
An Introduction
to the

SAS System

Phil Spector

Statistical Computing Facility
Department of Statistics

University of California, Berkeley

1

What is SAS?

• Developed in the early 1970s at North Carolina State
University

• Originally intended for management and analysis of
agricultural field experiments

• Now the most widely used statistical software

• Used to stand for “Statistical Analysis System”, now it is not
an acronym for anything

• Pronounced “sass”, not spelled out as three letters.

2

Overview of SAS Products

• Base SAS - data management and basic procedures

• SAS/STAT - statistical analysis

• SAS/GRAPH - presentation quality graphics

• SAS/OR - Operations research

• SAS/ETS - Econometrics and Time Series Analysis

• SAS/IML - interactive matrix language

• SAS/AF - applications facility (menus and interfaces)

• SAS/QC - quality control

There are other specialized products for spreadsheets, access to
databases, connectivity between different machines running SAS,
etc.

3

Resources: Introductory Books

Mastering the SAS System, 2nd Edition, by Jay A. Jaffe,

Van Nostrand Reinhold

Quick Start to Data Analysis with SAS, by Frank C. DiIorio and

Kenneth A. Hardy, Duxbury Press.

How SAS works: a comprehensive introduction to the SAS System, by

P.A. Herzberg, Springer-Verlag

Applied statistics and the SAS programming language, by R.P. Cody,

North-Holland, New York

The bulk of SAS documentation is available online, at

http://support.sas.com/documentation/onlinedoc/index.html. A

catalog of printed documentation available from SAS can be found at

http://support.sas.com/publishing/index.html.

4

Online Resources

Online help: Type help in the SAS display manager input window.

Sample Programs, distributed with SAS on all platforms.

SAS Institute Home Page: http://www.sas.com

SAS Institute Technical Support:

http://support.sas.com/resources/

Searchable index to SAS-L, the SAS mailing list:

http://www.listserv.uga.edu/archives/sas-l.html

Usenet Newsgroup (equivalent to SAS-L):

comp.soft-sys.sas

Michael Friendly’s Guide to SAS Resources on the Internet:

http://www.math.yorku.ca/SCS/StatResource.html#SAS

Brian Yandell’s Introduction to SAS:

http://www.stat.wisc.edu/~yandell/software/sas/intro.html

5

Basic Structure of SAS

There are two main components to most SAS programs - the data
step(s) and the procedure step(s).
The data step reads data from external sources, manipulates and
combines it with other data set and prints reports. The data step is
used to prepare your data for use by one of the procedures (often
called “procs”).
SAS is very lenient about the format of its input - statements can
be broken up across lines, multiple statements can appear on a
single line, and blank spaces and lines can be added to make the
program more readable.
The procedure steps perform analysis on the data, and produce
(often huge amounts of) output.
The most effective strategy for learning SAS is to concentrate on
the details of the data step, and learn the details of each procedure
as you have a need for them.

6

Accessing SAS

There are four ways to access SAS on a UNIX system:

1. Type sas . This opens the SAS “display manager”, which
consists of three windows (program, log, and output). Some
procedures must be run from the display manager.

2. Type sas -nodms . You will be prompted for each SAS
statement, and output will scroll by on the screen.

3. Type sas -stdio . SAS will act like a standard UNIX
program, expecting input from standard input, sending the log
to standard error, and the output to standard output;

4. Type sas filename.sas . This is the batch mode of SAS -
your program is read from filename.sas, the log goes to
filename.log and the output goes to filename.lst.

7

Some Preliminary Concepts and Rules

• SAS variable names must be 32 characters or less, constructed
of letters, digits and the underscore character. (Before version
7, the limit was 8.)

• It’s a good idea not to start variable names with an underscore,
because special system variables are named that way.

• Data set names follow similar rules as variables, but they have
a different name space.

• There are virtually no reserved keywords in SAS; it’s very good
at figuring things out by context.

• SAS is not case sensitive, except inside of quoted strings.
Starting in Version 7, SAS will remember the case of variable
names when it displays them.

• Missing values are handled consistently in SAS, and are
represented by a period (.).

• Each statement in SAS must end in a semicolon (;).

8

Structure of SAS programs

• Lines beginning with an asterisk (*) are treated as comments.
Alternatively you can enclose comments between /* and */.

• You can combine as many data and proc steps in whatever
order you want.

• Data steps begin with the word data and procedure steps
begin with the word proc.

• The run; command signals to SAS that the previous
commands can be executed.

• Terminate an interactive SAS job with the endsas; statement.

• There are global options (like linesize and pagesize) as well as
options specific to datasets and procedures.

• Informative messages are written to the SAS log - make sure
you read it!

9

The Data Step

The data step provides a wide range of capabilities, among them
reading data from external sources, reshaping and manipulating
data, transforming data and producing printed reports.

The data step is actually an implied do loop whose statements will
be executed for each observation either read from an external
source, or accessed from a previously processed data set.

For each iteration, the data step starts with a vector of missing
values for all the variables to be placed in the new observation. It
then overwrites the missing value for any variables either input or
defined by the data step statements. Finally, it outputs the
observation to the newly created data set.

The true power of the data step is illustrated by the fact that all of
these defaults may be overridden if necessary.

10

Data Step: Basics

Each data step begins with the word data and optionally one or
more data set names (and associated options) followed by a
semicolon. The name(s) given on the data step are the names of
data sets which will be created within the data step.

If you don’t include any names on the data step, SAS will create
default data set names of the form datan, where n is an integer
which starts at 1 and is incremented so that each data set created
has a unique name within the current session. Since it becomes
difficult to keep track of the default names, it is recommended that
you always explicitly specify a data set name on the data

statement.

When you are running a data step to simply generate a report, and
don’t need to create a data set, you can use the special data set
name _null_ to eliminate the output of observations.

11

Data Step: Inputting Data

The input statement of SAS is used to read data from an external
source, or from lines contained in your SAS program.
The infile statement names an external file or fileref∗ from which
to read the data; otherwise the cards; or datalines; statement is
used to precede the data.

data one;
infile "input.data";
input a b c;
run;

Reading data from an external file

data one;
input a b c;
datalines;

. . .
;
Reading from inline data

By default, each invocation of the input statement reads another
record. This example uses free-form input, with at least one space
between values.

∗A fileref is a SAS name, created by the filename statement, which refers to

an external file or other device

12

Data Step: input Statement

There are three basic forms of the input statement:
1. List input (free form) - data fields must be separated by at

least one blank. List the names of the variables, follow the
name with a dollar sign ($) for character data.

2. Column input - follow the variable name (and $ for character)
with startingcolumn – endingcolumn.

3. Formatted input - Optionally precede the variable name with
@startingcolumn; follow the variable name with a SAS format
designation. (Examples of formats: $10. (10 column
character), 6. (6 column numeric))

When mixing different input styles, note that for column and
formatted input, the next input directive reads from the column
immediately after the previous value, while for list input, the next
directive reads from the second column after the previous value.

13

Modifiers for List Input

The colon (:) modifier for list input tells SAS to use a format for
input, but to stop when the next whitespace is found. Data like:
17,244 2,500,300 600 12,003

14,120 2,300 4,232 25

could be read using an input statement like
input x1 : comma. x2 : comma. x3 : comma. x4 : comma. ;

The ampersand (&) modifier tells SAS to use two whitespace
characters to signal the end of a character variable, allowing
embedded blanks to be read using list input. Thus, the statements:
length name $ 25;

input name & $ year;

could be used to read data such as
George Washington 1789

John Adams 1797

Thomas Jefferson 1801

14

Other Modifiers for the Input Statement

+number advance number columns.
#number advance to line number.
/ advance to next line.
trailing @ hold the line to allow further input statements in this

iteration of the data step on the same data.
trailing @@ hold the line to allow continued reading from the line

on subsequent iterations of the data step.

Note: If SAS needs to read an additional line to input all the
variables referenced in the input statement it prints the following
message on the log:

NOTE: SAS went to a new line when INPUT statement reached past
the end of a line.

If you see this note, make sure you understand why it was printed!!

15

The input Statement

Variable lists can be used on the input statement. For example, the
list var1 - var4 expands to var1 var2 var3 var4.
You can repeat formats for variable lists by including the names
and formats in parentheses: (var1 - var4) (5.) reads four
numeric variables from 20 consecutive columns (5 columns for each
variable).
You can also repeat formats using the notation num*format. The
previous example could be replaced with (4 * 5.).
A null input statement (no variables) can be used to free holding
caused by trailing @-signs.
The @, + and # specifications can all be followed by a variable name
instead of a number.
If you want to make sure your input data is really arranged the way
you think it is, the list; command will display your input data
with a “ruler” showing column numbers.

16

FTP Access

SAS provides the ability to read data directly from an FTP server,
without the need to create a local copy of the file, through the ftp

keyword of the filename statement.

Suppose there is a data file called user.dat in the directory
public on an ftp server named ftp.myserver.com. If your user
name is joe and your password is secret, the following statement
will establish a fileref for reading the data:

filename myftp ftp ’user.dat’ cd=’/public’ user=’joe’

pass=’secret’ host=’ftp.myserver.com’;

The fileref can now be used in the infile statement in the usual
way.

You can read files from http (web) servers in a similar fashion,
using the url keyword.

17

Options for the infile statement

For inline data, use the infile name cards or datalines.

missover Sets values to missing if an input statement would

read more than one line.

stopover Like missover, but declares an error and stops

lrecl=num Treats the input as having a length of num characters.

Required if input records are longer than 256 characters.

dlm=’chars’ Uses the characters in chars instead of blanks

and tabs as separators in list (free-form) input.

dsd Read comma-separated data

expandtabs expand tabs to spaces before inputting data.

end=varname creates a SAS variable whose value is 1 when SAS

processes the last line in the file.

obs=n Limits processing of infile to n records

pad Adds blanks to lines that are shorter than the input

statement specifies.

18

Variable Length Records

Consider the following file, containing the year and name of the
first three American presidents:

1789 George Washington

1797 John Adams

1801 Thomas Jefferson

If we were to use an input statement like

input year 4. @6 name $17.;

SAS would try to read past the end of the second line, since the
name only has 10 characters. The solution is the pad option of the
infile statement. Suppose the data is in a file called p.txt. The
following program correctly reads the data:

data pres;

infile ’p.txt’ pad;

input year 4. @6 name $17.;

run;

19

Reading SAS programs from external files

The infile statement can be used to read data which is stored in
a file separate from your SAS program. When you want SAS to
read your program from an external file you can use the %include

statement, followed by a filename or fileref. After SAS processes a
%include statement, it continues to read data from its original
source (input file, keyboard or display manager.)

