
Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 1

Announcements

 Project 6 now out.
» Milestone due Oct. 24th
» Final project due Oct. 31

 Exam 2
» Wednesday Oct. 31, 7-8 pm
» EE 129

 Deadline to drop
» Wednesday Oct. 24th

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 2

Some Terminology
 Throwing an exception: either Java itself or your code signals

when something unusual happens
 Catching an exception: responding to an exception by executing

a part of the program specifically written for the exception
» also called handling an exception

 The normal case is handled in a try block
 The exceptional case is handled in a catch block
 The catch block takes a parameter of type Exception

» it is called the catch-block parameter

» e is a commonly used name for it
 If an exception is thrown, execution in the try block ends and

control passes to the catch block(s) after the try block

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 3

try-throw-catch Program Flow
Try block
Statements execute up to the conditional throw statement
If the condition is true the exception is thrown

» control passes to the catch block(s) after the try block
Else the condition is false

» the exception is not thrown
» the remaining statements in the try block (those following

the conditional throw) are executed
Catch block
Executes if an exception is thrown

» may terminate execution with exit statement
» if it does not exit, execution resumes after the catch block

Statements after the Catch block
Execute if either the exception is not thrown or if it is thrown but the

catch block does not exit

An
Example of
Exception

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 5

ExceptionDemo
try and catch blocks

Note: You would
normally not use
Exception here,
but an exception
class you created
yourself, such as
MilkException.

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 5

Java Predefined Exceptions
 Exception

» The parent of all other exception classes
» If you want to use the same error-handling code for all

exceptions, you can just catch Exception. (More on this
later.)

 IOException

» Often thrown when errors occur reading input or writing
output to the screen, to a file, or other types of I/O.

» E.g. reading a file that is not in the correct format.
 FileNotFoundException

 These are exceptions that you will want to catch in your code, if
you are using methods that may throw these exceptions.

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 6

What about these exceptions...
 ArrayIndexOutOfBoundsException

» For example, if an array has 10 elements and you try access
the 11th element: myArray[10].

 NullPointerException

» When you try to use an object that is set to null. For
example:

 myObject = null;

 myObject.myMethod(); // Exception!
 Unlike other exceptions, you should not catch these. Always

check the array’s length or if the object is equal to null if there is
a possibility these exceptions may be thrown.

 Note: These are common exceptions in student projects, which
often result in poor grades because your program terminates
before we can finish testing it...

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 7

Defining Your Own Exception
Classes

 Note that this only defines the exception class – you must still
include code to throw and catch the exception in other classes.

 Often the only methods you need to define are constructors.

For example
Display 8.3/page 417

public class DivideByZeroException extends Exception
{
 public DivideByZeroException()
 {
 super("Dividing by Zero!");
 }
 public DivideByZeroException(String message)
 {
 super(message);
 }
}

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 8

Java Tip: Preserve getMessage
When You Define Exception Classes

 a constructor with
a string parameter
that begins with a
call to super

 a default
constructor that
passes a default
message to the
super constructor

This string is stored in an instance variable in the exception
object and is returned by the getMessage method.

public DivideByZeroException()
{
 super("Dividing by Zero!");
}

public DivideByZeroException(String message)
{
 super(message);
}

throw new Exception("This is a big exception!");

To preserve the correct getMessage behavior in Exception classes
that you define, include:

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 9

When to Define
Your Own Exception Class

 When you use a throw statement in your code, you
should usually define your own exception class.

 If you use a predefined, more general exception
class, then your catch-block will have to be general.

 A general catch-block could also catch exceptions
that should be handled somewhere else.

 A specific catch-block for your own exception class
will catch the exceptions it should and pass others
on.

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 11

Example:
Using the
Divide-
ByZero-
Exception

This could have
been another call
to doIt(). This
is a common use
of recursion and
exceptions.

public void doIt()
{
 try
 {
 System.out.println(“Enter numerator: “);
 int numerator = SavitchIn.readLineInt();
 System.out.println(“Enter denominator: “0;
 int denominator = SavitchIn.readLineInt();
 if (denominator == 0)
 throw new DivideByZeroException();
 double quotient =
 (double)numerator/(double)denominator;
 System.out.println(numerator + “/” +
 + denominator + “=“ + quotient);
 }
 catch (DivideByZeroException e)
 {
 System.out.println(e.getMessage());
 secondChance();
 }
}

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 11

Passing the Buck—
Declaring Exceptions

When defining a method you must include a throws-clause to declare
any exception that might be thrown but is not caught in the method.

