Gsas

SAS Programming

for R Users

Jordan Bakerman

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2019. SAS® Programming for R Users.
Cary, NC: SAS Institute Inc.

SAS® Programming for R Users

Copyright © 2019, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-64295-715-0 (Paperback)
ISBN 978-1-64295-713-6 (PDF)

All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the
publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at
the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the
publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or
encourage electronic piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer
software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use,
duplication, or disclosure of the Software by the United States Government is subject

to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a),
and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR
52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other
notice is required to be aftixed to the Software or documentation. The Government’s rights in Software and documentation
shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414
December 2019

SAS®and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc.
in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source software, which
is licensed under its applicable third-party software license agreement. For license information about third-party software
distributed with SAS software, refer to http://support.sas.com/thirdpartylicenses.

Contents

About This BOOK ...cceumumurmimsmmmssmsnsssnsssssssssssss s sssasnsssssssnasnsssssssnasnsnsssnsnannnnsnsnsnsnnnnnnsnsnsnnnnnnsnss v
Chapter 1: Introduction t0 SAS.....ccceturmrmmmsmsmsssssssssssssssssssssssssnssssssssnsssnsnsnssnsnsnsnsnnnsnnsnsnsnnnnnns 1
10 Yo 18T (T o P RSP 1
SAS VEISUS R ..ottt ettt e et e sttt e e sttt e e ettt e e e a e et e e en ket e e e R et e e e et ee e et beeeeanneeeeanneeeeanrneeeann 1
YT [0] (Y =Tt SRR
SAS Studio Interface

AccessiNg Data in SAS LIDIAri€Suueiiiiiii ettt ettt e e ettt e e e e e e e e nteeeeaaa e e e aneteeeeaaeeeaannnneeeaaaaann 8
Writing @ Program in SAS STUAIOeiiiiiie ettt e ettt e e e e e ettt e e e e e e e nnnbeeeeaaeeaannees 9
USING TASKS....iiiiiiiitiieiie et e e et e e e e ettt e e e e e e e s aaeeeeeeeeeeasassseeeeaeeesaastaeseaeeeeesasbeseeeaeeesassaneeeaeeeeaannranees 13
L0 To IS 11 o] o= < SRR 15
CalliNg R TIOM SAS ...ttt oo ettt e e e e e e e st taeeeeaeeessstaaeeeeeeesaasssaeeeaeeeeassssaeeaeeesaassnssnneaaeeeaannse 18
Y (o 1] PSP SPRPR PR 20
I To] 11 o] o - T RSO UPPRRTN 21
Chapter 2: Importing and Reporting Data 23
g (o T [0 ex 1] o PRSP 23
Manual Data Entry wWith the DATA Step ...ooiiiiiiiieiiee ettt e e e e ettt e e e e e e e e nae e e e e e e e e nnnseeeeas 23
[[gaToToTuiTaTe B 2] c- F OO PURT RSP 26
[RCToTo] g1 a o [I 2= c= LR SERR 29
= a1 aE= T let=Te B A {=T o o] 4 [a o RSO ERSPPR 32
Y o] PRSP 38
R To] 11 o] o < TSR PURPRR 40
Chapter 3: Creating New Variables, Functions, and Data Sets a1
104 Yo [0 (o} o PP PRRR TR 41
Creating NEW VariabIes.ottt e e et e e s e e e s 41
Creating and USING FUNCHONScoiiiiiiiiiieieee ettt e e et e e e e e e s et e e e e e e s eenasaaeaeesseassnseeeeaaeeaannnes 46
S TU XY c i g Vo [D 7= = TSP PURPRRN 54
Concatenating Data Sets............ueiiiiiiii ettt e e ettt e e e e e e e e a e et e e e e e e e e nteeeaeeeea e nnaeeeaaaeaaaannas 56
MatCh-Merging Data SetS...........ooiiiiiiiiiiiiiie et e e e e e e s e e e e e e e e e s baeaeeaeeesnsbsaeeeaeeeeannnnraeees 59
L Y o 1= TSRS 62
RS T0] 0117 o < SR 67
Chapter 4: Random Number Generation and Plotting 71
g (o T [0 ex 1] o TP ERR SR 71
DO Loop and Random NUMDEr GENEIALIONeiiiiiiiiiiiiiiee ettt e et e e e e e e e e e e e e s eeansn e e e e e s eenasseeeeas 71
Single-Cell Plotting With PROC SGPLOTcoiiiiiiiieiiee ettt e e e e e sttt e e e e e e s e saasaeeeeaeseasssseeeeaeeeaanannes 77
Multi-Cell Plotting with Procedures and StatementsS............cooiiiiiiiiiiie e 82
[T ol T PP EPPT PRI 88
S To] 11 o] o - TSP PURPRR 94
Chapter 5: Descriptive Procedures, Output Delivery System, and Macros 103
L] 04oTo [0 (T o P SRS UPPP 103
Summary StatiStiCS PrOCEAUIES ..ottt e e ettt e e e e e et e e e e e e e nnnsbeeaaaaeeaannees 104

OULPUL DEIIVEIY SYSIEIM...oii ettt oottt e e e e e ettt e e e e e e e e aae et eeaaeeaaanneeeeaaaeaaannnseeaeaaeeaaannnes 110

vi Contents

Creating Macro Vari@bIEs........ .o ettt e e ettt e e e e e e ettt e e e e e s nareeeeaaaeeannnnneeeas 113
Creating Global Macro Vari@bIESooiiiiiiiiiiiiiiee ettt e et e e e e e et e e e e e e s etb e e e e e e e e e sesnnsaeeeas 116
(=Y il To Y = Te yo T o oo | =T o < PR RR S 118
Macro Statements: AN EXAMPIEuueiiieiiieiiii e nananan i nanaan 122
] (o 7= PSP 125
S To] 11 o] o < P ERR S 131
Chapter 6: Analyzing the Data via Inferential Procedures 141
11 1Yo [0 T (T o SRS 141
[T T Voo L=y SRRSO 141
Generalized LINEAr MOUTEISooiiiiiiiii ettt ettt et e e et e e e eaa e e e e bt e e e neeeeesneeeeeanbneeeanns 155
Y TD o Yo T [SRS 160
L0 (L= g o (o Tt Yo [PR RS 165
Y (o 7= SRS 170
R To] 11 o] o < SRR 178
Chapter 7: Interactive Matrix Language (IML) 195
11 1Yo [0 T (T o SRS 195
THE BASICS OF IVttt ettt e oottt e e e e e e e st ettt e e e e e e e naeeeeeaeeeaaanneeeeaeaesannsseeeeaaeeaannnsnneeas 195
MOAUIES @NA SUDIOULINES......coii ettt ettt e e e oo et e e e e e e e e s st be et eaaeaeamsaneeeaaeeaaannnnneeaaaaann 201
Call SAS Data SetS @nd ProCEAUIESuiiiiiiiie ettt ettt e ettt e e et e e e e e e e e antee e snneeeeeanbeeeeanes 212
ST 101 F= (o o < SRR 216
Y (o 7= SRS 221
R To] 11 oo < P ERP S 228
Chapter 8: A Bridge Between SAS and R......cccciciiicimimnmnssesssssssssssssssssnssssssssssnsnssnsnsnsnnnnns 237
gL (e T [0 o1 (o] o HP PP PPPP T PPTPPPPPR 237
Calling SAS FrOM IIML ...ttt e ettt e s b e e e e e s bt e e e bt et e s e s b et e e ab e e e e an et e e s nn e e e e aerneeeaan 238
Calling R from Base SAS Java APttt ettt e e e e e e ettt e e e e e e e e beeeeeaeeeaannnnaeeeas 241
Calling R from SAS ENterpriSE MINETc.coiiiiiiiiiie ettt e e e e e e e e s st e e e e e e s e beeeeeaeeeseennnsaeeeas 244
Y o T SRRSO 248

S To] 0] 170 o T 249

About This Book

What Does This Book Cover?

SAS and R are both important tools for data analysis. SAS is a programming language as well as a suite of
software solutions that can be used for data access, data management, data analytics, statistical analysis, and
data presentation. SAS can handle large amounts of data and perform almost any data analysis task that is
required by researchers and companies of any size. On the other hand, R is a free, open-source tool that is
mostly used by the research community for statistical analysis, graphing, and reporting.

By some accounts, R is a more difficult programming language to learn than SAS. If you have learned how to
perform analytical tasks in R and want to know how to perform the same tasks in SAS, then this is the book for
you. This book covers a wide range of topics including the basics of the SAS programming language, how to
import data, how to create new variables, random number generation, linear modeling, Interactive Matrix
Language (IML), and many other SAS procedures. This book also covers how to write R code directly in the SAS
code editor for seamless integration between the two tools.

This book is based on the free video course “SAS® Programming for R Users” offered by SAS Education and
also available on Lynda.com. You may prefer to follow along with the videos, which offer more practice
exercises and example scenarios than are contained in this book. At the end of each chapter, you will find
guestions and exercises to test your knowledge.

Is This Book for You?

This book is designed for experienced R users who want to transfer their programming skills to SAS. Emphasis
is on programming and not statistical theory or interpretation. You will learn how to write programs in SAS
that replicate familiar functions and capabilities in R. You will also learn how to call R from SAS using IML.

What Are the Prerequisites for This Book?

Readers should have knowledge of plotting, manipulating data, iterative processing, creating functions,
applying functions, linear models, generalized linear models, mixed models, stepwise model selection, matrix
algebra, and statistical simulations.

What Should You Know about the Examples?

This book includes tutorials for you to follow to gain hands-on experience with SAS.

Software Used to Develop the Book's Content
The software used to develop this book’s content includes SAS 9.4 and SAS® Enterprise Miner™.

Example Code and Data

You can access the example code and data for this book by linking to its author page at
support.sas.com/bakerman.

Vi

SAS University Edition

Many of the advanced techniques for working with R in this book are not compatible with SAS University
Edition. If you are using SAS University Edition to access data and run your programs, then please check the
SAS University Edition page to ensure that the software contains the product or products that you need to run
the code: www.sas.com/universityedition.

Where Are the Exercise Solutions?

The exercise solutions can be found immediately following the exercises in the same chapter.

We Want to Hear from You

SAS Press books are written by SAS Users for SAS Users. We welcome your participation in their development
and your feedback on SAS Press books that you are using. Please visit sas.com/books to do the following:

® Sign up to review a book
® Recommend a topic
® Request information on how to become a SAS Press author

® Provide feedback on a book

Do you have questions about a SAS Press book that you are reading? Contact the author through
saspress@sas.com or https://support.sas.com/author feedback.

SAS has many resources to help you find answers and expand your knowledge. If you need additional help,
see our list of resources: sas.com/books.

