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11.1 Introduction

Technologies for generating high-density arrays of cDNAs and oligonucleotides are developing rapidly,

and changing the landscape of biological and biomedical research. They enable, for the �rst time,

a global, simultaneous view on the transcription levels of many thousands of genes, when the cell

undergoes speci�c conditions or processes. For several organisms that had their genomes completely

sequenced, the full set of genes can already be monitored this way today. The potential of such

technologies is tremendous: The information obtained by monitoring gene expression levels in di�erent

developmental stages, tissue types, clinical conditions and di�erent organisms can help understanding

gene function and gene networks, and assist in the diagnostic of disease conditions and of e�ects of

medical treatments. Undoubtedly, other applications will emerge in coming years.

A key step in the analysis of gene expression data is the identi�cation of groups of genes that

manifest similar expression patterns. This translates to the algorithmic problem of clustering gene

expression data. A clustering problem consists of elements and a characteristic vector for each element.

A measure of similarity is de�ned between pairs of such vectors. (In gene expression, elements are

usually genes, the vector of each gene contains its expression levels under each of the monitored

conditions, and similarity can be measured, for example, by the correlation coeÆcient between vectors.)

The goal is to partition the elements into subsets, which are called clusters, so that two criteria are

satis�ed: Homogeneity - elements in the same cluster are highly similar to each other; and separation

- elements from di�erent clusters have low similarity to each other.

In this chapter we describe some of the main algorithmic approaches to clustering gene expression

data. Clustering is a fundamental problem which has numerous other applications in biology as well

as in many other disciplines. It also has a very rich literature, going back at least a century, and
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according to some authors, all the way to Aristo. Any such review is thus necessarily incomplete, and

re
ects the background, taste and biases of the authors.

11.2 Biological Background

In this section we outline three technologies that generate large scale gene expression data. All three

are based on performing of a large number of hybridization experiments in parallel on high density

arrays (a.k.a. \DNA chips"), between probes and targets. They di�er in the nature of the probes and

the targets and in other technological aspects, which raise di�erent computational issues in analyzing

the data. For more on the technologies and their applications see, e.g., [Marshall and Hodgson, 1998,

Ramsay, 1998, Eisen and Brown, 1999, Chi, , Lockhart and Winzeler, 2000]

11.2.1 cDNA Microarrays

cDNAmicroarrays [Schena et al., 1996, Schena, 1996, Marshall and Hodgson, 1998, Ramsay, 1998] are

microscopic arrays which contain large sets of cDNA sequences immobilized on a solid substrate. In

an array experiment, many gene-speci�c cDNAs are spotted on a single matrix. The matrix is then

simultaneously probed with 
uorescently tagged cDNA representations of total RNA pools from test

and reference cells, allowing one to determine the relative amount of transcript present in the pool

by the type of 
uorescent signal generated. Current technology can generate arrays with over 10,000

cDNAs per square centimeter.

cDNA microarrays are produced by spotting PCR products of approximately 0.6-2.4 KB represent-

ing speci�c genes onto a matrix. The spotted cDNAs are usually chosen from appropriate databases,

e.g., GenBank [Benson et al., 1999] and UniGene [Schuler, 1997]. Additionally, cDNAs from any li-
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brary of interest (whose sequences may be known or unknown) can be used. Each array element is

generated by the deposition of a few nanoliters of puri�ed PCR product. Printing is carried out by a

robot that spots a sample of each gene product onto a number of matrices in a serial operation.

To maximize the reliability and precision with which quantitative di�erences in the abundance of

each RNA species are detected, one directly compares two samples (test and reference) by labeling

them with spectrally distinct 
uorescent dyes and mixing the two probes for simultaneous hybridization

to one array. The relative representation of a gene in the two samples is assayed by measuring the

ratio of the (normalized) 
uorescent intensities of the two dyes at the target element. Cy3-dUTP and

Cy5-dUTP are frequently used as the 
uorescent labels. For the comparison of multiple samples, e.g.,

in time-course experiments, one often uses the same reference sample with each of the test samples.

11.2.2 Oligonucleotide Microarrays

In oligonucleotide microarrays [Fodor et al., 1993, Lipshutz et al., 2000, Harrington et al., 2000], each

spot on the array contains a short synthetic oligonucleotide (oligo), typically 20-30 bases long. The

oligos are designed based on the knowledge of the DNA (or EST) target sequences, to ensure high-

aÆnity and speci�city of each oligo to a particular target gene. Moreover, they should not be near-

complementary to other RNAs that may be highly abundant in the sample (e.g., rRNAs, tRNAs,

alu-like sequences etc.).

One of the leading approaches to construction of high-density DNA probe arrays employs pho-

tolithography and solid-phase DNA synthesis. First synthetic linkers, modi�ed with a photochemi-

cally removable protecting groups, are attached to a glass substrate. At each phase, light is directed

through a photolithographic mask to speci�c areas on the surface to produce localized deprotection.
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Speci�c Hydroxyl-protected deoxynucleosides are incubated with the surface, and chemical coupling

occurs at those sites that have been illuminated. Current technology allows for approximately 300,000

oligos to be synthesized on a 1:28� 1:28 cm array. Key to this approach is the use of multiple distinct

oligonucleotides designed to hybridize to di�erent regions of the same RNA. This use of multiple de-

tectors greatly improves signal-to-noise ratio and accuracy of RNA quantitation, and reduces the rate

of false-positives and miscalls.

An additional level of redundancy comes from the use of mismatch control probes that are identical

to their perfect match partners except for a single base di�erence in a central position. These probes act

as speci�city controls: They allow the direct subtraction of both background and cross-hybridization

signals, and allow discrimination between 'real' signals and those due to non-speci�c or semi-speci�c

hybridizations.

11.2.3 Oligonucleotide Fingerprinting

Historically, the Oligonucleotide Fingerprinting (ONF)method preceded the other two [Lennon and Lehrach,

Drmanac et al., 1991, Vicentic and Gemmell, 1992, Drmanac and Drmanac, 1994, Drmanac et al., 1996,

Meier-Ewert et al., 1995, Milosavljevic et al., 1995]. It was initially proposed in the context of Se-

quencing By Hybridization, as an alternative to DNA sequencing. While that approach to sequencing

is currently not competitive, ONF has found other good applications, including gene expression. It

can be used to extract gene expression information about a cDNA library from a speci�c tissue under

analysis, without prior knowledge on the genes involved. Conceptually, it takes the \reverse" approach

to that of the oligo microarrays: The target is on the array, and the oligos are \in the air".

