthdates. Dividing the number of unique 
birthdates by the number of iterations provides the proportion of samples containing at least 
two matching birthdates. 
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Introduction 
SAS views open-source software as a complementary resource, and SAS has been using open-source software 
for years. For example, it has used Perl, SQL, and others. R is just the newest open-source software, which 
happens to be able to create models as well, but you can assimilate open-source tools into your SAS script to 
enjoy the benefits. 

Working with R from SAS is incredibly easy. SAS provides a seamless interface between the two languages. 
You can write R code directly in the SAS code editor as if you were in R studio, send the code to R, run an 
analysis in R, and return the results. You can do all this with a click of a button. Because you know R and now 
you are comfortable working with the interactive matrix language, in this chapter you will learn about the four 
subroutines that you need to use to move your code and data back and forth between SAS and R. In this 
chapter, you will see that you can freely write R code within a SAS script, send it to the open-source software 
R, and retrieve the results.  

If there is a new package you really want to try in R, SAS gives you a very seamless interface to do that directly 
in SAS. You can compare methods, because of course, all algorithms are data dependent. And you can create 
a diverse set of plots. You can integrate open-source software into three different SAS environments. 

The easiest way to work with R is in the interactive matrix language. You can write open-source code directly 
in the SUBMITBLOCK that we saw in Chapter 7; we just have to give it the R option. A second method is to 
execute open-source code via a DATA Step in Base SAS. This can be challenging. It requires using Java as an 
intermediary tool, which means you pass your code to Java, and then Java is going to pass that code to R. 
Another alternative is to use system commands. Finally, if you are familiar with Enterprise Miner, you can 
execute open-source code via the Open Source Integration node. 
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Calling SAS from IML 

Readying Your Machine to Call R 
In order to work with R inside SAS, we need to enable R language statements. To see whether RLANG is 
enabled on your machine, you can run Program 8.1 and ask the OPTIONS procedure if the option= to RLANG is 
on. 

Program 8.1: RLANG  
proc options option=rlang;
run;

One of two results will be printed to the log. You will either get a NORLANG, meaning you do not have 
permission to call R from SAS, or you will get RLANG, meaning you do have permission to call R from SAS. 

How do you turn a NORLANG into an RLANG? The easiest way is just to right-click the SAS icon on your 
desktop. Notice in the Target field, as shown in Figure 8.1, it provides the location of your SAS configuration 
file. Generally, it is at this location: C:\ProgramFiles\SASHome\ 
SASFoundation\9.4\nls\en\sasv9.cfg". 

Figure 8.1: SAS Properties 

Navigate to the SASV9.CFG file and open it. When you are in the configuration file, add -RLANG at the bottom 
as shown in Figure 8.2. Save these changes. Make sure that SAS is not open because SAS calls the 
configuration file each time it starts. 
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Figure 8.2: Configuration File  

Once you have altered your configuration file and enabled R language statements, you can do the following: 

send IML matrices in SAS data sets to R 

submit R code in the IML script 

return R results from analyses as IML matrices or SAS data sets 

Tip: To run R with SAS, R must be installed on the same machine as SAS. Because SAS University Edition 
installs on a virtual machine where R cannot be installed, R cannot be used with SAS University Edition. 

Subroutines 
To work with R in SAS, there are four subroutines that you need to be familiar with: 

EXPORTDATASETTOR 

EXPORTMATRIXTOR 

IMPORTMATRIXFROMR 

MPORTDATASETFROMR 

Let’s look at each of these in more detail. 