Learn more about this author by visiting his author page at support.sas.com/bakerman. There you can
download free book excerpts, access example code and data, read the latest reviews, get updates, and more.

Chapter 1: Introduction to SAS

INtroduction ..o

SAS VErsUS R ...iiireieeiiiiiiiiniiiiiinirnnsssnnnresansss s neesseesseens
SAS Programs.....
SAS Syntax Rules....
Comments

SAS Interfaces

SAS Studio Interface......cccceeeevvuneeernnnnee

Accessing Data in SAS Libraries
Accessing a Permanent Library with the LIBNAME Statement.

Data Set Namescccceeuuiiiiiiiimeniiiiiiiiiirrresessrrsseeesssseens
Writing @ Program in SAS STUCIO.......ciiiiiiiiiiiiiiiiiiiiiiiininncnncenrirnnrrrrrrr s s s s s s s s sssnes 9
070 o L= 1o 9
RESUIES «.veeiiiiiiiiiieetiie et ssas e s e s e s s saa s e e s s s s s e s aas s e e e s s s s s s aa s e e s s esssssssannseesssssssssnnnnessssssssssnnneesssssssnn 10
o N 11
DX Lo T T Tt o 1= 11
L0 =G - T TN 13
USING SN PPOTS . cuuueiiiiiiiiuuiiiiiiiiieniiiiiirrieiisitrrrresssssttrtrssssssssstressnnnsssssss 15
Preloaded SNIPPELSucerririrrirrrrciriirrrrrsss e s s s sssssssssssssssssssssssssssssesssensessesnsnsnsnnsnannnns 16
CUSTOM SNIPPEES c.ceiiiiiiiiiiiiiiiiiiiitiititiitittrerrterrrrrrttererreeaserarassnnes 18
CalliNG R EIOM SASceeeeeeiiieicirerrertisssssneeesesss s s s ssnresssssessssnnsasssssssssnsssssssssssssssssssssssssssssnnneesssssssssnnseessssssssssnneessssssssssnnans 18
0 =T o[- =N 20
L]0 X T N 21
Introduction

If you are reading this book, you most likely have never used SAS or have limited experience with SAS. So,
what is SAS? SAS is a suite of business solutions and technologies to help organizations solve business
problems. That is the official slogan, but it's much broader than that. SAS is for anyone who needs to manage
data or create advanced analytics models. SAS is powered by high-performance analytics, which are
thoroughly tested before coming to market. SAS enables you to access and manage data across multiple
sources as well as perform analyses and deliver information across your organization.

The functionality of SAS is built around four data-driven tasks that are common to virtually any application:

® data access
® data management
® data analysis, including creating inferential models

® data presentation

In SAS, all of our data sets are going to be on disk, which means they are on the hard drive. This is a little bit
different coming from R. Data sets in SAS will need to be read into memory as needed, which will be seamless
behind-the-scenes.

SAS Versus R

R is an object-oriented programming language. Results of a function are stored in an object and desired
results are pulled from the object as needed. SAS revolves around the data table and uses procedures to
create and print output. Results can be saved to a new data table.

2 SAS Programming for R Users

In this section, we will briefly compare SAS and R in a general way to help you learn additional SAS
programming skills independently. Look at Table 1.1, which outlines some of the major differences between
SAS and R.

Table 1.1: SAS Versus R

Script compiler Command line interpreter

Primarily driven by the data table Object-oriented
and procedures

Not case-sensitive Case-sensitive

Here are a few other things about SAS to note:

® SAS has the flexibility to interact with objects. However, this book focuses on procedural methods.

® SAS does not have a command line. Code must be run in order to return results.

SAS Programs

A SAS program is a sequence of one or more steps. A step is a sequence of SAS statements. There are only two
types of steps in SAS: DATA and PROC steps.

® DATA steps read from an input source and create a SAS data set.

® PROC steps read and process a SAS data set, often generating an output report. Procedures can be
called an umbrella term. They are what carry out the global analysis. Think of a PROC step as a
function in R.

Every step has a beginning and ending boundary. SAS steps begin with either of the following statements:

® 3 DATA statement
® 3 PROC statement

After a DATA or PROC statement, there can be additional SAS statements that contain keywords that requests
SAS to perform an operation or give information to the system. Think of them as additional arguments to a
procedure. Statements always end with a semicolon!

SAS options are additional arguments and they are specific to SAS statements. Unfortunately, there is no rule
to say what is a statement versus what is an option. Understanding the difference comes with a little bit of
experience. Options can be used to do the following:

® generate additional output like results and plots
® save output to a SAS data table

® alter the analytical method

SAS detects the end of a step when it encounters one of the following statements:
® 3 RUN statement (for most steps)
® 3 QUIT statement (for some procedures)

Most SAS steps end with a RUN statement. Think of the RUN statement as the right parentheses of an R
function. Table 1.2 shows an example of a SAS program that has a DATA step and a PROC step. You can see
that both SAS statements end with RUN statements, while the R functions begin and end with parentheses.

Chapter 1: Introduction to SAS 3

Table 1.2: SAS Program Versus R Program

SAS Program R Program

data work.newemps; work.newemps = read.csv
infile "&path\newemps.csv" dlm=',"'; (“C:/Users/username/
input First $ Last $ Title $ Salary; Desktop/work.newemps.csv”)
run; print (work.newemps)

proc print data=work.newemps;
run;

SAS Syntax Rules

SAS statements usually begin with a keyword, and always end with a semicolon. Keywords identify the type of
statement, and semicolons end the statement.

A syntax error is an error in the spelling or grammar of a SAS statement. SAS finds syntax errors as it compiles
each SAS statement, before execution begins. Common examples of syntax errors include:

® misspelled keywords
® unmatched quotation marks
® invalid options

® missing semicolons

The Enhanced Editor in some SAS interfaces uses the color red to indicate a potential error in your SAS code.
Notice in Figure 1.1 that the misspelled word D-A-A-T is displayed in red. This misspelling affects other
statements following it because those statements are only permitted in a DATA step, and this is not
recognized as such.

Figure 1.1: SAS Code with Errors
caat work.newsalasemps;
lzngth First_MName 512
Last_Mame $ 18 Job_Title § 25;
infile "&pathinewemps csv” dim="";
input First_Mame % Last_Mame §
Job_Tite § Salary;
run;

Jprac print data=work.newsalesemps
Fun;

‘proc means data=work newsalesemps average min;
var Salary;
run;

The RUN statement in the PROC PRINT step is not the correct font or color in Figure 1.1. Code can contain
incorrect keywords for options. The word “average” in the PROC MEANS statement is also the wrong font and
color, because “average” is not recognized by the PROC MEANS statement. (MEAN is the correct word.) Error
messages are written to the SAS log to describe syntax errors.

Tip: Bookmark the SAS Documentation page at support.sas.com/documentation. You can look up
procedures, statements, options, analytical methods, and any type of SAS syntax.

4 SAS Programming for R Users

Comments

R comments do not have an end and simply comment out everything to the right of the # symbol. SAS
comments are more functional. Program 1.1 contains four comments.

Program 1.1: Comment Types

| This program creates and uses the | 0
| data set called work.newsalesemps. |

data work.newsalesemps;
length First Name $ 12 Last Name $ 18Job Title $ 25;
infile "gpath\newemps.csv" dlm=',"';
input First Name $ Last Name $ Job Title $ Salary /*numeric*/; @
run;
/*
proc print data=work.newsalesemps; ©
run;
*/
proc means data=work.newsalesemps;
*var Salary; O
run;

O The first comment describes the program.

® The second comment is within a statement.

© The third comment is commenting out a step.

O The fourth comment is commenting out a statement.

To comment multiple lines simultaneously in SAS, highlight the lines. Hold down the Ctrl key and press /. To
uncomment, highlight the lines. Hold down the Ctrl and Shift keys and press /.

SAS Interfaces

Since its inception over 40 years ago, SAS software has evolved significantly with changes in computer
technology. This evolution resulted in three unique SAS interfaces:

1. SAS windowing environment
2. SAS Enterprise Guide
3. SAS Studio

The SAS windowing environment is the original interface that is used to access, manage, analyze, and report
data. For experienced programmers, the windowing environment might feel the most natural because it is the
most basic interface of SAS. It provides an Editor window in which you can write and submit code without the
use of any point-and-click features.

SAS Enterprise Guide is configured to access SAS on a local or remote server. SAS Enterprise Guide has point-
and-click wizards and tasks for SAS procedures and a robust programming interface.

SAS Studio is the newest interface. It is a web-based interface to SAS that you can use on any computer. It
combines functionality from both the windowing environment and Enterprise Guide. SAS Studio is consistent,
available, and assistive. You learn one interface that you can use throughout your career, as a student, an
individual SAS user or consultant, a departmental user, and an enterprise user. You can use the same interface
wherever you need it (a Mac in a dorm, a Windows desktop at work, a laptop at home, and an iPad on the
road). For programmers, the code is front and center, but you can use point-and-click functions such as code-
generating tasks or process flows to help, if you need them.

Chapter 1: Introduction to SAS 5

No matter which SAS interface you use, the SAS programming is the same. In addition, they all offer these
same basic programming tools:

® an Editor window where you write and submit SAS code

® alog where you view messages from SAS

® 3 page to view your results
However, in this book, we will focus on using SAS Studio because of its accessibility and features. SAS Studio
can be accessed from any browser. After you access the interface from the browser, you can run a program

and SAS Studio automatically connects to SAS on your machine. The analysis is run on the machine, and then
the results are brought back to the browsers for you to see.

SAS University Edition is free SAS software that can be used for teaching and learning statistics and
quantitative methods. It is designed for those who want easy access to statistical software. SAS University
Edition uses the SAS Studio interface and gives you access to the following products:

® Base SAS: The foundation for all SAS software. It provides a highly flexible, highly extensible, fourth-
generation programming language and a rich library of programming procedures.

® SAS/ACCESS: Seamlessly connect with your data no matter where it resides or how it is saved.
SAS/ACCESS provides tools to easily access external data.

® SAS/STAT: Provides a wide variety of statistical methods and techniques.
® SAS/IML: A matrix programming language for more specialized analyses.

® SAS/ETS: A suite of time series forecasting procedures. SAS University Edition offers only the
TIMEDATA, TIMESERIES, ARIMA, ESM, UCM, and TIMEID procedures.

Note: To run R with SAS, R must be installed on the same machine as SAS. Because SAS University Edition
installs on a virtual machine where R cannot be installed, R cannot be used with SAS University Edition.

6 SAS Programming for R Users

SAS Studio Interface

Let’s look at the SAS Studio interface. Open your SAS Studio session. It should look similar to Figure 1.2.

