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Designing chip multiprocessors (CMPs) that scale to more than a handful of

cores is an important goal for the upcoming technology generations. A chal-

lenge to scalability is the fact that these cores will inevitably share hardware

resources, whether it be on-chip storage, memory bandwidth, the chip’s power

budget, etc. Efficiently allocating those shared resources across cores is criti-

cal to optimize CMP executions. Techniques proposed in the literature often

rely on global, centralized mechanisms that seek to maximize system through-

put. Global optimization may hurt scalability: as more cores are integrated on a

die, the search space grows exponentially, making it harder to achieve optimal

or even acceptable operating points at run-time without incurring significant

overheads.

In this thesis, we present XChange [103], a framework for scalable resource al-

location in large-scale CMPs. Inspired by market mechanisms, which are widely

used in real life to allocate social resources at scale, we propose to address the

resource allocation problem in large-scale CMPs as a purely dynamic, largely

distributed market framework. Each shared resource is assigned a virtual price,

which changes over time to reflect its supply-demand relationship. Cores in the

CMP act as market players: they seek to maximize their own utilities by bid-

ding for shared resources within their budgets. Because each core works largely

independently, the resource allocation becomes a scalable, mostly distributed



decision-making process. Cores in the system are able to dynamically monitor

and learn their own resource-performance relationship and bid accordingly—

no prior knowledge of the workload characteristics is assumed.

We show our market-based resource allocation mechanism delivers supe-

rior system efficiency and fairness against existing proposals. This approach

is purely empirical, however, and thus it does not provide any guarantees on

the loss of efficiency and fairness. It is well known, for example, that market

mechanisms in equilibrium can sometimes be highly inefficient—this is known

as Tragedy of Commons [44]. Therefore, we study the theoretic properties of our

market-based approach, and establish a bound on the loss of efficiency and fair-

ness in the market-based resource allocation, by introducing two new metrics,

market utility range (MUR) and market budget range (MBR). Further, guided by

such theoretic foundations, we propose ReBudget [104], a budget re-assignment

technique that is able to systematically trade off efficiency and fairness in an

adjustable manner.

In the process of formulating our XChange framework, we propose novel

mechanisms to support fine-grain resource management. Specifically, we pro-

pose SWAP [102], a scalable and fine-grain cache management technique that

seamlessly combines set and way partitioning. By cooperatively managing

cache ways and sets, SWAP (“Set and WAy Partitioning”) can successfully pro-

vide hundreds of fine-grained cache partitions for the manycore era. We imple-

ment SWAP as a user-space management thread on Cavium’s ThunderX, a real

server-grade 48-core processor, and we show that SWAP significantly improves

system throughput by twice as much speedup as what we can obtain by using

only ThunderX’s way partitioning mechanism. This was a collaboration with

Cavium engineers.
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CHAPTER 1

INTRODUCTION

1.1 The Scalability Challenge of Resource Allocation in CMPs

Resource allocation is a major challenge for computer systems. Back in the early

days when most computers are composed of a single-core CPU, applications

running in the system were time-sharing CPU cycles, as well as memory capac-

ity, disk storage, etc. Managing these resources in a fair and efficient manner

is critical, and different mechanisms have been proposed. Many of them have

become the norms in the computer systems we’re using today [3].

With the advancement of technology generations, more transistors are

brought into the CPU chip. However, the computer industry finds it harder and

harder to utilize those extra transistors to scale up the single core in the CPU.

This observation, along with the failure of Dennard scaling, motivates the in-

dustry to transition from the scale-up approach to the scale-out approach, where

more cores are integrated into a single chip to achieve performance growth.

A problem with this scale-out approach is that the multiple cores in a chip

inevitably share hardware resources, whether it be on-chip storage, memory

bandwidth, the chip’s power budget, etc. The computer systems that are de-

signed for single-core CPUs leave these resources unmanaged, allowing all the

cores to freely contend shared resources. Researchers have found that such

unmanaged policy significantly hurts system performance, and therefore, they

propose mechanisms to manage those resources independently [18, 70, 74, 79].

Although they show great performance improvements, it is found that those

1



proposals do not maximize the system performance and resource utilization,

because resource interactions exist. For example, increasing an application’s

allocated cache space may reduce its memory bandwidth demand, due to the

lower cache miss rate. Similarly, increasing an application’s power budget could

allow it to run at a higher frequency, potentially demanding higher memory

bandwidth. Therefore, a coordinated allocation among the shared resources is

necessary for the multi-core computer systems [12].

In recent years, cores keep piling up in a single chip. Most of the mainstream

processors today integrate 4 to 8 cores, and Intel’s Xeon Phi has made one step

further by having more than 60 cores on a chip, and is able to run more than

240 threads simultaneously by enabling 4-way SMT [27]. Therefore, designing

chip multiprocessor (CMP) systems that scale to many tens or even hundreds

cores is an important goal for the upcoming technology generations. With more

cores in the system, the contention for shared resources becomes worse, and

therefore, a key challenge to scalability is to effectively manage shared resources

among the competing cores. However, optimally partitioning CMP resources is

not easy. Beckmann and Sanchez find it a NP-complete problem to just parti-

tion the shared last-level cache due to its non-concave behavior [8]. It becomes

even worse for the coordinated multi-resource allocation problems, due to the

interactions among the resources. Most existing proposals for on-chip resource

management take a centralized approach [12, 23, 26], where an arbiter allocates

resources globally using heuristics such as global hill-climbing. Unfortunately,

this approach is not scalable to large-scale CMPs: First, fine-grained resource

management has been shown to be highly desirable to optimize system per-

formance, but the potential number of operating points can be large, making

it time-consuming for global optimization to find the optimal allocation point.
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Second, resource allocation is generally not a problem separable by resource,

as important resource interactions exist. In all, the search space of global re-

source allocation scales exponentially with the number of cores, the number of

resources, and the granularity of resources. Therefore, the global resource ar-

biter will either be able to explore only a small fraction of the search space, or

take too long to reach an optimal decision.

1.1.1 A Market-based Approach

To address the scalability challenge of the centralized approach, we propose

XChange, a novel CMP multi-resource allocation mechanism that is able to de-

liver scalable high throughput and fairness. We formulate the problem as a

purely dynamic, largely distributed market, where the “prices” of resources

are adjusted based on supply and demand. Cores dynamically learn their own

resource-performance relationship and bid accordingly; no prior knowledge of

the workload characteristics is assumed.

Our evaluation shows that, using detailed simulations of a 64-core CMP

configuration running a variety of multiprogrammed workloads, the proposed

XChange mechanism improves system throughput (weighted speedup) by

about 21% on average, and fairness (harmonic speedup) by about 24% on av-

erage, compared with equal-share on-chip cache and power distribution. On

both metrics, that is at least about twice as much improvement over equal-share

as a state-of-the-art centralized allocation scheme [23]. Furthermore, our results

show that XChange is significantly more scalable than the state-of-the-art cen-

tralized allocation scheme we compare against: less than 0.5% overhead on a
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5-million-cycle allocation interval (approx. 1 ms) to reach an allocation decision,

for CMP sizes anywhere from four to 128 cores. In contrast, the state-of-the-art

centralized scheme we compare against takes over 30% of the allocation interval

to converge under a 64-core CMP, and it exceeds the entire interval beyond 100

cores.