The ONF method is based on spotting the cDNAs on high density nylon membranes (about 31,000
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di�erent cDNA can be spotted currently in duplicates on one �lter [Drmanac et al., 1996]). A large

quantity of a short synthetic oligo, typically 7-12 bases long, radioactively labeled, is put in touch

with the membrane in proper conditions, and the oligos hybridize to those cDNAs that contain a DNA

sequence complementary to that of the oligo. By inspecting the �lter one can detect to which of the

cDNAs the oligo hybridized. Hence, ideally, the result of such an experiment is one 1/0 bit for each

of the cDNAs.

The experiment is repeated with p di�erent oligos, giving rise to a p-long vector for each cDNA spot,

indicating which of the (complements of) oligo sequences are contained in each cDNA. This �ngerprint

vector, similar to a bar-code, identi�es the cDNA. Thus, distinct spots of cDNAs originating from the

same gene should have similar �ngerprints. By clustering these �ngerprints, one can identify cDNAs

originating from the same gene, and the larger that number - the higher the expression level of the

corresponding gene. Gene identi�cation can subsequently be obtained by sample sequencing, or by

comparison of average cluster �ngerprints to a sequence database [Poustka et al., 1999].

Because of the short oligos used, the hybridization information is rather noisy, but this can be

compensated by using a longer �ngerprint. The method is probably less eÆcient than the other

two methods, which measure abundance directly in a single spot. However, it has the advantage of

applicability to species with unknown genomes, which oligo microarrays cannot handle, and it requires

relatively lower mRNA quantities than cDNA microarrays.

11.3 Mathematical Formulations and Background

Let N = fe1; : : : ; eng be a set of n elements, and let C = (C1; : : : ; Cl) be a partition of N into subsets.

That is, the subsets are disjoint and their union is N . Each subset is called a cluster, and C is called a
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clustering solution, or simply a clustering. Two elements ei and ej are called mates with respect to C if

they are members of the same cluster in C. In the gene expression context, the elements are the genes

and we often assume that there exists some correct partition of the genes into \true" clusters. When

C is the true clustering of N , elements that belong to the same true cluster are simply called mates.

The input data for a clustering problem is typically given in one of two forms: (1) Finger-

print data - each element is associated with a real-valued vector, called its �ngerprint, or pattern,

which contains p measurements on the element, e.g., expression levels of an mRNA at di�erent

conditions (cf. [Eisen and Brown, 1999]), or hybridization intensities of a cDNA with di�erent oligos

(cf. [Lennon and Lehrach, 1991]). (2) Similarity data - pairwise similarity values between elements.

These values can be computed from �ngerprint data, e.g. by correlation between vectors. Alterna-

tively, the data can represent pairwise dissimilarity, e.g. by computing distances. Fingerprints contain

more information than similarity, but the latter is completely generic and can be used to represent the

input to clustering in any application. (Note that there is also a practical consideration regarding the

presentation: The �ngerprint matrix is of order n � p while the similarity matrix is of order n � n,

and in gene expression applications often n >> p.)

The goal in a clustering problem is to partition the set of elements N into homogeneous and well-

separated clusters. That is, we require that elements from the same cluster will be highly similar to

each other, while elements from di�erent clusters will have low similarity to each other. Note that

this formulation does not de�ne a single optimization problem: Homogeneity and separation can be

de�ned in various ways, leading to a variety of optimization problems. Note also that even when

the homogeneity and separation are precisely de�ned, those are two objectives which are typically

con
icting: The higher the homogeneity - the lower the separation, and vice versa. The lack of a

single objective agreed upon by the community is inherent in the clustering problem, and we will
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Figure 11.1: A graph and a corresponding minimum weight cut, assuming that all edge weights are 1.

Minimum cut edges are denoted by broken lines. The length of the shortest path between u and v is

3, and this is also the diameter of the graph.

return to this point in the sequel.

Clustering problems and algorithms are often represented in graph-theoretic terms. We therefore

include some basic de�nitions on graphs. We refer the readers to [Golumbic, 1980, Even, 1979] for

more background and terminology on graphs.

Let G = (V;E) be a weighted graph. We denote the vertex set of G also by V (G). For a subset

R � V , the subgraph induced by R, denoted GR, is obtained from G by deleting all vertices not in

R and the edges incident on them. That is, GR = (R;ER) where ER = f(i; j) 2 Eji; j 2 Rg. For a

vertex v 2 V , de�ne the weight of v to be the sum of weights of the edges incident on v. A cut C in

G is a subset of its edges, whose removal disconnects G. The weight of C is the sum of the weights of

its edges. A minimum weight cut is a cut in G with minimum weight. In case of non-negative edge

weights, a minimum weight cut C partitions the vertices of G into two disjoint non-empty subsets

A;B � V , A [ B = V , such that E \ f(u; v) : u 2 A; v 2 Bg = C. For a pair of vertices u; v 2 V ,

the distance between u and v is the length of the shortest path which connects them. The diameter of

G is the maximum distance between a pair of vertices in G. For an example of these de�nitions see

Figure 11.1.

For a set of elementsK � N , we de�ne the �ngerprint or centroid of K to be the mean vector of the
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�ngerprints of the members of K. For two �ngerprints x and y we denote their similarity by S(x; y) and

their dissimilarity by d(x; y). A similarity graph is a weighted graph in which vertices correspond to

elements and edge weights are derived from the similarity values between the corresponding elements.

Hence, the similarity graph is just another representation of the similarity matrix.

An alternative formulation of the clustering problem is hierarchical: Rather than asking for a

single partition of the elements, one seeks an iterated partition: A dendogram is a rooted weighted

tree, with leaves corresponding to elements. Each edge de�nes the cluster of elements contained in the

subtree below that edge. The edge's weight (or length) re
ects the dissimilarity between that cluster

and the remaining elements. In this formulation the clustering solution is the dendogram, and each

non-singleton cluster, corresponding to a rooted subtree, is split into subclusters. The determination

of disjoint clusters is left to the judgment of the user. Typically, one tends to consider as genuine

clusters elements of a subtree just below a connecting edge of high weight.