Figure 1.2: SAS Studio Interface

SAS® Studio :) | 4 sAS Programmer

4 Files and Folders [£4 Program 1 x

- o CODE 06 RESULTS

B Folder Sharteuts HE& B2 [3 [CE
I Woom E M

-0 liEnter y

>

-

Navigation Pane

‘Work Area

p Tasks
» Snippets

p Libraries

p File Shortcuts

The SAS Studio interface is separated into the Navigation pane on the left and the Work area on the right, also
called the Code Editor. The Work area displays your programs with tabs for Code, Log, and Results. The
Navigation pane provides easy access to your folders and libraries that contain your permanent and
temporary data sets. The Files and Folders tab is displayed by default. It automatically maps to the drives on
your computer to give you quick access to load data sets and SAS programs.

Click the Libraries tab in the Navigation pane and select My Libraries, as shown in Figure 1.3.

Figure 1.3: My Libraries

4 Libraries

&)

4 &0 My Libraries
b &R MAPS
&R MAPSGFK
bR MAPS5AS
b & SASHELP
P &R SASUSER
b & WEBWORK
& WORH

The Libraries are where you will store all of your data. Notice that they are separated by category. The
libraries MAPS through WEBWORK are permanent libraries. The data displayed in each library is a permanent
data set, which users can use at their convenience. Whatever data you save in these libraries will be saved
after you close your SAS session. The Work library is a temporary library. Any data saved to the Work library
by the user is deleted when the user closes the SAS session. In a later demonstration, you see how to save a
new data set to the Work library and create a new permanent library. A new permanent library enables the
user to load external data a single time and update or use the data table each new session. This heavily
reduces the load time and cleaning time of your data because it is done only once.

Open the Sashelp library and navigate to the cars data set. Double-click the data set to open it in the Table
Viewer in the Work area. The cars data set contains 428 total rows of data and 15 columns or variables. It is a
sample of cars from the 1993 Consumer Reports magazine. You can use the arrows in the upper right to
navigate between pages or the scroll bar at the bottom of the data table to change your view of the data. In

Chapter 1: Introduction to SAS 7

the Columns area of the Table Viewer in Figure 1.4, notice that all columns are selected by default. Simply
clear the check box from a column to remove the column from the viewer.

Figure 1.4: Cars Data Set

3

SAS Studio y=) SAS Programmer
» Files and Folders (8 Program 1 * | B SASHELP.CARS *
» Tasks view: |Columnnames - | @3 & ¢y B | 2 T Filter: (none)
i et Columns @ Total rows: 422 Total columns: LS Rows 1-100 = mpl
4 Libraries @ selactall ke Model
& B o @ L Make L Awra MDX
» B BMIMEN - “ A Model 2 Acura RSX Type 5 2dr
b BMT @ 4 Type 3 Acura TSX 4dr
b [BURROWS F & onzin 4 Acura TL ddr
b 3 BUY ¥ J\ Dnverrain 5 Arurz 3.5 RL 4dr
] Acura 3.5 RL w/Navigation 4dr
DEI: HEIHT, - @MSRP Acura MSX coupe 2drmanual 5
ph B | yimvoka 8 Audi A4 18T 4dr
b [F2 CENTLOOKUR ¥ @ enginesize 9 Audl A41,8T convertible 2dr
b [CITiDay ¥ @olinders g Ad.3.0 adr
t [crmimon 2 @ Horsepow 1 i Ad 3.0 Quattre 4dr manual
I+ EFE CITIQTR Property Value 12 Audi Ad 3.0 Quattro 4dr auto
I R CITIWK Labal 13 Audi AB 7.0 4dr
(=Rt Hame 14 Audi A 3.0 Quattro 4dr
b [cLass Length 15 Audi A 3.0 convertible 2dr
b B CLASSEIT i Type 16 Audi A4 3.0 Quattro corvertible 2dr
i Format 17 Audi AR 2.7 Turbo Quattro 4dr
Informat s PR AR AT Pui b Ade ik
» File Shortcuts k

Clear the Select all check box and then select Make, Model, Type, Origin, MSRP, and Invoice.

To customize the view of the data table, select the arrow next to Columns to hide the columns area and then
select the Maximize View icon. Your screen should now show only the selected columns, as shown in Figure
1.5.

Figure 1.5: Maximize View
SAS® Studio v or | SAS Pragrammer

Birrogram1 = | EQSASHELP.CARS =
View: | Columnnames ~ || B} B g-; H | =x ¥ Filter: (none)
@ rows: 428 Total columns: 15 Rows L-100 = =
Maks= Model Type Origin MSRP Invoice
al Acura MDX Sy Asia 536,045 533,337
2 ArCura RSX Type 5 2dr Sadan EHE] 521,761
3 ACura TSX ddr Sadan EHE] 524,647
4 ACura Sedan Asia 530,209
5 ACura Sedan Asia 530,014
B ACura 3.5 AL w/Navigation 4dr Sedan Asla 541,100
T ACura NSX coupe 2dr manual S Sports Asia 579,978
2 AL A4 1BT 4dr Sedan Europe 523,508
9 Audi A4 LET convertible 2dr Sedan Europe 535, 532,506
1|10 Audi Ad 3.04dr Sedan Eurppe $3L.8. 528,346
F 11 Audi Ad 3,0 Quattro 4dr manual Sedan Eurepe $33.4320 530,266
12 Audi A4 3.0 Quattro 4dr auto Sedan Europe 534,480 531,388
13 Audi A 3.0 4dr Sedan Eurppe 536,640 533,129
14 Audi AB 3.0 Quattro 4dr sedan Eurppe 539,640 535,992
15 Aud A4 3.0 convertible 2dr Sedan Eurppe 542,490 538,325
16 Auh A4 3.0 Quattro convertible 2dr Sedan Europe 540,075
17 AL AB 2.7 Turbo Quattro 4dr Sedan Europe 538,240
18 AL AR 4.2 Quattro 4dr Sedan Europe 544936

8 SAS Programming for R Users

You can right-click a column heading to filter and sort the data table by that column. Right-click the Invoice
column and select Add Filter. Notice that the other options are Sort Ascending, Sort Descending, and Sort by
Data Order.

Add a filter to select only the rows with Invoice values greater than or equal to $30,000. Use the drop-down
menu to change the filter in the Add Filter window shown in Figure 1.6. Add the filter value in the text box.
Then click Filter.

Figure 1.6: Add Filter Window

Add Filter x
Specify the criteria for "Invoice'

z |~ | | 30000 +

m (a-:e

At the top of the table, you see that the number of filtered rows is 160.

As you select options and customize the table, SAS Studio generates SAS code that you can use. To view the
query code, click the Display Query button on the toolbar.

A new Program tab is created with the code that is used to create the view of the table. This code first creates
a new data table in the Work library and then prints the data table. You can save this code for use later with
the Save button on the toolbar. Close the Query code. Exit the maximized view and expand the Columns pane
to get back to the default table view. You can clear the table filter by selecting Clear Filter on the Tools table.

Accessing Data in SAS Libraries

SAS tables are stored in SAS libraries. A SAS library is a collection of SAS files that are referenced and stored as
a unit. Each file is a member of the library. Work is a temporary library where you can store and access SAS
tables for the duration of the SAS session. It is the default library.

Note: SAS deletes the Work library and its contents when the SAS session ends.

Sashelp is a permanent library that contains sample SAS tables that you can access during your SAS session.
Sasuser is a permanent library that you can use to store and access SAS tables in any SAS session.

Users can create their own SAS libraries.

® A user-defined library is permanent. Tables are stored until the user deletes them.
® A user-defined library is implemented within the operating environment’s file system.

® |t is not automatically available in a SAS session.

Accessing a Permanent Library with the LIBNAME Statement

First, identify the location of the library. For example, a Microsoft Windows folder could be used as a SAS
library. You can use an existing folder or create a new one. After a folder is identified or created, the Windows
operating system knows about the folder, but SAS does not. To use this folder as a SAS library, you must tell
SAS about it. Sometimes this is referred to as making a connection between SAS and the folder.

To connect the folder to SAS, use a SAS LIBNAME statement to associate the libref with the physical location
of the folder. The concept of a SAS library is the same regardless of the operating environment, but libraries
have different physical implementations depending on the environment. In UNIX and Windows, a library is a
directory or folder. On a mainframe, it is an operating system file.

Chapter 1: Introduction to SAS 9

The path must be written in a style appropriate for the environment and should include a full path. Examples
are shown below.

® Windows: libname perm 'S:\workshop';

® UNIX: libname perm '~/workshop';

® 7/0S: libname perm 'userid.workshop.sasfiles';
The SAS LIBNAME statement is a global SAS statement. It is not required to be in a DATA step or PROC step. It

does not require a RUN statement. It executes immediately and remains in effect until changed, canceled, or
until the session ends. It uses the following syntax:

LIBNAME libref "SAS-library" <options>;

The libref must be eight characters or less and begin with a letter or underscore followed by letters,
underscores, and digits.

Tip: In the Microsoft Windows environment, an existing folder is used as a SAS library. The LIBNAME
statement cannot create a new folder.

In the UNIX environment, an existing directory is used as a SAS library. The LIBNAME statement cannot
create a new directory.

In the following example, we are associating the libref SP4R with the folder s:\workshop.

libname SP4R "s:\workshop";

Check the log after submitting a LIBNAME statement to see that it executed successfully and assigned the
libref to the physical folder.

Data Set Names

As a best practice, refer to both the library and the data set in DATA steps and PROC steps by using the
convention library.data-set-name. To access data in a permanent library, you must use the library.data-set-
name convention. However, to access the temporary library Work, you do not need to use the library name.
As a best practice, it is always encouraged to use the library name when you refer to a data set. For example,
all of the following data set names are correct:

® SP4R.FROG

® work.cars

L4 cars

Writing a Program in SAS Studio

In this section, you will learn how to write a SAS program that enables you to see the cars data in the form of
areport. To start a new program, go up to the top bar and click on the circle with seven dots inside and
choose New SAS Program. You can also press F4 on your keyboard.

In R, we generally pass a data frame matrix or vector to analyze it. In SAS, we are actually going to apply a
procedure to a data table.

Code Editor

In the Program 1 workspace, type the word PROC. As you begin to type, notice the context-sensitive Help,
which is useful when you are learning SAS programming, as shown in Figure 1.7.

