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Abstract
Mahmood, K. 2021. Scalable Data Management for Internet of Things. Digital 
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and 
Technology 2095. 44 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1346-7.

Internet of Things (IoT) often involve considerable numbers of sensors that produce large 
volumes of data. In this context, efficient management of data could potentially enable automatic 
decision making based on analytics of sensors on equipment. However, these sensors are often 
geographically distributed and generate diverse formats of data in form of sensor streams at a 
high rate. The combination of these properties of IoT pose significant challenges for the existing 
database management systems (DBMSs) to provide scalable data storage and analytics.

The problem of providing efficient data management of distributed IoT applications using 
DBMS technologies is addressed in this thesis. Initially, we developed a prototype system, 
Fused LOg database Query Processor (FLOQ), which enables general query processingover 
collections of relational databases that are deployed locally on distributed sites to store sensor 
measurement logs. Although FLOQ provides efficient query execution when scaling the number 
of distributed databases, it exhibits complexity and scalability issues for large IoT applications 
having heterogeneous data. The limitations of FLOQ are primarily inherent to its use of 
relational database backends for storage of sensor logs.

When a relational database is used to store large-scale IoT data, it exhibits several challenges. 
The loading of massive logs produced at high rates is not fast enough due to its strong 
consistency mechanisms. Furthermore, it could demonstrate a single point of failure that 
limits the availability, and the inflexible schemas make it difficult to manage heterogeneity. 
In contrast to relational databases, distributed NoSQL data stores could provide scalable 
storage of heterogeneous data through data partitioning, replication, and high availability by 
sacrificing strong consistency. To understand the suitability of NoSQL databases, this thesis 
also investigates to what degree NoSQL DBMSs provide scalable storage and analytics of IoT 
applications by comparing a variety of state-of-the-art relational and NoSQL databases for real-
world industrial IoT data.

The experimental evaluations reveal that the scalability can be provided by the distributed 
NoSQL data stores; however, the support of advanced data analytics is difficult due to 
their limited query processing capabilities. Furthermore, data management of distributed IoT 
applications often requires seamless integration between a real-time edge analytics platform, 
a distributed storage manager, effective data integration, and query processing techniques for 
handling heterogeneity. Therefore, in order to provide a holistic data management solution, 
this thesis developed the Extended Query Processing (EQP) system, which enables advanced 
analytics for supporting both edge and offline analytics for large-scale IoT applications.

These contributions enable efficient data management of large-scale heterogeneous IoT 
applications and supports advanced analytics.
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1. Introduction

The fields of Industrial Internet [14], Cyber Physical Systems [27], and Inter-
net of Things (IoT) [19], [50] have been proliferated with the growing number
of devices distributed over the internet. To enable automatic decision-making
from industrial processes, it is often necessary to manage and analyze data
generated at high rates from these devices. In this context, providing efficient
processing and analysis of massive volumes of data over numerous distributed
data sources become a major challenge.

Figure 1.1. Distributed IoT application.

An example of large-scale data analysis can be drawn from the field of In-
ternet of Things (IoT) [31], [33], [52]. IoT applications as depicted in Fig. 1.1
often consist of distributed sites, where clusters of machines equipped with
sensors are deployed. Data is continuously received from these sensors, thus
forming streams of values. The streams are generated at high rates often pro-
ducing large volumes of data. Furthermore, the data streams from different
types of sensors are heterogeneous by nature, i.e., represented using different
data formats. Another feature of these types of applications is that the sensors
can be frequently added or removed from the sites. The combination of these
properties of a distributed IoT application poses significant challenges for the
existing data management and analysis techniques.

9



Data analysis typically involves running programs written by developers in
e.g., Python, R, or Java to perform computational tasks to analyze data. For
scalable analyses, a distributed programming paradigm such as map-reduce
[10] is often used. In contrast, data analytics provides high-level tools to
enable analysts to perform interactive data analysis. For example, Database
Management Systems (DBMSs) provide tools for scalable storage and anal-
yses of data, with several advantages over conventional data analysis [39]. It
allows structuring data through schemas, analytics through ad hoc queries,
and scalable search by utilizing indexes. However, enabling data analytics
over distributed IoT applications requires several DBMS techniques to be in-
tegrated seamlessly.

When performing analytics locally at each site, the stream generation rate
from the sensors can be very high; therefore, adopting disk-based DBMS tech-
niques is not feasible due to latency caused by slow write operations from
high incoming data rates. An in-memory Data Stream Management System
(DSMS) [17] is therefore more feasible in this context for supporting real-time
data analytics [32]. Unlike DBMSs, which execute queries over data stored in
tables, a DSMS provides online analytics over continuously produced streams
of elements. Typically, a DSMS is implemented with in-memory techniques,
which eliminates the latency of disk-based storage. However, summarized
and/or filtered data streams still need to be stored in a persistent DBMS for fur-
ther historical analytics. Two approaches could potentially be adopted in this
scenario: storing data into a local DBMS deployed at each site or uploading
it into a distributed DBMS from the local devices. Both of these approaches
exhibit several trade-offs:

• When a relational-DBMS (RDBMS) is deployed locally at each site,
data-integration techniques, e.g., view-based data integration [21], [26],
can be applied to facilitate global analytics over unified views of local
RDBMS tables. However, such an approach often leads to various prob-
lems:

– Large IoT applications typically consist of diverse sensors. These
sensors often require frequent addition and removal from the ap-
plication, which can lead to significant modification of local rela-
tional schemas. As a result, the global schema also requires adap-
tation; therefore, static DBMS data-integration techniques caused
problems with complexity and scalability for storing heterogenous
sensor data.

– RDBMS having strong consistency model slow down the injection
of a large volume of streams.

– A single point of failure may also occur as the data is stored locally
at each site and access through a central database.

However, utilizing the RDBMS exhibits several advantages as well:
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– An RDBMS has an advanced query language that allows complex
tasks to be expressed easily, making it suitable to perform a variety
of IoT data analytics even by novice programmers.

– RDBMSs are equipped with various indexing techniques that can
be leveraged by sophisticated query optimizers, which enable effi-
cient and scalable query execution.

• Rather than having separate RDBMSs deployed at each site, a distributed
DBMS can be used to achieve fault tolerance using data replication.
However, several issues need to be considered for utilizing distributed
DBMSs:

– A distributed database that favors a strong consistency model, of-
ten disrupts the availability and performance of the entire IoT ap-
plication. To provide availability and scalability, a type of dis-
tributed database called a NoSQL data store [4], that sacrifices some
database-wide strong consistency, is more suitable. A particular
category of NoSQL data stores, called document stores, are ca-
pable of persisting objects having dynamic key-value associations
(e.g., JSON objects [40]). Such a distributed database system is
well suited for injecting heterogeneous sensor data where different
kinds of data having various formats need to be added or removed.

– NoSQL data stores typically have simple query functionality, usu-
ally restricted to put, get, and update, which limits advanced an-
alytics. Therefore, among numerous NoSQL data stores [4], the
choice of an appropriate kind is critical for providing scalable data
management for IoT applications.

The problems of providing scalable data analytics for large-scale sensor
logs from distributed IoT applications using persistent DBMSs is addressed
in this thesis. The work is comprised of seven papers that utilize sensor logs
from real-world IoT applications [13], [31], [33], [52] to investigate how dif-
ferent systems perform under realistic IoT workloads. The following research
questions are investigated in the thesis:

1. The overall research question is how to provide scalable storage and
analytics of sensor logs from distributed heterogeneous IoT applications.

2. How can relational DBMSs be utilized to provide IoT data analytics?
3. Compared to relational DBMSs, to what degree are distributed NoSQL

data stores able to provide high-performance data persistence and ad-
vanced query processing by leveraging indexing techniques?