Irrespective of the representation of the clustering problem input, judicious preprocessing of the

raw data is key to meaningful clustering. This preprocessing is application dependent and must be

chosen in view of the expression technology used and the biological questions asked. The goal of the

preprocessing is to normalize the data and calculate the pairwise element (dis)similarity, if applicable.

Common procedures for normalizing �ngerprint data include transforming each �ngerprint to have

mean zero and variance one, a �xed norm or a �xed maximum entry. Statistically based methods for

data normalization have also been developed recently (cf. [Kerr et al., 2000]).
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11.4 Algorithms

Several algorithmic techniques were previously used in clustering gene expression data, including hier-

archical clustering [Eisen et al., 1998], self organizing maps [Tamayo et al., 1999], and graph theoretic

approaches [Hartuv et al., 2000, Ben-Dor et al., 1999, Sharan and Shamir, 2000b]. We describe these

approaches in the sequel. For other approaches to clustering expression patterns, see [Milosavljevic et al., 1995

Alon et al., 1999, Getz et al., 2000b, Heyer et al., 1999]. Much more information and background on

clustering is available, cf. [Hartigan, 1975, Everitt, 1993, Mirkin, 1996, Hansen and Jaumard, 1997].

Several algorithms for clustering were developed by �rst designing a \clean" algorithm that has

proven properties, either in terms of time complexity, or in terms of (deterministic or probabilistic)

solution quality. Then a more eÆcient yet heuristic algorithm is developed based on the same idea.

We shall describe here the heuristics used in practice, but refer also brie
y to the properties of the

theoretical algorithm that motivated them.

11.4.1 Hierarchical Clustering

Hierarchical clustering solutions are typically represented by a dendogram. Algorithms for generating

such solutions often work either in a top-down manner, by repeatedly partitioning the set of elements,

or in a bottom-up fashion. We shall describe here the latter. Such agglomerative hierarchical clustering

algorithms are among the oldest and most popular clustering methods [Cormack, 1971]. They proceed

from an initial partition into singleton clusters by successive merging of clusters until all elements

belong to the same cluster. Each merging step corresponds to joining two clusters. The general scheme

due to Lance and Williams [Lance and Williams, 1967] is presented in Figure 11.2. It is assumed that

D = (dij) is the input dissimilarity matrix.
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1. Find a minimal entry di�j� in D, and merge clusters i� and j�.

2. Modify D by deleting rows and columns i; j and adding a new row and column

i
� [ j�, with their dissimilarities de�ned by:

dk;i�[j� = di�[j�;k = �i�dki� + �j�dkj� + 
jdki� � dkj� j

3. If there is more than one cluster, then go to Step 1.

Figure 11.2: The agglomerative hierarchical clustering scheme.

Common variants of this scheme are the following:

� Single-linkage: dk;i�[j� = minfdki�; dkj�g. Here �i� = �j� = 1=2 and 
 = �1=2.

� Complete-linkage: dk;i�[j� = maxfdki� ; dkj�g. Here �i� = �j� = 1=2 and 
 = 1=2.

� Average-linkage: dk;i�[j� = ni�dki�=(ni� +nj�)+nj�dkj�=(ni� +nj�), where ni denotes the number

of elements in cluster i. Here �i� =
ni�

ni�+nj�
, �j� =

nj�

ni�+nj�
, and 
 = 0.

Eisen et al. [Eisen et al., 1998] developed a clustering software package based on the average-linkage

hierarchical clustering algorithm. The software package is called Cluster, and the accompanying visu-

alization program is called TreeView. Both programs are available at

http://rana.Stanford.EDU/software/. The gene similarity metric used is a form of correlation co-

eÆcient. The algorithm iteratively merges elements whose similarity value is the highest, as explained

above. The output of the algorithm is a dendogram and an ordered �ngerprint matrix. The rows in

the matrix are permuted based on the dendogram, so that groups of genes with similar expression

patterns are adjacent. The ordered matrix is represented graphically by coloring each cell according

to its content. Cells with log ratios of 0 are colored black, increasingly positive log ratios with reds of

10



increasing intensity, and increasingly negative log ratios with greens of increasing intensity.

11.4.2 K-Means

K-means [MacQueen, 1965, Ball and Hall, 1967] is another classical clustering algorithm. It assumes

that the number of clusters k is known, and aims to minimize the distances between elements and the

centroids of their assigned clusters. Let M be the n�m �ngerprint matrix. For a partition P of the

elements in f1; : : : ; ng denote by P (i) the cluster assigned to i, and by c(j) the centroid of cluster j.

Let d(v1; v2) denote the Euclidean distance between the �ngerprint vectors v1 and v2. K-means tries

to �nd a partition P for which the error-function EP =
P

n

i=1 d(i; c(P (i))) is minimum.

Each iteration of K-means modi�es the current partition by checking all possible modi�cations of

the solution in which one element is moved to another cluster, and making a switch that reduces the

error function. Figure 11.3 describes the most basic scheme. A more eÆcient variant moves in one

iteration all elements which would bene�t from a move: For each i simultaneously, if minjE
ij

P
< EP ,

move i to the cluster j minimizing Eij

P
. This algorithm is very easy to implement and is used in many

applications.

1. Start with an arbitrary partition P of N into k clusters.

2. For each element i and cluster j 6= P (i) let Eij

P
be the cost of a solution in which

i is moved to cluster j. If E
i
�
j
�

P
= minijE

ij

P
< EP then move i� to cluster j�

and repeat Step 2. Otherwise halt.

Figure 11.3: The K-means algorithm.

Another heuristic inspired by K-means was developed by Herwig et al. [Herwig et al., 1999] to

cluster cDNA oligo-�ngerprints. Unlike the regular K-means algorithm, this algorithm does not require
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a prespeci�ed number of clusters. Instead, it uses two parameters: 
 is the maximal admissible

similarity of two distinct clusters, and � is the maximal admissible similarity between an element and

a cluster di�erent from its own cluster. (Similarity to a cluster is similarity to its centroid.) Elements

are handled one at a time, added to suÆciently close clusters, or otherwise, forming a new cluster.