Exporting SAS Data Sets 
The first subroutine is EXPORTDATASETTOR, and it does exactly what you would expect from its name. It 
exports your SAS data set to R as an R data frame using the following syntax: 

CALL EXPORTDATASETTOR(“SAS-data-set", “R-data-frame"); 

The first argument is the SAS data set. The second is the R data frame that you are going to refer to in code. 
The helpful thing about this subroutine is, it exports the SAS data set variables to the R data frame as column 
names. 
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Exporting IML Matrices 
Again, EXPORTMATRIXTOR, does exactly what you would expect given its name. It exports your IML matrix to 
an R matrix, and you can choose the name of your R matrix to refer to it in code. As shown in the following 
syntax:  

CALL EXPORTMATRIXTOR(IML-matrix, "R-matrix"); 

Submitting R Syntax 
To submit code to R, you are going to use a Submit block, and after the forward slash in the Submit statement, 
you are going to use the R option as shown in the following syntax: 

SUBMIT / R;
R statements

ENDSUBMIT; 

 Using this syntax tells SAS to submit this code directly to R. Otherwise, it tries to run it as if it were SAS code. 

Program 8.2 gives an example of exporting a matrix and submitting code to R. 

Program 8.2: Submit R Code 
imlMatrix = {0 1, 1 2, 3 5, 8 13};
call ExportMatrixToR(imlMatrix,"rmatrix");
submit / R;
    print(rmatrix)
endsubmit;

In Program 8.2, we are creating a four by two matrix, exporting that matrix to R, and giving it the name 
rmatrix. We are submitting only one line of code, just print rmatrix in the R console.  

All R command line output is automatically returned to SAS and displayed in the results viewer. The format 
that it prints it in is exactly the same as R. So Output 8.2 shows that the matrix printed in R, and it prints the 
same thing in the results viewer of SAS. 

Output 8.2: Results of Program 8.2 

 

Importing R Objects into IML Matrices 
To get results in R back into SAS to view them, we can use the IMPORTMATRIXFROMR subroutine to import 
an R object to a new IML matrix name of your choosing with the following syntax: 

CALL IMPORTMATRIXFROMR(IML-matrix, "R-object"); 

Program 8.3 is an example of exporting from SAS to R and back again. 

Program 8.3: SAS to R and Back 
imlMatrix = {0 1, 1 2, 3 5, 8 13};
call ExportMatrixToR(imlMatrix,"rmatrix");
submit / R;
    rmatrix = rmatrix + 49
endsubmit;
call ImportMatrixFromR(NewMatrix,"rmatrix");
print NewMatrix;
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In Program 8.3 we have the same four by two matrix that we used in Program 8.2. We export that matrix to R 
with the name rmatrix and submit one line of code to add 49 to every element of that R matrix. Then, we 
import that matrix from R with the appropriate subroutine with the new IML matrix name, NewMatrix. Now 
we have access to use it in SAS and can print it in SAS format as shown in Output 8.3. 

Output 8.3: Results of Program 8.3 

 

Importing R Objects into SAS Data Sets 
Finally, you can return your R data frame as a SAS data set with the IMPORTDATASETFROMR subroutine using 
the following syntax: 

CALL IMPORTDATASETFROMR("SAS-data-set", "R-object"); 

You can name your SAS data set whatever you would like. When you work with data sets in this environment, 
the R data frame column names are returned as SAS data set variable names so that you don't have to 
rename anything. 

Calling R from Base SAS Java API 
As mentioned in the introduction to this chapter, you can write and submit R code inside a DATA step. 
However, the SAS DATA step does not pass an R script directly from SAS to R. JAVA must be used as an 
intermediate tool. This path is not inherent. You must manually create 
the connection from SAS to Java to R. 

Setup 
First, Download and extract the project ZIP file SAS_Base_OpenSrcIntegration.zip from 
https://communities.sas.com/docs/DOC-10746. The download prompts you to save the files on your 
computer at C:\SGF2015\OpenSrcIntegration. The subsequent steps assume that this is the location of the 
Java files. 

Connect SAS to R 
Next, download the Java Development Kit (JDK) from oracle.com. Downloading the Java Development Kit 
gives you access to the JAVAC command on the Windows command line. The JAVAC command is used to 
compile the extracted Java files, and creates the connection from SAS to R. 