Although inspired by theoretical studies [40, 75, 105, 113], XChange is nev-

ertheless heuristic by design. We present a comparison against a recently pro-

posed, formally provable market-based resource allocation mechanism [111],

and show that our heuristic approach delivers superior throughput across the

board for the configurations and workloads studied.

1.1.2 Theoretic Guarantees in System Efficiency and Fairness

Although XChange delivers superior system efficiency and fairness against ex-

isting proposals it is purely empirical, however, and thus it does not provide any

guarantees on the loss of efficiency and fairness. It is well known, for example,

that market mechanisms in equilibrium can sometimes be highly inefficient—

this is known as Tragedy of Commons [44].

Our contributions are as follows:

— We introduce a new Market Utility Range (MUR) metric, which helps us

establish a theoretical bound for efficiency loss of a market equilibrium un-

der a constrained budget. Specifically, we show that, if MUR ≥ 0.5, then

PoA ≥ (1 − 1
4MUR ) ≥ 0.5 (i.e., the efficiency is guaranteed to be at least 50% of

the optimal allocation); and that if MUR < 0.5, then PoA ≥MUR.
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— We introduce a new Market Budget Range (MBR) metric, which helps us eval-

uate the fairness of a market equilibrium under a constrained budget. We show

that any market equilibrium is (2
√

1 + MBR − 2)-approximate envy-free.

— We propose ReBudget, a budget re-assignment technique that is able to sys-

tematically control efficiency and fairness in an adjustable manner. We evaluate

ReBudget on top of XChange, using a detailed simulation of a multicore archi-

tecture running a variety of applications. Our results show that ReBudget is

efficient and effective. In particular, it can achieve 95% of the maximum feasi-

ble efficiency. Furthermore, when combined with the analysis using MUR and

MBR metrics, it can provide worst-case fairness guarantees.

1.2 Fine-Grain Cache Management

Our market-based approach relies on hardware and software support for shared

resource partition. Although fine-grained power partition has already been sup-

ported by commercial chips (Intel’s RAPL technique [51]), fine-grained cache

partition remains to be a hard problem, especially for large-scale CMPs.

Two popular cache partition approaches are (a) hardware support for way

partitioning, or (b) operating system support for set partitioning through page

coloring. Way partitioning allows cores in chip multiprocessors (CMPs) to

divvy up the shared cache space, where each core is allowed to allocate cache

lines in only a subset of the cache ways. It is a commonly proposed ap-

proach to curbing cache interference across applications in chip multiproces-

sors (CMPs) [62, 79]. Unfortunately, way partitioning is proving to be not par-

ticularly scalable, as it affects cache latency and power negatively, eventually
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becoming impractical. Page coloring, on the other hand, achieves cache par-

titioning by restricting each application’s page frames to certain “colors” (the

shared bits between a physical address’ page frame ID and cache index). In this

case, page frames of each color map onto a specific subset of the cache sets. Al-

though this approach has been adopted in real operating systems [62,64,109], it

also does not scale beyond a handful of colors.

We propose SWAP [102], a fine-grained cache partitioning mechanism that

can be readily implemented in existing CMP systems. By cooperatively com-

bining the cache way (hardware) and set (OS) partitioning, SWAP is able to

divide the shared cache into literally hundreds of regions, therefore providing

sufficiently fine granularity for the upcoming manycore processor generation.

We implement SWAP as a user-space management thread on Cavium’s

ThunderX, a server-grade 48-core processor with ARM-v8 ISA [97]. To enable

SWAP, we introduce small changes to the Linux page allocator, and leverage

ThunderX’s native architectural support for way partitioning.

Our results show that SWAP improves system throughput (weighted

speedup) by 13.9%, 14.1%, 12.5% and 12.5% on average for 16-, 24-, 32- and

48- application bundles with respect to no cache management. This is twice as

much speedup as what we can obtain by using only ThunderX’s way partition-

ing mechanism.

To our knowledge, SWAP is the first proposal of a fine-grained cache parti-

tioning technique that requires no more hardware than what’s already present

in commercial server-grade CMPs.
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CHAPTER 2

XCHANGE: SCALABLE RESOURCE ALLOCATION IN CMPS

2.1 Introduction

Designing chip multiprocessors (CMPs) that scale to more than a handful of

cores is an important goal for the upcoming technology generations. A chal-

lenge to scalability is the fact that these cores will inevitably share hardware

resources, whether it be on-chip storage, memory bandwidth, the chip’s power

budget, etc. Studies have shown that allowing cores to freely contend for shared

resources can harm system performance [12, 23, 26]. Therefore, allocating re-

sources efficiently among cores is key to achieving good behavior.

One challenge in resource allocation is that it is generally not a problem sep-

arable by resource, as resource interactions exist [12]. For example, increasing

an application’s allocated cache space may reduce its memory bandwidth de-

mand, due to the lower cache miss rate. Similarly, increasing an application’s

power budget could allow it to run at a higher frequency, potentially demand-

ing higher memory bandwidth. As more and more cores are integrated on a

single die, the size of this multi-resource allocation space explodes, making it

harder to devise mechanisms to lock on a good allocation without incurring sig-

nificant overheads. Although prior knowledge of the applications from offline

profiling may curb some of the run-time overhead, this information is generally

not available.

An additional important consideration is the balance between throughput

and fairness. Eyerman and Eeckhout [38] argue that a good resource allocation
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scheme should be able to maintain a balance between single-program perfor-

mance and overall system throughput. However, existing global optimization

solutions deal primarily with system throughput [23, 26], potentially resulting

in systems with poor fairness. On the other hand, a recently proposed propor-

tional allocation technique by Zahedi and Lee focuses on guaranteeing strict

game-theoretic fairness of the co-running applications [111], but its formulation

may come in practice at a cost in throughput, as we show in our results.

Contributions

In this Chapter, we propose XChange, a novel CMP multi-resource allocation

mechanism that is able to deliver scalable high throughput and fairness. We for-

mulate the problem as a purely dynamic, largely distributed market, where the

“prices” of resources are adjusted based on supply and demand. Cores dynam-

ically learn their own resource-performance relationship and bid accordingly;

no prior knowledge of the workload characteristics is assumed.

Our evaluation shows that, using detailed simulations of a 64-core CMP

configuration running a variety of multiprogrammed workloads, the proposed

XChange mechanism improves system throughput (weighted speedup) by

about 21% on average, and fairness (harmonic speedup) by about 24% on av-

erage, compared with equal-share on-chip cache and power distribution. On

both metrics, that is at least about twice as much improvement over equal-share

as a state-of-the-art centralized allocation scheme [23]. Furthermore, our results

show that XChange is significantly more scalable than the state-of-the-art cen-

tralized allocation scheme we compare against: less than 0.5% overhead on a
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5-million-cycle allocation interval (approx. 1 ms) to reach an allocation decision,

for CMP sizes anywhere from four to 128 cores. In contrast, the state-of-the-art

centralized scheme we compare against takes over 30% of the allocation interval

to converge under a 64-core CMP, and it exceeds the entire interval beyond 100

cores.

Although inspired by theoretical studies [40, 75, 105, 113], XChange is nev-

ertheless heuristic by design. We present a comparison against a recently pro-

posed, formally provable market-based resource allocation mechanism [111],

and show that our heuristic approach delivers superior throughput across the

board for the configurations and workloads studied.