Whenever centroids become too close, their clusters are merged. Unlike the K-means algorithm, an

element may be tentatively assigned to more than one cluster, and thus in
uence the location of several

centroids to which it is suÆciently close. The algorithm is shown in �gure 11.4. Here S(i; C) is the

similarity between element i and cluster C.

1. Start with a set of suÆciently di�erent elements as clusters.

2. For each remaining element i do:

� For each cluster C s.t. S(i; C) � � do:

{ add i to C.

{ While there exists a cluster C 0 s.t. S(C;C 0) > 
, merge C 0 into C.

� If i was not added to any cluster then form a new cluster fig.

3. Assign each element to the cluster to which it is most similar.

Figure 11.4: The algorithm of Herwig et al.

11.4.3 HCS and CLICK

The HCS [Hartuv et al., 2000, Hartuv and Shamir, 2000] and CLICK [Sharan and Shamir, 2000a, Sharan and

algorithms use a similar graph theoretic approach to clustering: The input data is represented as a

similarity graph. The algorithm recursively partitions the current set of elements into two subsets.
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Before a partition, the algorithm considers the subgraph induced by the current subset of elements. If

the subgraph satis�es a stopping criterion then it is declared a kernel. Otherwise, a minimum weight

cut is computed in that subgraph, and the set is split into the two subsets separated by that cut. The

output is a list of kernels which serve as a basis for the eventual clusters. This scheme is detailed in

Figure 11.5.

Form-Kernels(G):

If V (G) = fvg then move v to the singleton set.

Else if G is a kernel then output V (G).

Else

(H; �H) MinWeightCut(G).

Form-Kernels(H).

Form-Kernels( �H).

Figure 11.5: The basic scheme of HCS and CLICK. Procedure MinWeightCut(G) computes a minimum

weight cut of G and returns a partition of G into two subgraphs H and �
H according to this cut.

HCS and CLICK di�er in the similarity graph they construct, their stopping criteria and the

postprocessing of the kernels. We describe each of the algorithms below.

HCS

The HCS algorithm [Hartuv et al., 2000, Hartuv and Shamir, 1999] builds from the input data an

unweighted similarity graph G (each edge has weight 1 and each non-edge has weight 0) in which there

is an edge between two vertices if and only if the similarity between their corresponding elements

exceeds a prede�ned threshold.

13



G

2
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z

x

y

G

G 4

G 3

Figure 11.6: An example of applying the HCS algorithm to a graph. Minimum cut edges are denoted

by broken lines.

The following notion is key to the algorithm: A highly connected subgraph (HCS) is an induced

subgraph H of G, whose minimum cut value exceeds jV (H)j=2. That is, H remains connected if any

bjV (H)j=2c of its edges are removed. The algorithm identi�es highly connected subgraphs as kernels.

Figure 11.6 demonstrates an application of the algorithm.

The HCS algorithm possesses several good properties for clustering [Hartuv and Shamir, 1999]:

The diameter of each cluster it produces is at most two, and each cluster is at least half as dense as

a clique. Both properties indicate strong cluster homogeneity. Inter-cluster separation is harder to

prove, but it is argued that if errors are random, any non-trivial set split by the algorithm is unlikely

to have diameter two unless the involved sets are small.

To improve separation in practice, several heuristics are used to expand the kernels and speed up

the algorithm:

Iterated-HCS: When the minimum cut value is obtained by several distinct cuts, the HCS algorithm

chooses one arbitrarily. This process may break small clusters into singletons. (For example, a di�erent
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choice of minimum cuts by the algorithm for the graph in Figure 11.6 may split x from G2 and

eventually �nd the clusters G1 and G3, leaving x; y; z as singletons.) To overcome this, several (1-5)

HCS iterations are carried out until no new cluster is found.

Singletons Adoption: Singletons can be \adopted" by clusters: For each singleton element x we

compute the number of neighbors it has in each cluster and in the singletons set S. If the maximum

number of neighbors is suÆciently large, and is obtained by one of the clusters (rather than by S),

then x is added to that cluster. The process is repeated several times.

Removing Low Degree Vertices: When the similarity graph contains vertices with low degrees,

one iteration of the minimum cut algorithm may simply separate a low degree vertex from the rest

of the graph. This is computationally very expensive, not informative in terms of the clustering, and

may happen many times if the graph is large. Removing low degree vertices from G eliminates such

iterations, and signi�cantly reduces the running time. The process is repeated with several thresholds

on the degree. This simple procedure is very powerful for large problems.

CLICK

The CLICK algorithm (CLuster Identi�cation via Connectivity Kernels) [Sharan and Shamir, 2000b],

available at http://www.math.tau.ac.il/�rshamir/click/click.html, builds on a statistical model.

The model gives probabilistic meaning to edge weights in the similarity graph and to the stopping

criterion. The key probabilistic assumption of CLICK is that pairwise similarity values between ele-

ments are normally distributed: Similarity values between mates are normally distributed with mean

�T and variance �2
T
, and similarity values between non-mates are normally distributed with mean �F

and variance �2
F
, where �T > �F . This situation often holds on real data, and can be asymptotically
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justi�ed [Sharan and Shamir, 2000b].

The algorithm uses the values of �T ; �F ; �T and �F , as well as the probability pmates that two ran-

domly chosen elements are mates. These parameters can be computed directly from a known solution

on a subset of the elements (which is often available in ONF experiments [Poustka et al., 1999]), or

estimated using the EM algorithm, assuming the above probabilistic model for similarity values (see,

e.g., [Mirkin, 1996, Sec. 3.2.7]).

Let S = (Sij) be the input similarity matrix. Form a weighted similarity graph G = (V;E), in

which the weight wij of the edge (i; j) re
ects the probability that i and j are mates, and is derived

from the normal density function f(x) = 1p
2��

e

� (x��)2

2�2 and Bayes Theorem:

wij = ln
Prob(i; j are mates jSij)

Prob(i; j are non-mates jSij)
= ln

pmates�F

(1 � pmates)�T
+
(Sij � �F )

2

2�2
F

�
(Sij � �T )

2

2�2
T

CLICK uses the same basic scheme as HCS (see Figure 11.5) to form kernels. The current subgraph

is determined to be a kernel if the value of a minimum cut in it is positive. This is the case if and only

if for every cut C in the current subgraph, the probability that it contains only edges between mates

exceeds the probability that C contains only edges between non-mates.