Once you have downloaded the JDK, follow these steps to compile the Java classes and complete setup: 

1. Open the Windows command line. 
2. Enter the following 

a. cd C:\SGF2015\OpenSrcIntegration 
b. – "C:\Program Files\Java\jdk1.7.0_25\bin\javac"  

src/dev/* -d bin 
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3. Add the following location of the compiled Java classes to the SAS configuration file. C:\Program 
Files\SASHome\SASFoundation\9.4\nls\en\sasv9.cfg. (This is the same SAS configuration file that is 
used to add the RLANG option from the previous section.) 

a. -SET CLASSPATH "C:\SGF2015\OpenSrcIntegration\bin" 
4. Ensure that the Java classes are compiled and that the CLASSPATH is set correctly. 

a. Set a working directory and the Java directory. 
%let WORK_DIR = C:\SGF2015\OpenSrcIntegration;
%let JAVA_BIN_DIR = &WORK_DIR.\bin;

b. Validate the Java pipeline. 
data _null_;
    length _x1 $ 32767;
    _x1 = sysget('CLASSPATH');
    _x2 = index(upcase(trim(_x1)),
        %upcase("&JAVA_BIN_DIR"));
    if _x2 = 0 then put "ERROR: Invalid Java
        Classpath.";
run; 

If the Java pipeline is created correctly, the SAS log is empty. Otherwise, the log contains “ERROR: Invalid Java 
Classpath.” Now you are ready to submit R code inside a DATA step! 

R Command Line 
The next step sets the R system location. Right-click the R desktop icon on your computer and select 
Properties. Copy the value from the Target field shown in Figure 8.3. 

Figure 8.3: R Properties 

Paste the value from the Target field into SAS and create a macro variable. Replace the Rgui text with Rscript, 
as shown below: 

%let R_EXEC_COMMAND =C:\Program Files\R\R-3.2.0\bin\x64\Rscript.exe;

Changing the text to Rscript sets the path to the R command line. This location tells Java where to pass the 
DATA step R script. 
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DATA Step Syntax 
The DATA step in Program 8.4 is used to submit R code. Add your R script to the R SCRIPT field. 

Program 8.4: DATA Step to Submit R Code 
data _NULL_;
    length rtn_val 8;
    length r_call $ 32000;

    r_expr = "-e";
    r_script = "R SCRIPT";

    r_call = catt('"', r_expr, '" "', r_script, '"');

    declare javaobjj("dev.SASJavaExec", "&R_EXEC_COMMAND",r_call); 

    j.callIntMethod("executeProcess", rtn_val);
run;

Tip: R command line output is returned to the SAS log in SAS format. 

The DATA step method of calling R is unable to do either of the following tasks: 

Send a SAS data set to R. 

Return a matrix or data frame to a SAS data set. 

If you want to send a SAS data set to R, you can use the EXPORT procedure to save data outside of the SAS 
environment. Read in the data file using an R statement. If you want to return a matrix or data frame to a SAS 
data set, you can save the matrix or data frame in R and use a PROC IMPORT statement to create a SAS data 
set. 

Writing R Script 
When writing R script, you must end each R statement with a semicolon and use single quotation marks only. 
Remember that in R, double quotation marks are used to begin and end R script. 

Program 8.5 shows an example of writing R script in a DATA step. 

Program 8.5: Partial DATA Step Code 
data _NULL_;
    ...
    r_script = "library(fields);
    setwd('C:/SGF2015/OpenSrcIntegration');
    locations = read.csv('locations.csv');
    dist_mat = rdist(locations);
    write.table(dist_mat,'dist_mat.csv',
        sep = ',',row.names=F);";
    ...
run;

The R script is condensed by removing all trailing blanks and is then concatenated with the –e variable. (This is 
done using the CATT function.) Thus, the R script sent to Java is as follows: 

"–e library(fields);setwd('C:/SGF2015/OpenSrcIntegration');…"

The only blank is between the –e and the rest of the script. This is why it is necessary to use a semicolon after 
each statement. The R script is passed to R on a single line. 