For example, suppose the SAS program statements to read a file
and create a data set are in the system file readit.sas. To process
those statements, and then print the data set, the following
commands can be used:

%include "readit.sas";

proc print;

run;

20

proc import

For certain simple data files, SAS can create a SAS data set directly
using proc import. The dbms= option informs SAS of the type of
file to be read, and choices include xls (Excel spreadsheets), csv
(Comma-separated values), dbf (Dbase files), dta (Stata files), sav
(SPSS files), and tab (Tab-separated files). For example,to read an
Excel spreadsheet called data.xls into a SAS data set named
xlsdata, the following statements can be used:

proc import dbms=xls datafile=’data.xls’ out=xlsdata;

run;

proc import provides no options for formatting, and may not be
successful with all types of data files

21

Repetitive Processing of Variables

The array statement can be used to perform the same task on a
group of variables.
array arrayname variable list <$> <(startingvalues)>;

array arrayname{n} variable list <$> <(startingvalues)>;

You can then use the array name with curly braces ({}) and a
subscript, or in a do over loop:
array x x1-x9;
do i = 1 to dim(x);

if x{i} = 9 then x{i} = .;
end;

array x x1-x9;
do over x;

if x = 9 then x = .;
end;

Notes: 1. All the variables in an array must be of the same type.
2. An array can not have the same name as a variable.
3. You can use the keyword _temporary_ instead of a variable list.
4. The statement array x{3}; generates variables x1, x2, and x3.
5. The function dim returns the number of elements in an array.

22

Titles and Footnotes

SAS allows up to ten lines of text at the top (titles) and bottom
(footnotes) of each page of output, specified with title and
footnote statements. The form of these statements is

title<n> text; or footnote<n> text;

where n, if specified, can range from 1 to 10, and text must be
surrounded by double or single quotes. If text is omitted, the title
or footnote is deleted; otherwise it remains in effect until it is
redefined. Thus, to have no titles, use:

title;

By default SAS includes the date and page number on the top of
each piece of output. These can be suppressed with the nodate and
nonumber system options.

23

Missing Values

SAS handles missing values consistently throughout various
procedures, generally by deleting observations which contain
missing values. It is therefore very important to inspect the log and
listing output, as well as paying attention to the numbers of
observations used, when your data contains missing values.

For character variables, a missing value is represented by a blank
(" " ; not a null string)
For numeric variables, a missing value is represented by a period
(with no quotes). Unlike many languages, you can test for equality
to missing in the usually fasion:

if string = " " then delete; * character variable;

if num = . then delete; * numeric variable;

if x > 10 then x = .; * set a variable to missing;

24

Special Missing Values

In addition to the regular missing value (.), you can specify one or
more single alphabetic characters which will be treated as missing
values when encountered in your input.

Most procedures will simply treat these special missing values in
the usual way, but others (such as freq and summary) have options
to tabulate each type of missing value separately. For example,
data one;
missing x;
input vv @@;
datalines;
12 4 5 6 x 9 . 12
;

The 5th and 7th observations will

both be missing, but internally they

are stored in different ways.

Note: When you use a special missing value, it will not be detected
by a statement like if vv = .; in the example above, you would
need to use if vv = .x to detect the special missing value, or to
use the missing function of the data step.

25

Variable Lists

SAS provides several different types of variable lists, which can be
used in all procedures, and in some data step statements.

• Numbered List - When a set of variables have the same prefix,
and the rest of the name is a consecutive set of numbers, you
can use a single dash (-) to refer to an entire range:
x1 - x3 ⇒ x1, x2, x3; x01 - x03 ⇒ x01, x02, x03

• Colon list - When a set of variables all begin with the same
sequence of characters you can place a colon after the sequence
to include them all. If variables a, b, xheight, and xwidth

have been defined, then x:⇒ xwidth, xheight.

• Special Lists - Three keywords refer to a list with the obvious
meaning: numeric character all

In a data step, special lists will only refer to variables which
were already defined when the list is encountered.

26

Variable Lists (cont’d)

• Name range list - When you refer to a list of variables in the
order in which they were defined in the SAS data set, you can
use a double dash (--) to refer to the range:
If the input statement
input id name $ x y z state $ salary

was used to create a data set, then
x -- salary ⇒ x, y, z, state, salary
If you only want character or numeric variables in the name
range, insert the appropriate keyword between the dashes:
id -numeric- z ⇒ id, x, y, z

In general, variables are defined in the order they appear in the
data step. If you’re not sure about the order, you can check
using proc contents.

27

The set statement

When you wish to process an already created SAS data set instead
of raw data, the set statement is used in place of the input and
infile or lines statements.

Each time it encounters a set statement, SAS inputs an
observation from an existing data set, containing all the variables
in the original data set along with any newly created variables.

This example creates a data set called trans with all the variables
in the data set orig plus a new variable called logx:

data trans;

set orig;

logx = log(x);

run;

You can specify the path to a SAS data set in quotes instead of a
data set name. If you use a set statement without specifying a
data set name, SAS will use the most recently created data set.

28

drop= and keep= data set options

Sometimes you don’t need to use all of the variables in a data set
for further processing. To restrict the variables in an input data
set, the data set option keep= can be used with a list of variable
names. For example, to process the data set big, but only using
variables x, y, and z, the following statements could be used:

data new;

set big(keep = x y z);

. . .

Using a data set option in this way is very efficient, because it
prevents all the variables from being read for each observation. If
you only wanted to remove a few variables from the data set, you
could use the drop= option to specify the variables in a similar
fashion.

29

drop and keep statements

To control the variables which will be output to a data set, drop or
keep statements can be used. (It is an error to specify both drop

and keep in the same data step). Suppose we have a data set with
variables representing savings and income. We wish to output
only those observations for which the ratio of savings to income is
greater than 0.05, but we don’t need this ratio output to our final
result.

data savers;
set all;
test = savings / income;
if test > .05 then output;
drop test;
run;

As an alternative to drop, the statement
keep income savings;

could have been used instead.

30

retain statement

SAS’ default behavior is to set all variables to missing each time a
new observation is read. Sometimes it is necessary to “remember”
the value of a variable from the previous observation. The retain

statement specifies variables which will retain their values from
previous observations instead of being set to missing. You can
specify an initial value for retained variables by putting that value
after the variable name on the retain statement.
Note: Make sure you understand the difference between retain

and keep.

For example, suppose we have a data set which we assume is sorted
by a variable called x. To print a message when an out-of-order
observation is encountered, we could use the following code:

retain lastx .; * retain lastx and initialize to missing;
if x < lastx then put ’Observation out of order, x=’ x;
else lastx = x;

31

sum Statement

Many times the sum of a variable needs to be accumulated between
observations in a data set. While a retain statement could be used,
SAS provides a special way to accumulate values known as the sum
statement. The format is

variable + expression;

where variable is the variable which will hold the accumulated
value, and expression is a SAS expression which evaluates to a
numeric value. The value of variable is automatically initialized
to zero. The sum statement is equivalent to the following:

retain variable 0;

variable = variable + expression;

with one important difference. If the value of expression is
missing, the sum statement treats it as a zero, whereas the normal
computation will propogate the missing value.

32

Default Data Sets

In most situations, if you don’t specify a data set name, SAS will
use a default dataset, using the following rules:

• When creating data sets, SAS uses the names data1, data2,
etc, if no data set name is specified. This can happen because
of a data step, or if a procedure automatically outputs a data
set which you have not named.

• When processing data sets, SAS uses the most recently created
data set, which has the special name last . This can happen
when you use a set statement with no dataset name, or invoke
a procedure without a data= argument. To override this, you
can set the value of last to a data set of your choice with the
options statement:

options _last_ = mydata;

33

Temporary Data Sets

By default, the data sets you create with SAS are deleted at the
end of your SAS session. During your session, they are stored in a
directory with a name like SAS workaXXXX, where the Xs are used
to create a unique name. By default, this directory is created
within the system /tmp directory.
You can have the temporary data sets stored in some other
directory using the -work option when you invoke sas, for example:

sas -work .

to use the current directory or, for example,

sas -work /some/other/directory

to specify some other directory.
Note: If SAS terminates unexpectedly, it may leave behind a work
directory which may be very large. If so, it will need to be removed
using operating system commands.

34

Permanent Data Sets

You can save your SAS data sets permanently by first specifying a
directory to use with the libname statement, and then using a two
level data set name in the data step.

libname project "/some/directory";

data project.one;

Data sets created this way will have filenames of the form
datasetname.sas7bdat.

In a later session, you could refer to the data set directly, without
having to create it in a data step.

libname project "/some/directory";

proc reg data=project.one;

To search more than one directory, include the directory names in
parentheses.

libname both ("/some/directory" "/some/other/directory");

35

Operators in SAS

Arithmetic operators:

* multiplication + addition / division

- subtraction ** exponentiation
Comparison Operators:

= or eq equal to ^= or ne not equal to

> or gt greater than >= or ge greater than or equal to

< or lt less than <= or le less than or equal to
Boolean Operators:

& or and and | or or or ^ or not negation
Other Operators:

>< minimum <> maximum || char. concatenation

The in operator lets you test for equality to any of several constant
values. x in (1,2,3) is the same as x=1 | x=2 | x=3.

36

Comparison Operators

Use caution when testing two floating point numbers for equality,
due to the limitations of precision of their internal representations.
The round function can be used to alleviate this problem.

Two SAS comparison operators can be combined in a single
statement to test if a variable is within a given range, without
having to use any boolean operators. For example, to see if the
variable x is in the range of 1 to 5, you can use if 1 < x < 5

SAS treats a numeric missing value as being less than any valid
number. Comparisons involving missing values do not return
missing values.

When comparing characters, if a colon is used after the comparison
operator, the longer argument will be truncated for the purpose of
the comparison. Thus, the expression name =: "R" will be true
for any value of name which begins with R.

37

Logical Variables

When you write expressions using comparison operators, they are
processed by SAS and evaluated to 1 if the comparison is true, and
0 if the comparison is false. This allows them to be used in logical
statements like an if statement as well as directly in numerical
calculations.

For example, suppose we want to count the number of observations
in a data set where the variable age is less than 25. Using an if

statement, we could write:

if age < 25 then count + 1;

(Note the use of the sum statement.)

With logical expressions, the same effect can be acheived as follows:

count + (age < 25);

38

Logical Variables (cont’d)

As a more complex example, suppose we want to create a
categorical variable called agegrp from the continuous variable age

where agegrp is 1 if age is less than 20, 2 if age is from 21 to 30, 3
if age is from 31 to 40, and 4 if age is greater than 40. To perform
this transformation with if statements, we could use statements
like the following:

agegrp = 1;

if 20 < age <= 30 then agegrp = 2;

if 30 < age <= 40 then agegrp = 3;

if age > 40 then agegrp = 4;

Using logical variables provides the following shortcut:

agegrp = 1 + (age > 20) + (age > 30) + (age > 40);

39

Variable Attributes

There are four attributes common to SAS variables.

• length - the number of bytes used to store the variable in a
SAS data set

• informat - the format used to read the variable from raw data

• format - the format used to print the values of the variable

• label - a descriptive character label of up to 40 characters

You can set any one of these attributes by using the statement of
the appropriate name, or you can set all four of them using the
attrib statement.

Since named variable lists depend on the order in which variables
are encountered in the data step, a common trick is to use a
length or attribute statement, listing variables in the order you
want them stored, as the first statement of your data step.

40

Variable Lengths: Character Values

• For character variables, SAS defaults to a length of 8
characters. If your character variables are longer than that,
you’ll need to use a length statement, an informat statement or
supply a format on the input statement.

• When specifying a length or format for a character variable,
make sure to precede the value with a dollar sign ($):

attrib string length = $ 12 format = $char12.;

• The maximum length of a SAS character variable is 32767.

• By default SAS removes leading blanks in character values. To
retain them use the $charw. informat.

• By default SAS pads character values with blanks at the end.
To remove them, use the trim function.