The actual implementation omits from the graph all edges with values below some prede�ned non-

negative threshold, computes the minimum cut in that simpli�ed graph, and corrects the solution

value for the missing edges.

CLICK �rst produces kernels which form the basis of the eventual clusters. Subsequent processing

includes singleton adoption, recursive clustering process on the set of remaining singletons, and an

iterative merging step. The singletons adoption step is based on computing similarities between sin-

gletons' and clusters' �ngerprints. The merging step iteratively merges two kernels whose �ngerprint

similarity is the highest, provided that this similarity exceeds a prede�ned threshold. The use of the
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�ngerprints (rather than average similarity values) here is very powerful. Similar ideas were employed

in [Milosavljevic et al., 1995, Hartuv et al., 2000]. Finally, a last singleton adoption step is performed.

The full algorithm is detailed in Figure 11.7.

R N .

While some change occurs do:

Form-Kernels(GR).

Adoption(L; R).

Merge(L).

Adoption(L; R).

Figure 11.7: The CLICK algorithm. N is the complete set of elements (all the vertices in the similarity

graph). Throughout the algorithm, L is the current list of kernels and R is the set of singletons. GR

is the subgraph of G induced by the vertex set R. Adoption(L; R) performs the iterative singletons

adoption procedure. Merge(L) is the iterative merging procedure.

In order to reduce the running time of CLICK on very big instances a screening heuristic is applied,

which is similar to the low-degree heuristic of the HCS algorithm. Low weight vertices are screened

from large components in the following manner: First, the average vertex weight W of the component

is computed, and is multiplied by a factor which is proportional to the logarithm of the size of the

component. Denote the resulting threshold by W
�. Then vertices whose weight is below W

� are

removed repeatedly, each time updating the weight of the remaining vertices, until the updated weight

of every (remaining) vertex is greater than W
�. The removed vertices are marked as singletons and

handled at a later stage.
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11.4.4 CAST

Ben-Dor et al. [Ben-Dor et al., 1999] developed a polynomial algorithm for �nding the true clustering

with high probability, under the following stochastic model of the data: The underlying correct cluster

structure is represented by a graph that is a disjoint union of cliques, and errors are subsequently

introduced in the graph by independently removing and adding edges between pairs of vertices with

probability �. If all clusters are of size at least cn, for some constant c > 0, the algorithm solves the

problem to a desired accuracy with high probability.

CAST uses as input the similarity matrix S. The aÆnity of an element v to a putative cluster C is

a(v) =
P

i2C S(i; v). The polynomial algorithm motivated the use of aÆnity to develop a faster heuristic

called CAST (Clustering AÆnity Search Technique) [Ben-Dor et al., 1999], which is implemented in

the package BIOCLUST. The algorithm uses a single parameter t. Clusters are generated one by one.

The next cluster is started with a single element, and elements are added or removed from the cluster if

their relative aÆnity is larger or lower than t, respectively, until the process stabilizes. The algorithm

is shown in Figure 11.8.

While there are unclustered elements do:

Pick an unclustered element to start a new cluster C.

Repeat ADD and REMOVE until no changes occur:

ADD: add an unclustered element v with maximum aÆnity to C if a(v) > tjCj.

REMOVE: remove an element u from C with minimum aÆnity if a(u) � tjCj.

Add C to the list of �nal clusters.

Figure 11.8: The CAST algorithm.
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An additional heuristic is employed at the end of the algorithm: A series of moving steps aims at

a clustering in which the aÆnity of every element is higher to its assigned cluster than to any other

cluster.

11.4.5 Self Organizing Maps

The self organizing maps were developed by Kohonen [Kohonen, 1997] as a method for �tting a number

of ordered discrete reference vectors to the distribution of vectorial input samples. A self organizing

map (SOM) assumes that the number of clusters is known. Those clusters are organized as a set of

nodes in a hypothetical \elastic network", with a simple neighborhood structure on the nodes, e.g., a

two-dimensional k � l grid. Each of these nodes is associated with a reference vector in Rn. In the

process of running the algorithm, the input vectors direct the movement of the reference vectors, so

that an organization of the input vectors over the network emerges. In the following we describe the

SOM algorithm in the Euclidean space, and use d(x; y) to denote the distance between points x and

y.

The SOM process is iterative. Denote by fi(n) the position of node n at the i-th iteration. The

initial positioning f1 is random. The algorithm iteratively selects a random data point p, identi�es

the nearest reference node np, and updates the reference nodes according to a learning function � (�),

where nodes closer to np are updated more. The updates also decrease with the iteration number.

The algorithm is described in Figure 11.9. The function � (�) represents the \sti�ness" of the network.

The intuition for this learning process is that the nodes that are close enough to p will \activate" each

other to learn something from p.

Two popular choices for the learning function are:
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Arbitrarily set the reference vectors f1(v) 2 R
n for each node v.

For i = 1 until no node location is changed by more than � do:

Randomly pick a data point p.

Compute the node np with reference vector f(np) closest to p.

Update all reference vectors: fi+1(n) = fi(n) + � (n; np; i)[p� fi(n)].

Assign each data point to the cluster with the closest reference vector.

Figure 11.9: The Self Organizing Map algorithm. The learning function � (�) monotonically decreases

with d(n; np) and with the iteration number i.

� Neighborhood function: For each node n we denote byNi(n) the set of nodes within some distance

from n. (These distances are with respect to the neighborhood structure in the network.) We

then de�ne � (n; np; i) = 0 if n 62 N(np) and � (n; np; i) = �(i) otherwise. �(i) is called the

learning-rate and decreases with i.

� Gaussian function: � (n; np; i) = �(i) � exp(�
d(n;np)2

2�2(i)
), where �(i) and �(i) decrease with i.

For much more on self organizing maps the reader is referred to [Kohonen, 1997].