Program 8.5 begins by unpacking the fields R package. The read.csv() function reads in the locations data set 
in the directory specified in the setwd() function. PROC EXPORT can be used to export a SAS data set to a CSV 
and the directory can be chosen. The rdist() function creates a results matrix of the Euclidean distances 



244   SAS Programming for R Users   

between each location pair. Finally, the write.table() function exports the R results back to the working 
directory set by the setwd() function. Thus, the DATA step runs properly if the results from R are stored in the 
desired directory. The results can then be returned to SAS using PROC IMPORT. 

Calling R Script 
Alternatively, you can use a DATA step to call and run a saved R script. Program 8.6 runs the dist.R file. Add 
the DECLARE JAVAOBJ and J.CALLINTMETHOD statements to the end of the DATA step. 

Program 8.6: Partial DATA Step Code 
data _null_; 

length rtn_val 8;
     r_pgm = "&WORK_DIR.\dist.R";
    r_arg1 = "&WORK_DIR"; 
    r_call = cat('"', trim(r_pgm), '" "',trim(r_arg1), '"');
    ...
run;

The rdist.R file is simply a saved R file. It does not require quoting the R code or using semicolons. The code 
from Program 8.6 would be saved as follows: 

library(fields) 
setwd('C:/SGF2015/OpenSrcIntegration') 
locations = read.csv('locations.csv') 
dist_mat = rdist(locations) 
write.table(dist_mat,'dist_mat.csv',sep = ',',row.names=F) 

Calling R from SAS Enterprise Miner 
The SAS Enterprise Miner interface streamlines and simplifies common tasks associated with applied analysis. 
You can freely write R code within SAS Enterprise Miner’s Open Source Integration node, send it to R, and 
retrieve the results. 

The process flow in Figure 8.4 indicates each step in the analysis from data entry to modeling the data. 

Figure 8.4: Enterprise Miner Process Flow 

 

SAS Enterprise Miner has a point-and-click interface. It offers secure analysis management and provides a 
wide variety of tools with a consistent graphical interface. You can customize it by incorporating your choice 
of analysis methods and tools. The SAS Enterprise Miner tools that are available to your analysis are contained 
in the tools palette. The tools palette is arranged according to a process for data mining, SEMMA. SEMMA is 
an acronym for the following words: 

Sample—You sample the data by creating one or more data tables. The samples should be large 
enough to contain the significant information, but small enough to process. 

Explore—You explore the data by searching for anticipated relationships, unanticipated trends, and 
anomalies in order to gain understanding and ideas. 

Modify—You modify the data by creating, selecting, and transforming the variables to focus the 
model selection process. 
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Model—You model the data by using the analytical tools to search for a combination of the data that 
reliably predicts a desired outcome. 

Assess—You assess competing predictive models. (You build charts to evaluate the usefulness and 
reliability of the findings from the data mining process.) 

Figure 8.5 shows the Tools Palette in SAS Enterprise Miner. It has tabs that correspond to each step of the 
SEMMA process as well as other tabs, including the Utility tab, that are helpful. 

Figure 8.5: Tools Palette 

 

Additional tools are available in the Utility group. There are also specialized group tools, namely, HPDM (High-
Performance Data Mining), Applications, and Time Series. With additional licensing, Credit Scoring and Text 
Mining groups are also available. All tool groups are discussed on the next several pages. 

Model Tab 
The Model tab is a good starting location for new SAS Enterprise Miner users. The Regression tool enables you 
to fit both linear and logistic regression models to your data. You can use continuous, ordinal, and binary 
target variables. You can use both continuous and discrete variables as inputs. The tool supports the stepwise, 
forward, and backward selection methods. The interface enables you to create higher-order modeling terms 
such as polynomial terms and interactions. 