41

Variable Lengths: Numeric Values

• For numeric variables, SAS defaults to a length of 8 bytes
(double precision.) For non-integers, you should probably not
change from the default.

• For integers, the following chart shows the maximum value
which can be stored in the available lengths:

length Max. value length Max. value

3 8,192 6 137,438,953,472

4 2,097,152 7 35,184,372,088,832

5 536,870,912 8 9,007,199,254,740,992

• You can use the default= option of the length statement to set
a default for all numeric variables produced:
length default = 4;

• Even if a numeric variable is stored in a length less than 8, it
will be promoted to double precision for all calculations.

42

Initialization and Termination
Although the default behavior of the data step is to automatically
process each observation in an input file or existing SAS data set, it
is often useful to perform specific tasks at the very beginning or
end of a data step. The automatic SAS variable _n_ counts the
number of iterations of the data set. It is always available within
the data step, but never output to a data set. This variable will be
equal to 1 only on the first iteration of the data step, so it can be
used to signal the need for initializations.
To tell when the last observation is being processed in a data step,
the end= variable of either the infile or set statement can be
used. This variable is not output to a data set, but will be equal to
1 only when the last observation of the input file or data set is
being processed, and will equal 0 otherwise; thus any actions to be
done at the very end of processing can be performed when this
variable is equal to 1.

43

Flow Control: if-then-else

The if-then statement (with optional else) is used to
conditionally execute SAS statements:

if x < 5 then group = "A";

t may be followed by a (separate) else statement:

if x < 5 then group = "A";

else group = "B";

To execute more than one statement (for either the then or the
else), use a do-end block:

if x < 5 then do;

group = "A";

use = 0;

end;

44

Flow Control: Subsetting if

Using an if statement without a corresponding then serves as a
filter; observations which do not meet the condition will not be
processed any further.

For example, the statement

if age < 60;

is equivalent to the statement

if age >= 60 then delete;

and will prevent observations where age is not less than 60 from
being output to the data set. This type of if statement is therefore
known as a subsetting if.
Note: You can not use an else statement with a subsetting if.

45

ifc and ifn functions

If your goal is to set a variable to a value based on some logical
expression, the ifc or ifn function may be more convenient than
using an if/else statement. For example, to set a tax rate based
on whether or not a state name is equal to california, the following
could be used:

rate = ifn(state = ’california’,7.25,5.25);

ifn returns numeric values, while ifc returns character values.

result = ifc(score > 80,’pass’,’fail’)

An optional fourth argument can be used to handle the case where
the first argument is missing.

46

Flow Control: goto statement

You can use the goto statement to have SAS process statements in
some other part of your program, by providing a label followed by a
colon before the statements you wish to jump to. Label names
follow the same rules as variable names, but have a different name
space. When a labeled statement is encountered in normal
processing, it is ignored.

Use goto statements with caution, since they can make program
logic difficult to follow.

data two;

set one;

if x ^= . then goto out;

x = (y + z) / 2;

out: if x > 20 then output;

run;

47

Flow Control: stop, abort, return

Although rarely necessary, it is sometimes useful to override SAS’
default behavior of processing an entire set of data statements for
each observation. Control within the current execution of the data
step can be acheived with the goto statement; these statements
provide more general control.

stop immediately discontinue entire execution of the data step
abort like stop, but set error to 1

error like abort, but prints a message to the SAS log
return begin execution of next iteration of data step

For example, the following statement would stop processing the
current data step and print an error message to the log:
if age > 99 then error "Age is too large for subject number " subjno ;

48

Do-loops

Do-loops are one of the main tools of SAS programming. They
exist in several forms, always terminated by an end; statement

• do; - groups blocks of statements together

• do over arrayname; - process array elements

• do var=start to end <by inc>; - range of numeric values

• do var=list-of-values;

• do while(expression); (expression evaluated before loop)

• do until(expression); (expression evaluated after loop)

The do until loop is guaranteed to be executed at least once.

Some of these forms can be combined, for example

do i= 1 to end while (sum < 100);

49

Iterative Do-loops: Example 1

Do-loops can be nested. The following example calculates how long
it would take for an investment with interest compounded monthly
to double:

data interest;
do rate = 4,4.5,5,7,9,20;

mrate = rate / 1200; * convert from percentage;
months = 0;
start = 1;
do while (start < 2);

start = start * (1 + mrate);
months + 1;
end;

years = months / 12;
output;
end;

keep rate years;
run;

50

Iterative Do-loops: Example 2

Suppose we have a record of the number of classes students take in
each year of college, stored in variables class1-class5. We want
to find out how long it takes students to take 10 classes:

data ten;
set classes;
array class class1-class5;
total = 0;
do i = 1 to dim(class) until(total >= 10);

total = total + class{i};
end;

year = i;
if total lt 10 then year = .;
drop i total;
run;

51

Getting out of Do-loops

There are two options for escaping a do-loop before its normal
termination:
You can use a goto statement to jump outside the loop:

count = 0;
do i=1 to 10;

if x{i} = . then count = count + 1;
if count > 5 then goto done:
end;

done: if count < 5 then output;
. . .

You can also force termination of a do-loop by modifying the value
of the index variable. Use with caution since it can create an
infinite loop.

do i=1 to 10;
if x{i} = . then count = count + 1;
if count > 5 then i=10;
end;

52

SAS Functions: Mathematical

Each function takes a single argument, and may return a missing
value (.) if the function is not defined for that argument.

Name Function Name Function
abs absolute value arcos arccosine
digamma digamma function arsin arcsin
erf error function atan arctangent
exp power of e (2.71828 · · ·) cos cosine
gamma gamma function cosh hyperbolic cosine
lgamma log of gamma sin sine
log log (base e) sinh hyperbolic sine
log2 log (base 2) tan tangent
log10 log (base 10) tanh hyperbolic tangent
sign returns sign or zero
sqrt square root

53

SAS Functions: Statistical Summaries

The statistical summary functions accept unlimited numbers of
arguments, and ignore missing values.

Name Function Name Function
css corrected range maximium − minimum

sum of squares skewness skewness
cv coefficient std standard deviation

of variation stderr standard error
kurtosis kurtosis of the mean
max maximum sum sum
mean mean uss uncorrected
median median sum of squares
min minimun var variance
pctl percentiles

In addition, the function ordinal(n,...) gives the nth ordered
value from its list of arguments.

54

Using Statistical Summary Functions

You can use variable lists in all the statistical summary functions
by preceding the list with the word “of”; for example:

xm = mean(of x1-x10);

vmean = mean(of thisvar -- thatvar);

Without the of, the single dash is interpreted in its usual way, that
is as a minus sign or the unary minus operator; thus

xm = mean(of x1-x10);

is the same as
xm = mean(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10);

but
xm1 = mean(x1-x10);

calculates the mean of x1 minus x10, and
xm2 = mean(x1--x10);

calculates the mean of x1 plus x10.

55

Concatenating Character Strings

SAS provides the following functions for joining together character
strings:
cat - preserve all spaces
cats - remove trailing blanks
catt - remove all blanks
catx - join with separator (first argument)
Each function accepts an unlimited number of arguments. To join
together all the elements in a variable list, use the of keyword:

x1 = ’one’;

x2 = ’two’;

x3 = ’three’;

all = catx(’ ’,of x1-x3); * or catx(’ ’,x1,x2,x3);

The variable all will have the value ’one two three’

56

SAS Functions: Character Manipulation

compress(target,<chars-to-remove>)
expr = "one, two: three:";

new = compress(expr,",:"); *new => "one two three"

With no second argument compress removes blanks.

count(string,substring) - counts how many times substring
appears in string

index(source,string) - finds position of string in source
where = "university of california";

i = index(where,"cal"); * i => 15

indexc(source,string) - finds position of any character in
string in source

where = "berkeley, ca";

i = indexc(where,"abc"); * i=1 (b is in position 1);

index and indexc return 0 if there is no match

57

SAS Functions: Character Manipulation (cont’d)

left(string) - returns a left-justified character variable

length(string) - returns number of characters in a string
length returns 1 if string is missing, 12 if string is uninitialized

repeat(string,n) - repeats a character value n times

reverse(string) - reverses the characters in a character variable

right(string) - returns a right-justified character variable

scan(string,n,<delims>) - returns the nth “word” in string

field = "smith, joe";

first = scan(field,2," ,"); * first will be ’joe’;

negative numbers count from right to left.

substr(string,position,<n>) - returns pieces of a variable
field = "smith, joe";

last = substr(field,1,index(field,",") - 1);

results in last equal to "smith".

58

SAS Functions: Character Manipulation (cont’d)

translate(string,to,from) - changes from chars to to chars

word = "eXceLLent";

new = translate(word,"xl","XL"); *new => "excellent";

transwrd(string,old,new) - changes old to new in string

trim(string) - returns string with leading blanks removed

upcase(string) - converts lowercase to uppercase

verify(source,string) - return position of first char. in source

which is not in string

check = verify(val,"0123456789.");

results in check equal to 0 if val is a character string containing
only numbers and periods.

59

Regular Expressions in SAS

The prxmatch and prxchange functions allow the use of
Perl-compliant regular expressions in SAS programs. For example,
to find the location of the first digit followed by a blank in a
character string, the following code could be used:

str = ’275 Main Street’;

wh = prxmatch(’/\d /’,str); * wh will be equal to 3;

To reverse the order of two names separated by commas, the
following could be used:

str = ’Smith, John’;

newstr = prxchange(’s/(\w+?), (\w+?)/$2 $1/’,-1,str);

The second argument is the number of changes to make; −1 means
to change all occurences.

For more efficiency, regular expresssions can be precompiled using
the prxparse function.

60

SAS Functions for Random Number Generation

Each of the random number generators accepts a seed as its first
argument. If this value is greater than 0, the generator produces a
reproducible sequence of values; otherwise, it takes a seed from the
system clock and produces a sequence which can not be reproduced.

The two most common random number functions are
ranuni(seed) - uniform variates in the range (0, 1), and
rannor(seed) - normal variates with mean 0 and variance 1.

Other distributions include binomial (ranbin), Cauchy (rancau),
exponential (ranexp), gamma (rangam), Poisson (ranpoi), and
tabled probability functions (rantbl).

For more control over the output of these generators, see the
documention for the corresponding call routines, for example call

ranuni.

61

Generating Random Numbers

The following example, which uses no input data, creates a data set
containing simulated data. Note the use of ranuni and the int

function to produce a categorical variable (group) with
approximately equal numbers of observations in each category.

data sim;

do i=1 to 100;

group = int(5 * ranuni(12345)) + 1;

y = rannor(12345);

output;

end;

keep group y;

run;

62

Creating Multiple Data Sets

To create more than one data set in a single data step, list the
names of all the data sets you wish to create on the data statement.

When you have multiple data set names on the data statement
observations will be automatically output to all the data sets unless
you explicitly state the name of the data set in an output

statement.

data young old;

set all;

if age < 25 then output young;

else output old;

run;

Note: If your goal is to perform identical analyses on subgroups of
the data, it is usually more efficient to use a by statement or a
where statement.

63

Subsetting Observations

Although the subsetting if is the simplest way to subset
observations you can actively remove observations using a delete

statement, or include observations using a output statement.