Tamayo et al. [Tamayo et al., 1999] devised a gene expression clustering software, GeneCluster,

which uses the SOM algorithm. The software is available at http://waldo.wi.mit.edu/MPR/. In their

implementation they incorporated a neighborhood learning function, for which �(i) = 0:02T=(T+100i),

where T is the maximum number of iterations; and Ni(np) contains all nodes whose distance to np is

at most �(i), where �(i) decreases linearly with i, �(0) = 3.

GeneCluster accepts an input �le of expression levels together with a two dimensional grid geometry

for the nodes. The number of grid points is the prescribed number of clusters. The resulting clusters
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are visualized by presenting for each cluster its average expression pattern with error-bars. Clusters

are presented in their grid order, as clusters of close nodes tend to be similar.

Another implementation of SOM for clustering gene expression pro�les was developed by [Toronen et al., 19

11.5 Assessment of solutions

A key question in the design and analysis of clustering techniques is how to evaluate solutions. We

present in this section �gures of merit for measuring the quality of a clustering solution. Di�er-

ent measures are applicable in di�erent situations, depending on whether a partial true solution is

known or not, and whether the input is �ngerprint or similarity data. We describe below some

of the applicable measures in each case. For other possible �gures of merit we refer the reader

to [Everitt, 1993, Hansen and Jaumard, 1997, Yeung et al., 2000].

11.5.1 Assessment given the true solution

Suppose at �rst that the true solution is known, and we wish to compare it to a suggested solution.

Any clustering solution can be represented by a binary n�n matrix C, in which Cij = 1 if and only if

i and j belong to the same cluster in that solution. Let T and C be the matrices for the true solution

and the suggested solution, respectively. Let nkl, k; l = 0; 1, denote the number of pairs (i; j) (i 6= j)

for which Tij = k and Cij = l. Thus, n11 is the number of true mates which are also mates in the

suggested solution, n00 is the number of non-mates correctly identi�ed as such, while n01 and n10 count

the disagreements between the true solution and the suggested one.

The Minkowski measure (see, e.g., [Sokal, 1977]) is de�ned as

s
n01 + n10

n11 + n10
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Hence, it measures the proportion of disagreements to the total number of mates in the true solution.

A perfect solution has score zero, and the lower the score - the better the solution. The Jaccard

coeÆcient (see, e.g., [Everitt, 1993]) is the ratio

n11

n11 + n10 + n01

It is the proportion of correctly identi�ed mates to the sum of the correctly identi�ed mates plus the

total number of disagreements. Hence, a perfect solution has score one, and the higher the score -

the better the solution. This measure is a lower bound for both sensitivity ( n11
n11+n10

) and speci�city

( n11
n11+n01

) of the solution.

Note, that both measures do not (directly) involve the term n00, since solution matrices tend to be

sparse and this term would dominate the other three in good and bad solutions alike. When the true

solution is known only for a subset N�
� N , the Minkowski and Jaccard measures can be computed on

the sub-matrices corresponding to N�. In some cases, e.g., for cDNA oligo-�ngerprint data, we have

the additional information that no element of N� has a mate in N nN�. In such a case, the Minkowski

and Jaccard measures are evaluated using all the pairs f(i; j) : i 2 N�
; j 2 N [N�

; i 6= jg.

11.5.2 Assessment when the true solution is unknown

When the true solution is not known, we evaluate the quality of a suggested solution by computing

two �gures of merit that measure its homogeneity and separation. For �ngerprint data, homogeneity

is evaluated by the average similarity between the �ngerprint of an element and that of its cluster.

Precisely, if cl(u) is the cluster of u, F (X) and F (u) are the �ngerprints of a cluster X and an element

u, respectively, then

HAve =
1

jN j

X
u2N

S(F (u); F (cl(u)))
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Separation is evaluated by the weighted average similarity between cluster �ngerprints. That is, if the

clusters are X1; : : :Xt, then

SAve =
1P

i6=j jXijjXjj

X
i6=j
jXijjXj jS(F (Xi); F (Xj))

Related measures that take a worst case instead of average case approach are minimum homogene-

ity: HMin = minu2N S(F (u); F (cl(u))), and minimum separation: SMax = maxi6=j S(F (Xi); F (Xj)).

Hence, a solution improves if HAve or HMin increase, and if SAve or SMax decrease. In computing all

the above measures singletons are considered as additional one-member clusters.

11.6 A Case Study

In order to highlight the characteristics of each of the methods described above, we applied them to a

yeast cell-cycle dataset containing the gene expression levels of yeast ORFs over 79 conditions. This

dataset is available at http://cellcycle-www.stanford.edu.

The original dataset [Spellman et al., 1998] contains samples from yeast cultures synchronized by

four independent methods: � factor arrest (samples taken every 7 minutes for 119 minutes), arrest

of a cdc15 temperature sensitive mutant (samples taken every 10 minutes for 290 minutes), arrest of

a cdc28 temperature sensitive mutant (this part of the data is from [Cho et al., 1998]; samples taken

every 10 minutes for 160 minutes), and elutriation (samples taken every 30 minutes for 6.5 hours). It

also contains separate experiments in which G1 cyclin Cln3p or B-type cyclin Clb2p were induced.

Spellman et al. identi�ed in this data 800 genes that are cell-cycle regulated [Spellman et al., 1998].

The dataset that we used contains the expression levels of 698 out of those 800 genes, which have

no missing entries, over the 72 conditions. that cover the � factor, cdc28, cdc15, and elutriation

experiments. (As in [Tamayo et al., 1999], the 90 minutes datapoint was omitted from the cdc15
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experiment.) Each row of the 698 � 72 matrix was normalized to have mean 0 and variance 1. (Note

that by normalizing the variance di�erent gene amplitudes are deemphasized and periodicity is more

prominent.)

Based on the analysis conducted by Spellman et al., we expect to �nd in the data �ve main clusters:

G1-peaking genes, S-peaking genes, G2-peaking genes, M-peaking genes, and M/G1-peaking genes.

Each of these was shown to contain biologically meaningful sub-clusters.