This chapter is organized as follows: Section 2.2 motivates our approach in

contrast to existing art. Section 2.3 describes the general market framework that

XChange is based on. Section 2.4 and Section 2.5 present the implementation

of our proposed mechanism. Section 2.7 evaluates our proposal. Section 2.8

validates our model. Section 2.9 shows the scalability of our mechanism.

2.2 Motivation of Our Approach

In the context of resource allocation of CMPs, researchers have shown that us-

ing fine-grained management of the available resources to provide optimized

utilization is highly desirable as well as practical, and we discuss these propos-

als in the related work in Section 5.1. The obvious downside of fine-grained

resource allocation in large-scale CMPs is that the number of potential operat-

ing points can be large, making it more time-consuming to search for optimal

allocation points.
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When it comes to multi-resource allocation, uncoordinated solutions have

been shown to be inefficient, even inferior to static equal-share partitioning, due

to their inability to model the interactions among resources [12]. A few solu-

tions have been proposed to address the fine-grained multi-resource allocation

problem [6,12,23,26,59], which are primarily based on centralized mechanisms

that seek to optimize system throughput by essentially exploring the resource

allocation space sequentially. Unfortunately, coordinated multi-resource allo-

cation dramatically increases the size of the this allocation space. As we will

show in Section 2.9, centralized approaches are likely to be unfeasible for large-

scale CMPs, as they may take too long to discover an optimized operating point

that can be exploited effectively. Moreover, many of these techniques focus on

throughput, with less concern for fairness.

Our proposed XChange solution tackles scalability by adopting a market-

based approach. In a market-based approach, participants seek to optimize

their resource assignment largely independently of each other, and participants’

demands are reconciled through a pricing mechanism. Under relatively weak

conditions (e.g., resources are priced equally for all participants at each point

in time), such competitive markets can converge iteratively to a Pareto-efficient

equilibrium (i.e., no further trading is mutually beneficial) [69]. These two prop-

erties, namely largely distributed operation and Pareto-efficient equilibrium,

make a market approach potentially attractive in our context.

XChange is different from other existing market-based resource allocation

approaches [22, 42], which employ a “static market” view to allocate a single

resource (compute service units): Users volunteer the amount of money each

is willing to pay as a function of allocated service units. The central market
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then allocates the available computing resources so that monetary profit is max-

imized. This static view of a market is not useful in our context: To accom-

plish efficient multi-resource allocation, users should be able to adjust their bids

dynamically in response to the perceived global resource contention—what is

called the “price discovery” process. For example, a user can lower its bid for

what turns out to be a highly contended resource (e.g., cache space) and bet

on a different resource more heavily (e.g., power budget), if it concludes from

supply-demand dynamics that it will get a better “bang for the buck.”

In addition, overall throughput is not the only concern to resource allocators:

A measure of fairness is also highly desirable (e.g., to provide QoS). A recent

proposal by Zahedi and Lee [111] applies an “elasticity-proportional” (EP) CMP

resource allocation mechanism to accomplish game-theoretic fairness. Users’

true resource utility is profiled, and the resulting profiles are curve-fitted to a

log-linear function. The EP allocation mechanism uses these curve-fitted utility

functions to provide an allocation with strong game-theoretic fairness guaran-

tees, such as sharing incentives, envy freedom, and Pareto efficiency. However,

guaranteeing game-theoretic fairness comes at a cost in system performance,

and Zahedi and Lee’s results indeed show that a fundamental trade-off exists

between EP’s game-theoretic fairness and achievable system throughput.

Our approach distances itself from pursuing provable game-theoretic guar-

antees, instead focusing on heuristics that can be practical and yield satisfactory

levels of both throughput and fairness. We do not confine user behavior to a

curved-fitted model, and hypothesize that a heuristic-based approximation of

utility in the CMP, coupled with a fail-safe mechanism for outliers, should be

sufficient to provide good outcomes. Intuitively, this is based in part on the fact
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that resource utility in CMPs, even if nonlinear, is monotonic (i.e., more of a re-

source yields equal or greater benefit)—a property present in many problems for

which market-based solutions have been successful.1 We measure throughput

and fairness using metrics more conventionally found in the computer architec-

ture community, namely weighted speedups and harmonic speedups.

Another limitation of Zahedi and Lee’s approach [111] is that, although there

seems to be no fundamental reason why the utility profiles could not be de-

rived online somehow, its evaluation is based on profiles obtained offline and

a priori. While it may be possible in data centers to profile an application be-

fore dispatching it [30, 68], we believe this assumption is unrealistic for general

CMP-based systems. XChange approximates resource utilities dynamically at

run-time—no prior knowledge of the workload’s behavior is necessary.

2.3 Market-Based Framework

Proper multi-resource allocation for CMPs presents the challenge of optimizing

and balancing two system objectives, system throughput and fairness, as well

as dealing with an allocation space which grows rapidly with the number of

cores. To be truly practical, it also needs to be capable of building a resource-

performance model dynamically at run-time, without the assistance of profiling

or other sort of prior knowledge.

In this section, we describe the general market framework XChange is based

on. We define the agents in the market as the applications running on the CMP

1Technically, it is possible that some resources may exhibit some kind of Bélády’s anomaly, where a slightly in-
creased resource allocation actually hurts performance in certain cases. We did not find this to be an issue in our
experiments.
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cores. We consider the shared resources to be the chip’s power budget and the

last-level cache space. We regard the scheduling question of what apps to run

on the available cores as orthogonal to our objective—after all, an agent would

not spend any “money” on resources if it didn’t get to run.
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Figure 2.1: IPC and cache miss rate under different cache allocation, running
at highest possible frequency. The x axis is the number of cache ways enabled.
Section 2.6 describes our experimental setup.
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2.3.1 Overview

XChange operates as a market, where each processor in the CMP can “pur-

chase” shared resources from the system. The pricing mechanism plays a central

role in the market: it conveys supply and demand information, reflects the true

value of the resources, and ultimately determines who gets how much of each

resource [69].

We adopt the price-taking mechanism proposed by Kelly [55]: Assume R j

represents the total amount of resource j available, and bi j is the amount of

money agent i bids for resource j. Then p j, the price of resource j, is computed

as the total amount of money bid by all the agents on that resource, divided by

the number of resource units available:

p j =

∑
i bi j

R j
(2.1)

The resources are then distributed proportionally to the bids each agent sub-

mits:

ri j =
bi j

p j
(2.2)

Here ri j is the amount of resource j allocated to agent i. Note that, because of

the price-taking formulation, no part of the resource is left unallocated.

At each point in time, because resource prices are readily available to agents,

the agents know exactly how much of a resource they would get given the bids

they place for it, and therefore, these selfish agents are able to bid optimally to
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maximize their own utilities. During the bidding process, the prices will fluc-

tuate. When prices become stable because agents have no incentive to change

their bids to improve their utilities, the market has converged. This results in a

Pareto-efficient resource allocation.

In addition, to ensure market fairness, each agent is assigned a finite budget,

and the total amount of its bids cannot exceed that budget. We also do not

allow agents to save money: any unused budget is forfeited if the agents do

not use it. This is simpler than a situation where agents are allowed to save

money to later try to monopolize all the resources, which probably hurts both

convergence speed and fairness.