4. Among different kinds of distributed NoSQL data stores [4], what are
the trade-offs in choosing different data partitioning and indexing tech-
niques for scalable query execution of IoT data streams?

5. How would data-management solutions utilizing relational DBMSs or
NoSQL data stores be designed to combine high volume heterogeneous
data injection and advanced query processing for distributed IoT appli-
cations?
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Table 1.1. Relationship between the research questions (1-5) and the papers (I-VII).

1 2 3 4 5
I ✓ ✓ ✓

II ✓ ✓ ✓ ✓
III ✓ ✓
IV ✓ ✓
V ✓ ✓

VI ✓ ✓ ✓ ✓
VII ✓ ✓

The above research questions are addressed in Paper I-VII. Table 1.1 shows
the relationships between each research question and the corresponding pa-
pers. The contributions of the papers are briefly summarized below, whereas
the detailed technical contributions are provided in Chapter 3.

In Paper I, we developed our first prototype system, Fused LOg database
Query processor (FLOQ), to facilitate data analytics for distributed IoT appli-
cations. FLOQ utilizes relational log databases at each site to store locally
generated sensor measurements. It also maintains a global meta-database, de-
scribing the properties of all the sensors operating in the entire federation of
sites. FLOQ resembles the classic view-based data integration approach [21],
where a global relational view is maintained over all the local log databases.
Utilizing this view, FLOQ enables global queries to analyze the measurement
data from the sensors stored in the local log databases. A particular challenge
in this scenario is to perform scalable joins between the meta-database and
the log databases. We proposed two new distributed joining strategies, Par-
allel Bind Join (PBJ) and Parallel Bulk-Load Join (PBLJ) to perform parallel
query processing over autonomous log databases by utilizing standard DBMS
APIs. FLOQ was evaluated with real-world IoT data from Bosch Rexroth -
Hägglund [13]. Paper I provides answers to research questions one, two, and
five.

Future IoT applications tend to grow rapidly with the introduction of many
heterogeneous sensors that are dynamically added or removed from the feder-
ation. A data-management approach using a rigid relational schema in FLOQ
will lead to scalability issues as it requires frequent schema updates. Further-
more, the insertion of heterogeneous sensor measurements into a relational
table with predefined columns is not flexible (Section 2.1.1). By contrast,
distributed NoSQL data stores that support inserting objects having dynamic
associations of key-value pair objects (e.g., JSON) are more suitable for han-
dling the heterogeneity. However, it was unknown how this approach provides
scalable storage and query processing for large-scale data analytics. To under-
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stand the suitability of NoSQL databases for large IoT applications, Paper II
provides the scope to formulate research questions one, three, four, and five.

The proposals from Paper II serve as a basis for Paper III for investigat-
ing to what degree the NoSQL data store MongoDB [36] can achieve scalable
storage and query processing for large-scale sensor logs. In the paper, Mon-
goDB is compared with a relational DBMS from a major commercial vendor
and with a popular open-source relational DBMS. MongoDB allows sacrific-
ing transactional consistency in order to achieve high-performance inserts and
updates. Furthermore, it provides both primary and secondary indexing, which
is required for scalable query execution and analytics. Our study shows that
MongoDB is a viable alternative compared to relational databases for large-
scale IoT data analytics. The results of this paper provide an answer to ques-
tions one and three.

The performance of MongoDB motivated us to work on Paper IV to ex-
plore the suitability of other kinds of distributed NoSQL data stores for large
IoT applications. In the paper, we compare three principal categories of state-
of-the-art distributed NoSQL data stores [4]. We choose Cassandra [1] from
the column store family, MongoDB [36] as a document store, and Redis [41]
as a distributed main memory key-value store. This work enabled us to study
the trade-offs between different types of storage and data-partitioning mecha-
nisms used in these new kinds of distributed databases. Our results show that
the in-memory data store Redis is a good choice over other NoSQL databases
when there is sufficient main-memory. This is expected as in-memory tech-
niques perform better compared to their disk-based counterparts. However,
most IoT applications produce large volumes of data that do not fit into the
main-memory; therefore, disk-based NoSQL data stores are often required.
Furthermore, when the persistent NoSQL data stores Cassandra and Mon-
goDB are used, we observe that if the analytics uses queries involving in-
equalities, the range-based data partitioning of MongoDB facilitated by B-tree
indexing scales better than Cassandra’s distributed hashing techniques. Paper
IV provides the answers to research questions one, and four and motivated
us to develop a data management solution for IoT by utilizing MongoDB as
back-end storage and analytics platform.

A conclusion from Paper III and Paper IV is that, while scalability can be
provided by distributed NoSQL data stores such as MongoDB, advanced data
analytics is restricted in these types of systems due to its limited query process-
ing capabilities. In Paper V, we discussed how a prototype system combining
distributed scalability of MongoDB with a relationally complete [7] query pro-
cessor can provide advanced analytics. We adopted the wrapper-mediator ap-
proach [44] by integrating MongoDB with the in-memory mediator database
Amos II [43], [42] that offers advanced query processing compared to the
more limited query processing in MongoDB. The preliminary testing by in-
jecting large volume sensor streams shows that our prototype system provides
improved performance compared to state-of-the-art RDBMSs, even though it
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has some overhead caused by local query processing performed in the wrap-
per outside of DBMS. Paper V provides answers to research questions one and
five. The wrapper developed in Paper V is enhanced in Paper VI, including
further implementations and empirical evaluations.

Data-management solutions for large distributed IoT applications require
seamless integration between a real-time data analytics platform, a distributed
data manager, and effective data integration techniques for handling hetero-
geneity. Paper VI proposes a system architecture by comparing two different
data management solutions for IoT applications using either an RDBMS or
MongoDB as backend. In this work, we compare both approaches and discuss
how heterogeneity can be handled better using the schema-less data model
provided by MongoDB. By adopting de-normalization [45], MongoDB en-
ables combining both meta-data and sensor data having diverse measurements
into a single JSON object. Rather than applying static view-based data integra-
tion techniques over local relational log databases as in Paper I, this approach
eliminates expensive join operations between a global meta-database and lo-
cal log databases. The wrapper presented in Paper V is completed in Paper VI
including the Extended Query Processing (EQP) system, which provides rela-
tionally complete query processing and numerical operators over MongoDB.
Hence, the prototype system leverages the distributed scalability of MongoDB
for backend storage of heterogonous sensor data, while providing advanced
analytics through the complex query processing capabilities of EQP. Paper VI
provides the answers to research questions one, two, three, and five.

Finally, Paper VII is a demonstration paper that utilizes the NoSQL ap-
proach for IoT data-management presented in Paper VI. In the paper, we inte-
grate the data stream management system, sa.engine [47] with EQP to perform
real-time audio anomaly detection on edge devices for IoT applications. Paper
VII provides answers to research questions one and five.

The next chapter provides an overview of the technologies used in this the-
sis. Chapter 3 provides elaborated discussions and technical contributions
together with stating my own contributions in each of Papers I-VII. Finally,
Chapter 4 provides directions for future work.
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2. Background

This chapter describes the general technologies and background related to this
thesis. At first, the relational database concept is discussed, with a focus on
how it can be utilized to store heterogeneous data and provide large-scale data
analytics. Then follows an overview and comparison of different categories of
distributed NoSQL data stores. Finally, the main-memory mediator database
system, Amos II is discussed by highlighting its query processing strategies,
which are utilized in this thesis for system development.

2.1 Relational Databases
In a relational database [6], data is typically categorized and stored in a col-
lection of tables. These tables are logically related to each other; hence, the
name relational database. Each table consists of a set of attributes called
columns. The instances of the data in a table are stored as rows and the values
are organized within the columns for each row. Typically, a user of relational
databases accesses and modifies the data without altering the table structure
(i.e., the database schema) as table modification is usually an expensive oper-
ation.