The 698 � 72 dataset was clustered using �ve of the methods described above: K-means, SOM,

CAST, hierarchical, and CLICK. The similarity measure used was Pearson correlation coeÆcient. The

authors of each of the programs were given the dataset and asked to provide a clustering solution. The

identity of the dataset was not described and genes were permuted in an attempt to perform a \blind"

test. (Yet, anyone familiar with the gene expression literature could have identi�ed the nature of the

data.) The authors were told that the average homogeneity and average separation would be used to

evaluate the quality of the solutions.

We present below the results for each of the methods. To allow the reader an impression of the

results, we added for each of the clusterings (except the hierarchical one which does not produce a hard

partition of the elements), a reference �gure prepared using MATLAB. This �gure depicts the average

pattern of the clusters along with error-bars for the �rst 18 datapoints, which correspond to the �

factor experiment. We have chosen not to show full expression patterns over all the 72 conditions, as

these are much harder to interpret visually. Over the �rst 18 datapoints one expects to view periodic

behavior, with a distinct, typical pattern in each cluster. We also omitted from these �gures small

clusters with less than 4 members. As most programs output a variation of this �gure, we have chosen

to include the characteristic graphical output only for the programs Cluster and CAST.

The following table summarizes the solutions produced by each program (except for Cluster), and
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their homogeneity and separation parameters. The so-called 'True' clustering, reported in [Spellman et al., 199

is that obtained manually by inspecting the expression patterns and comparing to the literature. The

solution produced by CLICK contains 67 unclustered singletons.

Program #Clusters Homogeneity Separation

HAve HMin SAve SMax

K-Means 49 0.629 -0.339 0.086 0.911

CAST 5 0.6 0.037 -0.146 0.322

GeneCluster 6 0.617 0.067 -0.073 0.584

CLICK 6 0.656 0.097 -0.098 0.546

'True' 5 0.572 -0.322 -0.133 0.73

Table 11.1: A summary of the clustering solutions and their �gures of merit.

The reference �gures for each of the solutions are given in Figures 11.10 to 11.14. The output of

CAST is shown in Figure 11.15. It depicts the similarity matrix before and after ordering its rows

and columns based on the clustering. The output of Cluster is shown in Figure 11.16. It includes a

dendogram and a graphical representation of the ordered �ngerprint matrix. (Experiments are also

clustered and the solution is represented as a second dendogram on the same �gure.) Figure 11.17

depicts the values of each solution on a plot of the homogeneity vs. separation.

11.7 Concluding Remarks

Clustering remains, to certain extent, an art. There are no universal, agreed-upon criteria for evaluat-

ing solutions, and there is no ultimate algorithm: The clustering problem is so general, covering diverse

25



−2
−1

0
1

2
Cl. 1, Size=82

−2
−1

0
1

2
Cl. 2, Size=49

−2
−1

0
1

2
Cl. 3, Size=45

−2
−1

0
1

2
Cl. 4, Size=30

−2
−1

0
1

2
Cl. 5, Size=30

−2
−1

0
1

2
Cl. 6, Size=29

−2
−1

0
1

2
Cl. 7, Size=28

−2
−1

0
1

2
Cl. 8, Size=26

−2
−1

0
1

2
Cl. 9, Size=23

−2
−1

0
1

2
Cl. 10, Size=22

−2
−1

0
1

2
Cl. 11, Size=21

−2
−1

0
1

2
Cl. 12, Size=20

−2
−1

0
1

2
Cl. 13, Size=17

−2
−1

0
1

2
Cl. 14, Size=16

−2
−1

0
1

2
Cl. 15, Size=15

−2
−1

0
1

2
Cl. 16, Size=15

−2
−1

0
1

2
Cl. 17, Size=15

−2
−1

0
1

2
Cl. 18, Size=13

−2
−1

0
1

2
Cl. 19, Size=12

−2
−1

0
1

2
Cl. 20, Size=11

−2
−1

0
1

2
Cl. 21, Size=11

−2

−1
0

1

2
Cl. 22, Size=10

−2

−1
0

1

2
Cl. 23, Size=10

−2

−1
0

1

2
Cl. 24, Size=9

−2

−1
0

1

2
Cl. 25, Size=9

−2

−1
0

1

2
Cl. 26, Size=9

−2

−1
0

1

2
Cl. 27, Size=9

−2

−1
0

1

2
Cl. 28, Size=8

−2

−1
0

1

2
Cl. 29, Size=8

−2

−1
0

1

2
Cl. 30, Size=8

−2

−1
0

1

2
Cl. 31, Size=8

−2

−1
0

1

2
Cl. 32, Size=8

−2

−1
0

1

2
Cl. 33, Size=7

−2

−1
0

1

2
Cl. 34, Size=7

−2

−1
0

1

2
Cl. 35, Size=6

−2

−1
0

1

2
Cl. 36, Size=6

−2

−1
0

1

2
Cl. 37, Size=6

−2

−1
0

1

2
Cl. 38, Size=5

−2

−1
0

1

2
Cl. 39, Size=5

−2

−1
0

1

2
Cl. 40, Size=4

−2

−1
0

1

2
Cl. 41, Size=4

−2

−1
0

1

2
Cl. 42, Size=4

Figure 11.10: The clustering produced by the K-means algorithm of Herwig et al. x axis: time points

1-18 for the � factor experiment. y axis: normalized expression levels. The solid line in each sub-�gure

plots the average pattern for that cluster. Error bars display the measured standard deviation. The

cluster size is printed above each plot.

26



5 10 15
−2

−1

0

1

2
Cl. 1, Size=230

5 10 15
−2

−1

0

1

2
Cl. 2, Size=174

5 10 15
−2

−1

0

1

2
Cl. 3, Size=155

5 10 15
−2

−1

0

1

2
Cl. 4, Size=93

5 10 15
−2

−1

0

1

2
Cl. 5, Size=46

Figure 11.11: The clustering produced by the CAST algorithm of Ben-Dor et al.
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Figure 11.12: The clustering produced by the GeneCluster algorithm of Tamayo et al.
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Figure 11.13: The clustering produced by the CLICK algorithm.
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Figure 11.14: The 'True' clustering of Spellman et al.

28



���������	�
��

�

 �

 �

 �

 �

 �



�



�



�



�



�



�



���� �������	�
��

�

 �

 �

 �

 �

 �



�



�



�



�



�



�



Figure 11.15: Representation of the solution produced by CAST. Left: the original similarity matrix.