Utility Tab 
The Open Source Integration tool can be found under the Utility Tab. It enables you to write code in the R 
language inside SAS Enterprise Miner by adding an Open Source Integration node to your process flow. The 
tool makes SAS Enterprise Miner data and metadata available to your R code and returns R results to SAS 
Enterprise Miner. In addition to training and scoring supervised and unsupervised R models, the Open Source 
Integration node enables data transformation and data exploration. 

The SAS Code tool enables you to incorporate new or existing SAS code into process flow diagrams. The ability 
to write SAS code enables you to include additional SAS procedures into your data mining analysis. You can 
also use a SAS DATA step to create customized scoring code, to conditionally process data, and to concatenate 
or merge existing data sets. The tool provides a macro facility to dynamically reference data sets that are used 
for training, validation, testing, or scoring variables, such as input, target, and predict variables. After you run 
the SAS Code tool, the results and the data sets can then be exported for use by subsequent tools in the 
diagram. 
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Open Source Integration Node 
The Open Source Integration node enables the writing and use of R code in Enterprise Miner. It transfers data 
and results automatically between Enterprise Miner and R. All R packages must be installed in R before using 
the Open Source Integration node. 

The Open Source Integration node requires you to 

enable R language statements in the SASV9.cfg file 

match the appropriate versions of SAS, R, and the PMML R package. 

The Open Source Integration node is verified to work with 64-bit R. (32-bit R is not recommended.) The 
SYSCC=10 error indicates that the appropriate versions of SAS, R, and PMML are not being used. The user 
should uninstall the PMML package (or R, or both) and download the appropriate version. 

Output Mode 
The Output mode specifies different ways that the output from the R code is available. Options are PMML, 
Merge, or None. Output mode None is used primarily to debug the R code and ensure that it is working 
properly. The log provides more detail about errors when output mode None is specified. 

PMML 
Predictive Modeling Markup Language (PMML) is an open standard that enables certain R models to be 
translated into SAS DATA step code. 

Here are the currently supported R models: 

linear models (lm) 

multinomial log-linear models (multinom) 

generalized linear models (glm) 

decision trees (rpart) 

neural networks (nnet) 

K-means clustering (kmeans) 

Merge 
Merging the output mode enables integration with the thousands of R packages that are not supported in the 
PMML output mode. Variables created in R are merged with the SAS Enterprise Miner data source by the 
user. SAS DATA step code is not created. 

The Merge mode is commonly used when applying the predict() function to the R model object. The predict() 
function returns results and merges the results to the workflow data set. 

Variable Handles 
Enterprise Miner variable handles are used to efficiently create an R script. The words NUM and CLASS in a 
variable handle refer to numeric or categorical variables. A single INPUT variable handle refers to the entire 
set of numeric or categorical variables to be used as inputs. 

Here are the variable handles: 

&EMR_MODEL—refers to the R model object. 

&EMR_NUM_TARGET and &EMR_CLASS_TARGET—refer to the response variable. 
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&EMR_NUM_INPUT and &EMR_CLASS_INPUT—refer to the input variables. 

&EMR_IMPORT_DATA—refers to the workflow data set. 

Select the Code Editor ellipsis to create the R script as shown in Figure 8.6 

Figure 8.6: Code Editor 

 

Program 8.7 shows an example of R script without variable handles, while Program 8.8 shows an example of R 
script with variable handles. 