The entire bidding process is described as follows:

1. Initially, each agent builds its local utility function—i.e., its resource-

performance relationship model. It is also assigned a budget to buy re-

sources. Meanwhile, a global resource arbiter posts the initial prices for all

resources to all agents. Under such prices, each agent places bids to buy these

resources. These bids are such that they maximize the agent’s local utility.

2. After all agents have placed their bids, a global resource arbiter collects the

bids, and adjusts the prices of the resources based on Equation 2.1. The price

of highly sought-after resources will be increased, and the price of unpopular

resources will be lowered to promote sales. This is a quick process.

3. The resource arbiter posts the updated prices to all agents, who then bid

again under the new pricing. This process repeats itself until the market

converges—i.e., the price remains stable across iterations (within 1%), and

the agents have no incentive to change their bids to improve their local utility.
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(We discuss more about convergence criteria in Section 2.4.3.) Finally, the

resources are allocated as shown in Equation 2.2.

Prices play a key role here, as a reflection of overall system demand vs. sup-

ply. In other global optimization mechanisms for CMPs, only the marginal util-

ity of each resource (i.e., the preference for that resource) is considered by the

agents [23], regardless of whether it is highly contended or not. In our market,

for example, if the price for resource A is high due to demand, an agent will

start bidding more money on a cheaper resource B, even though its marginal util-

ity for resource A may be higher, in an attempt to maximize its utility given the

supply-demand circumstances.

Another major advantage of this process is that it is mostly done in a decen-

tralized manner. Indeed, a key aspect of our market framework is that it takes

advantage of individual wisdom: It allows the agents in the market to sub-

mit bids to maximize their local utility under the current resource prices, rather

than submitting their utility function to a centralized entity that then performs

a global search. Compared to prior centralized schemes proposed [12, 23], this

process delegates the search effort to each individual agent. The only central-

ized work done in the system is the pricing mechanism shown in Equation 2.1,

which is fairly simple and can be done efficiently. In addition, the overhead of

collecting bids and posting prices is small.

One other interesting aspect of this market-based approach is that the trade-

off between system throughput and fairness can be adjusted by assigning differ-

ent budgets to different agents: Intuitively, if the system prefers higher through-

put, it opts to assign higher budget to the agent with higher marginal utility; if

the system prefers fair allocation across agents, it opts to assign equal budget.
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We discuss this issue further later in Section 2.4.3.

Challenges of building the utility model

The market model requires each agent to construct an accurate relationship be-

tween performance and resources—i.e., its local utility model. One possible

solution could be to ask programmers or users to provide some “hint” to the

on-chip agent about the dynamic behavior of the application. However, in gen-

eral, programmers and users may provide the wrong incentive, primarily be-

cause they may be unaware of the hardware details. Profiling is an option,

but this may not be feasible in practice, and in any case, the applications will

be running in a different environment when it matters: different architectural

configuration, competition with applications with different characteristics, etc.

Notwithstanding these options, we propose to design an intelligent run-time

monitoring mechanism, whose goal is to determine each agent’s local utility

model dynamically (and concurrently).

2.4 Mechanism: Market Participants

In this section, we describe how each individual agent dynamically models its

relationship between performance and resources, and its bidding strategy in

reaction to the resource price under our market framework.

All other things being equal, a simpler model is usually preferable. Here we

briefly discuss a linear model to provide an intuition of how market participants

operate in general. As we will see shortly, when managing CMP resources the
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reality is not so simple (but it is manageable).

ui =
∑

j

wi j × ri j (2.3)

where wi j represents agent i’s marginal utility for resource j, ri j represents the

allocation of resource j to agent i, and ui represents the overall utility of the al-

location of resources for agent i. This linear utility function, where each agent’s

marginal utility for each resource is constant under all circumstances, is quite

simple, and many bidding strategies have been proposed in the literature. For

example, PR-dynamics, which is a bidding strategy based on the linear utility

model, is theoretically proven by Zhang to guarantee fast market convergence,

Pareto efficiency, and also game-theoretic fairness [113].

When we attempted to use a linear market by curve-fitting the utility func-

tions of each application, and conducted a PR-dynamics-like market, the results

were poor. In order to examine why the linear utility model is a poor fit to our

specific CMP resource allocation problem, we profile a few applications with

varying cache capacity. (See Section 2.6 for details on the experimental setup.)

Figure 2.1 shows the L2 cache miss rate (MPKI) of three representative applica-

tions under different cache way allocation, and their corresponding IPC. All the

applications run at the same frequency. We find that the cache-performance be-

havior of soplex and twolf can fit into the linear model pretty well: soplex doesn’t

benefit from more L2 (flat curve), and twolf ’s IPC increases almost linearly with

more cache ways.

However, mcf shows a step function in IPC and cache capacity: once it se-

cures 12 ways (1.5MB), its working set can fit into the cache, and its miss rate
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drops to almost zero, showing a sudden 200% performance increase. Such IPC-

cache utility curve does not fit a linear utility curve well—in fact, it is not even

convex. The existing literature does not provide easy game-theoretic guaran-

tees for agents that behave like mcf. We empirically observed that some other

applications have similar behavior (admittedly, mcf is a bit extreme).

In XChange, we choose to abstain altogether from pursuing approaches with

strong game-theory guarantees. Our approach is inspired by the fact that the

First Welfare Theorem has relatively weak requirements to guarantee that any

market equilibrium is Pareto-efficient: XChange is a market where agents are

price-takers by design (i.e., they must accept the prices imposed by the market

at each point in time); agents in XChange exhibit monotonic utility (i.e., more

of a resource is better) by the nature of our problem; and agents in XChange

always put forward their best bid (the one that they believe maximizes their

utility given the current prices).

In the rest of this section we describe how we model XChange’s utility func-

tion, in part by borrowing and combining successful hardware estimation mech-

anisms from the existing literature. As our evaluation will show, the model

yields very good results for the configurations and workloads studied (Sec-

tion 2.7).2

2.4.1 Utility Model

Existing literature frequently characterizes workload behavior by dividing its

total execution time into memory phase (core stalled waiting for memory) and

2The First Welfare Theorem states sufficient conditions for Pareto-efficiency under any market equilibrium. Thus,
even market equilibria that do not strictly abide by such conditions may in principle be Pareto- or quasi-Pareto-efficient.
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compute phase. In XChange, we borrow this simple compute-vs.-memory clas-

sification to characterize the impact of each of the shared resources on applica-

tion behavior. Cache and off-chip bandwidth are mostly related to the length of

the memory phase: a larger L2 allocation will lower the cache miss rate, while

more memory bandwidth will mitigate the penalty of cache misses. At the same

time, a higher power budget allocation will allow a core to run at a higher fre-

quency, and thus the compute phase will be scaled down proportionally [18,70].

We define the agent’s utility as the workload’s execution time, i.e., the sum

of its compute and memory phase, measured in cycles at nominal frequency

(4GHz in our setup). We approximate compute and memory phases as being

relatively independent—e.g., changing the core’s power allocation should not

affect the wait in the memory system due to cache misses and bandwidth traf-

fic. This is of course a simplification: a lower clock frequency at the core, for

example, will make the core issue memory requests at a slower speed, and thus

affect the effective memory level parallelism, and the length of memory phase.