 Use a throws-clause to "pass the buck" to whatever method calls
it (pass the responsibility for the catch block to the method that
calls it)
» that method can also pass the buck,

but eventually some method must catch it

 This tells other methods
"If you call me, you must handle any exceptions that I throw."

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 12

Example: throws-Clause

DoDivision

 It may throw a DivideByZeroException in the method
normal

 But the catch block is in main
 So normal must include a throws-clause in its declaration

statement:

public void normal() throws DivideByZeroException

{

 <statements to define the normal method>

}

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 13

DoDivision
 The method normal, located in the DoDivision class, may

throw a DivideByZeroException.
 But the catch block is in main
 So normal must include a throws-clause in its declaration

statement:

public void normal() throws DivideByZeroException
{
 ...
 if (denominator == 0)
 throw new DivideByZeroException();
 quotient = numerator/(double)denominator;
 ...
}

Example: throws-Clause

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 14

Example: throws-Clause

 In the main method:

 public static void main (String[] args)
 {
 DoDivision doIt = new DoDivision();
 try
 {
 doIt.normal();
 }
 catch(DivideByZeroException e)
 {
 System.out.println(e.getMessage());
 // ... other error-handling code
 }
 System.out.println(“End of program”);
 }

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 15

More about Passing the Buck

Good programming practice:
Every exception thrown should eventually be caught in some method

 Normally exceptions are either caught in a catch block or
deferred to the calling method in a throws-clause

 If a method throws an exception, the catch block must be in that
method unless it is deferred by a throws-clause

» if the calling method also defers with a throws-clause, its
calling program is expected to have the catch block, etc., up
the line all the way to main, until a catch block is found

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 16

Uncaught Exceptions

 In any one method you can catch some exceptions and defer
others

 If an exception is not caught in the method that throws it or any
of its calling methods, either:
» the program ends, or,
» in the case of a GUI using Swing, the program may become

unstable

 "Exceptions" derived from the classes Error and
RunTimeError do not need a catch block or throws-clause

» they look like exceptions, but they are not descendants of
Exception

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 17

Multiple Exceptions and
catch Blocks in a Method
 Methods can throw more than one exception

 The catch blocks immediately following the try block are
searched in sequence for one that catches the exception type
» the first catch block that handles the exception type is the

only one that executes

 Specific exceptions are derived from more general types
» both the specific and general types from which they are

derived will handle exceptions of the more specific type

 So put the catch blocks for the more specific, derived,
exceptions early and the more general ones later

 Catch the more specific exception first.

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 18Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 21

MethodA throws
MyException
but defers
catching it (by
using a throws-
clause: Typical Program

Organization for
Exception Handling
in Real Programs

MethodB, which
calls MethodA,
catches
MyException
exceptions:

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 19

Multiple Exceptions and
catch Blocks in a Method
Suppose we have the following exception classes:

class NegativeNumberException extends Exception

 { ... }

class DivideByZeroException extends Exception

 { ... }

In addition, in the same class as the main method we have the
method:

double ratio (double numer, double denom) throws
DivideByZeroException

 { ... }

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 20

Multiple Exceptions and
catch Blocks in a Method

public static void main (String[] args)
{
 try
 {
 System.out.println(“How many widgets were produced?”);
 int widgets = SavitchIn.readLineInt();
 if (widgets < 0)
 throw new NegativeNumberException();
 System.out.println(“How many were defective?”);
 int defective = SavitchIn.readLineInt();
 if (defective < 0)
 throw new NegativeNumberException(“widgets”);
 double ratio = findRatio(widgets,defective);
 // the ratio method throws DivideByZeroException
 }
 // catch blocks on next slide....

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 21

Multiple Exceptions and
catch Blocks in a Method

 // main continued
 catch (DivideByZeroException e)
 {
 System.out.println (“Congrats! A perfect record!”);
 }
 catch (NegativeNumberException e)
 {
 System.out.println
 (“Cannot have a negative number of “ + e.getMessage());
 }
 catch (Exception e)
 {
 System.out.println
 (“Exception thrown: “ + e.getMessage());
 }
} // end main

What if
catch(Exception)

had been first?

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 22

Creating your own Exceptions

 The previous example brings up an interesting point.
 Most of our exception classes have been very simple,

with only a constructor or two, and a getMessage()
method. You may be asking, “What’s the point of
making such a simple class?”

 By creating multiple exception classes, we can check
to see what kind of exception was thrown and thus
what kind of error happened.

 This allows us to write specific error-handling code as
above, since some methods may cause multiple
errors that each require different error-handling.