10 SAS Programming for R Users

Figure 1.7: Context-sensitive Help

[l *Program L * | FER SASHELP.CARS

CODE oG RESULTS
& H & E & [@ % M 3
= LY.l
=4 [|
lprod

Glohal State ments Keyword: PROC
= PROC Context: [GLOBAL STATEMENT] PROC stateme

= PROCECURE
Syntax: PROC procedure-name <optionss;

Begins 2 PROC step. The PROC step consists of
a procedure, usually with a 545 data s=t as inpu

=

Search: Product Documentation Samples ar
»

Keep typing and enter the word print. Notice how the context-sensitive Help changes. Scroll through the
Context Help window. It gives you a little more syntax — BY statements, ID statements, SUM statements, VAR
statements. Statements are additional arguments to a procedure. Look at the following syntax for PROC
PRINT:

PROC PRINT <option(s)>;
BY <DESCENDING> variable-1 <...<DESCENDING> variable-n><NOTSORTED>;
PAGEBY BY-variable;
SUMBY BY-variable;
ID variable(s) <option>;
SUM variable(s) <option>;
VAR variable(s) <option>;

The PRINT procedure prints the observations in a SAS data set, using all or some of the variables. You can
create a variety of reports ranging from a simple listing to a highly customized report that groups the data and
calculates totals and subtotals for numeric variables. Beginning in SAS 9.3, the PRINT procedure is now
completely integrated with the Output Delivery System.

The context-sensitive Help also provides links to SAS documentation and samples. To turn off the context
Help, in the top bar select More Application Options » Preferences » Editor. Clear the Enable autocomplete
check box. Select Save. To view the Context Help without the Autocomplete option, right-click a keyword and
select Syntax Help.

Finish the program by entering the following code:

proc print data=sashelp.cars;
run;

This program tells SAS to print the data table cars in the Sashelp library. The DATA= option tells SAS which
data set to use for the specified procedure. Notice that the library name is followed by a period and then the
data set name. Notice also that each statement ends with a semicolon.

Results

By now, you will have noticed that we do not have a command line interpreter. Instead, we are going to
compile our code, and the results will be returned.

Print the cars data table by clicking Run on the toolbar or pressing F3. The results are displayed on the
RESULTS tab as shown in Figure 1.8.

Chapter 1: Introduction to SAS 11

Figure 1.8: Program Results

SAE» Siudiu] 11 i SAS Frogram e
Filas and Falders B -Frogram1 = | BB sasHELP.CARS
¥ Tasks CODE LoG R T
¥ Snippets b 2 @ - R -1
4 Libraries Otb: | dare e Tupa | Origin | DilwaTrain MSRP lweoiod | EsgEewBiae | Cylinders
ﬁ' 45 1| dean RALK HiF At [LIS | BRLEAT 1.5 a
1| Rarn FEX T S | Gelen | A5a From R0 TR 0 4
4 il My Libraries
i E & Aol w000 144
b B mars :
4 | Agur 1 Ee] ESERE L] i a
b & MAPSGFE § | Asen - Aza #4275
;ﬂq MEPSSAS & | Amar IR 40,130 | & o L]
7 BN Spam | A Hea b TaS ETEETE
e

(] repa | Froem 240 s a & 4
L] rope | From 40 5 o
" TR B R
1" ae | A 210 3 2
2 - Earmps .| A #20] a
A DESPLAY

b B APPLANE - 1| 2ad o E3e pal &

(2 o Ll F10 840 4

¢ File Shomcuis

Scroll to view different parts of the table. You can open the results in another window, by clicking the Open in
New Browser tab. In addition, the toolbar on the Results page provides several ways to save the results. You
can download and save the results in a Word, PDF, or HTML document by selecting the appropriate icon.

Log

As a best practice, always click the Log tab to view any errors, warnings, and notes. (See Figure 1.9.)

Figure 1.9: SAS Log

[£ *Program 1 % || [Bd SASHELP.CARS X

CODE LOG RESULTS
B & 44
4 Errors, Warnings, Notes
b () Errors
b Warnings

b @ Notes (11)

Click the Notes arrow to view the notes that were created. Notice that the log reports that there were 428
observations read from the sashelp.cars data set.

Tip: When the log reports errors, it is much easier to click the Errors arrow rather than searching for the
error throughout the log.

Adding Variables

Let’s create a new program by selecting New Options at the top of the page and then selecting New SAS
Program (or simply press F4).

12 SAS Programming for R Users

Add the following code to the Program 2 workspace. Use the VAR statement to print only the desired column
variables: Make, Model, MPG_City, and MPG_Highway.

proc print data=sashelp.cars;
var
run;

In the Libraries pane, select the arrow next to the cars data set to view the variables in the data set. Drag and
drop the four variables into the program after the word var to complete the program. Don’t forget to put a
semicolon at the end of the statement!

You can see that the names of the variables are capitalized. SAS is not case-sensitive. The variable names
could be all-caps, all-lowercase, or any combination of capitalization. This applies to the procedure name and
any other part of the syntax.

proc print data=sashelp.cars;
var Make Model MPG City MPG_ Highway;
run;

Tip: You can also manually enter the name of each variable.

Run the program and view the results, as shown in Figure 1.10. Notice that only the four variables specified in
the VAR statement are printed on the Results page.

Figure 1.10: Program Results

E‘} *Program1l X || liig SASHELP.CARS X E(.' *Program2 X
CODE LOG RESULTS
6 [[w = 4 A
Obs | Make Model MPG_City | MPG_Highway
1 | Acura MDX 17 23
2 | Acura RSX Type S 2dr 24 31
3 | Acura TSX 4dr £2 28
4 | Acurs TL 4dr 20 28
5 Acura 3.5 RL 4dr 18 24
B | Acuta 3.5 RL wNavigation 4dr 18 24
7 | Acura NSX coupe 2drmanual S 17 24
8 | Audi A4 18T 4dr 22 31
9 | Audi A41 BT convertible 2dr 23 30
10 Audi A4 3.0 4dr 20 28
11 | Audi A4 3.0 Qusttro 4dr manual 17 26
12 | Audi A4 3.0 Qusttro 4dr suto 18 25
13 | Audi AS 3.0 4dr 20 27
14 | Audi A8 3.0 Quattro 4dr 18 25
15 | Audi A4 3.0 converible 2dr 20 27
16 | Audi A4 3.0 Quattro convertible 2dr 18 25
17 | Audi AB 2.7 Turbo Quattro d4dr 18 25
18 | Audi A8 4.2 Quattro &dr i7 24
19 | Audi AS L Quattro 4dr 17 24
20 | Audi 5S4 Quattro 4dr 14 20
21 | Audi RS G 4dr 15 22
22 | Audi TT 1.8 convertible 2dr (coupe) 20 28 L

Chapter 1: Introduction to SAS 13

Using Tasks

In addition to features that make writing SAS code easier, SAS Studio also includes powerful point-and-click
tasks that quickly generate reports and graphs. Let’s learn how to use tasks to generate summary statistics
and plots.

To see all available tasks, select Tasks in the Navigation pane and then expand Tasks (Figure 1.11).

Figure 1.11: Tasks
p Files and Folders
4 Tasks
- L%
B My Tasks
4 8 Tasks
I Data
I i Graph
I il Combinatarics and Probability
I 8 statisrics
I i@ High-Performance statstics
b {8 Econometrics
¢ @8 Forecasting
b @8 Data Mining
4 &g Utilities
ﬂ Import Data
) Query

i -
[£1 545 Program

» Snippets
p Libraries
p File Shortcuts

Notice that the tasks are separated into the following categories based on the analysis:

® Data

® Graph

® Combinatorics and Probability

® Statistics

® High-Performance Statistics

® Econometrics

® Forecasting

® Data Mining
You can expand each node to view the possible tasks. Expand the Statistics task and double-click the
Summary Statistics task. Notice that a new tab with some initialized code opens with the title Summary

Statistics, as shown in Figure 1.12. All of the text in green (just like in R) is comment code. Everything between
the /* and the */ is going to be commented out.

14 SAS Programming for R Users

Figure 1.12: Summary Statistics Task

I'i-:" oglaml X Es.a.s%i_?c:.r‘s x E'."ngle\ 12 % | I summary Statistics
Settings | Code/Results Split B 2 [ElLog [code
DATA OPTIONS CUTPU *+ M CODE LOG RESULTS
ADATA El& [CI TR
1
WORK.STUEE =) 2
3: * Ccde cannct be gsnerated because the following
4ROLES 1
4! * rples are not set:
5 %
"Analysis variables: 6 * mnalysis variables: (minimum: 1)
=) 7
g %
9/
10
11

Classification variables:

L

» ADDITIOMAL ROLES

Lin=11, Calumn1

In the Data section, click the Select a Table button and navigate to the cars data set in the Sashelp library.
Click the plus symbol next to Analysis variables and select Weight as the analysis variable. Notice that SAS
Studio automatically generates the code for the MEANS procedure, as shown in Figure 1.13.

Figure 1.13: Summary Statistics Task—Data Section

Settings | Code/Results | Split 2 H B I [Elog [Bdcode
DATA OPTIONS OUTPU ¥ - CODE LDG RESULTS
P, E & ® 8 e
1if*
SASHELP.CARS T B 2w
3w
4 ROLES 4 ®
. oiow
* analysisvariables: i+ g *
& weight 7i >
g -
§! * Generat=d on
10 * Generated on
11: * Generated on
Classification variables: + 1z *
N EIRY
s
15 ods noproctitle;
16ods graphics / imagemap=on;
17
¥ ADDITIONAL ROLES 18 proc means data=SASHELP.CARS chartype mean std min
19 var Weight;
20 run;

Click the OPTIONS tab to specify which options you want to use. Ignore the Basic Statistics options. In the
Plots section, select the Histogram and Add normal density curve check boxes to create statistical graphics.
Again, notice that SAS Studio automatically generates the code for the additional options, as shown in Figure
1.14.

Chapter 1: Introduction to SAS 15

Figure 1.14: Summary Statistics Task—Options Section
Settings Code/Results | Split 4 HERE :: ElLog [code
DATA OPTIONS CuUTPU * =
4 STATISTICS
4 Basic Stafistics
[F]Mean
[l standard deviation

[#]Minimum value

Maamum valus

I:[Median

[¥]Number of cbservations

[INumber of missing values

» proc means dacts3=SASHELP.CARS chartypes mean std m

var Weight:

run;
4PLOTS
22 proc univariate dats=SASEELP.CARS vardef=df nopr
[#] Histogram 23 var Weigl
histogram Weight / nommal (nopzint);

[l Add normal density curve | 25 run;

[C] Add kernel density estimat= '

Line £, Column 1
Run the generated code and view the results. The analysis is shown in a summary table and the plot is also
printed on the Results page (Figure 1.15).

Figure 1.15: Summary Statistics Task—Results
CODE LoG RESULTS
R A

Analysis Variable : Weight Weight (LBS)
Mean Std Dev = Minimum = Maximum N
3577.05 | 758.0832148 | 1850.00 | 7100.00 | 428

Distribution of Weight
40

30

20

Percent

= { :

[— : - S |

2000 2500 3000 3500 4000 4500 5000 5500 6000 €500 VOO0
Weight (LBS)

Curve

Normal(Mu=3578 Sigma=758.98)

Tip: You can save the program by clicking the Save button on the toolbar or by copying and pasting the
code into an existing program.