However, it allows for simpler and faster models that, as our results will show,

do deliver solid gains.

Cache Utility

We now describe how we derive our utility model for shared cache allocation,

by combining two existing performance estimation mechanisms. Miftakhut-

dinov et al. develop a model to estimate the execution time of a program’s

memory phase [70]. In the model, a per-core memory critical path counter

CPglobal is maintained. When a memory request leaves the core and gets into

the last-level cache, it copies CPglobal to the its own counter CPlocal. After ∆t
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cycles, the memory request is served, and the critical path counter is set as

CPglobal = max(CPglobal,CPlocal + ∆t). The value of counter CPglobal reflects the

length of the memory phase. (More details can be found in that paper.)

Unfortunately, this scheme is only able to estimate the length of memory

phase under the current cache and bandwidth allocations. To estimate the

cache’s marginal utility, we need to be able to calculate the effect that a change

in cache allocation has on the memory phase. Qureshi and Patt’s UMON sam-

pled cache tag array [79] can be used to predict the cache miss rate under all

possible cache allocations, although is not able to directly predict the length of

memory phase.

Thus, we extend the technique developed by Miftakhutdinov et al. by incor-

porating UMON. The simplifying assumption we make is that memory-level

parallelism (MLP) doesn’t change with different cache allocations, and there-

fore can be computed by dividing the aggregate service time by the length of

the memory phase:

MLP =
Nh × th + Nm × tm

CPglobal
(2.4)

where Nh and Nm are the number of hits and misses under the current cache

allocation, respectively, and th and tm are the hit and miss latencies, respectively.

In order to predict the length of memory phase under j cache ways,

CPglobal( j), we compute the aggregate memory service time without MLP, by us-

ing the prediction of the number of hits and misses, Nh( j) and Nm( j) respectively,

from UMON.3 With MLP, the length of memory phase under j cache ways can

3UMON with dynamic set sampling (DSS) is only able to predict miss rate, but we can multiply miss rate by the
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be computed as:

CPglobal( j) =
Nh( j) × th + Nm( j) × tm

MLP
(2.5)

Therefore, assuming an agent is allocated i ways of cache, if it is given one

less cache way, the increase in its execution time can be computed as:

MUcache(i) = CPglobal(i − 1) − CPglobal(i) (2.6)

We define MUcache(i) as the agent’s marginal utility for cache at i ways. (Note

that lower CPglobal is better, thus the order of the operands.)

Power Utility

The agent’s marginal utility for power can be modeled based on the fact that

the length of the compute phase tends to scale linearly with the processor fre-

quency. By reading the appropriate hardware performance counters, the agent

can collect the statistics from the last interval: length of compute phase texe, av-

erage operating frequency f0, energy consumption E0, and operating voltage V0.

Then the length of compute phase texe( f ) under new frequency f is:

texe( f ) = texe ×
f0

f
(2.7)

The power is estimated as follows:

P( f ) =

E0
V2

0
× V2

f

texe( f ) + tmem
(2.8)

total number of cache accesses to obtain the number of hits and misses.
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Here, V f is the voltage under new frequency f , and tmem is the length of

memory phase under current cache partition.

Therefore, assume an agent is operating at frequency f, we define its

marginal utility for power as follows:

MUpower( f + ∆ f ) =
texe( f ) − texe( f + ∆ f )

P( f + ∆ f ) − P( f )
(2.9)

where ∆ f is the frequency increment of one DVFS step.

Bandwidth Utility

The marginal utility for memory bandwidth could be derived similarly, by tak-

ing effective memory latency into account when computing the length of mem-

ory phase; however in this chapter for simplicity we assume an equal-share

distribution across cores. This allows us to compare in the evaluation directly

against state-of-the-art schemes for multi-resource allocation, which also allo-

cate shared cache and power budget simultaneously [23]. Note that other re-

sources, such as on-chip network bandwidth, can also be plugged into our util-

ity model, as long as their resource-performance relationship can be accurately

modeled.

2.4.2 Bidding Strategy

Agents in XChange conduct a simple local hill-climbing algorithm to find their

optimal bids. Because the agent is working locally and independently, the com-
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plexity of this local hill-climbing does not increase with the number of cores.

Notice that hill-climbing cannot generally guarantee the optimality of the solu-

tion, and thus the sufficient conditions of the First Welfare Theorem cannot be

formally guaranteed. Nevertheless, again our experiments show that the bids

produced in this way are of good quality.

We have established earlier in the paper that cache utility is generally not

convex. This may cause hill-climbing to get stuck at a local optimum. For ex-

ample, as is shown in Figure 2.1b, mcf ’s marginal utility on allocating more

cache ways is zero almost everywhere except for one point (8 to 12 ways). If

the hill-climbing search starts by purchasing one cache way and the power con-

sumption of the minimum possible frequency (800 MHz), it is almost guaran-

teed that the agent will bid heavily on power, because the marginal utility on

cache is virtually zero in that region.

On the other hand, there is generally no such “knee” in the performance

response to frequency (and thus power) changes; plus, its marginal utility di-

minishes as frequency increases, because power scales cubically with frequency,

while compute time scales linearly (see Equation 2.9). These two “opposing”

but otherwise monotonic behaviors enable us to design a “guided” hill-climbing

search, which starts searching from the maximum affordable cache. Thus, our

proposed local hill-climbing algorithm works as follows:

1. The price of resources is broadcast to the agents.

2. Each agent starts by purchasing its bare-minimum power (assuming the

core is operating at 800 MHz), and leaves all the remaining budget to

cache.
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3. The agent decreases its cache bid by one way, and uses the saved money

to buy extra power. By comparing the marginal utilities, the agent can

decide whether the trade is worthwhile. If so, it accepts the trade and this

step is repeated; otherwise, the agent denies the trade, and it submits the

current bids to the market.

This algorithm should deal with mcf ’s “step-like” cache behavior very well.

In Figure 2.1b, the step of mcf is at 12 ways. Our hill-climbing starts from the

maximum affordable cache. Suppose mcf can at most buy 10 cache ways be-

cause it is highly contended; then the algorithm will eventually end up trading

9 cache ways for power, and will never really worry about climbing up to 12

cache ways, simply because it is not affordable. On the contrary, if mcf can af-

ford more than 12 cache ways, it will iterate as described above to decide, at

each point, whether cache or power is more beneficial.

Our guided hill-climbing approach is efficient, because it walks through the

search space linearly. However, this is true because only one resource in the sys-

tem has a non-convex utility (the cache). In a more general case where multiple

resources are not convex, more sophisticated algorithms such as Qureshi and

Patt’s Lookahead [79] would probably be needed.

2.4.3 Design Issues

In this section, we discuss three practical issues that must be addressed:

bankruptcy, market convergence, and wealth redistribution.
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Bankruptcy

Sometimes, the price for power can be so high in the market that an agent cannot

even afford to buy the minimum power to operate at 800 MHz. In such an event,

the agent will file for “bankruptcy.” The agent will be excluded from the bidding

process, and it will be allocated the bare minimum: one way of the cache, and

allowed to operate at 800 MHz for the next interval. The other agents will bid

for the remaining resources. The bankrupt agent will re-join the bidding process

at the next interval.