• delete statement
if reason = 99 then delete;
if age > 60 and sex = "F" then delete;

No further processing is performed on the current observation
when a delete statement is encountered.

• output statement
if reason ^= 99 and age < 60 then output;
if x > y then output;

Subsequent statements are carried out (but not reflected in the
current observation). When a data step contains one or more
output statements, SAS’ usual automatic outputting at the end
of each data step iteration is disabled — only observations
which are explicitly output are included in the data set.

64

Random Access of Observations

In the usual case, SAS automatically processes each observation in
sequential order. If you know the position(s) of the observation(s)
you want in the data set, you can use the point= option of the set

statement to process only those observations.

The point= option of the set statement specifies the name of a
temporary variable whose value will determine which observation
will be read. When you use the point= option, SAS’ default
behavior of automatically looping through the data set is disabled,
and you must explicitly loop through the desired observations
yourself, and use the stop statement to terminate the data step.

The following example also makes use of the nobs= option of the
set statement, which creates a temporary variable containing the
number of observations contained in the data set.

65

Random Access of Observations: Example

The following program reads every third observation from the data
set big:

data sample;

do obsnum = 1 to total by 3;

set big point=obsnum nobs=total;

if _error_ then abort;

output;

end;

stop;

run;

Note that the set statement is inside the do-loop. If an attempt is
made to read an invalid observation, SAS will set the automatic
variable error to 1. The stop statement insures that SAS does
not go into an infinite loop;

66

Application: Random Sampling I

Sometimes it is desirable to use just a subsample of your data in an
analysis, and it is desired to extract a random sample, i.e. one in
which each observation is just as likely to be included as each other
observation. If you want a random sample where you don’t control
the exact number of observations in your sample, you can use the
ranuni function in a very simple fashion. Suppose we want a
random sample consisting of roughly 10% of the observations in a
data set. The following program will randomly extract the sample:

data sample;

set giant;

if ranuni(12345) < .1;

run;

67

Application: Random Sampling II

Now suppose we wish to randomly extract exactly n observations
from a data set. To insure randomness, we must adjust the fraction
of observations chosen depending on how many observations we
have already chosen. This can be done using the nobs= option of
the set statement. For example, to choose exactly 15 observations
from a data set all, the following code could be used:
data some;

retain k 15 n ;
drop k n;
set all nobs=nn;
if _n_ = 1 then n = nn;
if ranuni(0) < k / n then do;

output;
k = k - 1;
end;

if k = 0 then stop;
n = n - 1;
run;

68

Application: Random Sampling III

The point= option of the set statement can often be used to create
many random samples efficiently. The following program creates
1000 samples of size 10 from the data set big , using the variable
sample to identify the different samples in the output data set:

data samples;

do sample=1 to 1000;

do j=1 to 10;

r = round(ranuni(1) * nn);

set big point=r nobs=nn;

output;

end;

end;

stop;

drop j;

run;

69

By Processing in Procedures

In procedures, the by statement of SAS allows you to perform
identical analyses for different groups in your data. Before using a
by statement, you must make sure that the data is sorted (or at
least grouped) by the variables in the by statement.

The form of the by statement is
by <descending> variable-1 · · · <<descending> variable-n <notsorted>>;

By default, SAS expects the by variables to be sorted in ascending
order; the optional keyword descending specifies that they are in
descending order.
The optional keyword notsorted at the end of the by statement
informs SAS that the observations are grouped by the by variables,
but that they are not presented in a sorted order. Any time any of
the by variables change, SAS interprets it as a new by group.

70

Selective Processing in Procedures: where statement

When you wish to use only some subset of a data set in a
procedure, the where statement can be used to select only those
observations which meet some condition. There are several ways to
use the where statement.
As a procedure statement: As a data set option:
proc reg data=old; proc reg data=old(where = (sex eq ’M’));

where sex eq ’M’; model y = x;
model y=x; run;

run;

In the data step:

data survey;
input id q1-q10;
where q2 is not missing and q1 < 4;

data new;
set old(where = (group = ’control’));

71

where statement: Operators

Along with all the usual SAS operators, the following are available
in the where statement:
between/and - specify a range of observations

where salary between 20000 and 50000;
contains - select based on strings contained in character variables

where city contains ’bay’;
is missing - select based on regular or special missing value

where x is missing and y is not missing;
like - select based on patterns in character variables
(Use % for any number of characters, _ for exactly one)

where name like ’S%’;
sounds like (=*) - select based on soundex algorithm

where name =* ’smith’;

You can use the word not with all of these operators to reverse the
sense of the comparison.

72

Multiple Data Sets: Overview

One of SAS’s greatest strengths is its ability to combine and
process more than one data set at a time. The main tools used to
do this are the set, merge and update statements, along with the
by statement and first. and last. variables.

We’ll look at the following situations:

• Concatenating datasets by observation

• Interleaving several datasets based on a single variable value

• One-to-one matching

• Simple Merge Matching, including table lookup

• More complex Merge Matching

73

Concatenating Data Sets by Observation

The simplest operation concerning multiple data sets is to
concatenate data sets by rows to form one large data set from
several other data sets. To do this, list the sets to be concatenated
on a set statement; each data set will be processed in turn,
creating an output data set in the usual way.

For example, suppose we wish to create a data set called last by
concatenating the data sets first, second, and third.

data last;

set first second third;

If there are variables in some of the data sets which are not in the
others, those variables will be set to missing (. or ’ ’) in
observations derived from the data sets which lacked the variable in
question.

74

Concatenating Data Sets (cont’d)

Consider two data sets clerk and manager:

Name Store Position Rank Name Store Position Staff
Joe Central Sales 5 Fred Central Manager 10
Harry Central Sales 5 John Mall Manager 12
Sam Mall Stock 3

The SAS statements to concatenate the data sets are:
data both;

set clerk manager;
run;

resulting in the following data set:
Name Store Position Rank Staff
Joe Central Sales 5 .
Harry Central Sales 5 .
Sam Mall Stock 3 .
Fred Central Manager . 10
John Mall Manager . 12

Note that the variable staff is missing for all observations from set

clerk, and rank is missing for all observations from manager. The

observations are in the same order as the input data sets.

75

Concatenating Data Sets with proc append

If the two data sets you wish to concatenate contain exactly the
same variables, you can save resources by using proc append

instead of the set statement, since the set statement must process
each observation in the data sets, even though they will not be
changed. Specify the “main” data set using the base= argument
and the data set to be appended using the new= argument. For
example, suppose we wish to append the observations in a data set
called new to a data set called master.enroll. Assuming that
both data sets contained the same variables, you could use proc

append as follows:

proc append base=master.enroll new=new;

run;

The SAS System will print an error message if the variables in the
two data sets are not the same.

76

Interleaving Datasets based on a Single Variable

If you want to combine several datasets so that observations
sharing a common value are all adjacent to each other, you can list
the datasets on a set statement, and specify the variable to be
used on a by statement. Each of the datasets must be sorted by the
variable on the by statement.

For example, suppose we had three data sets A, B, and C, and each
contained information about employees at different locations:

Set A Set B Set C

Loc Name Salary Loc Name Salary Loc Name Salary

NY Harry 25000 LA John 18000 NY Sue 19000

NY Fred 20000 NY Joe 25000 NY Jane 22000

NY Jill 28000 SF Bill 19000 SF Sam 23000

SF Bob 19000 SF Amy 29000 SF Lyle 22000

Notice that there are not equal numbers of observations from the
different locations in each data set.

77

Interleaving Datasets (cont’d)

To combine the three data sets, we would use a set statement
combined with a by statement.

data all;
set a b c;
by loc;
run;

which would result in the following data set:
Loc Name Salary Loc Name Salary
LA John 18000 NY Jane 22000
NY Harry 25000 SF Bob 19000
NY Fred 20000 SF Bill 19000
NY Jill 28000 SF Amy 29000
NY Joe 25000 SF Sam 23000
NY Sue 19000 SF Lyle 22000

Similar results could be obtained through a proc sort on the
concatenated data set, but this technique is more efficient and
allows for further processing by including programming statements
before the run;.

78

One-to-one matching

To combine variables from several data sets where there is a
one-to-one correspondence between the observations in each of the
data sets, list the data sets to be joined on a merge statement. The
output data set created will have as many observations as the
largest data set on the merge statement. If more than one data set
has variables with the same name, the value from the rightmost
data set on the merge statement will be used.

You can use as many data sets as you want on the merge

statement, but remember that they will be combined in the order
in which the observations occur in the data set.

79

Example: one-to-one matching
For example, consider the data sets personal and business:

Personal Business
Name Age Eyes Name Job Salary
Joe 23 Blue Joe Clerk 20000
Fred 30 Green Fred Manager 30000
Sue 24 Brown Sue Cook 24000

To merge the variables in business with those in personal, use

data both;
merge personal business;

to result in data set both
Name Age Eyes Job Salary
Joe 23 Blue Clerk 20000
Fred 30 Green Manager 30000
Sue 24 Brown Cook 24000

Note that the observations are combined in the exact order in
which they were found in the input data sets.

80

Simple Match Merging

When there is not an exact one-to-one correspondence between
data sets to be merged, the variables to use to identify matching
observations can be specified on a by statement. The data sets
being merged must be sorted by the variables specified on the by

statement.

Notice that when there is exactly one observation with each by

variable value in each data set, this is the same as the one-to-one
merge described above. Match merging is especially useful if you’re
not sure exactly which observations are in which data sets.

By using the IN= data set option, explained later, you can
determine which from data set(s) a merged observation is derived.

81

Simple Match Merging (cont’d)

Suppose we have data for student’s grades on two tests, stored in
two separate files

ID Score1 Score2 ID Score3 Score4
7 20 18 7 19 12
9 15 19 10 12 20
12 9 15 12 10 19

Clearly a one-to-one merge would not be appropriate.

Pay particular attention to ID 9, which appears only in the first
data set, and ID 10 which appears only in the second set.

To merge the observations, combining those with common values of
ID we could use the following SAS statements:

data both;
merge scores1 scores2;
by id;

run;

82

Simple Match Merging (cont’d)

Here’s the result of the merge:

ID Score1 Score2 Score3 Score4
7 20 18 19 12
9 15 19 . .
10 . . 12 20
12 9 15 10 19

Notes

1. All datasets must be sorted by the variables on the by
statement.

2. If an observation was missing from one or more data sets, the
values of the variables which were found only in the missing
data set(s) are set to missing.

3. If there are multiple occurences of a common variable in the
merged data sets, the value from the rightmost data set is used.

83

Table Lookup

Consider a dataset containing a patient name and a room number,
and a second data set with doctors names corresponding to each of
the room numbers. There are many observations with the same
room number in the first data set, but exactly one observation for
each room number in the second data set. Such a situation is called
table lookup, and is easily handled with a merge statement
combined with a by statement.

Patients Doctors

Patient Room Doctor Room

Smith 215 Reed 215
Jones 215 Ellsworth 217
Williams 215 . . .
Johnson 217
Brown 217

. . .

84

Table Lookup (cont’d)

The following statements combine the two data sets.

data both;
merge patients doctors;
by room;
run;
resulting in data set both

Patient Room Doctor
Smith 215 Reed
Jones 215 Reed
Williams 215 Reed
Johnson 217 Ellsworth
Brown 217 Ellsworth

. . .Notes:
• As always, both data sets must be sorted by the variables on

the by list.