2.1.1 Relational Databases for Storing Heterogeneous Data
Relational databases work best with structured data having predefined attributes
of fixed lengths, represented as columns of a table. For example, customer data
having similar attributes such as names, phone, email, etc., fit well with the re-
lational database model, e.g., having a customer table with a fixed number of
columns. However, a relational database has complexity and performance is-
sues when storing heterogeneous data. Consider the example in Fig. 2.1, for
storing heterogeneous sensor data into the measurements table in a rela-
tional database.
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Figure 2.1. Heterogeneous data insertion in a relational table.

Initially, we start inserting the data for a particular sensor with id RG7,
which has a measured value x as 6. Therefore, we can create a measureme-
nts table as depicted in Fig. 2.1a having two columns representing the two
attributes, id, and x. However, in typical IoT applications, new types of sen-
sors often have to be added to the systems quite rapidly. In this context, a
particular problem arises if we try to dynamically add new kinds of sensors
consisting of different properties. For example, instead of having the single
property x of sensor RG7, if a new sensor RG8 has another property y, we are
forced to modify the schema for the measurements table. To resolve this
issue, one option, as depicted in Fig. 2.1b, is to append one more column for
attribute y in the measurements table. However, schema modifications by
adding a new column for each new type of sensor with more attributes than
the previous ones, are expensive, hence, not scalable. Furthermore, in case of
different sensors having different attributes, this solution is not space-efficient,
as null values must be be assigned for missing attributes (e.g., in Fig. 2.1b, for
sensor RG7, a null value for property y is assigned). Furthermore, query-
ing over tables with many attributes and many null values becomes more
complicated.

An alternative approach shown in Fig. 2.1c is to use a modified measure-
ments table having three fixed columns, id, property, and value. Here,
for each measured value in the sensor data, we assign property and value
columns. Therefore, for sensor RG7, we need to insert one row: property
x and its value 6, while sensor RG8 need to insert two rows: property x
having value 7 and property ywith value a41 as a character string.
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Although this approach offers tentative storage for heterogeneous data, query
execution is highly inefficient. For example, in the column value, we have
mixed data types of integers and character strings, hence, we needed to define
the data type of the column as a character string. Therefore, any range query
will be slow as it must perform a full-table scan because it is not possible
to utilize an index over mixed data type of integer and character strings. A
database with native support for heterogeneous data is a simpler and more
scalable solution to this problem.

2.1.2 Relational Database for Large-Scale Data Analytics
Traditionally, relational databases are designed to provide analytics and trans-
action processing for business applications. Analytics is usually performed by
dynamic query execution, leveraging the indexing to speed up query process-
ing. In addition, transaction processing ensures the correctness of updates and
queries; however, it is a resource and computation-intensive task. A substan-
tial time for transaction processing is spent in logging, latching, locking, B-
tree, and buffer management operations, which may cause 20 times perfor-
mance overhead in a relational DBMS [22]. In recent years, new applications
have proliferated that do not require full transaction support. Hence, a vari-
ety of high-performance databases have been designed to drive the analytics
for large-scale data; for example, in-memory, transaction-less, NoSQL, and
single-threaded databases have been developed by eliminating some of the
overheads of the transaction processing systems.

To support large-scale data analytics, a horizontal scaling by distributing
the data over many commodity servers may be preferable. However, per-
forming transactions in a distributed environment is difficult; hence, relational
databases often prefer a single computing server. When the data and trans-
action volume increases, a relational DBMS prefers vertical scaling-up by
adding more computing resources, such as disk space, memory, and CPUs to
the server. A high-performance single server is usually significantly more ex-
pensive than commodity servers, while prone to single-point-of-failure. There-
fore, if full transactional consistency is not required, a distributed database
with horizontal scaling of data to support large-scale analytics is preferable.

To provide data analytics for IoT applications, this thesis utilizes relational
databases in Paper I,II,III,V, and VI.

2.2 NoSQL Data Stores
While a relational database provides a structured data model, dynamic query
execution of SQL queries, and strong transactional consistency; a NoSQL data
store sacrifices some of these attributes. Hence, the definition of NoSQL refers
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to “Not Only SQL” or “Not Relational” [4]. Rather than the complex transac-
tional processing capabilities of relational databases, NoSQL databases typi-
cally provide only simple online transaction processing (OLTP), such as insert,
update, and look-up for a single record, in order to achieve higher availability
and scalability. Therefore, performing advanced analytics is usually limited
in NoSQL data stores due to the lack of a complete query language. The
design principle of these systems often adheres to the Eric Brewer’s CAP the-
orem [16] [3], which states that a distributed system can only have two out of
three properties: consistency, availability, and partition-tolerance. Therefore, a
NoSQL database is often designed to choose either availability or consistency,
since network partitions in a distributed environment are unavoidable. A detail
overview of NoSQL data stores can be found in Rick Cattell’s paper [4].

Implementations of contemporary NoSQL data stores are inspired by the
three early systems: Memcached [9], Google’s BigTable [5], and Amazon’s
DynamoDB [11]. Memcached utilized distributed hashing to scale data in-
side the main memory of multiple nodes, while BigTable demonstrated that
a persistent sparse table can be scaled up to thousands of commodity servers.
DynamoDB pioneered the idea of eventual consistency, where the updates are
not atomic compared to relational databases, but propagate to the distributed
nodes eventually. Hence, DynamoDB achieves higher availability and scala-
bility by sacrificing strong consistency.

2.2.1 Categories of NoSQL Data Stores
A consistent and systematic way to categorize NoSQL data stores is based on
their data models [4]. The three main categories of NoSQL data stores [4]
based on data models are key-value, document, and column stores, which are
utilized in this thesis:

• Key-value Stores: These systems model data based on key-value pairs
and utilize distributed hashing over the keys for finding the appropriate
node to store its values. Pioneered by Memcached, these data stores can
be an in-memory system like Redis [41] or use persistent disk storage
similar to Project Voldemort [28]. Distributed hashing techniques, such
as consistent hashing [25] are often adopted in these types of systems. In
a distributed computing environment having m servers, consistent hash-
ing partitions n keys and maps each of them to m servers based on a
hash function. When a single server shutdown occurs, consistent hash-
ing offers on average a minimal number of n/m keys remapping; while
in most of the modulo-based hashing techniques, nearly all keys needed
to be remapped. Hence, consistent hashing is well suited for fault tol-
erance and load-balancing of large-scale data in distributed commodity
servers.
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• Document Stores: A document store allows values to be vectors, lists,
and even nested documents (e.g., JSON), where the attribute names are
dynamically defined for each document at runtime. While relational
databases use fixed-length tuples defined in a global schema, the at-
tributes of a document are not pre-defined, and varying data types of
values are permitted. Hence, a document store is well suited for hetero-
geneous data storage. A document store can utilize consistent hashing
techniques or range-based partitioning [38] for data distribution. If con-
sistent hashing techniques are used by the system, it provides efficient
load-balancing of data. In contrast, range-based partitioning techniques
cluster data based on keys with adjacent values, which speeds up range
search. Unlike key-value stores, some document stores, such as Mon-
goDB [36] offer B-tree indexing and dynamic query execution, which is
used in this thesis to provide scalable analytics over heterogeneous data.

• Column Stores: These data stores are often referred to as wide-column
stores or extensible record stores, and offer flexibility in between tu-
ples and documents. These data stores can inject data having a very
large number of dynamic columns; however, unlike relational databases,
new columns with various formats can be added without schema mod-
ification. In contrast to document stores, a column store cannot sup-
port nested records. It is also expensive to assemble objects from many
separately stored columns; hence, it is less flexible. A column store
can be seen as a two-dimensional key-value store, which performs data-
partition based on both row keys and columns. Cassandra [1] is an exam-
ple of a column store, which was initially open-sourced by Facebook [4].