Convergence

Many practical studies show that a market similar to ours is likely to operate

quite well [40, 90]. Still, we do experimentally observe some circumstances

where prices continue to oscillate by more than 1% (our convergence criterion).

We could consider a market with a more relaxed convergence threshold, e.g.

5% fluctuation. This may eliminate some of the non-convergent cases, and also

reduce the number of bidding iterations. However, it may lead to a less opti-

mal allocation. Other convergence criteria exist in the literature; for example,

utility fluctuation [40]. However, we observed experimentally that there was no

practical difference between this and our original criterion in terms of system

throughput or convergence rate.

One reason for continued oscillation is that cache allocation is done at the

granularity of cache ways, and thus the utility function is not continuous.

Agents may be swinging between two neighboring cache ways across iterations,

resulting in a non-trivial fluctuation in cache price.
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There comment on two potential solutions to deal with this situation. First,

we can introduce a price-smoothing mechanism, by incorporating the price in the

last iteration (plast
j ):

p j = α × plast
j + (1 − α) ×

∑
i bi j

R j
(2.10)

In this way, the history of the price is factored in, which helps agents to better

understand the contention of the resource in the market. We empirically pick

α to be 0.2, and we observe that it can greatly improve the market convergence

rate.

Another option is to adopt a price-anticipating mechanism [40] instead of our

price-taking approach. In this mechanism, although an agent does not know how

others will change their bids, it realizes that the increase/decrease of its bids

will change the resource prices, according to Equation 2.1. Therefore, during

the local search for optimal bids, the agent will no longer consider the price to

be a fixed number: it will factor in the impact of its changing bid on the resource

price when it tries to trade one cache way for power.

In our experimental setup, both solutions show similar system throughput

and convergence rate. Because price-anticipating agents increase the complex-

ity when bidding, in the rest of the paper we adopt the price-smoothing tech-

nique.

In any case, if the market ultimately cannot converge after a while, we have

to announce that our market fails to converge. In XChange, we set the cut-off

threshold to be 30 iterations; if the prices still fluctuate by more than 1% at that

point, we terminate the bidding process. In that case, resources are allocated as

27



follows: first, each agent estimates its utility under the current resource prices

and its bids; then, each agent estimates its utility under an equal-share alloca-

tion. If one of the agent prefers equal share, we enforce the system to fall back

to equal-share allocation for all agents. Otherwise, the resources are allocated

according to the agents’ last bids. In this way, such a “fail-safe” mechanism vir-

tually guarantees that the allocation decision is at least as good as equal-share.

In fact, our experiments show that in most cases, agents prefer the market out-

come rather than equal-share. This is especially true if multiple equilibria exist,

and the market is simply oscillating among them.

Wealth Redistribution

In our initial design, our market framework treats all agents equally, by assign-

ing to them the same initial budget. However, in our experiments, we find

that an equal budget constraint might not be efficient enough from both a sys-

tem and a user perspective. For example, libquantum is easily satisfied with very

few resources. Because it’s a highly memory-intensive application, its core stalls

most of the time. As a result, it can operate at 4 GHz while consuming very lit-

tle power (much lower than an equal-share power allocation). In addition, its

working set can never fit into the shared cache, and allocating more than one

cache way to it does not bring any significant benefit. But because it has the

same budget as the other agents, it is likely to disrupt the market by prevent-

ing the other agents from obtaining resources that would contribute to a higher

system throughput.

We propose a simple heuristic, namely to assign to each agent a budget pro-

portional to its “potential” in performance gains:
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B ∝ (1 −
tmin

tmax
) (2.11)

where tmin is the estimated execution time when the application is running alone

(and thus enjoys all the chip’s power and the maximum number of cache ways

that UMON is able to monitor—see Section 2.5), and tmax is the estimated execu-

tion time when the application is running with minimum resources (one cache

way and the lowest possible frequency). These quantities are not measured, but

rather computed using Equation 2.5 and Equation 2.7 at the beginning of each

partition interval; therefore, they do not lead to additional overhead.

This wealth redistribution technique biases budgeting toward the applica-

tions that have higher potential. As we discuss later in Section 2.7, this result

in higher overall throughput, at the expense of some fairness. In those circum-

stances where fairness among cores are highly preferred, this wealth redistribu-

tion mechanism can be easily turned off.

2.5 Implementation

We propose to implement XChange as a combination of hardware and software.

The hardware is responsible for performance monitoring and modeling, and the

software is responsible for conducting the market’s bidding and pricing mech-

anism.
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Component Quantity Width Bits
UMON shadow tag 16 × 64 28 28,672
UMON hit counter 16 32 512
DL1 CPglobal counter 1 32 32
Per request CPglobal counter 16 32 512
Total 29,728

Table 2.1: Per-core hardware overhead of online performance modeling.

2.5.1 Hardware

Table 2.1 details the per-core hardware overhead of our online performance

modeling mechanism. As is discussed in Section 2.4, XChange relies on UMON

shadow tags to predict cache behavior of applications. We employ a dynamic

set sampling (DSS) technique [79] and sample 64 out of 2k sets. We further limit

the stack distance to 16, because we empirically observe that no application can

afford more than 4× its equal-share allocation. In addition, for the workloads we

study, we observe that their marginal utility for cache is mostly zero beyond 16

ways. However, in more general cases, a deeper stack distance may be needed

to more accurately characterize the workloads’ cache behavior, at the cost of

higher storage overhead.

On top of that, in order to track the length of critical memory path CPglobal,

the L1 data cache of each core requires a global critical path counter CPglobal,

and each memory request needs a counter to save a copy of CPglobal (as a field

of DL1’s MSHR). Further, it needs each processor to keep track of how much

dynamic energy it consumes in the past interval. Because modern processors

already have this feature built in [82], we exclude this from our hardware over-

head.

In all, the per-core hardware overhead of XChange amounts to about 3,700
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bytes.

2.5.2 Software

We propose to implement XChange’s bidding-pricing mechanism as a part of

an OS kernel module. In some Linux-based SMP systems, all cores are simulta-

neously interrupted by an APIC timer every 1 ms to conduct a kernel statistics

update routine. We propose to piggyback on this interrupt to incorporate our

market mechanism. We assume a shared-memory model, and designate a mas-

ter core to be responsible for collecting the bids (reading shared variables) and

computing the price. The whole procedure works as follows:

1. Every 1 ms, after each core has finished its kernel update routine, the mas-

ter core posts an initial price.

2. All the cores start to search for their optimal bids using the local hill-

climbing technique explained in Section 2.4.2.

3. After a global barrier to ensure that all bids are computed, the master

core collects the bids, and computes the price. If the prices do not change

(within 1%) compared to the previous iteration, the market converges, and

the resources are allocated using Equation 2.2. Otherwise, repeat Step 2.

Because we are using a shared-memory model for the market mechanism, no

special hardware is needed for inter-core communication. The execution time

overhead of this procedure is discussed in Section 2.9.
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Priorities and Real-Time Issues

In a real system there may be applications with different priorities. High-

priority applications probably expect to enjoy more CPU cycles and access to

more of the on-chip resources. Our market framework can handle this by as-

signing higher budgets to these applications, and therefore increase their pur-

chasing power. How exactly to calculate the appropriate budgets is left for fu-

ture work.