• The data set with one observation per by variable must be the
second dataset on the merge statement.

85

Updating Data Sets

When you’re combining exactly two data sets with the goal of
updating some or all of the first data set’s values with values from
the second data set, you can use the update statement.

An update statement accepts exactly two data sets, and must be
followed by a by statement. An update statement is similar to a
merge statement except that

• the update statement will not overwrite non-missing values in
data set one with missing values from data set two, and

• the update statement doesn’t create any observations until all
the observations for a by group are processed. Thus, the first
data set should contain exactly one observation for each by

group, while the second data set can contain multiple
observations, with later observations supplementing or
overriding earlier ones.

86

Example: update statement

Set orig Set upd
ID Account Balance ID Account Balance
1 2443 274.40 1 . 699.00
2 4432 79.95 2 2232 .
3 5002 615.00 2 . 189.95

3 6100 200.00

Data set orig can be updated with the values in upd using the
following statements:

data orig;
update orig upd;
by id;

resulting in the updated data set:

ID Account Balance
1 2443 699.00
2 2232 189.95
3 6100 200.00

87

More Complex Merging

Keep the following in mind when performing more complex merges:

• If the merged data sets have variables in common (in addition
to the variables on the by statement), and the values differ, the
values from the rightmost data set in the merge statement are
used.

• If there are multiple occurences of observations with the same
value for the by variable(s) in the data sets being merged, they
are combined one-to-one. If there are unequal numbers of these
observations in any of the data sets being merged, the last
value from the data set with fewer observations is reused for all
the other observations with matching values.

• Various problems arise if variables in data sets being merged
have different attributes. Try to resolve these issues before
merging the data.

88

More Complex Merging (cont’d)

The following example, although artificial, illustrates some of the
points about complex merging:

one two three

a b c a b d a b c d

1 3 20 1 3 17 1 3 20 17

1 3 19 1 5 12 1 5 19 12

1 7 22 2 9 21
=⇒

1 7 22 12

2 9 18 2 3 15 2 9 18 21

2 3 22 2 6 31 2 3 22 15

2 6 22 31

The data sets were merged with the following statements:

data three;
merge one two;
by a;

89

in= data set option

When creating observations from multiple data sets, it is often
helpful to know which data set an observation should come from. It
should be clear that when merging large data sets, additional tools
will be necessary to determine exactly how observations are created.

The in= data set option is one such tool. The option is associated
with one or more of the data sets on a merge statement, and
specifies the name of a temporary variable which will have a value
of 1 if that data set contributed to the current observation and a 0
otherwise.

Two common uses of the in= variable are to make sure that only
complete records are output, and to create a data set of problem
observations which were missing from one of the merged data sets.

The next slide provides an example of these ideas, using the test
scores data from a previous example.

90

Example of in= data set option

data both problem;
merge scores1(in=one) scores2(in=two);
by id;
if one and two then output both;
else output problem;
run;

The resulting data sets are shown below; note that the in=
variables are not output to the data sets which are created.

Data set both
Obs Id Score1 Score2 Score3 Score4

1 7 20 18 19 12
2 12 9 15 10 19

Data set problem
Obs Id Score1 Score2 Score3 Score4

1 9 15 19 . .
2 10 . . 12 20

91

Programming with by statements

The power of the by statement coupled with the merge and set

statements is enough to solve most problems, but occasionally more
control is needed.

Internally, SAS creates two temporary variables for each variable

on the by statement of a data step. first.variable is equal to 1
if the current observation is the first occurence of this value of
variable and 0 otherwise. Similarly, last.variable is equal to 1
if the current observation is the last occurence of the value of
variable and 0 otherwise.

When there are several by variables, remember that a new
by-group begins when the value of the rightmost variable on the by

statement changes.

92

Application: Finding Duplicate Observations I

Many data sets are arranged so that there should be exactly one
observation for each unique combination of variable values. In the
simplest case, there may be an identifier like a social security or
student identification number, and we want to check to make sure
there are not multiple observations with the same value for that
variable.

If the data set is sorted by the identifier variable (say, ID), code like
the following will identify the duplicates:

data check;

set old;

by id;

if first.id and ^last.id;

run;

The duplicates can now be found in data set check

93

Example of first. and last. variables

Suppose we have a data set called grp with several observations for
each value of a variable called group. We wish to output one
observation for each group containing the three highest values of
the variable x encountered for that group.
data max;

set grp;
by group;
retain x1-x3; * preserve values btwn obs;
if first.group then do; * initialize

x1 = .; x2 = .; x3 = .;
end;

if x >= x1 then do;
x3 = x2; x2 = x1; x1 = x; end;

else if x >= x2 then do;
x3 = x2; x2 = x; end;

else if x >= x3 then x3 = x;
if last.group then output; * output one obs per group;
keep group x1-x3;

run;

94

Example of first. and last. variables (cont’d)

Here are the results of a simple example of the previous program:
Set grp
Group X

1 16
1 12
1 19 Set max
1 15 Group X1 X2 X3
1 18 1 19 18 17
1 17 =⇒ 2 30 20 14
2 10 3 59 45 18
2 20
2 8
2 14
2 30
3 59
3 45
3 2
3 18

95

Sorting datasets

For procedures or data steps which need a data set to be sorted by
one or more variables, there are three options available:

1. You can use proc sort; to sort your data. Note that SAS
stores information about the sort in the dataset header, so that
it will not resort already sorted data.

2. You can enter your data in sorted order. If you choose this
option, make sure that you use the correct sorting order.* To
prevent proc sort from resorting your data, use the
sortedby= data set option when you create the data set.

3. You can create an index for one or more combinations of
variables which will stored along with the data set.

* EBCDIC Sorting Sequence (IBM mainframes):
blank .<(+|\&!$*);^-/,%_>?‘:#@’="abcdefghijklmnopqr~stuvwxyz{ABCDEFGHI}JKLMNOOPQR\STUVWXYZ0123456789

ASCII Sorting Sequence (most other computers):
blank !"#$%&’()* +,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_‘abcdefghijklmnopqrstuvwxyz{|}~

96

Indexed Data Sets

If you will be processing a data set using by statements, or
subsetting your data based on the value(s) of one or more variables,
you may want to store an index based on those variables to speed
future processing.

proc datasets is used to create an index for a SAS data set.
Suppose we have a data set called company.employ, with variables
for branch and empno. To store a simple index (based on a single
variable), statements like the following are used:

proc datasets library=company;
modify employ;
index create branch;

run;

More than one index for a data set can be specified by including
multiple index statements. The index will be used whenever a by

statement with the indexed variable is encountered.

97

Indexed Data Sets (cont’d)

To create a composite index (based on more than one variable),
you need to provide a label for the index. (This label need not be
specified when you access the data set.) You can have multiple
composite indices within the same data set:

proc datasets library=company;
modify employ;
index create brnum = (branch idnum);

run;

In the previous example, the composite index would mean the data
set is also indexed for branch, but not for idnum.

Note: If you are moving or copying an indexed data set, be sure to
use a SAS procedure like proc copy, datasets, or cport rather
than system utilities, to insure that the index gets correctly copied.

98

Formats and Informats

Formats control the appearance of variable values in both
procedures and with the put statement of the data step. Most
procedures also use formats to group values using by statements.

Informats are used in conjunction with the input statement to
specify the way that variables are to be read if they are not in the
usual numeric or character format.

SAS provides a large number of predefined formats, as well as the
ability to write your own formats, for input as well as output.

If you include a format or attribute statement in the data step
when the data set is created, the formats will always be associated
with the data. Alternatively, you can use a format statement
within a procedure.

The system option nofmterr will eliminate errors produced by
missing formats.

99

Basic Formats

Numeric formats are of the form w. or w.d, representing a field
width of w, and containing d decimal places.

put x 6.; *write x with field width of 6;
format price 8.2; *use field width of 8 and 2 d.p. for price;

The bestw. format can be used if you’re not sure about the
number of decimals. (For example, best6. or best8..)

Simple character formats are of the form $w., where w is the
desired field width. (Don’t forget the period.)

put name $20.; * write name with field width of 20;
format city $50.; * use field width of 50 for city;

You can also use formats with the put function to create character
variables formatted to your specifications:

x = 8;
charx = put(x,8.4);

creates a character variable called charx equal to 8.0000

100

Informats

The basic informats are the same as the basic formats, namely w.d

for numeric values, and $w. for character variables.

By default, leading blanks are stripped from character values. To
retain them, use the $charw. format.

When you specify a character informat wider than the default of 8
columns, SAS automatically will make sure the variable is big
enough to hold your input values.

Some Other SAS Informats

Name Description Name Description

hexw. numeric hexadecimal $hexw. character hexadecimal

octalw. numeric octal $octalw. character octal

bzw.d treat blanks as zeroes ew.d scientific notation

rbw.d floating point binary ibw.d integer binary

pdw.d packed decimal $ebcdicw. EBCDIC to ASCII

101

Writing User-defined formats using proc format

• You can specify several different value statements within a
single invocation of proc format.

• Each value must be given a name (which does not end in a
number), followed by a set of range/value pairs.

• The keywords low, high, and other can be used to construct
ranges.

• If you wish a range of values to be formatted using some other
format, enclose its name (including the period) in square
brackets ([]) as the value for that range.

• Character values should be enclosed in quotes; the name of a
character format must begin with a dollar sign ($).

• If a variable falls outside of the specified ranges, it is formatted
using the usual defaults

102

User-defined Format: Examples

For a variable with values from 1 to 5, the format qval. displays 1
and 2 as low, 3 as medium and 4 and 5 as high.

The format mf. displays values of 1 as male, 2 as female and all
other values as invalid.

The format tt. display values below .001 as undetected, and all
other values in the usual way.

proc format;

value qval 1-2=’low’ 3=’medium’ 4-5=’high’;

value mf 1=’male’ 2=’female’ other=’invalid’;

value tt low-.001=’undetected’;

run;

103

Recoding Values using Formats

Since many SAS procedures use formatted values to produce
groups, you can often recode variables by simply changing their
formats. This is more efficient than processing an entire data set,
and leaves the original variable unchanged for future use.

Suppose we have a survey which asks people how long they’ve been
using computers (measured in years), and how happy they are with
the computer they are using (measured on a scale of 1 to 5). We
wish to produce a cross tabulation of these results, that is a table
where rows represent levels of one variable, columns represent the
level of another variable, and the entries represent the number of
observations which fall into the row/column categories. Often the
unformatted table will have many empty cells - it is common
practice to group categories or values to create more meaningful
tables.