Using Snippets

Code snippets enable you to quickly insert saved SAS code in your program and customize the code to meet
your needs. Think of snippets as starter code. If there is code that you run often that you don’t want to have
to type in every time from scratch, save it as a snippet. Let’s use snippets to create a scatterplot matrix.

16 SAS Programming for R Users

Preloaded Snippets

Open a new program tab by pressing F4. In the Navigation pane, select Snippets and then expand the
Snippets arrow. In Figure 1.16 you can see the preloaded snippet categories.

Figure 1.16: Snippets

p Files and Folders
p Tasks
4 Snippets
[+ L%}
E My Snippets
4 8 lsnippets
> @8 catalogs
> 8 Data
> @8 Descriptive
> @8 Graph
> @8 ML
> B8 Macro

p Libraries

p File Shortcuts

Expand Graph. Drag and drop the Scatter Plot Matrix snippet into the program workspace. The following
code is generated:

/*--Scatter Plot Matrix—--*/
title 'Vehicle Profile';
proc sgscatter data=sashelp.cars (where=(type in ('Sedan' 'Sports'))):;
label mpg city='City';
label mpg highway='Highway';
matrix mpg city mpg highway horsepower weight /
transparency=0.8 markerattrs=graphdata3 (symbol=circlefilled);
run;

This code will open up every time you click this snippet. It will not change. Notice that we are working with
the sashelp.cars data. This is a complete coincidence! Click Run and view the results. (See Figure 1.17.)

Chapter 1: Introduction to SAS 17

Figure 1.17: Snippet Code Results

Vehicle Profile
20 30 40 2000 3000 4000 5000
1 L 1 | |

35
at s o 30
City < g o - 25

v . c

40 —
. 3 s. E
l.! 5 Highwa '} e
30 - ghway x
jr: qagii- L’hkv

20 %' .

500
- 400

s . Horsepower |;' 3 300
L % #
e g

-100

5000 — 1=

u i Ir- Weight (LBS)
. 3 AT i
3000 — 7 1 L 4

2000

| T T
15 20 25 30 35 100 200 300 400 500

Tip: Generally, snippets are used as a starter program. Thus, the generated code can be altered to fit
your needs.

Let’s go back to the code because, remember, snippets are just started code. Delete the WHERE option and
change the Weight variable to the Length variable to create the following code:

/*--Scatter Plot Matrix—--*/
title 'Vehicle Profile';
proc sgscatter data=sashelp.cars;
label mpg city='City';
label mpg highway='Highway';
matrix mpg city mpg highway horsepower length /
transparency=0.8 markerattrs=graphdata3 (symbol=circlefilled);
run;

Click Run and view the results from the modified snippet (Figure 1.18).

18 SAS Programming for R Users

Figure 1.18: Modified Snippet Code Results

Vehicle Profile
10 20 30 40 50 60 150 175 200 225
1 ! | S &
50
40
o s ye 30

/ %ag- ' Fh -

10

City

60
50
40

§ Highway .

£ o LY
0 g a,=H!
20 f g i 3 A

10]
500

400
L Horsepower 300

?i . A 200
3 K &
> b

100

225

2 . -
&
200 i o ol iy
! a ﬁ*’: o Length (IN)
175 &‘ <1 3 A

150

10 20 30 40 50 60 100 200 300 400 500

Custom Snippets

Create your own snippet by clicking the New Snippet button in the Snippets pane. Copy and paste the SAS
code that you want to use onto the Snippet 1 tab. Click Save on the Snippet 1 tab. In the Add to My Snippets
window, type a name for your Snippet and click Save.

Notice that the My Snippets section now has your custom snippet, which you can drag and drop onto any SAS
Studio Program tab at your convenience.

Calling R from SAS

In this section, you will see how easy it is to work with R from SAS/IML. We can export our data to R and write
R code directly in IML. This section includes advanced programs and techniques that show you what you will
be able to do by the end of this book. We will not talk through the details of the code, but rather this will just
show you what we are working toward at the end of this book.

For this example, we will use the randomForest package in R. We will send the birth data set to R, use the
randomForest() function to create a predictive model, and return the results to SAS.

Program 1.2 invokes SAS/IML and sends the birth data set in the Work library to R and names the data frame
birth as well. Write your R code between the SUBMIT and ENDSUBMIT statements. Use the randomForest
package in R and the randomForest() function to estimate a model with BWT as the dependent variable and
Smoke, HT, LWT, and PTL as independent variables. Use the SUMMARY statement to print the details of the
analysis to the console. Finally, create a data frame with the actual and predicted values, given the model, and
name the variables Actual and Predicted.

Program 1.2: RandomForest Function

proc iml;
call ExportDataSetToR("work.birth","birth");

submit / r;
library(randomForest)
rf = randomForest (BWT ~ SMOKE + HT + LWT + PTL,
data=birth,ntree=200, importance=TRUE)
summary (rf)

actual = birth$BWT

pred = predict (rf,data=birth)
= cbind(actual,pred)

actual.pred

colnames (actual.pred)

endsubmit;

call ImportDataSetFromR ("Rdata","actual.pred");

quit;

<- c("Actual", "Predicted")

Chapter 1: Introduction to SAS 19

Remember that we returned our data set, which opens in a new tab in OUTPUT DATA. Return the data frame
to a SAS data set with the name Rdata.

Tip: The output from the Summary function generated in the R console was printed in the SAS Results
page as shown in Output 1.2. By default, SAS returns all the R console output directly to the SAS Results
page, keeping it in R format.

Output 1.2: Results from Program 1.2

call

type
predicted

mse

rsq
oob.times
importance
importanceSD
locallmportance
proximity
ntree

mtry

forest

coefs

y

test

inbag

terms

Length
5

1

189
200
200
189

Class

-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-

terms

Mode
call
character
numeric
numeric
numeric
numeric
numeric
numeric
NULL
NULL
numeric
numeric
list
NULL
numeric
NULL
NULL

call

Tip: If you are running SAS Studio in client/server mode, you do not have access to the Work library on a

point-and-click basis. You must use the PRINT procedure to view the results.

20 SAS Programming for R Users

Exercises

Multiple Choice
1. Choose the correct statement.
a. SAS has a command line interpreter.
b. SASis case sensitive.
c. SAS Studio and SAS University Edition are synonymous.
d. SAS applies procedures to the data table for analysis.

2. Which statement is a SAS syntax requirement?
a. Begin each statement in column one.
b. Put only one statement on each line.
c. Separate each step with a line space.
d. End each statement with a semicolon.

Short Answer

1. How many statements are contained this DATA step?

data work.newsalesemps;
length First Name $ 12 Last Name $ 18 Job Title $ 25;
infile "gpath\newemps.csv" dlm=',"';
input First Name $ Last Name $
Job Title $ Salary;
run;

Solutions

Multiple Choice

1.d
2.d

Short Answer

1. This DATA step has five statements.

Chapter 1: Introduction to SAS 21

22 SAS Programming for R Users

Chapter 2: Importing and Reporting Data

INtroductionccocei s
Manual Data Entry With the DATA SEEP......ccciiiiiiiiiii s nnnas
Create @ NEeW Data Set.......cciiiiiiiiiiiiiiiiiiiiiiiiiiiiieterirrerreerr e a s s s s s sssssssssssssssssssssssssssssssssssssnes
{2111 0] L=
Create a New Data Set with Delimited Data...
Importing Data.......ccccceeiiiiiiiniiir s
Import with a DATA Step
Import with PROC IMPORT
EXQMPIES ..cevveeerernnnnnnnnneennnnnssssssssssssssssssssnsssssssssssnnnnns
Reporting Data......ccccccceeiriii s
PROC CONTENTS
PROC PRINT
PROCSAQL......
Comparison OPErators........ccceeeeieeeeeeeeeeeeeeeeeenmeeeeemmememmmeesessssssssssssssssses
Enhanced RePOrting......cccccceeeeiiiii s
LABEL Statement.......ccccceeeiiiimmmnniiiiiiinnniiiniinneeisnnnneneenens
Format Statement.....
FORMAT Procedure
Example with Informats
EXErciSesceeeeeeeeeeneeneeeennnennnes
SOIULIONS coeeiinerriiiiiisnnrre e snnnees

Introduction

Now that you are comfortable navigating SAS Studio and have a feel for SAS syntax, in this chapter we will
learn how to import data into SAS. We will start by creating a few data sets manually with the DATA step and
then we will import some delimited raw data files. After we create new SAS data sets, you will learn how to
report different features of the data, including how to change the appearance of SAS column headings and
values with SAS labels and formats.

For the rest of this book, you will generally see a “Duplicate the R Script” step. We will look at how to do
something in R and then show how to do it in SAS.

Manual Data Entry with the DATA Step

In this section, we want to create a data set by hand. For example, suppose we want to create a data set with
4 variables: first name, last name, age, and height. These variables are a mix of character and numeric values.

Create a New Data Set

To create a new SAS data set, we are going to use a DATA step. Recall from Chapter 1 that DATA steps are
used to read in data or alter existing data sets. In SAS, the syntax of the DATA step is:

DATA new-data-set-name;
LENGTH variable-a <$> # variable-a <$># ...;
INPUT variable-a<$> variable-b ...;
DATALINES;
alb1..z1
a2b2..z2

24 SAS Programming for R Users

anbn ... zn

run;
Tip: The < > symbols denote optional SAS syntax.

We start with the DATA statement and specify a new data set name, and then we use the input statement to
specify the variables to be in the data set. If the variables are character values, we need to specify a dollar sign
after the variable name.

Next, we specify a data line statement. It is a statement, so we use a semicolon. Then, we start writing our
data in columns. So, column 1 is variable a, column 2 is variable b, and so on. After we enter all the data, add a
semicolon. Then use a RUN statement to finish up the DATA step.

By default, SAS only gives you 8 bytes in a single variable. Numeric values are stored in floating point notation
storing up to 17 significant digits in 8 bytes. In a character variable, each character takes one byte. So by
default, they can hold a maximum of 8 characters.

If your data values are longer than 8 characters (for example, names), or shorter than 8 characters (for
example, gender or state code), then you can use an optional LENGTH statement to specify a length for the
variable. In the LENGTH statement, you can say variable a, then a dollar sign since it’s a character variable and
then specify a number. How many characters do you want to be able to hold in a single variable? In general,
you just need an upper bound. You don’t have to go into the data set and identify the largest variable. Maybe
you just want to go up to 100 characters. But keep in mind, it’s going to save space to have fewer characters.
So don’t specify a number of bytes that is extremely large because you don’t want to save unnecessary space.