Utilizing NoSQL data stores for IoT data management is the primary focus
of this thesis, which is discussed in the Paper II-VII.

2.3 Overview of Amos II
Amos II [43] [42] is an extensible mediator database system, which allows
different kinds of data sources to be integrated and queried. It provides a func-
tional and object-oriented query language, AmosQL. In Amos II, objects are
classified by types and stored inside in its main-memory object-store. Func-
tions are used to define the properties of objects and the relationships between
different objects. Typically, relational databases use a tuple-calculus based
query language, such as SQL, where variables are bounds to tuples (i.e., rows
of tables). In contrast to tuple-calculus, AmosQL is a domain calculus query
language, where queries are defined over instances of typed objects that are
often used as function arguments. Amos II also offers an extensible query pro-
cessor, which supports implementing interfaces as foreign functions written in
regular programming languages (e.g., C, Lisp, Java, or Python). These for-
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eign functions can also access different kinds of external data sources, which
facilitates developing various wrappers to enable query processing over ex-
ternal data processing systems (e.g., RDBMSs, NoSQL data stores, or cloud
infrastructures). These extensibility feature of Amos II are utilized in this
thesis to facilitate domain-specific query processing over data sources in the
prototype systems Fused LOg database Query processor (FLOQ) for access-
ing relational databases and in Extended Query Processing (EQP) system for
accessing MongoDB.

An overview of typical query processing strategies in an RDBMS can be
found in the paper by Hellerstein et al. [23]. Such query processing systems
mainly consist of four modules: parser, query rewriter, optimizer, and execu-
tor, as depicted in Fig. 2.2. Query processing in Amos II [29] [15], as shown
in Fig. 2.3, adheres to query processing steps similar to RDBMSs, with some
nuances. Both query processing strategies are compared below to highlight
how the prototype systems FLOQ and EQP leverage query processing tech-
niques of Amos II:

• Parser: A relational database parser, depicted in Fig. 2.2, takes a
declarative query, such as an SQL query; parses and validates it to
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convert it into an intermediate query representation, often equivalent to
tuple relational calculus [12, pp. 268]. In contrast, Amos II provides
parsers for both SQL and AmosQL and converts the queries to a domain
relational calculus language called ObjectLog [29], which is an object-
oriented dialect of Datalog. The queries to both FLOQ and EQP are
expressed as AmosQL.

• Query rewriter: The function of the query rewriter of Amos II is to
transform the ObjectLog query representation for simplification and op-
timization without modifying its semantics nor accessing the actual stor-
age. In Amos II, transformations are first made on the domain calculus
before translating to an algebraic representation [15]. One important
task of both relational and Amos II rewriters, is view expansion, which
is usually performed by replacing the view with actual tables and pred-
icates that reference the view. The rewriters often perform some query
simplifications by arithmetic/logical expression evaluations, redundant
join evaluation, and flattening of nested queries to improve the perfor-
mance of the query optimizer. In our prototype system FLOQ, the query
rewrite strategies are applied to decompose the query into sub-queries
and bind to a particular log-database for facilitating the parallel join (i.e.,
PBJ or PBLJ [52]). In EQP, query rewrite rules are applied for accessing
our external data source, MongoDB.

• Optimizer: Given the internal representation of a query, a query opti-
mizer typically produces an efficient plan for executing the query. The
approach is first described by Selinger, et al. on the development of the
System R optimizer [46], which inspired the development of most query
optimizers found in contemporary databases. Finding an optimal plan
often involves exploring all possible join orders, which is computation-
ally expensive (equivalent to the order of Catalan number [49] and its
lower bound complexity is Ω(2n) [8, pp. 327]). Instead, the System R
relational optimizer employs a faster optimization strategy by explor-
ing only left-deep query plans [23], where the right-hand side of each
join input must be a single table. Furthermore, the optimizer prunes the
search space based on estimated costs that are typically dominated by
disk accesses. Hence, the trade-off is between choosing a near-optimal
query plan and slower optimization time. In contrast to System R, Amos
II is a main-memory database; therefore, the exponential query com-
plexity cost of the System R optimizer is not justified as the number of
disk access is not a dominating factor. Hence, the query optimizer in
our prototype system EQP explores the search space in quadratic time,
using greedy heuristics to find the cheapest reordering based on [29].
After query optimization is performed within EQP, further optimization
is performed by the MongoDB database system. However, unlike state-
of-the-art commercial databases, MongoDB (up until version 4.0), does
not model the cost based on estimates of table statistics [37], which can
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potentially lead to inefficient query plans. As shown in Fig. 2.2 and Fig.
2.3, the output of the query optimizers is a physical execution plan.

• Executor: A query executor interprets the physical execution plan and
invokes procedures to access physical tables. In the case of our proto-
type systems, FLOQ and EQP, the query optimizer of Amos II generates
a physical execution plan as an ObjectLog algebra [15], which is in-
terpreted by the query executor to invoke foreign functions for accessing
the external data sources, RDBMS and MongoDB. For developing EQP,
a substantial amount of the implementation of the query processing sys-
tem consisted of developing foreign functions in C for the MongoDB
external data source in order to provide data manipulation, query execu-
tion, and other database control operations (e.g., index creations, explor-
ing query execution plan and statistics).

The next chapter provides discussions and technical contributions of the
Papers I-VII.
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3. Contributions and Discussions

The discussion and technical contributions of this Thesis are summarized be-
low for each paper to guide the reader on how papers relate to the research
questions provided in Chapter 1.

3.1 Paper I
To provide data analytics for IoT applications, we first developed a prototype
system, Fused LOg database Query processor (FLOQ), which is presented in
Paper I. The architecture of FLOQ is illustrated in Fig. 3.1.

FLOQ ServerMeta-database

Log  datatabases 

Query

FLOQ Wrapper FLOQ Wrapper FLOQ Wrapper

RDB RDB RDB. . .

. . .

Figure 3.1. FLOQ system architecture.

In this paper, we consider a real-world IoT application scenario, where ma-
chines such as trucks, pumps, kilns, etc. are widely distributed at different
geographic locations (aka sites). The sensors on the machines produce large
volumes of log streams stored locally in autonomous relational log databases
(depicted as RDB in Fig. 3.1). A global meta-database is utilized to describe
the properties of machines, sensors, measurements, etc. FLOQ adopts the
local-as-a-view approach [21] [26], which provides a global view by main-
taining logical union-all of the local measurement tables stored in each RDB.
FLOQ provides general query processing on the global view over all the au-
tonomous RDBs integrated through the meta-database.
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A user of FLOQ typically issues a query to the FLOQ server, which pro-
cesses the query by first looking up the meta-database to find the identifiers
required for querying RDBs containing the desired data. The FLOQ server
then in parallel sends distributed queries to the RDBs, encapsulated by FLOQ
wrappers. Finally, the FLOQ server collects and merges the distributed query
results to obtain the final result.

A particular challenge in this scenario is a scalable way to process queries
that join meta-data with data selected from the collection of autonomous RDBs
using standard DBMS APIs. To speed up queries combining meta-data with
distributed logged sensor readings, sub-queries to the log databases need to
be run in parallel. This paper proposes two strategies to perform such joins,
namely Parallel Bind-Join (PBJ) and Parallel Bulk-Load Join (PBLJ), which
are implemented in FLOQ. With both PBJ and PBLJ, streams of selected
meta-data variable bindings are distributed to the wrapped log databases and
processed there in parallel. After the parallel processing, the result streams
are merged asynchronously by FLOQ. PBJ generalizes the bind-join (BJ) [20]
operator, which is a state-of-the-art algorithm for joining data from an au-
tonomous external data source with a central database. With PBJ the streams
of bindings selected from the meta-database are bind-joined in the distributed
wrappers with their encapsulated log databases. One problem with bind-join
in our scenario is that large numbers of sub-queries will be sent to the log
databases for execution; one for each parameter combination selected from the
meta-database, which is particularly slow. To overcome this problem, PBLJ
was developed, which first bulk-loads the selected bindings in parallel into a
binding table in each log database, then performs a regular join between the
bulk-loaded bindings and the local measurements. This approach eliminates
executing a large number of sub-queries on log-databases and performs sub-
stantially better compared to bind-join and PBJ for scaling a large number of
bindings.