104

Recoding Values using Formats (cont’d)

If the two variables in our survey are called years and happy, the
following program would produce a cross tabulation:

proc freq;tables years*happy/nocol norow nocum nopct;

TABLE OF YEARS BY HAPPY

YEARS HAPPY

Frequency| 1| 2| 3| 4| 5| Total
---------+--------+--------+--------+--------+--------+

0.5 | 1 | 2 | 1 | 2 | 0 | 6
---------+--------+--------+--------+--------+--------+

1 | 0 | 0 | 2 | 2 | 0 | 4
---------+--------+--------+--------+--------+--------+

1.5 | 0 | 0 | 0 | 1 | 0 | 1
---------+--------+--------+--------+--------+--------+

2 | 0 | 0 | 2 | 2 | 3 | 7
---------+--------+--------+--------+--------+--------+

3 | 1 | 1 | 0 | 1 | 1 | 4
---------+--------+--------+--------+--------+--------+

8 | 0 | 0 | 0 | 0 | 1 | 1
---------+--------+--------+--------+--------+--------+

10 | 0 | 1 | 0 | 0 | 0 | 1
---------+--------+--------+--------+--------+--------+

12 | 0 | 0 | 0 | 1 | 0 | 1
---------+--------+--------+--------+--------+--------+
Total 2 4 5 9 5 25

105

Recoding Values using Formats (cont’d)

To make the table more useful, we define the following formats:

proc format;
value yy 0-1=’<=1yr’ 1.5-3=’1-3yr’ 3.5-high=’>3yr’;
value hh 1-2=’Low’ 3=’Medium’ 4-5=’High’;

run;
proc freq;

tables years*happy/nocol norow nocum nopct;
format years yy. happy hh.;

run;

TABLE OF YEARS BY HAPPY

YEARS HAPPY

Frequency|Low |Medium |High | Total
---------+--------+--------+--------+
<=1yr | 3 | 3 | 4 | 10
---------+--------+--------+--------+
1-3yr | 2 | 2 | 8 | 12
---------+--------+--------+--------+
>3yr | 1 | 0 | 2 | 3
---------+--------+--------+--------+
Total 6 5 14 25

106

SAS Date and Time Values

There are three types of date and time values which SAS can
handle, shown with their internal representation in parentheses:

• Time values (number of seconds since midnight)

• Date values (number of days since January 1, 1970)

• Datetime values (number of seconds since January 1, 1970)

You can specify a date and/or time as a constant in a SAS program
by surrounding the value in quotes, and following it with a t, a d or
a dt. The following examples show the correct format to use:

3PM ⇒ ’3:00p’t or ’15:00’t or ’15:00:00’t
January 4, 1937 ⇒ ’4jan37’d

9:15AM November 3, 1995 ⇒
’3nov95:9:15’dt or ’3nov95:9:15:00’dt

107

Date and Time Informats and Formats

SAS provides three basic informats for reading dates which are
recorded as all numbers, with or without separators:

• ddmmyyw. - day, month, year (021102, 6-3-2002, 4/7/2000)

• mmddyyw. - month, day, year (110202, 3-6-2002, 7/4/2000)

• yymmddw. - year, month, day (021102, 2002-3-6, 2000/7/4)

These informats will correctly recognize any of the following
separators: blank : - . /, as well as no separator.

For output, the ddmmyyXw., mmddyyXw. and yymmddXw. formats are
available, where “X” specifies the separator as follows:

B - blank C - colon(:) D - dash(-)
N - no separator P - period(.) S - slash(/)

108

Other Date and Time Informats and Formats

Name Width(default) Examples

datew. 5-9 (7) 26jun96

datetimew. 7-40 (16) 4JUL96:01:30p

julianw. 5-7 (5) 96200 1995001

monyyw. 5-7 (5) jan95 mar1996

timew. 2-20 (8) 6:00:00 3:15:00p

The above formats are valid for input and output. In addition, the
yymmnw. format reads values with only a year and month. The
nldatew. format/informat provides natural language support for
written dates (like July 4, 1996), based on the value of the
locale option. The monnamew. and yearw. formats display parts
of dates.

109

SAS and Y2K

Since SAS stores its date/time values as the number of seconds or
days from a fixed starting point, there is no special significance of
the year 2000 to SAS. But when dates are input to SAS with only
two digits, there is no way to tell whether they should be
interpreted as years beginning with 19 or 20. The yearcutoff

option controls this decision.

Set the value of this option to the first year of a hundred year span
to be used to resolve two digit dates. For example, if you use the
statement

options yearcutoff=1950;

then two digit dates will be resolved as being in the range of 1950
to 2050; i.e. years greater than 50 will be interpreted as beginning
with 19, and dates less than 50 will be interpreted as beginning
with 20

110

Date and Time Functions

datepart – Extract date from datetime value

dateonly = datepart(fulldate);

day,month year – Extract part of a date value

day = day(date);

dhms – Construct value from date, hour, minute and second

dtval = dhms(date,9,15,0);

mdy – Construct date from month, day and year

date = mdy(mon,day,1996);

time – Returns the current time of day

now = time();

today – Returns the current date

datenow = today();

intck – Returns the number of intervals between two values

days = intck(’day’,then,today());

intnx – Increments a value by a number of intervals

tomrw = intnx(’day’,today(),1);

111

Application: Blue Moons

When there are two full moons in a single month, the second is
known as a blue moon. Given that July 9, 1998 is a full moon, and
there are 29 days between full moons, in what months will the next
few blue moons occur?

First, we create a data set which has the dates of all the full moons,
by starting with July 9, 1998, and incrementing the date by 29
days.

data fullmoon;
date = ’09jul98’d;
do i=1 to 500;

month = month(date);
year = year(date);
output;
date = intnx(’day’,date,29);
end;

run;

112

Application: Blue Moons (cont’d)

Now we can use the put function to create a variable with the full
month name and the year.
data bluemoon;

set fullmoon;
by year month;
if last.month and not first.month then do;

when = put(date,monname.) || ", " || put(date,year.);
output;

end;
run;
proc print data=bluemoon noobs;

var when;
run;

The results look like this:
December, 1998
August, 2000

May, 2002
. . .

113

Customized Output: put statement

The put statement is the reverse of the input statement, but in
addition to variable names, formats and pointer control, you can
also print text. Most of the features of the input statement work
in a similar fashion in the put statement. For example, to print a
message containing the value of of a variable called x, you could use
a put statement like:

put ’the value of x is ’ x;

To print the values of the variables x and y on one line and name

and address on a second line, you could use:

put x 8.5 y best10. / name $20 @30 address ;

Note the use of (optional) formats and pointer control.

By default, the put statement writes to the SAS log; you can
override this by specifying a filename or fileref on a file statement.

114

Additional Features of the put statement

By default, the put statement puts a newline after the last item
processed. To prevent this (for example to build a single line with
multiple put statements, use a trailing @ at the end of the put

statement.

The n* operator repeats a string n times. Thus
put 80*"-";

prints a line full of dashes.

Following a variable name with an equal sign causes the put
statement to include the variable’s name in the output. For
example, the statements

x = 8;
put x=;

results in X=8 being printed to the current output file. The keyword
all on the put statement prints out the values of all the variables

in the data set in this named format.

115

Headers with put statements

You can print headings at the top of each page by specifying a
header= specification on the file statement with the label of a set
of statements to be executed. For example, to print a table
containing names and addresses, with column headings at the top
of each page, you could use statements like the following:

options ps=50;
data _null_;

set address;
file "output" header = top print;
put @1 name $20. @25 address $30.;
return;

top:
put @1 ’Name’ @25 ’Address’ / @1 20*’-’ @25 30*’-’;
return;

run;

Note the use of the two return statements. The print option is
required when using the header= option on the file statement.

116

Output Delivery System (ODS)

To provide more flexibility in producing output from SAS data
steps and procedures, SAS introduced the ODS. Using ODS, output
can be produced in any of the following formats (the parenthesized
keyword is used to activate a particular ODS stream):

• SAS data set (OUTPUT)
• Normal listing (LISTING) - monospaced font
• Postscript output (PRINTER) - proportional font
• PDF output (PDF) - Portable Document Format
• HTML output (HTML) - for web pages
• RTF output (RTF) - for inclusion in word processors

Many procedures produce ODS objects, which can then be output
in any of these formats. In addition, the ods option of the file

statement, and the ods option of the put statement allow you to
customize ODS output.

117

ODS Destinations

You can open an ODS output stream with the ODS command and a
destination keyword. For example, to produce HTML formatted
output from the print procedure:

ods html file="output.html";

proc print data=mydata;

run;

ods html close;

Using the print and ods options of the file statement, you can
customize ODS output:

ods printer;

data _null_;

file print ods;

... various put statements ...

run;

ods printer close;

118

SAS System Options

SAS provides a large number of options for fine tuning the way the
program behaves. Many of these are system dependent, and are
documented online and/or in the appropriate SAS Companion.

You can specify options in three ways:
1. On the command line when invoking SAS, for example

sas -nocenter -nodms -pagesize 20
2. In the system wide config.sas file, or in a local config.sas

file (see the SAS Companion for details).

3. Using the options statement:
options nocenter pagesize=20;

Note that you can precede the name of options which do not take
arguments with no to shut off the option. You can display the
value of all the current options by running proc options.

119

Some Common Options

Option Argument Description
Options which are useful when invoking SAS

dms - Use display manager windows
stdio - Obey UNIX standard input and output
config filename Use filename as configuration file

Options which control output appearance
center - Center output on the page
date - Include today’s date on each page
number - Include page numbers on output
linesize number Print in a width of number columns
pagesize number Go to a new page after number lines
ovp - Show emphasis by overprinting

Options which control data set processing
obs number Process a maximum of number obs.
firstobs number Skip first number observations
replace - Replace permanent data sets?

120

Application: Rescanning Input

Suppose we have an input file which has a county name on one line
followed by one or more lines containing x and y coordinates of the
boundaries of the county. We wish to create a separate observation,
including the county name, for each set of coordinates.

A segment of the file might look like this:
alameda
-121.55 37.82 -121.55 37.78 -121.55 37.54 -121.50 37.53
-121.49 37.51 -121.48 37.48
amador
-121.55 37.82 -121.59 37.81 -121.98 37.71 -121.99 37.76
-122.05 37.79 -122.12 37.79 -122.13 37.82 -122.18 37.82
-122.20 37.87 -122.25 37.89 -122.27 37.90
calaveras
-121.95 37.48 -121.95 37.48 -121.95 37.49 -122.00 37.51
-122.05 37.53 -122.07 37.55 -122.09 37.59 -122.11 37.65
-122.14 37.70 -122.19 37.74 -122.24 37.76 -122.27 37.79
-122.27 37.83 -122.27 37.85 -122.27 37.87 -122.27 37.90

. . .

121

Application: Rescanning Input (cont’d)

Note that we don’t know how many observations (or data lines)
belong to each county.

data counties;
length county $ 12 name $ 12;
infile "counties.dat";
retain county;
input name $ @; * hold current line for rescanning;
if indexc(name,’0123456789’) = 0 then do;

county = name;
delete; * save county name, but don’t output;
end;

else do;
x = input(name,12.) * do numeric conversion;
input y @@; * hold the line to read more x/y pairs;
end;

drop name;
run;

122

Application: Reshaping a Data Set I

Since SAS procedures are fairly rigid about the organization of
their input, it is often necessary to use the data step to change the
shape of a data set. For example, repeated measurements on a
single subject may be on several observations, and we may want
them all on the same observation. In essence, we want to perform
the following transformation:

Subj Time X

1 1 10

1 2 12

· · · Subj X1 X2 · · · Xn

1 n 8 =⇒ 1 10 12 · · · 8

2 1 19 2 19 7 · · · 21

2 2 7

· · ·
2 n 21

123

Application: Reshaping a Data Set I(cont’d)

Since we will be processing multiple input observations to produce
a single output observation, a retain statement must be used to
remember the values from previous inputs. The combination of a
by statement and first. and last. variables allows us to create
the output observations at the appropriate time, even if there are
incomplete records.

data two;
set one;
by subj;
array xx x1-xn;
retain x1-xn;
if first.subj then do i=1 to dim(xx); xx{i} = .;end;
xx{time} = x;
if last.subj then output;
drop time x;
run;

124

Application: Reshaping a Data Set II

A similar problem to the last is the case where the data for several
observations is contained on a single line, and it is necessary to
convert each of the lines of input into several observations. Suppose
we have test scores for three different tests, for each of several
subjects; we wish to create three separate observations from each of
these sets of test scores:

data scores;
* assume set three contains id, group and score1-score3;

set three;
array sss score1-score3;
do time = 1 to dim(sss);

score = sss{time};
output;
end;

drop score1-score3;
run;

125

Output Data Sets

Many SAS procedures produce output data sets containing data
summaries (means, summary, univariate), information about
statistical analyses (reg, glm, nlin, tree) or transformed variables
(standard, score, cancorr, rank); some procedures can produce
multiple output data sets. These data sets can be manipulated just
like any other SAS data sets.