Tip: Character variables specified in the LENGTH and INPUT statements must be followed by the $
symbol. However, the INPUT statement does not require the $ symbol if the LENGTH statement is used.

Example

In R, to create a new data set, we might create 4 vectors (first name, last name, age, and height), and then
combine them to create a data frame, as shown in Figure 2.1.

Figure 2.1: R Script

= Source on Save A L =% Run | ®% | P Source ~
First_Name = c("Jordan"”,"Bruce"”,"walter"”,"Henry","JeanClaude")
Last_Name = c("Bakerman”,"wayne”,"white”,"Hil11", "vanDamme")

age = c(27,35,51,65,55)
height = c(68,70,70,66,69]

#Create Data Frame

example_data = data.frame(First_Name,Last_Name,age,height

= W B U e

Now let’s duplicate the R script in SAS.

Program 2.1a: Duplicate the R Script in SAS

data spédr.example data;
length First Name $ 25 Last Name $ 25;
input First Name $ Last Name $ age height;
datalines;
Jordan Bakerman 27 68
Bruce Wayne 35 70
Walter White 51 70
Henry Hill 65 66
JeanClaude VanDamme 55 69

run;

Chapter 2: Importing and Reporting Data 25

In Program 2.1a, we are creating a data set called EXAMPLE_DATA and saving it in the SP4R library. In the
INPUT statement, there are 4 variables. FIRST_NAME and LAST_NAME are character-valued, so they require
dollar signs. AGE and HEIGHT are numeric variables.

Next, we specify the data lines and type in all the data on separate lines. Remember the final semicolon after
the data, and don’t forget the RUN statement to finish up the DATA statement.

You will notice that the last observation, JeanClaude, has more than 8 bytes. It has 10 characters. So we
needed to use a LENGTH statement to change the number of bytes for the variable. In the LENGTH statement,
we can specify lengths for FIRST_NAME and LAST_NAME. Here we used 25 characters as a length, but we
don’t need to know the value with the maximum number of characters if you just specify an upper bound.

Click Run to run Program 2.1a to make sure you have created your data set correctly.

In Program 2.1b, we will create another data set. The only difference here is that you will notice we are
reading in more than one observation per line.

Program 2.1b: Duplicate the R Script in SAS Another Way

data spdr.example dataZ2;
length First Name $ 25 Last Name $ 25;
input First Name $ Last Name $ age height @@;
datalines;
Jordan Bakerman 27 68 Bruce Wayne 35 70 Walter White 51 70
Henry Hill 65 66 JeanClaude VanDamme 55 69

’

run;

In Program 2.1b, we have our first observation and then immediately following it, we have the second and
third observations. To read in this data we need to use the trailing @@ symbol in the INPUT statement. That
symbol tells SAS to hold the line and continue reading in data as new observations. If we didn’t use the trailing
@@ symbol, we would only have 2 observations in this data set: Jordan Bakerman and Henry Hill.

Tip: The @@ option at the end of the INPUT statement enables the DATA step to read in more than one
observation per line.

Create a New Data Set with Delimited Data

Let’s look at another method for reading in data that uses some of the syntax we just learned, plus some
options that will be discussed more in the next section. Perhaps you have a text file and you don’t want to
import the file, you just want to read in the text values by copying and pasting the data into DATA step. But
maybe that text file has delimited data. How can we read that in?

Take a look at Program 2.2 where we create a new data set called EXAMPLE_DATA3.

Program 2.2: Manually Creating a SAS Data Set from Delimited Data

data spédr.example data3;
length First Name $ 25;
infile datalines dlm='*";
input First Name $ Last Name $ age height;
datalines;
Jordan*Bakerman*27*68
Bruce*Wayne*35*70
Walter*White*51*70
Henry*Hil1l*65*%66
Jean Claude*Van Damme*55*69

run;

In Program 2.2, we use a LENGTH statement to change the first name variable to 25 characters maximum.
Notice in this case that we are not setting a length for last name. Our INPUT statement has the same 4
variables: first name, last name, age, and height.

26 SAS Programming for R Users

In the DATALINES statement notice that the data is delimited with stars. In order to read in this data, we add
an INFILE statement and use the keyword DATALINES. That tells SAS to read in the data under the DATALINES
statement, as opposed to a delimited raw data file. We also use the DLM= option, which specifies the
delimiter, which in this case is a star.

When you run Program 2.2, the data table created should look exactly like the one created in the previous
section. But remember, we only specified a length for the first name field. So the last name field defaults to 8
bytes and some of the data will be truncated.

Importing Data

In this section, we will learn how to import a saved raw data file using either a DATA step or a PROC step to
get back a new SAS data set.

In R, we might use the read.csv function and create new data files from our CSV files. Once we read in the
data, then we can use functions like COLNAMES to actually change the data frame column names.

Import with a DATA Step

To read in a delimited raw data file in SAS, we can use a DATA step. The syntax is very similar to the manual
data entry syntax, but you will replace the DATALINES statement with the INFILE statement to read a raw data
file as shown below:

DATA output-data-set;
LENGTH variable <$> # variable <$> #...;
INFILE “data-file-path” DLM="'delimiter’
INPUT variable <$> variable <$>...;

RUN;

Start with the DATA statement, then specify a new SAS data set name. We will use the INPUT statement
exactly as before and specify variable names. If the variable is a character data value, use the dollar sign. If we
need to change the number of characters to something larger than 8, we will use a LENGTH statement.

This time, however, instead of using the DATALINES statement, we will use the INFILE statement. In quotation
marks, specify the path to the file. For example, an INFILE statement might look like the following:

infile “&path/example.csv”;

The INFILE statement identifies the raw data file to be read and requires the delimiter option, DLM, if the raw
data file is separated by something other than a space. For example, if your data is comma-delimited, your
INFILE statement might look like the following:

infile "&path\allnames.csv" dlm="',"';

The INFILE statement must come before the INPUT statement. Some common delimiters are DLM=',' for .csv
and DLM='09'x for tab-delimited files.

Import with PROC IMPORT

An alternative method to reading in delimited raw data files is the IMPORT procedure. The DATA step requires
a bit more syntax, but gives you more control over how exactly to read in delimited raw data files. PROC
IMPORT is a helpful method for use with files with more structure like CSV files or Excel workbooks. For
example, if the first row in the data file has the variable names that you want to use in the SAS data set, PROC
IMPORT makes it very easy to use those as the SAS variable names.

For the PROC IMPORT procedure, the syntax to import a file with column names is below:

PROC IMPORT OUT=data-set-name
DATAFILE= “data-file-path”
DBMS-=identifier <REPLACE>;

Chapter 2: Importing and Reporting Data 27

GETNAMES=<yes,no>;
SHEET=<"sheet.name">
DATAROW=<{#>;

RUN;

Start with a PROC IMPORT statement. In the OUT= option, you will specify the new SAS data set name. The
next option, the DATAFILE= option lets you specify the full path to the data file (similar to the INFILE
statement before). The DBMS= option is simply the identifier of the file. For example, if you are reading a CSV
file, you simply specify CSV. If you are working with an Excel workbook, you would specify xIsx.

If the first row of your data contains the variable names that you want to use as SAS variable names, then use
the GETNAMES=yes option to read in those variable names and use them as the SAS data set variable names.

SHEET is a great statement to be aware of. If you are reading in data sets from multiple sheets of an Excel
workbook, you can specify the name of the sheet explicitly and read in only that specific data set. You can also
specify a data row to start reading in the data. For example, if the first row has column names and the second
row is blank, use DATAROW=3.

Tip: The REPLACE option is used to write over existing SAS data tables with the same name.

If you read in a delimited raw data file with PROC IMPORT and you don’t have variable names that you are
going to use as SAS data set variable names, the variable names will default to varl, var2, var3, and so on. To
change those after the data has been read in, you'll need to use the DATA step. Simply specify the name of
the data set we are working with and the SET statement tells SAS where to pull the data from. If the data set
names and the data in the set statements are the same, it simply writes over that data set with our changes.

You can change as many variable names in a single RENAME statement as you want. To rename the variables,
use the RENAME statement as shown below:

DATA data-table-name-new;

SET data-table-name-old,
RENAME old-var-1= new-var-1
old-var-2= new-var-2

old-var-n= new-var-n;
RUN;

Examples

Figure 2.2 shows an instance of reading in a CSV file in R. In this example, we will read in a delimited raw data
file with a DATA step to duplicate the results from the R script in Figure 2.2.

Figure 2.2: R Script

(5 [7] Source on Save Q ¥ i dl |- = Run b Source -

= = g

allnames = read.csv("path/allnames.csv”, header=FALSE)

#FChanae ariable nan es

colnames(allnames) =<- c("First_Name","Last_Name","age","height”

In Program 2.3 we are printing a new data set called ALL_NAMES in the SP4R library. The allnames.csv file has
the original five names that were used in the previous example as well as 195 other names. Of course, we
would not want to type those out by hand! It’s much easier to save them in a CSV file and read them in with a
DATA step.

Program 2.3: Duplicate the R Script with a DATA Step

data sp4dr.all names;
length First Name $ 25 Last Name $ 25;

28 SAS Programming for R Users

infile "gpath\allnames.csv" dlm=',"';
input First Name $ Last Name $ age height;
run;

The variable names are going to be the same names as in the example in the previous section: First_Name,
Last_Name, age, and height. In the LENGTH statement in Program 2.3, we change the length of the first name
and last name variables. In the INFILE statement, we specify the path to the data file. With the DLM= option,
we specify the comma as the delimiter for the CSV file type. If you run this program, you should see a table
with 200 observations in 4 columns.

Figure 2.3 shows an instance of reading in a CSV file in R. In this example, we will read in a delimited raw data
file with a PROC step to duplicate the results from the R script in Figure 2.3.

Figure 2.3: R Script

mport data with variable names

béséba11 :_Fe;d.csv:"path’baﬁeba11.csm“

#Change ariable names

colnames (baseball) <- c("Name","Team",K "At_Bats",6 "Hits", "Home_Runs",
"Runs”,"RBIs", "League”,"Division”,
"position”,"Errors”

To duplicate this R script in SAS, let’s import a data set with the IMPORT procedure as shown in Program 2.4.

Program 2.4: Duplicate the R Script with PROC IMPORT

proc import out=spdr.baseball
datafile= "g&path\baseball.csv" DBMS=CSV REPLACE;
getnames=yes;
datarow=2;

run;

data spé4r.baseball;
set spdr.baseball;
rename nAtBat = At Bats
nHits = Hits
nHome = Home Runs
nRuns = Runs
nRBI = RBIs
nError = Errors;
run;

In the PROC IMPORT statement, we use the OUT= option to specify the data set name. In the DATAFILE=
option, we specify the path to the baseball.csv data file. The file type is, of course, CSV. We use the REPLACE
option to overwrite any existing data sets in the SP4R library with the same name.