To investigate the performance of PBJ and PBLJ, we developed a cost
model to evaluate the efficiency of each strategy. The cost model provides
the hypothesis that the PBLJ performs better compared to PBJ when scaling
the number of (i) log databases (ii) return tuples, and (iii) parameter bindings
from the meta-database. The conclusions from the cost model serve as a basis
to develop experimental evaluations to prove the hypothesis empirically.

The local-as-a-view data integration approach adopted by FLOQ has a par-
ticular advantage over other view-based data integration techniques (e.g., global-
as-a-view [26]), as it allows the addition of new distributed sites having au-
tonomous databases. Since the global view is derived from the local measure-
ment tables stored in each local database, any addition of new sites scales well
in the local-as-a-view approach. We confirm this by providing experimental
results showing that FLOQ scales well when new sites are added to the system.
However, a major challenge arises when an IoT application requires frequent
addition of heterogeneous sensors that generate data streams of diverse for-
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mats. Each addition of a different type of sensor needs altering the schema
of the RDB table or denormalizing the sensor data for inserting into a single
RDB table, which is less intuitive and inefficient (Section 2.1.1). Furthermore,
each alteration of the RDB schema requires modification of the meta-database
schema. Hence, adopting any view-based data integration approach using re-
lational databases results in complexity for IoT applications having diverse
sensors. Therefore, to provide heterogeneous data integration for IoT applica-
tions, our future research was directed towards adopting scalable NoSQL data
stores that allow storing dynamic key-value association objects such as JSON.

This paper provides answers to research questions one, two, and five.
I am a co-author of this paper. I developed the cost model that guides the

experimental evaluation. I participated in the experimental evaluations and the
implementation discussions. I also contributed in writing a significant part of
the manuscript.

3.2 Paper II
Providing scalable persistence and analytics of large-scale streaming logs are
central for data management of numerous emerging fields, such as IoT, Cyber
Physical Systems, and Industrial Internet. The primary problem for persisting
large volumes of streaming logs with conventional relational databases is that
loading a large volume of data logs produced at high rates is not fast enough
due to the strong consistency model and high cost of indexing. As a possible
alternative, state-of-the-art NoSQL data stores that sacrifice transactional con-
sistency to achieve higher performance and scalability can be utilized. This
paper highlights six major data management challenges for providing scalable
analytics for large-scale streaming logs with RDBMS and NoSQL databases:

1. Archiving large volume of streaming logs: In relational DBMSs, the high
cost of maintaining the indexes and full transactional consistency can
degrade the bulk-loading of a large volume of data logs. Is it feasible to
leverage the weak consistency level of a NoSQL or relational database
to boost the performance?

2. Indexing strategies: Unlike relational databases, most NoSQL data stores
do not provide both primary and secondary indexing, which is required
for scalable processing of analytics queries over data logs.

3. Index utilization: Providing high-performance and scalable analytics for
a large volume of stream logs often requires a substantial amount of
storage for indexing. Therefore, providing memory and disk efficient
indexing strategies are needed for both RDBMS and NoSQL databases.

4. Query processing: Unlike relational databases, most NoSQL data stores
do not provide a query optimizer. Although NoSQL data stores, e.g.,
MongoDB, provide a query language; the sophistication of the query
optimizer needs to be investigated for scalable analytics.
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5. Advanced analytics: Relational DBMS features for advanced analytics,
such as joins or numerical expressions are limited in NoSQL data stores.
Therefore, it requires to be investigated how advanced numerical analyt-
ics over large-scale data logs could be provided by NoSQL data stores.

6. Parallelization of data: NoSQL data stores have the ability to distribute
data over many machines, which can provide parallel query execution.
Therefore, the performance of data partitioning of distributed NoSQL
data stores needs to be investigated for query execution over distributed
data logs.

The above challenges from Paper II, provide the scope to formulate re-
search questions one, three, four, and five. Based on these challenges, two
research proposals were suggested, namely (i) developing stream log analytics
benchmarks to understand the suitability of RDBMs and NoSQL data stores,
and (ii) enabling advanced analytics over NoSQL data stores.

We developed a stream analytics benchmark in Paper III and Paper IV.
Paper III compares the performance of two state-of-the-art RDBMSs with a
NoSQL data store MongoDB, while Paper IV compares the performance of
three different NoSQL data stores.

From the benchmarks, the performance and suitability of MongoDB for IoT
workloads motivated us to develop a query processing system over MongoDB
to support advanced IoT data analytics, which is presented in Paper V-VII.

I am the primary author of this paper. Tore Risch contributed to the discus-
sions and the revisions of the manuscript. Thanh Truong participated in the
revisions of the manuscript.

3.3 Paper III
A potential problem for persisting large volumes of data logs with a conven-
tional relational database is that the loading of massive logs produced at high
rates is not fast enough due to the strong consistency model and high cost
of indexing. Unlike relational DBMSs, some NoSQL databases can sacrifice
strong consistency by providing so-called eventual consistency compared with
the ACID transactions of regular DBMSs for providing high-performance up-
dates. Typically, NoSQL databases are designed to perform simple tasks with
high scalability. Therefore, distributed NoSQL databases can be utilized for
large-scale historical analysis of log data or numerical log analytics where full
transactional consistency conforming ACID compliance is not required.

In this paper, we investigate to what degree a NoSQL database can achieve
high-performance persisting and fundamental analyses of large-scale data logs
from a real-world application [13]. For the evaluation, a state-of-the-art NoSQL
database, MongoDB, is compared with a relational DBMS from a major com-
mercial vendor and with a popular open-source relational DBMS. The main
contribution of the paper is a performance evaluation that compares the suit-
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ability of the two kinds of database systems for large-scale log analytics with
various indexing strategies and reveals the trade-offs between data loading un-
der various consistency configurations.

In the performance evaluation, for persisting large-scale data logs, our re-
sults revealed that relaxing the consistency did not provide substantial perfor-
mance enhancement for neither relational nor NoSQL databases. We discov-
ered that both commercial and open-source relational databases provide less
than 25% performance improvement for bulk-loading with relaxed transaction
consistency. For MongoDB, weak consistency configuration of bulk loading
provides around 26% improvement. However, this performance is expected to
be much higher on a highly distributed system as it requires updates in multi-
ple replica nodes where relaxing consistency has a substantial impact. Overall,
MongoDB performs significantly better compared to the open-source database
and has comparable performance with the commercial database.

To understand the scalability of analytics workloads for the databases, we
defined three fundamental queries for investigating the performance impact of
query processing and index utilization. The properties of the chosen queries
are key selection, range search, and aggregation. The queries are fundamental
to analytics of IoT workloads and provide basic building blocks of the queries
presented in Paper I and [48]. We made the experimental queries simplistic
in nature, which is desirable for domain-specific benchmarks [18]. Compared
to the complex queries presented in Paper I and [48], these queries allow us
to investigate the internals of the DBMSs for a better understanding of the
performance trade-offs. Our subsequent papers also used these queries.

In the performance evaluation for query execution, we found that the key
look-up query that utilizes the primary key index scales well in all the DBMSs.
Furthermore, we observe that range queries in commercial databases scale
better for non-selective queries, while MongoDB is faster for selective ones.
The reason is that unlike MongoDB, the commercial database switches from a
non-clustered index scan to a full table scan when the selectivity is sufficiently
low, while MongoDB continues to use a non-clustered index scan. Finally, an
aggregation query scales well for all systems by utilizing the secondary index
when computing an aggregated value. Here, distributed MongoDB scales best
compared to single-instance MongoDB, commercial, and open-source DBMS;
as parallel scans without sending lots of results among distributed nodes speed
up query execution.