Recall that the statistical functions like mean() and std() can
calculate statistical summaries for variables within an observation;
output data sets are used to calculate summaries of variables over
the whole data set.

When you find that you are looping through an entire data set to
calculate a single quantity which you then pass on to another data
step, consider using an output data set instead.

126

Using ODS to create data sets

Many procedures use the output delivery system to provide
additional control over the output data sets that they produce. To
find out if ODS tables are available for a particular procedure, use
the following statement before the procedure of interest:

ods trace on;

Each table will produce output similar to the following on the log:
Output Added:

Name: ExtremeObs

Label: Extreme Observations

Template: base.univariate.ExtObs

Path: Univariate.x.ExtremeObs

Once the path of a table of interest is located, you can produce a
data set with the ods output statement, specifying the path with
an equal sign followed by the output data set name.

127

ODS Output Data Set: Example

The univariate procedure provides printed information about
extreme observations, but this information is not available through
the out= data set. To put this information in a data set, first find
the appropriate path by using the ods trace statement, and then
use an ODS statement like the following:

ods output Univariate.x.ExtremeObs=extreme;

proc univariate data=mydata;

var x;

run;

ods output close;

The data set extreme will now contain information about the
extreme values.

128

Output Data Sets: Example I

It is often useful to have summary information about a data set
available when the data set is being processed. Suppose we have a
data set called new, with a variable x, and we wish to calculate a
variable px equal to x divided by the maximum value of x.

proc summary data=new;
var x;
output out=sumnew max=maxx;

run;
data final;

if _n_ = 1 then set sumnew(keep=maxx);
set new;
px = x / maxx;

run;

The automatic variable n will be 1 for the first observation only;
the single observation in sumnew gets read at this time. The set

new; statement then reads in the original data.

129

Output Data Sets: Example II

Now suppose we have two classification variables called group and
trtmnt, and we wish to use the maximum value for each
group/trtmnt combination in the transformation. If the data set
had already been sorted, the following statements could be used:

proc summary nway data=new;
class group trtmnt;
var x;
output out=sumnew max=maxx;

run;
data final;

merge new sumnew(keep=maxx);
by group trtmnt;
px = x / maxx;

run;

The nway option limits the output data set to contain observations
for each unique combination of the variables given in the class

statement.

130

Output Data Sets: Example III

Suppose we have a data set called hdata, consisting of three
variables: hospital, time and score, representing the score of
some medical exam taken at three different times at three different
hospitals, and we’d like to produce a plot with three lines: one for
the means of each of the three hospitals over time. The following
statements could be used:

proc means noprint nway data=hdata;
class hospital time;
var score;
output out=hmeans mean=mscore;

run;

The noprint option suppresses the usual printing which is the
default for proc means. You could acheive similar results using a
by statement instead of a class statement, but the data set would
need to be sorted.

131

Output Data Sets: Example III(cont’d)

The transformation which the previous program produced can be
thought of as the following:
hospital time score
mercy 1 132
mercy 2 125

. . . hospital time _type_ _freq_ mscore
mercy 1 144 city 1 3 2 146.500
mercy 2 224 city 2 3 2 120.000
county 1 119 city 3 3 2 128.000
county 2 125 =⇒ county 1 3 2 125.500

. . . county 2 3 2 127.000
county 2 129 county 3 3 2 117.000
county 3 113 mercy 1 3 3 131.667
city 1 144 mercy 2 3 2 174.500
city 2 121 mercy 3 3 1 121.000

. . .
city 1 149
city 3 122

The type variable indicates the observations are for a unique
combination of levels of two class variables, while the freq

variable is the number of observations which were used for the
computation of that statistic.

132

Plotting the Means

The following program produces the graph shown on the right:

symbol1 interpol=join
value=plus;

symbol2 interpol=join
value=square;

symbol3 interpol=join
value=star;

title "Means versus Time";
proc gplot data=hmeans;
plot mscore*time=hospital;
run;

133

Application: Finding Duplicate Observations II

In a previous example, duplicates were found by using by

processing and first. and last. variables. If the data set were
very large, or not already sorted by id, that program would not be
very efficient. In this case, an output data set from proc freq

might be more useful. Once again, assume the identifier variable is
called id. The following statements will produce a data set with
the id values of the duplicate observations.

proc freq data=old noprint;
tables id/ out=counts(rename = (count = n) keep=id count);

run;
data check;

set counts;
if n > 1;

run;

Note that, even though count is renamed to n, the original variable
name (count) is used on the keep statement.

134

SAS Macro Language: Overview

At it’s simplest level, the SAS Macro language allows you to assign
a string value to a variable and to use the variable anywhere in a
SAS program:

%let header = "Here is my title";

. . .

proc print ;

var x y z;

title &header;

run;

This would produce exactly the same result as if you typed the
string "Here is my title" in place of &header in the program.
Notice that the substitution is very simple - the text of the macro
variable is substituted for the macro symbol in the program.

135

SAS Macro Language: Overview (cont’d)

The macro facility can be used to replace pieces of actual programs
by creating named macros:

%macro readsome;
data one;

infile "myfile";
input x y z;
if

%mend;

%readsome x > 1; run;

The final statement is equivalent to typing

data one;
infile "myfile";
input x y z;
if x > 1; run;

Once again, all that is performed is simple text replacement.

136

SAS Macro Language: Overview (cont’d)

A large part of the macro facility’s utility comes from the macro
programming statements which are all preceded by a percent sign
(%). For example, suppose we need to create 5 data sets, named
sales1, sales2, etc., each reading from a corresponding data file
insales1, insales2, etc.
%macro dosales;

%do i=1 %to 5;
data sales&i;
infile "insales&i";
input dept $ sales;
run;

%end;
%mend dosales;

%dosales;

Note that, until the last line is entered, no actual SAS statements
are carried out; the macro is only compiled.

137

Defining and Accessing Macro Variables in the Data Step

You can set a macro variable to a value in the data step using the
call symput function. The format is

call symput(name,value);

where name is a string or character variable containing the name of
the macro variable to be created, and value is the value the macro
variable will have.

To access a macro variable in a data step, you can use the symget

function.

value = symget(name);

name is a string or character variable containing the name of the
macro variable to be accessed.

138

call symput: Example

Suppose we want to put the maximum value of a variable in a title.
The following program shows how.

data new;
retain max -1e20;
set salary end = last;
if salary > max then max = salary;
if last then call symput("maxsal",max);
drop max;
run;

title "Salaries of employees (Maximum = &maxsal)";
proc print data=salary;
run;

Note that no ampersand is used in call symput, but you must use
an ampersand to reference the macro variable later in your
program.

139

An Alternative to the macro facility

As an alternative to the previous example, we can use the put

statement to write a SAS program, and then use the %include

statement to execute the program. Using this technique, the
following statements recreate the previous example:

proc means data=salary noprint;
var salary;
output out=next max=maxsal;

data _null_;
set next;
file "tmpprog.sas";
put ’title "Salaries of employees (Maximum =’ maxsal ’)";’;
put ’proc print data=salary;’;
put ’run;’;

run;
%include "tmpprog.sas";

Pay special attention to quotes and semicolons in the generated
program.

140

Another Alternative to the Macro Facility

In addition to writing SAS statements to a file, SAS provides the
call execute function. This function takes a quoted string, a
character variable, or a SAS expression which resolves to a
character variable and then executes its input when the current
data step is completed.

For example, suppose we have a data set called new which contains
a variable called maxsal. We could generate a title statement
containing this value with statements like the following.
data _null_;
set new;
call execute(’title

"Salaries of employees (Maximum = ’|| put(maxsal,6.) || ’)";’);
run;

141

call execute Example

As a larger example of the use of the call execute function,
consider the problem of reading a list of filenames from a SAS data
set and constructing the corresponding data steps to read the files.
The following program performs the same function as the earlier
macro example.

data _null_;

set files;

call execute(’data ’ || name || ’;’);

call execute(’infile "’|| trim(name) || ’";’);

call execute(’input x y;’);

call execute(’run;’);

run;

Be careful with single and double quotes, and make sure the
generated statements follow the rules of SAS syntax.

142

Application: Reading a Series of Files

Suppose we have a data set containing the names of files to be read,
and we wish to create data sets of the same name from the data in
those files. First, we use the call symput function in the data step
to create a series of macro variables containing the file names

data _null_;

set files end=last;

n + 1;

call symput("file"||left(n),trim(name));

if last then call symput("num",n);

run;

Since macros work by simple text substitution, it is important that
there are no blanks in either the macro name or value, thus the use
of left and trim

143

Application: Reading a Series of Files (cont’d)

Now we can write a macro to loop over the previously defined file
names and create the data sets.

%macro readem;

%do i=1 %to #

data &&file&i;

infile "&&file&i";

input x y;

run;

%end;

%mend;

%readem;

Notice that the macro variable is refered to as &&file&i, to force
the macro substitution to be scanned twice. If we used just a single
ampersand, SAS would look for a macro variable called &file.

144

Macros with Arguments

Consider the following program to print duplicate cases with
common values of the variables a and b in data set one:
data one;

input a b y @@;
datalines;
1 1 12 1 1 14 1 2 15 1 2 19 1 3 15 2 1 19 2 4 16 2 4 12 2 8 18 3 1 19
proc summary data=one nway ;

class a b;
output out=next(keep = a b _freq_ rename=(_freq_ = count));

data dups;
merge one next;
by a b;
if count > 1;

proc print data=dups;
run;

If we had simple way of changing the input data set name and the
list of variables on the by statement, we could write a general
macro for printing duplicates in a data set.

145

Macros with Arguments (cont’d)

To add arguments to a macro, simply replace the parts of the
program in question with macro variables (beginning with &), and
list the variables in the argument list (without the &).
%macro prntdups(data,by);
proc summary data=&data nway ;

class &by;
output out=next(keep = &by _freq_ rename=(_freq_ = count));

run;
data dups;

merge &data next;
by &by;
if count > 1;

run;
proc print data=dups;
run;
%mend prntdups;

Then the program on the previous slide would be replaced by:
%prntdups(one,a b);

146

Accessing Operating System Commands

If you need to run an operating system command from inside a
SAS program, you can use the x command. Enclose the command
in quotes after the x, and end the statement with a semicolon. The
command will be executed as soon as it is encountered.

