SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title: _	INDUSTRIAL ELECTRONICS
Code No.:	ELN 213
Program:	ELECTRICAL/ELECTRONIC TECHNICIAN
Semester:	THREE
Date:	JUNE 10, 1983
Author:	W. FILIPOWICH

New: Revision: X

APPROVED:

Chairperson Chairperson

Date

INDUSTRIAL ELECTRONICS Course Name

ELN 213 Course Number

PHILOSOPHY/GOALS:

This course will provide the student with an understanding of fundamental control and trigger devices and their industrial applications. Emphasis is on solid-state devices; thyristors, unijunction transistors, optoelectronic devices and operational amplifiers. Also, the use of programmable logic controller (PLC's) will be studied.

METHOD OF ASSESSMENT:

Assessment will consist of two major theory tests and various quizzes for 50% of the overall grade.

Practical tests, lab quizzes, logbook, oral and written assignments and general lab assessment will make up the other 50%.

TEXTBOOK:

Industrial Solid-State Electronics - Maloney.

BLOCK NUMBER	PERIODS T-L	TOPIC DESCRIPTION	REFERENCE
Α.	4-4	Transistor Switching, Timing Circuits and Relays 1. Transistor as a Switch 2. Transistor Switching Circuits 3. RC Time Delay Circuits 4. Relay Construction, Functions and Operations 5. Applications of Transistor Switches, Time-Delay Circuits and Relays in Control Circuits	*Text -Electronic Principles, *Industrial Solid-State Electronics, Maloney -Industrial Electronics Zbar
В.	4-6	<pre>Optoelectronics 1. Fundamentals of Light 2. Photoelectric Devices - - photovoltaic cell - photoconductor - photoconductor - photo diode - photo transistors - photo IC's 4. Light - Emitters - LED's - IRED's - LASERS - LCD's - Nixie Tube - Alphanumer displays 5. Photocouplers 6. Fibre Optics 7. Application of Optoelectronic Devices in Industrial Control </pre>	ric

- 3 -

BLOCK NUMBER	PERIODS T-L	TOPIC DESCRIPTION REFERENCE	
C.	6-6	Operational Amplifiers	
		 Introduction to Differential Amplifiers symbol circuit diagram modes of operation 	
		 OPAMPS - Construction, operation, characteristics and specifications 	
		 OPAMP Circuits - operation, voltage gain amplifiers comparators inverters and non-inverters adders and subtractors 	
		 adders and subtractors integrators and differ- entiators converters (voltage/current) Applications of OPAMPS in Control 	
		Circuits 5. The 555 Timer	
D.	2-3	Unijunction Transistors	
		 Operation, Characteristics, Specifications and Ratings of UJT's 	
		 UJT Relazation Oscillator UJT Timing Circuits and Triggering Devices 	
		 CUJT and PUT Devices UJT Applications 	
Ε.	10-10	PNPN (Thyristor) Devices	
		 Introduction PNPN Trigger Devices - symbol, operation, I-V curve, charact- eristics and applications (a) Schockley (Four-Layer Diode) (b) SUS (c) DIAC (d) SBS 	

- 4 -

BLOCK NUMBER	PERIODS T-L	TOPIC DESCRIPTION	REFERENCE
E. (cont'd)	10-10	 Silicon controlled Rectifiers (SCR's) theory and operation I-V anode and gate characteristics SCR gate control circuits AC and DC Switching Circui SCR Applications phase control circuits motor-speed control alarm and lighting sys Triacs - theory and operatio electrical characte triggering methods 	tems n
F.	4-4	Programmable Logic Controllers (PLC's)	
		1. Function, Operation, Applica	tion

and Programming of PLC's

- 5 -

BLOCK "A" - Transistor Switching, Timing Circuits and Relays

- 1. Explain the operation of a transistor switch and how it differs from a linear transistor amplifier.
- 2. Calculate resistor sizes for a transistor switch.
- 3. Explain the advantages of some common variations of the basic transistor switch.
- 4. Define the term "time constant" as related to RC and RL circuits.
- 5. Use the Universal Time Constant Chart in determining the effects on circuit voltage and current with respect to time.
- 6. Become familiar with some applications of timing circuits in industry.
- 7. Define the term "relay".
- Describe the basic construction of a simple d.c. relay with the aid of a schematic diagram.
- 9. Explain the effects on relay operation when:
 - (a) spring tension is varied
 - (b) distance between contact points is varied
 - (c) using different sizes of coil windings and different coil core material
 - (d) supply voltage to coil windings is varied
- 10. Define the following terms associated with relays:
 - (a) Make or Break (NO, NC)
 - (b) Energized, de-energized
 - (c) "pick-up" value, "reset" value
 - (d) Relay coil resistance
 - (e) SPST, SODT, DPDT

- 11. State the characteristics, advantages and disadvantages of the three main types of relays:
 - Electromagnetic relays
 - Reed relays
 - Solid state switches
- 12. Explain (with the aid of circuit diagrams) the operation of various electro-magnetic relays, time-delay relays (vacuum tube and transistor).
- 13. Explain the function and circuit operation of the relay in the following applications:
 - circuit overload and underload protection
 - keying
 - remote switching
 - industrial controls
 - timing circuits
 - time-delay relay circuits (electronic and non-electronic).
- 14. Use manufacturer's specification manuals and data sheets in order to select the proper relay for the required job.
- 15. Explain the operation, advantages and disadvantages of solid-state relays.