Now this CSV has the first row with the variable names that we want to use as SAS data set variable names, so
we use the GETNAMES=yes option. Then we tell SAS to start reading in the data on row 2.

Run just the IMPORT procedure portion of Program 2.4 by highlighting only that portion of the code. In the
OUTPUT DATA tab, we can see the data set, which is from the 1986 MLB season. It includes the names of
players, the team that they played for, and several other variables indicating player performance. You will
notice that the performance measure variable names start with n: nAtBat, nHits, nHome, and so on. Maybe
we don’t the n character in front of all those variable names.

To change the variable names, we use the RENAME statement in a DATA step, as shown in the second part of
the code in Program 2.4. In the DATA statement and the SET statement, we specify the same name, baseball.
This overwrites the existing data set. In the RENAME statement, we change nAtBat to At_Bats, nHits to Hits,
and so on. Once you run the second part of the code in Program 2.4, your data set will display with the new
variable names.

Chapter 2: Importing and Reporting Data 29

Reporting Data

Now that we know how to get our data into SAS, we want to report the data and bring some features into a
report. To do this, we will use a few different PROC steps and return some results.

In R, when we read in a data set, we can use several different functions including:

® head() to print the first 6 rows to make sure we read it in correctly
® names() to see the variable names
® dim() to see the dimension of the data set

® |evels() to identify the unique levels of the classification variables

In R, we can also print variables conditionally. We can do all this in SAS with a few different procedures.

PROC CONTENTS

The first reporting procedure that we will learn about is the CONTENTS procedure. It provides the same
information as the R functions dim() and names(). It provides us the number of observations, the number of
variables, as well as the variable names in the data set. Program 2.5 shows a simple CONTENTS procedures
and Output 2.5 shows the results of running the program.

Program 2.5: CONTENTS Procedure

proc contents data=spdr.cars varnum;
run;

Output 2.5: Results of Program 2.5

Data Set Name WORK CARS Observations 428
Member Type DATA Variables 23

Variables in Creation Order

Variable Type Len Format Label
1 mpg_quality Char 6
2 | Make Char 13
3 | Model Char 40

As a best practice, use the VARNUM option in the CONTENTS statement so that SAS will print the variables to
the results page in the order in which they appear in the data set. Of course, in SAS Studio, if you wanted to,
you could simply open up your data set and view that information in the appropriate data table tab.

PROC PRINT

FIRSTOBS= and OBS= Options

To reproduce the head() function in R, we simply use the FIRSTOBS= and the OBS= option in the PROC PRINT
statement. As shown in Program 2.6, in parentheses, we will say FIRSTOBS=1 and OBS=6, which will print just
observations 1 through 6, as shown in Output 2.6.

Program 2.6: FIRSTOBS= and OBS= Options in Print Procedure

proc print data=sp4r.cars (firstobs=1 obs=6);
run;

30 SAS Programming for R Users

Output 2.6: Results of Program 2.6

Obs mpg_quality Make Model Type | Origin DriveTrain MSRP Invoice
1 Medium Acura MODX SUV Asia Al $36.945 | 533337
2 Medum Acura RSX Type S5 Sedan Asia | From $23.8920 s21.1e1

2dr
3 Medwm Acura TSX 4dr Sedan | Asia Frant 526,930 | 524 647
4 Medium Acura TL 4dr Sedan | Asia Fromt 333,195 | 530,299
5 Medium Acura 35RL4dr | Sedan | Asia Fromt 543,755 539,014
6 Medium Acura 3.5RL Sedan | Asia Frant S46.100 | 541100

willaagation

ddr

Of course, you can change the numbers in the FIRSTOBS= and OBS= options. If you wanted to print
observations 10 through 20, you could simply change those options as you see fit. By default, PROC PRINT
displays all observations and all variables if you do not use the OBS= option.

Tip: If you start from observation 1, you do not need FIRSTOBS=1.

WHERE Statement

We saw in Chapter 1 that to print only specified variable, we simply list them in the VAR statement. But what
if we wanted to print observations conditionally? We can use a WHERE statement and provide it a conditional
expression, as shown in the syntax below:

PROC PRINT DATA=data-table <options>;
VAR variable1 variable?2 ...;
WHERE conditional-expression;

RUN;

The WHERE statement is very powerful and consistent. It can be used in other procedures as well. Here are
some examples of WHERE expressions:

® where salary > 5000
® where gender="Male’;

® where upcase(gender)="MALE’;

The last two examples show one of the few instances where SAS is case-sensitive. Notice that we are quoting
the word ‘Male’. In that case, you need to specify the observations exactly as it appears in the SAS data table.
If it appears as Male, you need to specify it exactly that way. It will not find observations for ‘male’. To avoid
case sensitivity, you can use the UPCASE function to capitalize all observations.

PROC SQL

To reproduce the levels() function in R to actually find the unique levels of a classification variable, we will use
PROC SQL (pronounced “sequel”). PROC SQL is a very large, very powerful procedure that can do lots of
different tasks. For example, it can subset data, call data, and combine data. Any type of querying of data can
be done using PROC SQL. If you are familiar with the open-source SQL, you can use all the same functionality
directly in SAS. The only difference is that you have to use the PROC SQL step.

Chapter 2: Importing and Reporting Data 31

To print the unique levels of a classification variable, the PROC SQL syntax is shown below.

PROC SQL;
SELECT UNIQUE variable-name FROM data-table-name;
QUIT;

Use the SELECT UNIQUE statement and then specify the variable name for which you want to print unique
levels. Use the keyword FROM and specify the data table to be queried.

In Program 2.7, we query the CARS database to select the unique levels of the variable ORIGIN.

Program 2.7: PROC SQL

proc sqgl;
select unique origin from spér.cars;
quit;

Output 2.7: Results of Program 2.7

Origin
Asia
Europe
USA

In Output 2.7, you can see that it prints Asia, Europe, and USA.

Comparison Operators

Most of the comparison operators in SAS are exactly the same as in R. Greater than, less than, greater than or
equal to, and less than or equal to are exactly the same. The ones that are different are the equal to and not
equal to operators. In SAS, we do not use the exclamation point to denote not equal to something, but we do
have three other options as shown in Table 2.1. Also, we do not use the double equal sign in SAS. If you are
using multiple equal signs in SAS, the first equal sign is actually the assignment and the second equal sign acts
as the binary operator.

Table 2.1: Comparison Operators

R operator SAS operator Mnemonic Definition
— = EQ Equal to
1= A= o=~= NE Not equal to
> > GT Greater than
< < LT Less than
>= >= GE Greater than or equal to
<= <= LE Less than or equal to

OR IN Equal to one of a list

32 SAS Programming for R Users
You can also use the mnemonic terms listed in Table 2.1 if you don’t want to write out the symbols or cannot
remember the symbols in SAS.

Another really powerful operator is the IN operator. This asks the question, “Is it equal to one of a list?” It’s
very similar to the OR operator in R.

As an example, suppose we want to print observations where country is in the following list:

where country in (‘'US’, ‘CA');

We use parentheses and specify the list: US, Canada. Again, if it’s quoted, it’s case-sensitive. So in a PROC
PRINT statement, this WHERE statement is only going to print observations where the country is either US or
Canada.

The logical operators AND and OR have the symbols in SAS as they do in R, as shown in Table 2.2. Again, the
exclamation point is not used in SAS, so you have to use one of the three symbols that are acceptable.

Table 2.2: Logical Operators

! A~ NOT
& & AND [
| | OR I

You can also just use the mnemonic terms NOT, AND, or OR.

As another example, suppose we want to print observations where the country is not either the US or Canada.
We would use the following operators in the WHERE statement:

where country not in (‘US’, ‘CA’);

Enhanced Reporting

In this section we will apply labels and formats to our data sets and results to alter the presentation of the
data table or report. We will learn how to change the display of column and variable names, apply formats
such as dollar signs to numeric variables, and change date formats.

LABEL Statement

The LABEL statement is used to change the display of the column variables. The syntax is as follows:
LABEL variable-1=‘label-1’ ... variable-n=‘label-n’;

In the LABEL statement, we specify the variable name then set it equal to a new variable name. Program 2.8
shows an example of how to change the column names from FN and LN to First Name and Last Name.

Program 2.8: LABEL Statement

proc print data=sp4r.business label;
label FN='First Name' LN='Last Name'
run;

Chapter 2: Importing and Reporting Data 33

In the LABEL statement, we specify the variable name FN and set it equal to a new display — “First Name”. We
do the same thing for LN and set it equal to “Last Name”. This only changes the display of the columns. The
variable names remain FN and LN.

When you are using a LABEL statement with a PRINT procedure, you have to use the LABEL option. But in
other procedures, you can just use the LABEL statement.

Format Statement

Next, let’s learn how to apply formats. Formats change the appearance of the observations in a report. They
do not change the actual value.

Here are few examples of using formats to change the appearance of observations:

® 10866 (SAS Date) > 01/10/1989
® 5950.35 - $5,950.35

All SAS formats have the following syntax:

<$>format<w>.<d>

S Optional. Indicates a character format.
format Names the SAS format.

w Optional. Specifies the total format width, including decimal places and special
characters.

Required syntax. Formats always contain a period (.) as part of the name.

d Optional. Specifies the number of decimal places to display in numeric formats.

Formats begin with a S if it is a character format, followed by the name of the format, an optional width, and a
required dot delimiter. The format also contains an optional number of decimal places for numeric formats.

SAS has many built-in character, numeric, data and time, and ISO 8601 formats. An extensive list of these
formats can be found on the following page:
http://support.sas.com/documentation/cdl/en/leforinforref/64790/HTML/default/viewer.htm#p0z62k899n6
a7wnl1r5in6g5253vl.htm

So how do we actually apply a format? Program 2.9 shows an example of using a format statement in a PRINT
procedure.

Program 2.9: FORMAT Statement

proc print data=spdr.business;
format salary dollar8. hire date mmddyylO.;
run;

In the PRINT procedure, we specify the variable in the data set in the FORMAT statement. Then, immediately
following the variable name (SALARY), we specify the format to be applied to the variable (DOLLARS). Then we
apply the format MMDDYY10 to the variable HIRE_DATE.

As you can see in Output 2.9, Salary now has a dollar sign and a comma and Hire_Date is in a readable date
format.

34 SAS Programming for R Users

Output 2.9: Results of Program 2.9

Salary Hire Date
$51,500 06/01/1993
83,975 01/0111978

594,545 04/07M1975

Tip: As a best practice, use LABEL and FORMAT statements directly in the DATA step when you are
reading in your data. When you do this, it automatically applies these labels and formats going forward.
If you open up your data set, you will actually see the labels and formats already applied.