From the overall performance evaluation involving data archival and query
analytics, we found that both MongoDB and the commercial relational DBMS
perform significantly better compared to the open-source relational DBMS.
Furthermore, the commercial relational DBMS sometimes has performance
advantages in query execution compared to MongoDB by having a sophisti-
cated query optimizer. By contrast, distributed MongoDB is an alternative to
vertical scaling of a relational DBMS for inherently parallel IoT workloads.
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We concluded that for high-performance loading and analytics of data logs,
MongoDB is a viable alternative compared to relational databases for queries
where the choice of an optimal execution plan is not critical.

This paper provides answers to research questions one and three.
I am the primary author of this paper. Tore Risch contributed to the dis-

cussions and the revisions of the manuscript. Minpeng Zhu participated in the
revisions of the manuscript.

3.4 Paper IV
The performance of MongoDB from Paper III motivated us to explore the
suitability of other kinds of distributed NoSQL data stores for large IoT appli-
cations.

Large IoT applications typically produce a massive volume of data, which
makes single server storage incapable of scaling analytics workloads. An ad-
ditional challenge arises when a DBMS is deployed centrally, which might
prone to a single point of failure that could be fatal for mission-critical appli-
cations. In order to alleviate these issues, a modern distributed NoSQL data
store can be utilized to achieve high-performance, scalability, and availability.
These data stores can be deployed over many machines, which can eliminate
single point of failure. In this paper, we provided a performance compari-
son of three principal categories of distributed state-of-the-art NoSQL data
stores [4] to evaluate their applicability and efficiency for large-scale analytics
of sensor logs from real-world IoT applications. For the performance evalu-
ation, one state-of-the-art data store is selected from each of the three main
categories of NoSQL data stores: MongoDB as a document store, Cassan-
dra as a column store and Redis as a distributed main memory key-value store.
These data stores use different kinds of data partitioning, indexing, and storage
mechanisms, which are also used in a variety of other contemporary NoSQL
systems and major cloud service providers [24]. For example, the proof-of-
concept implementation of a key-value store in Amazon Web Services is Dy-
namoDB [11], while Google Cloud Platform uses Bigtable [5]. Therefore,
understanding the architectural differences of these systems provides crucial
insights for optimizing analytics performance for a variety of large-scale IoT
applications.

In the performance evaluation, we investigated two tasks that represent typ-
ical IoT data analytics. These tasks are similar to the key-lookup and range
queries presented in Paper III. We executed these tasks over 100 million sen-
sor data logs, distributed across 10 nodes for each of the three distributed
NoSQL data stores.

The first task of finding a particular log record that resembles a key look-up
query, scales well in all three systems as it runs under 10 milliseconds. This
task is leveraged by utilizing a primary key index supplied by all systems. In
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the case of Cassandra and Redis, a primary index was supported by the use
of a consistent hashing technique, while for MongoDB a range-based hashing
technique was used. This essentially demonstrates that both hashing tech-
niques are equally capable of finding a specific record from a large data set.
Internally, a hash value based on the key attribute determines which node is
responsible for retrieving the specific record. Then the request is dispatched to
the specific server node for further processing of the task and retrieving the re-
sult for the client. These steps are included in all three systems and, therefore,
exhibit equivalent performance for the key lookup task.

The second type of task, involving a range query, reveals more interest-
ing performance trade-offs for the three types of systems. To speed up this
task, we used a secondary ordered index which in the case of MongoDB was
a B-tree index, while for Cassandra an inverted index was used. Since Redis
is an in-memory data store, we used its in-memory sorted set. As expected,
the in-memory data store Redis outperforms both the disk-based NoSQL data
stores Cassandra and MongoDB. On the other hand, MongoDB performs bet-
ter compared to Cassandra as it’s B-tree index often resides in memory causing
fewer disk accesses than Cassandra’s inverted index. We later on investigated
the performance of an aggregated task, which is not presented in this paper.
This task is essentially an aggregation over the range query that uses the same
secondary ordered index for calculating the aggregation result. Therefore, it
demonstrated a similar performance of range query, making in-memory Redis
the fastest, followed by MongoDB.

From the performance evaluation, it is clearly noticeable that for Mon-
goDB, when we utilize the range-based hashing technique for data partition
together with the in-memory B-tree indexing, the performance of a range
query is significantly better compared to Cassandra’s disk-based inverted in-
dex. However, it is noteworthy that the range-based partitioning in MongoDB
is also more prone to skewed load balancing when the distribution of the par-
tition key is biased. As a result, the B-tree index over skewed data residing
in a particular node could potentially be a bottleneck, which leads to overall
performance degradation of a range query. Apart from data partitioning, in-
memory data stores, Redis, demonstrated significant performance advantages
over disk-based counterparts such as MongoDB and Cassandra. Though Re-
dis uses a consistent hashing technique compare to the range-based hashing of
MongoDB, its in-memory data structures plays a significant role in enabling
such a performance boost. However, this performance advantage comes at
a cost of sacrificing the persistence guarantees provided by disk-based data
stores, which could be prone to data loss that is critical in many IoT appli-
cations. Furthermore, most IoT applications require large volumes of data to
be analyzed, so providing enough main-memory is not practical; therefore,
disk-based NoSQL data stores are required.

While MongoDB offers better performance compared to Cassandra and
provides disk-based implementation compare to Redis, it also supports dis-
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tributed storage of JSON objects. These features of MongoDB makes it suit-
able for large-scale heterogeneous storage for IoT applications compared to
other NoSQL data stores. Therefore, in future research, we planned to develop
an advanced query processing system to overcome the limited query capabil-
ity of MongoDB for enhancing IoT data analytics. This work is presented in
Paper V-VII.

This paper provides answers to research questions one and four.
I am the primary author of this paper. My co-authors have contributed to

the discussions and the revisions of the manuscript.

3.5 Paper V
A conclusion from Paper III and Paper IV is that, while scalability can be
provided by the distributed NoSQL data store MongoDB, advanced data an-
alytics is difficult to provide due to its limited query processing capabilities.
In this paper, we discussed how a prototype system that combines the dis-
tributed scalability of MongoDB with a relationally complete [7] query pro-
cessor can provide advanced analytics. We adopted the wrapper-mediator ap-
proach [44] by integrating MongoDB with the in-memory mediator database
Amos II [43] [42]. Amos II provides an object-oriented data model, a relation-
ally complete query language AmosQL, and numerical operators. Therefore,
utilizing Amos II as a mediator system will provide advanced query processing
compared to the more limited query processing of MongoDB. Furthermore,
the Amos II kernel has been extended to provide streaming query processing
in the systems SVALI [51] and sa.engine [47] . Therefore, our implemented
system enables query-based online data stream analytics in front of the Mon-
goDB distributed NoSQL data store to support large-scale data analytics over
distributed IoT applications.

The main-memory database Amos II provides a foreign function interface
that supports several programming languages (C, Java, Python, or Lisp) for ac-
cessing external data stores, systems, and DBMSs. To provide high-performan-
ce access to MongoDB, we implemented a set of foreign functions in C. Inter-
nally MongoDB represents objects and expresses its queries as JSON. Since
JSON is equivalent to the Record data type in Amos II, we provided an effi-
cient implementation of type conversion between JSON and type Record to in-
terchange data between the two systems. The implemented foreign functions
utilized type Record to express queries over MongoDB, while the AmosQL
is operated over these foreign functions to enable advanced query process-
ing. The preliminary testing by injecting large sensor streams shows that our
prototype system provides improved performance compared to state-of-the-art
relational databases, even though it has some overhead caused by local query
processing performed in the Amos kernel. This work was a part of our on-
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going implementation of a fully-functional wrapper, which was enhanced in
Paper VI with further implementation and empirical evaluations.