Program 8.7: R Script Without Variable Handles 
&EMR_MODEL <- lm(rY ~ X1 + X2 + X3 +
C1 + C2 + C3, data =&EMR_IMPORT_DATA)

Program 8.8: R Script With Variable Handles 
&EMR_MODEL <- lm(&EMR_NUM_TARGET ~
&EMR_NUM_INPUT + &EMR_CLASS_INPUT,
data=&EMR_IMPORT_DATA)

Tip: The &EMR_MODEL and &EMR_IMPORT_DATA variable handles must be used. 
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Exercises 

Multiple Choice 
1. Choose the correct statements. Select all that apply. 

a. R can be called from Base SAS, SAS/IML, and SAS Enterprise Miner. 
b. -RLANG must be added to the SAS configuration file. 
c. PROC OPTIONS is used to test the SAS and R connection. 
d. You should leave SAS open when altering the configuration file. 

2. The code below prints the first column of the data frame in the SAS Results Viewer. 
call ExportDataSetToR("dog","rmatrix");
submit;

rmatrix[,1]
endsubmit;

a. True 
b. False 

3. Variable handles must be used in SAS Enterprise Miner. 
a. True 
b. False 

Programming Exercise 
1. Comparing Multiple Regression Estimates in SAS and R  

a. Begin by invoking PROC IML and exporting the fish data set to R as a data frame with the name 
Fish. 

b. Fit a linear model with Weight as the dependent variable and Height and Width as the 
independent variables using the lm() function. Store the object and use the summary() function 
to print model estimates.  

c. Import the parameter estimates into an IML matrix. Recall that the parameter estimates are 
stored under the name Coefficients in the R object.  

d. Run the same analysis in SAS using PROC REG. Output the parameter estimates using the 
OUTEST= option in the PROC REG statement.  

e. Import the SAS coefficients into IML using the USE, READ, and CLOSE statements.  
f. Print the SAS coefficients and R coefficients side by side along with the difference between the 

estimates.  
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Solutions 

Multiple Choice 
1. a, b, and c. You can call R from three separate environments: Base SAS using the DATA step, SAS/IML, 

and SAS Enterprise Miner using the Open Source Integration Node. In order for SAS and R to 
communicate you must add the –RLANG syntax to your SAS configuration file. Because SAS calls this 
file when you open a new session, you should close SAS when you make this change. To ensure SAS 
and R are connected you can use the OPTIONS procedure to test your connection. 

2. b. Remember to use the / R option in the SUBMIT statement to send all code between the SUBMIT 
and ENDSUBMIT statements to R. 

3. a. The object must be specified as &EMR_MODEL. 

Programming Exercise 
1. Comparing Multiple Regression Estimates in SAS and R  

a. Begin by invoking PROC IML and exporting the fish data set to R as a data frame with the name 
Fish. 
proc iml; 

call ExportDataSetToR("sp4r.fish","fish");

b. Fit a linear model with Weight as the dependent variable and Height and Width as the 
independent variables using the lm() function. Store the object and use the summary() function 
to print model estimates.  
submit / r; 

fit <- lm(Weight ~ Height + Width, data=fish) 
summary(fit) 

endsubmit;

c. Import the parameter estimates into an IML matrix. Recall that the parameter estimates are 
stored under the name Coefficients in the R object.  
call ImportMatrixFromR(r_Coefficients,"fit$coefficients");

d. Run the same analysis in SAS using PROC REG. Output the parameter estimates using the 
OUTEST= option in the PROC REG statement.  
submit; 

ods select none; 
proc reg data=sp4r.fish outest=sp4r.betas; 

model weight = height width; 
run; quit; 
ods select default; 

endsubmit;



250   SAS Programming for R Users   

e. Import the SAS coefficients into IML using the USE, READ, and CLOSE statements.  
use sp4r.betas; 
read all var {intercept height width} into sas_Coefficients; 
close sp4r.betas;

f. Print the SAS coefficients and R coefficients side by side along with the difference between the 
estimates.  
     coefficients = sas_coefficients` || r_coefficients || 
        (sas_coefficients` - r_coefficients); 

    reset noname; 
    coefficientNames = {SAS_Coefficients R_Coefficients
      Difference}; 

    print coefficients[colname=coefficientNames]; 
quit;
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