If you create a report, it will apply those labels and formats also. That way, you don’t have to explicitly
specify LABEL and FORMAT statements going forward.

Formats
Let’s look at an example of some common formats. The middle column of Table 2.3 is the stored value in the
SAS data set.

Table 2.3: SAS Format Examples

DOLLARI12.2 27134.5864 $27,134.59
DOLLARY.2 27134.5864 $27134.59
DOLLARS.2 27134.5864 27134.59
DOLLARS.2 27134.5864 27135
DOLLAR4.2 27134.5864 27E3

In the first row of Table 2.3, if we apply the DOLLAR12.2 format, it’s going to apply the DOLLAR format with a
width of up to 12 characters and maximum of 2 decimal places. The width is for all characters and includes the
dollar sign, comma, and period. So the displayed value includes 10 characters for this format.

If the format width is not large enough to accommodate a numeric value, the displayed value is automatically
adjusted to fit the width. In the second row of the table, we change the width of the format to 9. Notice in the
displayed value that the comma is removed. In the third row, when we reduce the width to 8, notice the
dollar sign is also removed. When we get to the last value in the table with a width of 4, it is displayed in
scientific notation.

SAS Date Formats

When working with SAS date formats, the value in the data table represents the number of days since January
1, 1960. Thus, a value of zero represents that date. Going forward in time, for example, 366 days forward will
represent January 1, 1961. Going even further, 88,399 days represents January 11, 2022. To go back in time
prior to January 1, 1960, we will simply use the dash. So -365 represents January 1, 1959, and so on, as shown
in Figure 2.4.

Chapter 2: Importing and Reporting Data 35

Figure 2.4: SAS Date Format Timeline

Calendar Date

Jul 4 1776 lan 11959 lan 1 1960 lan 1 1961 lan 11 2202

—— ——e— S

67019 165 0 166 #8399

SAS Date Value

Let’s look at an example of how to use SAS date formats. The middle column of Table 2.3 is the stored value in
the SAS data set.

Table 2.4: SAS Date Format Examples

MMDDYY10. 0 01/01/1960
MMDDYYS8. O 01/01/60
MMDDYY6. O 010160
DDMMYY10. 365 31/12/1960
DDMMYYS8. 365 31/12/60
DDMMYY6. 365 311260

If we apply the MMDDYY10 format to a value of zero, it’s going to display 01/01/1960. When we reduce the
format to the width of 8 to the same value, it simply removes the 19 in the year. When we reduce the width
to 6, it removes the slashes. You can see that the width is extremely important when you are displaying a SAS
date value.

There are many different formats that you can apply to dates. Table 2.4 shows MMDDYY and DDMMYY
formats, which display the order of the day and month differently.

You might be asking yourself, Do | really need to know the number of days since January 1, 1960 to actually
work with SAS date formats? The answer, of course, is no. That would be too much of a pain! We use what are
called informats, meaning that your data is already in the appropriate format. These will be discussed in the
example at the end of this section.

FORMAT Procedure

As mentioned earlier, SAS comes with many built-in formats. However, if SAS does not offer the exact format
that you need, you can create your own format.

PROC FORMAT enables you to create your own user-defined formats. To do so, we will use individual value
statements and then name the format. The syntax for PROC FORMAT is as follows:

PROC FORMAT;
VALUE <$> format-name range1 = ‘label?’ ...;
RUN;

36 SAS Programming for R Users

A format name can be a maximum of 32 characters in length. Character formats must begin with a dollar sign
followed by a letter or underscore. Numeric formats must begin with a letter or underscore, cannot end in a
number, cannot be given the name of a SAS format, and cannot include a period in the VALUE statement.

Labels can be a maximum of 32,767 characters in length and are enclosed in quotation marks.

Let’s look at an example of how to use PROC FORMAT to create and apply user-defined format in Program
2.10.

Program 2.10: PROC FORMAT

proc format;
value $jobformat 'SR'='Sales Rep'
'SM'='Sales Manager';
value bonusformat 0='No' 1='Yes';
run;

proc print data=sp4r.business;
format job $jobformat. bonus bonusformat.;
run;

In Program 2.10, we create 2 formats in the FORMAT procedure. Recall that if we are working with character
data, we start with the dollar sign. We name the first format jobformat. Then we change the display of SR to
Sales Rep and SM to Sales Manager.

You can have as many value statements as you want to create as many user-defined formats as you want in a
single FORMAT procedure. Next, we create bonusformat, which changes the display of the value 0 to no and 1
to yes. This format can be helpful when working with logistic regression so that you don’t have a meaningful
response as a value, rather than just a binary O or 1.

In the PRINT Procedure, we apply the formats that we have just created to the variables that we want to
format. You can see the results of the formats in Output 2.10. Remember that the name of the format must
end with a period in the FORMAT statement. After the period is added, the format name becomes green.

Output 2.10: Results of Program 2.10

Job Bonus
Sales Rep Yes
Sales Rep Yes
Sales Manager MNo

Tip: LOW, HIGH, and OTHER are built-in SAS keywords that can be helpful when you format numeric
data.

Example with Informats

In this example, we are creating a data set called EMPLOYEES, as shown in Program 2.11. We have only 2
variables in this data set: Name, a character variable, and Birthday. Notice that for Birthday, we are applying
an informat in the first DATA step. To do this, we use the colon to tell SAS that the data we are reading in is
already in the specified format. It’s already in MMDDYY8.

Program 2.11: Reporting Example with Informats

data employees;
input name $ bday :mmddyy8. Q@;
datalines;
Jill 01011960 Jack 05111988 Joe 08221975

run;

Chapter 2: Importing and Reporting Data 37

proc print data=employees;
run;

If you go to the DATALINES statement, you will see that we have a name and then a date in an MMDDYY
format. By using the informat, we don’t have to actually calculate the number of days from January 1, 1960.
Remember that if you are reading in more than one observation per line, you want to use the trailing @@
symbol.

Run this code to see the results in Output 2.11. Notice that it actually converts the dates to a SAS date value.
The bday column is showing the number of days since January 1, 1960.

Output 2.11: Results of Program 2.11

Obs name @ bday
1 Jil 0
2 Jack 10358
3 Joe 5712

To actually keep the display of labels and formats, let’s try this a different way by using the LABEL and
FORMAT statements in the DATA step, as shown in Program 2.12. This code is the exact same DATA step as in
Program 2.11. The only difference is that now we have a LABEL and FORMAT statements.

Program 2.12: Reporting Example with Informats, Formats, and Labels

data employees;
input name $ bday :mmddyy8. Q@;
format bday mmddyyl0.;
label name="First Name" bday="Birthday";
datalines;
Jill 01011960 Jack 05111988 Joe 08221975

’

run;

proc print data=employees label;
run;

In the first DATA step of Program 2.12, we are reading in the bday variable with the MMDDYY8. format, and
then immediately applying a different format, the MMDDYY10. format. We use the LABEL statement to
change the display of the column headings. Most SAS procedures apply the stored labels automatically, but
remember that PROC PRINT is a little bit different. It only applies labels if you specify the LABEL option in the
PROC PRINT statement.

Run this code to see the results in Output 2.12. You will notice the appropriate displays of labels and formats.

Output 2.12: Results of Program 2.12

Obs | First Name Birthday
1 Jill 01/01/1960
2 Jack 05/11/1988
3 Joe 08/22/1975

38 SAS Programming for R Users

Exercises

Multiple Choice

1.

Which DATA step options and statements are missing to correctly read in the Class data? (Select all
that apply.)
a. the @@ option to read in more than one observation per line
b. the $ option to read in character data
c. the semicolon after the data
d. The data set name is case sensitive and should be CLASS.
data class;
input grades
datalines;

B- A A+ C+ F- A- A B+ B+ B
run;

Which SAS procedures are used to reproduce the R functions levels(), dim(), head(), and names()?
a. PRINT, PRINT, PRINT, CONTENTS

b. SQL, CONTENTS, PRINT, CONTENTS

c. CONTENTS, PRINT, PRINT, SQL

d. SQL, SQL, CONTENTS, PRINT

The PROC step below prints the variables grades, student, and year from the class data set for all
students with grades D or higher. (Assume that the data is clean and there are no + or —grades.)

proc print data=class;
var grades student year;
where upcase (grades)*="'F"';

run;
a. True
b. False

Programming Exercise

1. Labeling, Formatting, and Conditional Printing

Modify the DATA step, shown below, to complete the exercises. This DATA step generates the CLASS data
table with 20 observations and four variables.

data spé4r.class;

input student $ country $ grade bd Q@;

datalines;

John Spain 95 12000 Mary Spain 82 12121 Alison France 98 12026
Nadine Spain 77 12222 Josh Italy 61 12095 James France 45 12301
William France 92 12284 Susan Italy 95 12079

Charlie France 88 12234 Alice Italy 89 12014 Robert Italy 92 12025
Emily Spain 87 12148 Arthur Italy 99 12052 Nancy France 70 12238
Kristin France 65 12084 Sara Italy 49 12322 Ashley Spain 96 12299
Aaron France 95 12052 Sean France 87 12254 Phil Italy 86 12036

’

run;

a.

Use PROC FORMAT to create a format for the GRADE variable.

Grade Grade Format

0-59 F

Chapter 2: Importing and Reporting Data 39

60-69 D
70-79 C
80-89 B
90-100 A

Use the DATA step above to read in the Class data set. In the DATA step, label the variable bd as
“Birthday” and apply the GradeFormat created in part a. In addition, use the SAS format WORDDATE
for the bd variable.

Print the Class data table. (Remember to use the LABEL option in the PRINT statement.)
Use PROC SQL to print the unique levels of the country variable.

Conditionally print the variable student, country, and grade for people with a grade above 79 and
from France only.

40 SAS Programming for R Users

Solutions

Multiple Choice

1. a,b,andc
2. b
3. a

Programming Exercise

1
a.

proc format;

value gradesformat 0-59='F' 60-69='D' 70-79='C' 80-89='B'
90-100="A";

run;

b.

data spédr.class;
input student $ country $ grade bd Q@;
label bd='Birthday';
format grade gradesformat. bd worddate.;
datalines;
John Spain 95 12000 Mary Spain 82 12121 Alison France 98 12026
Nadine Spain 77 12222 Josh Italy 61 12095 James France 45 12301
William France 92 12284 Susan Italy 95 12079
Charlie France 88 12234 Alice Italy 89 12014 Robert Italy 92 12025
Emily Spain 87 12148 Arthur Italy 99 12052 Nancy France 70 12238
Kristin France 65 12084 Sara Italy 49 12322 Ashley Spain 96 12299
Aaron France 95 12052 Sean France 87 12254 Phil Italy 86 12036

run;

C.
proc print data= spér.class label;
run;
d.
proc sqgl;
select unique country from spédr.class;
quit;
e

proc print data