Paper V provides answers to research questions one and five.
I am the primary author of this paper. My co-authors have contributed to

the discussions and the revisions of the manuscript.

3.6 Paper VI
Contemporary distributed IoT applications consist of large numbers of sen-
sors, producing massive volumes of heterogeneous sensor streams at high
rates. The combination of these features of IoT applications poses substantial
challenges for existing DBMSs in providing scalable data analytics. For exam-
ple, data management of distributed IoT applications often requires seamless
integration between a real-time data analytics platform, distributed data stor-
age, and effective data integration techniques for handling heterogeneity. In
this paper, we discussed a holistic data management approach for supporting
edge and offline analytics for distributed IoT applications. This paper primar-
ily has three contributions. Firstly, we demonstrate how to utilize relational
DBMSs effectively to support scalable analytics for IoT. Then, we discuss
the limitations of the relational DBMS approach, especially for supporting
heterogeneity, which led us to adopt the alternative approach of utilizing a
NoSQL DBMS to mitigate the challenges. Finally, we discuss the limitations
of the query execution of the NoSQL database MongoDB and developed an
Extended Query Processing (EQP) system to support advanced analytics.

3.6.1 Relational DBMS Approach
Large IoT applications often consist of geographically distributed sites. In
such a scenario, locally at each site, real-time edge analytics is often preferred
in order to deliver immediate responses. Since providing real-time analytics
with disk-based technology is slow, an in-memory edge data stream manage-
ment system (EDSMS) can be deployed close to the sensors for supporting
scalable online analytics data streams. However, the data streams at each site
often need to be stored for further offline analytics, which can be offered by
deploying local relational log databases. This IoT application context becomes
equivalent to the application scenario described in Paper I, where general
query processing is performed by FLOQ over the global view derived from
local log databases by integrating their meta-data. As discussed in Section
3.1, the local-as-view approach adopted by FLOQ scales well for large dis-
tributed IoT applications. However, this view-based data integration approach
using relational databases leads to complexity for heterogeneous sensors data.
Therefore, in this paper, we developed a data management system by adopting
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the document store NoSQL database MongoDB that provides heterogeneous
data storage through JSON objects.

3.6.2 NoSQL Data Stores for IoT Data Management
The approach of integrating a NoSQL data store in an IoT application is uti-
lized by deploying the distributed MongoDB to eliminate the local relational
databases of the RDBMS approach. Instead of archiving stream logs at each
local log database, we inject streams from the EDSMSs directly into the dis-
tributed MongoDB. Since distributed MongoDB can easily shard and repli-
cate data over many computing nodes, this approach provided scalability and
avoids a single point of failure.

When injecting large volumes of sensor logs from EDSMSs to DBMSs, any
use of disk-access techniques should possibly be avoided. NoSQL data stores
like MongoDB allow multiple data insertions without using any intermedi-
ate disk-based storage. In this paper, we implement the online bulk-loading
(OBL) strategy that first accumulates a large volume of stream elements in-
memory and then converts them into MongoDB’s native data format, binary-
JSON (BSON) [35]. After that, a single bulk insertion command to MongoDB
is issued, which injects all staged in-memory data stream elements into Mon-
goDB without using any disk-based techniques.

Typically, relational databases use normalization [6] to eliminate data du-
plication to reduce update anomalies. When we use relational DBMSs in our
previous approaches, both sensor data and meta-data tables are normalized.
Hence, the distributed join strategies (i.e., PBJ or PBLJ) of FLOQ is required
to perform the analytics. This approach exhibits difficulty in managing hetero-
geneity due to the rigid relational schemas; furthermore, distributed joining of
multiple tables proposed in FLOQ, is inherently expensive. By contrast to nor-
malization, if we adopt a denormalization approach [45] in distributed Mon-
goDB by combining sensor properties within a single JSON object, the dis-
tributed joins can be replaced with a single MongoDB collection lookup. Fur-
thermore, the JSON storage capability of MongoDB also enables the injection
of data streams of various formats into a single MongoDB collection, which
overcomes the limitations of earlier approaches of using a relational database
for handling heterogeneity. Hence, by using MongoDB, we can adopt the de-
normalization approach combined with a dynamic schema-free paradigm to
support heterogeneity better.

3.6.3 Advanced Query Processing
Although integrating distributed MongoDB provides storage for heterogeneous
sensor logs, it lacks the advanced query processing of regular RDBMSs (e.g.,
relationally complete queries [7], joins, and numerical operations). There-
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fore, we implemented the Extended Query Processing System (EQP) on top
of MongoDB to enable these advanced analytics. Similar to FLOQ, EQP also
enables general query processing over the integrated log databases. From our
ongoing work on a MongoDB wrapper presented in Paper V, in this paper, we
implemented the query processing of both EQP and OBL as a unified system
in the in-memory mediator database Amos II. The fully functional query pro-
cessing system is developed inside the Amos II kernel that utilized the foreign
functions implemented in C to access the external data source MongoDB.

Since AmosQL is relationally complete, it enables EQP to perform complex
queries involving joins, aggregations, and numerical operations (e.g., sum,
stdev). Therefore, the query execution of EQP overcomes the limitations of
MongoDB for performing advanced analytics.

Paper VI provides answers to research questions one, two, three, and five.
I am the primary author of this paper. My co-authors have contributed to the

discussions and the revisions of the manuscript. Tore Risch also contributed
to the implementations.

3.7 Paper VII
In this paper, we demonstrate a data management solution by enabling both
edge and offline analytics based on an IoT use case involving sound anomaly
detection on distributed equipment. In this work, we adopted the NoSQL ap-
proach presented in Paper VI for providing a data management solution for
our application scenario. We utilized the EDSMS sa.engine [47] to support
edge analytics for real-time sound anomaly detection, while we used EQP to
provide further offline analytics over the MongoDB backend. In our previ-
ous experimental evaluations for the NoSQL approach provided in Paper VI,
we used Amos II to simulate the DSMS by emitting CSV streams to Mon-
goDB. In contrast, this paper used sa.engine to perform the edge analytics and
the output streams were injected through EQP. As a result, this paper demon-
strated how EQP provides a holistic data management solution for a realistic
IoT application scenario.

Paper VII provides answers to research questions one and five.
I am the primary author of this paper. Tore Risch contributed to the discus-

sions and the revisions of the manuscript.
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4. Future Work

Indexing plays a significant role for improving query performance. We ob-
served the impact of indexing in our work for scalable query execution over
large-scale sensor logs stored in both relational and NoSQL databases [34]
[30]. However, we noticed in Paper II that the size of the indexing can be a
major overhead, sometimes equivalent to the size of the stored data. For large-
scale IoT applications that are often distributed across many computing nodes,
we typically need to store gigabytes of heterogeneous data in various format.
Therefore, future research could focus on developing memory-resident dis-
tributed indexing strategies. The designing criteria of such domain specific
indexing would be to provide space-efficient data structures (e.g., using com-
pression and probabilistic data structures), which could offer scalable query
execution over heterogeneous data format, such as JSON.

For the experimental evaluations of this thesis presented in Paper III-IV,
and VI, we utilized fundamental queries involving key-lookup, aggregation
and range search. The primary principle for designing queries that are sim-
plistic in nature was to observe the internal architecture of the DBMSs, such
as their storage mechanisms, query processing approaches, and index utiliza-
tion for our domain-specific application scenario. Furthermore, adopting con-
sistent benchmark settings comprising of the same queries across different
data processing platforms allowed us to compare and contrast the architectural
difference of various relational and NoSQL databases. The outcome of the
benchmarks motivated us to choose MongoDB for developing prototype sys-
tem Extended Query Processing (EQP) to support complex query execution.
In the future, more complex queries (e.g., generalizing the numeral queries
as in Paper I) are required for evaluating the performance of EQP. Future re-
search would focus on emploing domain-specific IoT benchmarks, such as
IoTAbench [2] for performance evaluation of FLOQ and EQP to understand
how relational and NoSQL databases perform under generic IoT application
scenarios.