For example, in an earlier program, a file called tmpprog.sas was
created to hold program statements which were later executed. To
remove the file after the statements were executed (on a UNIX
system) you could use the SAS statement:

x ’rm tmpprog.sas’;

Other interfaces to the operating system may be available. For
example, on UNIX systems the pipe keyword can be used on a
filename statement to have SAS read from or write to a process
instead of a file. See the SAS Companion for your operating system
for more details.

147

Transporting Data Sets

It is sometimes necessary to move a SAS data set from one
computer to another. The internal format of SAS data sets is not
the same on all computers, so to make it possible to transfer data
sets from one computer to another, SAS provides what is known as
a transport format. Whenever you move a SAS data set from one
computer to another, you must first convert it into transport
format.

Keep in mind that SAS data sets are in general readable only by
SAS. Thus, an alternative (or perhaps a backup) method for
transporting data sets is to write them in a human-readable way,
using, for example, put statements. Human-readable files can be
processed by SAS (or some other program), and are generally easier
to move around than SAS transport data sets.

148

SAS/CONNECT

SAS also provides a product called SAS/CONNECT which lets you
initiate a SAS job on a remote computer from a local SAS display
manager session. It also provides two procedures, proc upload and
proc download to simplify transporting data sets. If
SAS/CONNECT is available on the machines between which the
data set needs to be moved, it may be the easiest way to move the
data set.

SAS/CONNECT must be run from the display manager. When
you connect with the other system, you will be prompted for a
login name and a password (if appropriate). Once you’re
connected, the rsubmit display manager command will submit jobs
to the remote host, even though the log and output will be
managed by the local host.

149

Creating a Dataset in transport format

proc copy can be used to create a transport format file, but the
critical step is to use the xport keyword in the libname statement.
The specified libname is then the name of the transport format file
which SAS will create, not a directory as is usually the case.

Suppose we wanted to create a SAS transport data file named
move.survey from a SAS data set named save.results.

libname save "/my/sas/dir";

libname move xport "move.survey";

proc copy in=save out=move;

select results;

run;

If you transfer the transport data set using a program like ftp,
make sure that you use binary (image) mode to transfer
the file.

150

proc transpose

Occasionally it is useful to switch the roles of variables and
observations in a data set. The proc transpose program takes
care of this task.

To understand the workings of proc transpose, consider a data
set with four observations and three variables (x, y and z). Here’s
the transformation proc transpose performs:

Original data Transposed data
X Y Z _NAME_ COL1 COL2 COL3 COL4

12 19 14 X 12 21 33 14

21 15 19 =⇒ Y 19 15 27 32

33 27 82 Z 14 19 82 99

14 32 99

The real power of proc transpose becomes apparent when it’s
used with a by statement.

151

proc transpose with a by statement

When a by statement is used with proc transpose, a variety of
manipulations which normally require programming can be
acheived automatically.

For example, consider a data set with several observations for each
subject, similar to a previous example:

subj time x
1 1 12
1 2 15
1 3 19
2 1 17
2 3 14
3 1 21
3 2 15
3 3 18

Notice that there is no observation for subject 2 at time 2.

152

proc transpose with a by statement (cont’d)

To make sure proc transpose understands the structure that we
want in the output data set, an id statement is used to specify
time as the variable which defines the new variables being created.
The prefix= option controls the name of the new variables:

proc transpose data=one out=two prefix=value;

by subj;

id time;

The results are shown below:

subj _NAME_ value1 value2 value3

1 x 12 15 19

2 x 17 . 14

3 x 21 15 18

Notice that the missing value for subject 2, time 2 was handled
correctly.

153

proc contents

Since SAS data sets cannot be read like normal files, it is important
to have tools which provide information about data sets. proc
print can show what’s in a data set, but it not always be
appropriate. The var and libname windows of the display manager
are other useful tools, but to get printed information or to
manipulate that information, you should use proc contents.

Among other information, proc contents provides the name,
type, length, format, informat and label for each variable in the
data set, as well as the creation date and time and the number of
observations. To use proc contents, specify the data set name as
the data= argument of the proc contents statement; to see the
contents of all the data sets in a directory, define an appropriate
libname for the directory, and provide a data set name of the form
libname. all .

154

Options for proc contents

The short option limits the output to just a list of variable names.

The position option orders the variables by their position in the
data set, instead of the default alphabetical order. This can be
useful when working with double dashed lists.

The directory option provides a list of all the data sets in the
library that the specified data set comes from, along with the usual
output for the specified data set.

The nods option, when used in conjunction with a data set of the
form libname. all , limits the output to a list of the data sets in
the specified libname, with no output for the individual data sets.

The out= option specifies the name of an output data set to
contain the information about the variables in the specified data
set(s). The program on the next slide uses this data set to write a
human readable version of a SAS data set.

155

Using the output data set from proc contents

%macro putdat(indata,outfile);
proc contents noprint data=&indata out=fcon; run;
data _null_;

file "tmpprog.sas";
set fcon end=last;
length form $ 8;
if _n_ = 1 then do;

put "data _null_;"/"set &indata;";
put ’file "&outfile";’ / "put " @;
end;

put name @;
if type = 2 then

form = "$"||trim(left(put(length,3.)))||".";
else form = "best12.";
put form @;
if ^last then put "+1 " @;
else put ";" / "run;" ;

run;
%include "tmpprog.sas";
x ’rm tmpprog.sas’;
%mend putdat;

156

The Display Manager

When SAS is invoked, it displays three windows to help you
interact with your programs and output:
• Program Window - for editing and submitting SAS statements
• Log Window - for viewing and saving log output
• Output Window - for viewing and saving output

Some commands which open other useful windows include:
• assist - menu driven version of SAS
• dir - shows data sets in a library
• var - shows variables in a data set
• notepad - simple text window
• options - view and change system options
• filename - view current filename assignments
• help - interactive help system
• libname - view current libname assignments

157

Appearance of Display Manager

OUTPUT--+
|Command ===> |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
LOG---+
|File Edit View Locals Globals Help |
| |
| |
|This is version 6.11 of the SAS System. |
| |
| |
|NOTE: AUTOEXEC processing beginning; file is /app/sas611/autoexec.sas. |
| |
|NOTE: SAS initialization used: |
| real time 0.567 seconds |
| cpu time 0.421 seconds |
| |
PROGRAM EDITOR--+
|Command ===> |
| |
|00001 |
|00002 |
|00003 |
|00004 |
|00005 |
|00006 |
|00007 |
|00008 |
|00009 |
|00010 |
+---+

158

Entering Display Manager Commands

You can type display manager commands on the command line of
any display manager window. (To switch from menu bar to
command line select Globals -> Options -> Command line; to
switch back to menu bar, enter the command command.)

You can also enter display manager commands from the program
editor by surrounding them in quotes, and preceding them by dm,
provided that the display manager is active.

Some useful display manager commands which work in any window
include:
• clear - clear the contents of the window
• end - close the window
• endsas - end the sas session
• file "filename" - save contents of the window to filename

• prevcmd - recall previous display manager command

159

The Program Editor

There are a number of special display manager commands available
in the program editor.

• submit - submit all the lines in the editor to SAS
• subtop - submit the first line in the editor to SAS
• recall - place submitted statements back in the editor
• include "file" - place the contents of file in the editor
• hostedit - on UNIX systems, invoke the editor described in

the editcmd system option

Typing control-x when the cursor is in the program editor toggles
between insert and overwrite mode.

You can close the program window with the display manager
command program off.

160

Using the Program Editor

There are two types of commands which can be used with the
program editor

• Command line commands are entered in the Command ===>

prompt, or are typed into a window when menus are in effect.

• Line commands are entered by typing over the numbered lines
on the left hand side of the editor window. Many of the line
commands allow you to operate on multiple selected lines of
text.

In addition, any of the editor or other display manager commands
can be assigned to a function or control key, as will be explained
later.

Note: The undo command can be used to reverse the effect of
editing commands issued in the display manager.

161

Editor Line Commands

Commands followed by <n> optionally accept a number to act on
multiple lines.

Inserting Lines Deleting Lines

i<n> insert after current line d<n> delete lines
ib<n> insert before current line dd block delete

Moving Lines Copying Lines

m<n> move lines c<n> copy lines
mm block move cc block copy

Other Commands

>><n> indent lines <<<n> remove indentation
tc connect text ts split text

Type block commands on the starting and ending lines of the block
and use a b or a command to specify the a line before which or
after which the block should be placed.

162

Defining Function and Control Keys

You can define function keys, control keys, and possibly other keys
depending on your operating system, through the keys window of
the display manager.
To define a function key to execute a display manager command,
enter the name of the command in the right hand field next to the
key you wish to define.
To define a function key to execute an editor line command, enter
the letter(s) corresponding to the command preceded by a colon (:)
in the right hand field.
To define a function key to insert text into the editor, precede the
text to be inserted with a tilda (~) in the right hand field.
Some display manager commands only make sense when defined
through keys. For example the command home puts the cursor on
the command line of a display manager window.

163

More on Function Keys

You can define a function key to perform several commands by
separating the commands with a semicolon (;).

Function keys defining display manager commands are executed
before any text which is on the command line. Thus, you can enter
arguments to display manager commands before hitting the
appropriate function key.

To set function keys without using the keys window, use the
display manager keydef command, for example:

keydef f2 rfind

Keys set in this way will only be in effect for the current session.

164

Cutting and Pasting

If block moves and/or copies do not satisfy your editing needs, you
can cut and paste non-rectangular blocks of text. Using these
commands generally requires that keys have been defined for the
display manager commands mark, cut, and paste, or home.

To define a range of text, issue the mark command at the beginning
and end of the text you want cut or pasted. Then issue the cut

(destructive) or store (non-destructive) command. Finally, place
the cursor at the point to which you want the text moved, and
issue the paste command.

When using cut or store, you can optionally use the append

option, which allows you to build up the contents of the paste
buffer with several distinct cuts or copies, or the buffer=name

option, to create or use a named buffer.

165

Searching and Changing Text

The display manager provides the following commands for
searching and, in the program editor or notepad, changing text.
These commands include:
• find string - search forward for string
• bfind string - search backward for string
• rfind - repeat previous find command
• change old new - change old to new

• rchange - repeat previous change command

Each of these commands takes a variety of options:
Scope of Search: next, first, last, prev, all
Component of Search: word, prefix, suffix
Case Independence: icase

If there are blanks or special symbols in any of the strings,
surround the entire string in single or double quotes.

166

Using the Find and Change Commands

• To change every occurence of the string “sam” to “fred”,
ignoring the case of the first string, enter

change sam fred all icase

• To selectively change the word cat to dog, use

change cat dog word

followed by repeated use of rfind, to find the next occurence
of the word, and rchange if a change is desired.

• To count the number of occurences of the word fish, use

find fish all

and the count will be displayed under the command line.
If an area of text is marked (using the display manager mark
command), then search and/or find commands apply only to the
marked region.

167

Customizing the Display Manager

Key definitions entered through the keys window are automatically
stored from session to session.

The color display manager command allows you to customize the
colors of various components of SAS windows. The sascolor

window allows you to change colors through a window.

To save the geometry and location of display manager windows,
issue the display manager command wsave from within a given
window, or wsave all to save for all windows.

168