BLOCK "B" - OPTOELECTRONICS

The student shall be able to:

- 1. Recall the characteristic of optoelectric devices.
- 2. Recall how light is related to the electromagnetic spectrum.
- 3. Recall the relationship between frequency, wavelength and speed of light and the units of measurement for each.
- 4. Understand the spectral response of the human eye to various colours.
- 5. Recall how light at various frequencies affects photoelectric devices.
- 6. List the three main types of photoelectric (PE) devices, draw the symbol diagram and state the principle characteristic of each.
- With the aid of a Resistance vs Illumination curve for a typical photo-conductive cell, to state the affect on cell resistance for various light intensity.
- Calculate the circuit current and voltage when a cell is subjected to light.
- 9. Draw the symbol diagram, explain the operation and state the characteristics, specifications, ratings and application of the following devices:

(a)	Photoelectric Devices	5: (i) (ii) (iii)	Photovoltaic ce Photoconductive Photoemissive	e cell
(b)	Photoconductive Sense	ors: (i) (ii)	Photodiode Phototransistor FET, Darlingtor	
		(iii)	Photo IC	
(c)	Light-Emitters:	(i) (ii) (iii) (iv) (v) (vi)	LED's IRED's LCD's LASERS Nixie Tube Alphanumerical	displays

9. (d) Photocouplers (Optocouplers)

(e) Solid-State Relays

BLOCK "C" - Operational Amplifiers (OPANPS)

- Draw a block diagram of a basic differential amplifier and state its characteristics.
- 2. With the aid of a basic circuit diagram of a differential amplifier, explain circuit operation.
- Explain the operation and characteristics of the following differential amplifier configurations.
 - (a) single-ended input
 - (b) double-ended input (differential input) with in-phase and out-of-phase signals.
- 4. Draw a block diagram of an OPAMP and state the approximate values of each important amplifier characteristic typical of an OPAMP, such as:
 - (a) Power rating
 - (b) Open-loop voltage gain
 - (c) Differential voltage gain
 - (d) Input and output impedance
 - (e) Common-mode rejection ratio (CMRR)
- Describe the offset problem of OPAMPS and show how it can be corrected.
- Explain the concept of "virtual ground".
- 7. For the following OPAMP circuits, draw the circuit diagram, explain its operation, recall the voltage gain formula and list its characteristics.
 - (a) Constant-gain amplifier
 - (b) Inverting Amplifier
 - (c) Con-inverting Amplifier
 - (d) Emitter-follower
 - (e) Comparator
 - (f) Adder (Summer)
 - (g) Subtractor
 - (h) Add/Substract
 - (i) Integrator
 - (i) Differentiator
 - (k) Voltage-to-current converter
- 8. To extract data on operation, specifications, ratings, applications and electrical characteristics on OPAMPS from manufacturers data sheets.
- 9. To study the operation, characteristics and applications of the 555 Timer I.C.

BLOCK "D" - Unijunction Transistor (UJT)

- Draw the symbol and structural diagram of a UJT and explain how it operates.
- Interpret the I-V characteristics curve of a UJT and identify the peak voltage, peak current, valley voltage, valley current, saturation voltage, and negative resistance region.
- 3. Relate the UJT variables of peak voltage (Vp), intrinsic stand of ratio (?), interbase resistance (R_{BB}) and voltage (V_{BB}), and calculate any one of these, given the other two.
- 4. With the aid of a circuit diagram and waveforms, explain the operation of a UJT relaxation oscillator and properly size the timing resistors and capacitors in these circuits and calculate the frequency of oscillation.
- 5. Explain the problem of UJT latch-up, why it occurs, and how to avoid it.
- 6. State the characteristics, operation, application of a programmable UJT (PUT) and draw its fully labelled circuit diagram.
- 7. State the characteristics, operation, application of a 555 Timer.

BLOCK "E" - PNPN (Thyristor) Devices

- 1. Recall that the term "thyristor" refers to all members of the PNPN family that have a control mechanism.
- For the following PNPN trigger devices, draw the symbol diagram, explain operation, draw the I-V characteristic curve, and state the main characteristics:
 - (a) PNPN (Schockley) Diode
 - (b) SUS
 - (c) Diac
 - (d) SBS
- 3. Draw the symbol diagram, structural diagram, and the I-V characteristic curve for the SCR, indicating the "off" region, "on" region, forward breakover voltage, holding current and voltage and gate trigger current and voltage.
- Explain the operation of an SCR power control circuit for controlling resistive loads with AC/DC supplies and various gate triggering methods.
- 5. Explain the operation of an SCR.
- 6. Define firing delay angle and conduction angle and show how they affect the load current.
- 7. Define some of the important electrical parameters associated with SCR's, such as gate trigger current and voltage, holding current, forward ON-state voltage, forward breakover voltage, maximum power dissipation, etc., and give the approximate range of values expected for these parameters using data sheets and specification manuals.
- Explain the operation and advantages of breakover trigger devices used with SCR's.
- 9. With the aid of circuit diagrams and waveforms, explain the principles of phase shift control using an AC supply voltage and a gate pulse voltage. State how the firing angle causes the conduction angle to vary.
- For the following thyristor control devices, draw the symbol diagram, explain operation, state turn-on and turn-off methods, draw the I-V characteristics and applications of:

- 10. continued -
 - (a) TRIAC
 (b) LASCR

 - (c) GCS
 - (d) SCS
- 11. Explain circuit operation, function of components, etc. for various industrial control cirits using all the devices covered in this course.