In this thesis, we have discovered various trade-offs in choosing relational
and NoSQL databases for different application contexts. For example, a re-
lational DBMS can be a good choice for storing structured data where its so-
phisticated query optimizer facilitates efficient analytics. In contrast, NoSQL
databases provide fault-tolerance and load-balancing of large distributed ap-
plications, but with limited query capabilities. Among a variety of NoSQL
data stores, the document stores support heterogeneous data formats, the col-
umn stores enable efficient online analytics (OLAP) by clustering columns for
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efficient filtering of projection operators, and the in-memory key-value stores
provide distributed caching of frequently accessed data. For optimizing the
performance of distributed applications, combining the features of both rela-
tional and NoSQL databases can bring the benefit of both worlds. Therefore,
future research would focus on developing wrapper-mediator systems combin-
ing relational databases and a variety of NoSQL data stores. This will enable
global query optimization over a variety of data sources; which will leverage
the strength of each system and overcome limitations (e.g., supporting query
processing over contemporary NoSQL databases).

NoSQL databases, such as document stores, typically store data as dy-
namic key-value objects (e.g., JSON). While there are several advantages of
native JSON data stores, the absence of schema information makes query op-
timization difficult. Relational query optimizers rely on meta-data such as the
schemas and statistics of data in columns within a table. Sophisticated query
optimizers include cost models based on these statistics to find efficient plans
for query execution. In absence of schemas and statistics in a JSON storage
manager, building cost models to facilitate query optimization is challeng-
ing. Therefore, interesting future work would be to overcome the limitation
of a schema-less dynamic key-value storage by developing efficient dynamic
query optimization strategies.
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5. Summary in Swedish

Alltmer företag använder utrustning som är uppkopplad mot Internet, ofta
kallat Sakernas Internet (eng. Internet of Things, IoT) Ofta görs verksamhet-
skritiska beslut baserat på information från sådan uppkopplad utrustning. Up-
pkopplad IoT-utrustning kan innehålla många sensorer som producerar mycket
stora mängder data, ofta i mycket hög takt. Allteftersom mängden uppkopplad
utrustning blir större ökar därför behovet av effektiv hantering av data i form
av kontinuerliga flöden, s.k. dataströmmar, av mätvärden från sensorer på ge-
ografiskt distribuerad uppkopplad utrustning. Kombinationen av stor mängd
utrustning med många sensorer som producerar stora datavolymer ger stora ut-
maningar för existerande databashanteringssystem (eng. Data Base Manage-
ment System, DBMS) att tillhandahålla verktyg för att utföra skalbar lagring,
sökning och analys över stora datamängder. S.k. frågespråk i DBMS gör
det möjligt för användare att utföra avancerad analys av databasens innehåll
på en hög nivå utan detaljerad programmeringskunskap. Dagens DBMS-
marknad domineras av tabellorienterade databashanteringssystem, s.k. rela-
tionsdatabaser, med frågespråket SQL.

Denna avhandling analyserar problem med att tillhandahålla effektiv hanter-
ing av data från distribuerade IoT-applikationer med hjälp av DBMS-teknologier.
Inledningsvis utvecklade vi ett prototypsystem, Fused LOg database Query
processor (FLOQ), som möjliggör sökning m.h.a. ett frågespråk i samlin-
gar av geografiskt distribuerade relationsdatabaser där sensorloggar från IoT-
utrustning kontinuerligt lagras. På så vis tillhandahåller FLOQ effektiv och
kraftfull sökning över många databaser innehållande sensorloggar. Emellertid
uppvisar FLOQ problem med begränsad flexibilitet och skalbarhet för IoT-
applikationer där lagrade data är heterogena med olika format och där utrust-
ningen inte är ständigt uppkopplad. Begränsningarna för FLOQ beror främst
på dess krav på centralt uppkopplade relationsdatabastabeller med tabellorien-
terad representation av sensorloggar.

Sammanfattningsvis, när en relationsdatabas används för att lagra IoT-data
i stor skala, uppvisar den flera begränsningar:

• En relationsdatabas är inte alltid tillräckligt snabb för att ladda datarika
loggar som produceras med höga hastigheter, beroende på dess starka
konsistensmekanismer.

• Om data från uppkopplad utrustning integreras m.h.a. en central rela-
tionsdatabas som i FLOQ kan databasen utgöra en systemkritisk felpunkt,
eftersom delar av databasen tidvis blir otillgänglig eller inaktuell när
utrustningen tidvis är bortkopplad.
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• Oflexibel tabellorienterad representation av data i relationsdatabaser gör
det komplicerat att dynamiskt lägga till eller ta bort sensorer med olika
dataformat.

• Tabellorienterade SQL-frågor gör det besvärligt och ineffektivt att söka
i heterogena data från sensorer med olika dataformat.

Medan en relationsdatabas tillhandahåller en strukturerad datamodell, dy-
namiska SQL-frågor och stark transaktionskonsistens, offrar s.k. NoSQL-
databaser några av dessa attribut. Termen NoSQL hänvisar till "Inte bara
SQL" eller "Inte relationell". För att uppnå högre tillgänglighet och skalbarhet
än relationsdatabaser, tillhandahåller NoSQL-databaser vanligtvis enbart en-
kla operationer som att infoga, uppdatera eller slå upp en enda post, snarare än
de komplexa transaktions- och frågemöjligheterna hos relationsdatabaserna.
NoSQL-databaser har dock vanligtvis begränsningar i att utföra avancerad
analys med på grund av deras bristfälliga frågespråk.

En hypotes som undersöks i denna avhandling är i vilken grad distribuer-
ade NoSQL-databaser kan tillhandahålla skalbar lagring och analys av het-
erogena data för IoT-tillämpningar bättre än relationsdatabaser. Distribuerade
NoSQL-databaser kan lätt skalas upp genom utspridning (partitionering) och
replikering av data. Vidare kan hög tillgänglighet åstadkommas genom att
offra den starka konsistens m.h.a. transaktioner som tillhandahålles av rela-
tionsdatabassystem. För att förstå lämpligheten hos NoSQL-databaser under-
söker avhandlingen i vilken grad olika sorters NoSQL-databaser är tillämpliga
för IoT-applikationer genom att jämföra prestanda hos ett antal väl kända
relations- och NoSQL-databaser för industriella IoT-tillämpningar.

De experimentella utvärderingarna visar att utmärkt skalbarhet kan till-
handahållas av distribuerade NoSQL-databaser. Emellertid har de begrän-
sat stöd för avancerad dataanalys på grund av avsaknad av eller svagt fråge-
språk. Dessutom kräver datahantering för distribuerade IoT-applikationer ofta
att man kombinerar lokal analys i realtid direkt på utrustningen med dis-
tribuerad central datalagring utan kontinuerlig uppkoppling. Eftersom sen-
sorer och andra datakällor på utrusningen producerar data i olika format krävs
vidare effektiv integration av data i olika format kombinerat med frågebehan-
dlingstekniker för att hantera heterogena data. Dessutom måste arkitekturen
tillåta att man enkelt och effektivt kan lägga till och ta bort datakällor alltefter-
som uppkopplad utrustning ändras.

För att tillhandahålla en holistisk datahanteringsarkitektur som undviker
ovanstående begränsningar hos konventionella DBMS utvecklades ett pro-
totypesystem benämnt Extended Query Processing (EQP) som kombinerar
avancerad analys av strömmande och lagrade data på distribuerad utrustning
med central analys i en skalbar NoSQL-databas.
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