Right: the same matrix reordered according to the clustering. Gray level is inversely proportional to

similarity. Genes belonging to the same cluster appear contiguously.
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Figure 11.16: The output of Cluster. Actual output is in color, where red denotes increase vs. the

reference level, and green denotes decrease. The gene clustering dendogram is on the top, and the

experiment clustering dendogram is on the right.
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Figure 11.17: A comparison of homogeneity (x-axis) and separation (y-axis) values for all solutions.

Recall that a solution improves if homogeneity increases or separation decreases.
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disciplines and applications, that it is impossible to choose a single, \best" algorithm for solving the

problem. This holds true even for the speci�c application of gene expression that we have addressed

here. The eventual decision on what solution and what algorithm works best depends on the user, and

on the speci�c questions the clustering process is supposed to answer. Each of the algorithms that we

have described has its strong points and its disadvantages. We shall address brie
y below several key

issues.

� Choosing the clustering approach: The hierarchical method is exceptional in our review, as

it gives an overall view of the structure without an attempt to force a hard clustering. This can

be viewed as an advantage or a disadvantage, depending on the experimental goals. The other

methods aim to split the universe of elements into clusters, either by geometric approaches that

move cluster centers (SOM, K-Means) or by using a graph theoretic approach. The latter may

take a global view (CLICK) or single out one aÆnity-stable cluster at a time (CAST). As noted

above, many other approaches were developed in other applications.

� How should we evaluate solution quality? We have described above several measures

that evaluate solutions, in the presence of a "correct" solution, and in its absence. The obvious

advantage of having an objective function is the ability to compare solutions and measure progress

in algorithm development. The caveat is that the measures may not re
ect exactly the intuition

that the biologist may have.

Even if one accepts the need of a numerical measure, the clustering literature is not in agreement

on which measure to use, and we have presented two measures instead: An intra-cluster measure

(homogeneity) and an inter-cluster measure (separation). The two are inherently con
icting, as

an improvement in one will correspond to worsening of the other. One idea of overcoming this is
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by presenting a curve of homogeneity vs. separation (A. Ben-Dor, private communication). Such

a curve can naturally be obtained in CAST (by varying the single threshold parameter used) and

can also be obtained by multiple runs of other algorithms. This curve can tell that one algorithm

dominates another if it provides better homogeneity for all separation values, but typically each

algorithm will dominate in a particular range. For another approach for comparing solutions

across a range of parameters, see [Yeung et al., 2000].

One way of getting around the "two objectives" problem is to �x the number of clusters. This

is done by SOM and by the classical K-means. When the number of clusters is known this is

of course the way to go. When it is not known, what users often do is run such algorithms

several times with several numbers of clusters (or grid topologies, in the case of SOM). However,

this brings back the problem of evaluating and comparing solutions, so algorithms that seek a

globally optimal solution seem preferable. Alternative methods of determining the number of

clusters are given, e.g., in [Hartigan, 1975, Tibshirani et al., 2000].

� Should we cluster all elements? The SOM, K-means, and hierarchical algorithms require

that the solution will constitute a partition of all the elements. Other algorithms, e.g. CLICK,

allow some singletons to be left unclustered. By allowing singletons to be discarded, intra-cluster

deviations can be reduced, perhaps at the expense of weaker separation. (Obviously, the number

of discarded singletons must be kept to a small fraction of all elements, or else the solution would

be meaningless.) In gene expression applications, one often does not seek an identi�cation of all

the genes involved, particularly since many genes have already been discarded in pre-processing

steps, because of insigni�cant �ngerprint variations. It is thus desirable to allow some room

for discarding elements from a solution. It is not hard to add such 
exibility into virtually all
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clustering algorithms that we have discussed.

� Fingerprints vs. similarity: Some algorithms use only similarity values between elements,

while others use the �ngerprints themselves. Obviously, one loses some information by using the

�ngerprints to compute pairwise similarities only. One of the advantages of CLICK over HCS, for

example, is by explicit use of the �ngerprints for merging and adoption. Geometric algorithms

like K-means and SOM use only �ngerprints. Other algorithms like CAST may bene�t from

using such information more.

� Visualization is crucial: As the datasets and the solutions are very large, it is imperative

to have tools to visualize summaries of the data and its solution from various viewpoints. The

average patterns �gures are useful to show trends, and SOM goes a step further by putting

similar patterns in neighboring cells in a grid, generating a convenient \executive summary".

The dendograms of Eisen et al viewed together with the color-coded expression patterns of the

genes are also very useful. Yet, devising additional novel, sophisticated (and ideally interactive)

visualizations is an important challenge.

� We need more testing data: In order to improve the algorithms we need more data. The

best kind is actual gene expression data, along with a known clustering solution, so that it

can be compared to the algorithmic solution. This is quite hard to obtain (except perhaps

for oligo�ngerprint data) in the current status of biological knowledge. A second best is gen-

erating synthetic (simulated) datasets with known solutions, in which one can directly control

individual parameters (cluster structure, errors, etc.). Some initial work has been done in this

direction [Ben-Dor et al., 1999, Hartuv et al., 2000], but more work is needed in order to un-

derstand how to make the simulations realistic. Generating a publicly accessible benchmark of
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datasets - both synthetic and real - with known solutions, would be of great bene�t to developing

better algorithms. In the absence of such resource, the available real data can be combined with

evaluation methods as demonstrated here.

� Clustering is only the �rst step: In analyzing gene expression data, clustering is an es-

sential initial step, but there is a lot more that can be done with the data. For example, one

can use supervised learning techniques to cluster or classify the conditions. Such methods were

recently shown to yield very good results in determining cancer types, with important poten-

tial applications to diagnostics [Golub et al., 1999, Alizadeh et al., 2000, Ben-Dor et al., 2000,

Brown et al., 2000, Califano et al., 2000]. Another useful idea is to cluster both the genes and the

conditions, and to pinpoint subsets of the genes and the conditions ("biclustering") [Getz et al., 2000a,

Cheng and Church, 2000]. Given the clusters, a variety of biological inference steps are possible.

For example, identi�cation of common control regions of upstream regions of genes from the

same cluster (see Chapter 10 of this book).
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