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 23

Exception Handling: Reality Check
 Exception handling can be overdone

» use it sparingly and only in certain ways

 If the way an exceptional condition is handled depends on how
and where the method is invoked, then it is better to use
exception handling and let the programmer handle the exception
(by writing the catch block and choosing where to put it)

 Otherwise it is better to avoid throwing exceptions

 An example of this technique is shown in the case study A Line-
Oriented Calculator

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 24

Case Study:
A Line-Oriented Calculator

 Preliminary version with no exception handling written first
 Exception when user enters unknown operator
 Three choices for handling exception:

» Catch the exception in the method evaluate() (where it is
thrown)

» Declare evaluate() as throwing the exception and catch it
in doCalculation()

» Declare both evaluate() and doCalculation() as
throwing the exception and handle it in main()

 Asks user to re-enter the calculation, so it uses the third option
 Also includes an exception for division by zero

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 25

Calculator evaluate Method
public double evaluate(char op, double n1, double n2)
 throws DivideByZeroException, UnknownOpException
{
 double precision = 0.001;
...
 case '+':
 answer = n1 + n2;
 break;
 ...
 case '/':
 if ((Math.abs(n2) < precision)
 throw new DivideByZeroException();
 answer = n1/n2;
 break;
 default:
 throw new UnknownOpException(op);
...
}

Any number smaller than precision
is treated as zero because it is usually
best to avoid using the equality
operator with floating-point numbers.

cases for – and * ops not shown
here—see text for complete code

Throws exception if op is any char other than +, -, *, /

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 26

Calculator UnknownOpException Class

public class UnknownOpException extends Exception
{
 public UnknownOpException()
 {
 super("UnknownOpException");
 }
 public UnknownOpException(char op)
 {
 super (op + " is an unknown operator.");
 }
 public UnknownOpException(String message)
 {
 super(message);
 }
}

Provides an easy way to
make the unknown op
character part of the
exception message.

Note that all three constructors provide
a way for the exception object to have
a meaningful message.

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 27

Case Study:
A Line-Oriented Calculator
 Why did we do the exception handling this way?

» We could have caught DivideByZeroException within the
evaluate method. (Or have never thrown an exception and
put the error-handling code in an if statement.)

– But what would we have done? Returned 0? If we
printed an error what would the method return? Easiest
to let calling function decide.

» We could have caught UnknownOpException within the
evaluate method.

– But again, what would we have done and what would we
have returned?

 In summary: Exceptions are very useful if the error handling is
dependent upon the context in which the method was called.

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 28

The finally Block

 At this stage of your programming you may not have much use
for the finally block, but it is included for completeness - you
may have find it useful later

 You can add a finally block after the try/catch blocks

 finally blocks execute whether or not catch block(s) execute

 Code organization using finally block:

try block
catch block
finally
{
 <Code to be executed whether or not an exception is thrown>
}

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 29

Three Possibilities for a try-
catch-finally Block

 The try-block runs to the end and no exception is thrown.

» The finally-block runs after the try-block.
 An exception is thrown in the try-block and caught in the

matching catch-block.

» The finally-block runs after the catch-block.
 An exception is thrown in the try-block and there is no

matching catch-block.

» The finally-block is executed before the method ends.

» Code that is after the catch-blocks but not in a finally-
block would not be executed in this situation.

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 30

Why Use a try-catch-finally
Block?
 When you have code that always should be executed

regardless of any errors.
 For example, try-catch blocks are very common

with file I/O (next chapter!). File I/O can throw many
exceptions such as FileNotFoundException,
IOException, etc.

» You will want to catch all of these exceptions.
» Whether or not an exception was thrown, you

always want to close the file when you’re done.

» Close the file in the finally clause.

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 31

Summary
Part 1

 An exception is an object descended from the Exception class
 Descendents of the Error class act like exceptions but are not
 Exception handling allows you to design code for the normal

case separately from that for the exceptional case
 You can use predefined exception classes or define your own
 Exceptions can be thrown by:

» certain Java statements
» methods from class libraries
» explicit use of the throw statement

 An exception can be thrown in either
» a try block, or

» a method definition without a try block, but in this case the
call to the method must be placed inside a try block

Chapter 8 Java: an Introduction to Computer Science & Programming - Walter Savitch 32

Summary
Part 2

 An exception is caught in a catch block
 When a method might throw an exception but does not have a

catch block to catch it, usually the exception class must be
listed in the throws-clause for the method

 A try block may be followed by more than one catch block
» more than one catch block may be capable of handling the

exception
» the first catch block that can handle the exception is the only one

that executes

» so put the most specific catch blocks first and the most general last

 Every exception class has a getMessage method to retrieve a
text message description of the exception caught

 Do not overuse exceptions