Another issue that high-priority or real-time applications may face could

be caused by the fact that our market framework involves all the cores for the

bidding-pricing procedure. Although the overhead is small (Section 2.9), these

types of applications may be affected undesirably. One way to handle such cases

may be to delegate the bidding on behalf of such time-sensitive applications on

low-priority cores. Other solutions may be possible.

Yet another issue for real-time applications may be that the resulting re-

source allocation may be insufficient to meet hard deadlines. We propose ad-

dress this by providing those applications with enough resources, and then ex-

cluding them from the market. (Their resource demands could be provided

externally, or they could be estimated using the utility model we described in

Section 2.4.1.)
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2.6 Experimental Methodology

2.6.1 Architectural Model

We evaluate XChange using a heavily modified version of SESC [81]. The CMP

configurations with 8 (small-scale) and 64 (large-scale) cores, and the out-of-

order core parameters are shown in Table 2.2. We also faithfully model Micron’s

DDR3-1600 DRAM timing [49], shown in Table 2.3.

We use Wattch [16] and Cacti [87] to model the dynamic power consump-

tion of the processors and memory system. The static power consumption is

approximated as a fraction of the dynamic power, and this fraction ratio is expo-

nentially dependent on the system temperature [21]. Intel has adopted a similar

approach for its Sandy Bridge power management [82]. We rely on Hotspot [89]

integrated with SESC to estimate the run-time temperature of our CMP system.

Our baseline CMP system is able to regulate three shared on-chip resources:

L2 cache, off-chip memory bandwidth, and power budget. We distribute the

power budget across the chip via per-core DVFS. When a processor exceeds its

allocated power, it is forced to slow down until its power consumption drops

within its share. We guarantee that each core receives at least one cache way; the

remaining cache is distributed based on the resource allocation decision. Finally,

we implement the Fair-Queue (FQ) memory scheduler proposed by Nesbit et

al. [74] to regulate off-chip memory bandwidth. The service share rate will be

designated at the memory controller by the resource allocator.
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Table 2.2: System configuration.

Chip-Multiprocessor System Configuration
Number of Cores 8 / 64

Power Budget 80W / 640W a

Shared L2 Cache Capacity 4MB / 32MB
Shared L2 Cache Associativity 32 / 256 ways b

Memory Controller 2 / 16 channels
Core Configuration
Frequency 0.8 GHz - 4.0 GHz

Voltage 0.8V - 1.2 V
Fetch/Issue/Commit Width 4 / 4 / 4

Int/FP/Ld/St/Br Units 2 / 2 / 2 / 2 / 2
Int/FP Multipliers 1 / 1

Int/FP Issue Queue Size 32 / 32 entries
ROB (Reorder Buffer) Entries 128

Int/FP Registers 160 / 160
Ld/St Queue Entries 32 / 32

Max. Unresolved Branches 24
Branch Misprediction Penalty 9 cycles min.

Branch Predictor Alpha 21264 (tournament)
RAS Entries 32

BTB Size 512 entries, direct-mapped
iL1/dL1 Size 32 kB

iL1/dL1 Block Size 32 B / 32 B
iL1/dL1 Round-Trip Latency 2 / 3 cycles (uncontended)

iL1/dL1 Ports 1 / 2
iL1/dL1 MSHR Entries 16 / 16

iL1/dL1 Associativity direct-mapped / 4-way
Memory Disambiguation Perfect

aWe anticipate that the CMP systems with different number of cores will not be fabricated under the same technol-
ogy. For simplicity, in our evaluation, we use a chip TDP of 10W per core. IBM’s Power8 reportedly consumes twice as
much per core (it has 12 cores).

bIn the evaluation, we partition the shared last-level cache at the granularity of cache ways [79]. In an actual
implementation, any of the fine-grained cache partition mechanisms proposed in the literature could be used (e.g.,
PriSM [67], Vantage [85]).

Workload Construction

We use a mix of 25 applications from SPEC2000 [91] and SPEC2006 [92] to eval-

uate our proposal. Each application is cross-compiled to a MIPS executable, us-

ing gcc 4.6.1 at -O2 optimization level. The bundles of applications are executed

until every application has committed 200 million instructions (8 cores), or 50

million instructions (64 cores). When an application finishes, we stop measuring

its performance, but continue executing and engaging it in global resource allo-
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Table 2.3: DRAM parameters.

Micron DDR3-1600 DRAM [49]
Transaction Queue 64 entries

Peak Data Rate 12.8 GB/s
DRAM Bus Frequency 800 MHz (DDR)

Number of Channels 2 / 16
DIMM Configuration Dual rank

Number of Banks 8 per rank
Row Buffer Size 1 KB

Address Mapping Page Interleaving
Row Policy Open Page

Burst Length 8
tRCD 10 DRAM cycles

tCL 10 DRAM cycles
tWL 7 DRAM cycles

tCCD 4 DRAM cycles
tWTR 6 DRAM cycles

tWR 12 DRAM cycles
tRTP 6 DRAM cycles

tRP 10 DRAM cycles
tRRD 6 DRAM cycles

tRTRS 2 DRAM cycles
tRAS 28 DRAM cycles

tRC 38 DRAM cycles
Refresh Cycle 8,192 refresh commands every 64 ms

tRFC 128 DRAM cycles

cation, to ensure that it continues to exert pressure on the resources shared with

other applications in the bundle. For each application, we use Simpoints [17] to

pick the most representative program slice.

The multiprogrammed workloads we use are shown in Table 2.4. We clas-

sify the 25 applications into Power-sensitive, Cache-sensitive, and Memory-sensitive

using profiling, and then create bundles that constitute a varied mix of applica-

tions in each category. When the number of cores exceeds the number of apps

in a bundle, the bundle is replicated across the chip. For example, 8 copies of

VCUGXNTZ will run to occupy all the cores in a 64-core CMP.

Our evaluation is based on multiprogrammed workloads because we antic-

ipate to allocate resources at the granularity of applications. For multithreaded

workloads, we can either treat each thread as an individual agent in the mar-
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Table 2.4: Multiprogrammed workloads, combining cache-, processor- and
memory-sensitive applications.

ROAFLDGV
vpr - twolf - apsi - mcf C4

milc - GemsFDTD - gromacs - vortex M2P2

XNIBDWFA
soplex - libquantum - leslie3d - bwaves M4

GemsFDTD - swim - mcf - apsi M2C2

MHKULBFP
gamess - hmmer - sixtrack - wupwise P4

milc - bwaves - mcf - ammp M4

FOARLNBW
mcf - twolf - apsi - vpr C4

milc - libquantum - bwaves - swim M4

AZFPIBDW
apsi - bzip2 - mcf -ammp C4

leslie3d - bwaves - GemsFDTD - swim M4

XIDWCHAF
soplex - leslie3d - GemsFDTD - swim M4

calculix - hmmer - apsi - mcf P2C2

NXLIGEOR
libquantum - soplex - milc leslie3d M4

gromacs - h264ref - twolf - vpr P2C2

LNIBDWOT
milc - libquantum - leslie3d - bwaves M4

GemsFDTD - swim - twolf - art M2C2

ROPAFZXN
vpr - twolf - ammp - apsi C4

mcf - bzip2 - soplex - libquantum C2 M2

LXNIBDRO
milc - soplex - libquantum - leslie3d M4

bwaves - GemsFDTD - vpr - twolf M2C2

VCUGXNTZ
vortex - calculix - wupwise - gromacs P4

soplex - libquantum - art - bzip2 M2C2

ket, or combine all the threads of one app as one agent to bid and share the

resources.4

Performance Metrics

A key issue in resource allocation is the figure of merit. Eyerman and Eeck-

hout propose that two metrics be reported for a CMP system running multi-

programmed workloads: One to represent a system perspective, which cares

about system throughput; and one to represent a user perspective, which cares

about the average turnaround time of an individual job. The proposed metrics

are weighted speedup and average slowdown of co-running applications (the

reciprocal of harmonic speedup), respectively:

4Skewing resources among threads in a multithreaded application (e.g., to alleviate synchronization imbalance) is
beyond our scope, can be incorporated orthogonally to our approach, and has been studied elsewhere [11, 35].
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Weighted Speedup =
1
N

N∑
i=1

IPCshared
i

IPCalone
i

(2.12)

Harmonic Speedup =
N∑

i
IPCalone

i

IPCshared
i

(2.13)

A system could achieve high throughput (i.e., weighted speedup) by starv-

ing one or two applications while benefiting all the others; however, system

fairness (i.e., harmonic speedup) would suffer as a result, providing a bad ex-

perience to some users. A side-by-side comparison of weighted and harmonic

speedups would expose this behavior. To isolate the fairness component, we

also report separately the ratio between maximum and minimum slowdowns

across the bundle [34]:

Slowdown Ratio =

maxi
IPCshared

i

IPCalone
i

mini
IPCshared

i

IPCalone
i

(2.14)

2.7 Evaluation

Figure 2.2 reports system throughput (weighted speedup), slowdown ratio, and

fairness (harmonic speedup) for an equal-share allocation (EqualShare), two

competing mechanisms (GHC [23] and REF [111]), as well as XChange with

(-WR) and without (-NoWR) wealth redistribution. System throughput and

harmonic speedup results are normalized to an unmanaged allocation (Unman-

aged). Unmanaged adopts LRU as the policy to manage shared cache, and full-

chip DVFS rather than per-core DVFS, to guarantee that the chip’s power con-
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(a) 8-core weighted speedup.
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(b) 64-core weighted speedup.
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(c) 8-core slowdown ratio.
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(d) 64-core slowdown ratio.
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(e) 8-core harmonic speedup.
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(f) 64-core harmonic speedup.

Figure 2.2: Comparison of system throughput (weighted speedup; higher is bet-
ter), slowdown ratio (lower is better), and fairness (harmonic speedup; higher is
better) among EqualShare, GHC, REF, XChange-NoWR, and XChange-WR, un-
der different CMP configurations. System throughput and harmonic speedup
results are normalized to Unmanaged.

sumption does not exceed its TDP.

The results are obtained by modeling the allocation algorithms faithfully,

however the timing overhead of running these algorithms is set to zero in all

cases. In the next section, we show that XChange’s actual overhead is absolutely
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Figure 2.3: Accuracy of XChange in predicting the length of memory phase.

and relatively very low, and that it scales much better than GHC as the number

cores/apps increases. Furthermore, the results for REF assume prior app profile

knowledge [111]. Thus, any comparison with the competing mechanisms here

tends to favor those and go against XChange.

2.7.1 XChange vs. Unmanaged

We first compare XChange against the Unmanaged baseline. Figure 2.2 shows

that, on average, both XChange-NoWR and -WR improve system throughput

significantly—by 13.62% (6.01%) and 18.30% (12.67%), respectively, for the 64 (8)

CMP configuration. Looking at each individual bundle, we find that, although

Unmanaged is almost universally inferior to XChange in terms of weighted

speedup, it modestly outperforms XChange for ROPAFZXN in both the 8- and

the 64-core configurations. We now look at this case a bit more closely.

Bundle ROPAFZXN has six out of eight cache-sensitive applications. In Un-

managed, two of the cache-sensitive applications manage to hoard most of the
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cache space, letting the other four starve. The market-based approaches with

built-in fairness (XChange but also REF and EqualShare) naturally do not ex-

hibit this behavior.

On the other hand, the XChange configurations yield clearly superior slow-

down ratio and harmonic speedup for that bundle over Unmanaged, in fact at

a level that the other fairness-aware configurations fall well short of. On av-

erage across all bundles, and for the 8-core configuration, XChange-NoWR and

-WR outperform Unmanaged in harmonic speedup (23.87% and 31.74%, respec-

tively), and also slowdown ratio (2.17 and 2.19, respectively, vs. 4.87). The re-

sults are similar for larger 64-core configuration.

Overall, XChange outperforms Unmanaged almost universally in all three

metrics.

2.7.2 XChange vs. EqualShare

We now compare XChange against the equal-share allocation (EqualShare). Fig-

ure 2.2 shows that, for the 64-core configuration, both XChange-NoWR and

XChange-WR improve system throughput by 16.33% and 21.01% on average,

respectively. In fact, XChange is superior in all the experiments. Results for the

smaller 8-core configuration are similarly significant.

Looking a bit more closely at a representative bundle ROAFLDGV, we find

that in XChange-NoWR, but more so in XChange-WR, mcf is able to stay atop

the “cache utility step” and obtain 12 cache ways. In XChange-NoWR, mcf

spends most of its budget to accomplish this, and as a result power is some-
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what sacrificed, for an overall dampened performance gain. On the other

hand, XChange-WR observes that mcf ’s potential is high compared to the other

apps, and consequently it assigns it a higher budget. Then, mcf can afford to

“purchase” more power to run faster (Section 2.4.3), which results in higher

speedups.

Notice that XChange-NoWR and -WR also yield superior fairness to Equal-

Share (2.24 and 2.88, respectively, vs. 3.0 average slowdown ratio). For example,

libquantum is both cache- and power-insensitive, and thus its slowdown under

any resource allocation is negligible. On the other hand, applications that are

power-hungry (e.g., calculix) or cache-hungry (e.g., art, mcf ) will experience a

significant slowdown in EqualShare. The allocations by the XChange configu-

rations are more balanced in that regard.

Overall, the combination of higher throughput and improved fairness makes

XChange-NoWR and -WR significantly outperform EqualShare by 23.78% and

23.60%, respectively, in average harmonic speedup.

2.7.3 XChange vs. GHC, REF

Configuration GHC corresponds to Chen and John [23] with their online per-

formance modeling, and REF corresponds to Zahedi and Lee with prior app

profile knowledge, as evaluated in that work [111]. When compared against

GHC and REF, XChange-WR is superior in every metric, and the all-out winner.

This holds for 64- as well as 8-core experiments. The harmonic speedup sum-

marizes this well, with XChange-WR’s 23.53% (31.74%) average easily outdoing

GHC’s 13.80% (19.80%) and REF’s 9.70% (17.03%) in the 64 (8) setup.
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When looking at REF more closely, we find that in many cases it is usually

too biased toward maintaining game-theoretic fairness guarantees, and realized

throughput gains suffer as a result. Although these may generally translate

into a better user experience, our mechanism succeeds at making more aggres-

sive decisions to maximize system throughput, while still striving for spreading

fairly the impact across all applications’ execution times.

2.7.4 Overall Effect of Wealth Redistribution

As discussed in Section 2.4.3, we introduce a wealth redistribution technique to

further improve system throughput, possibly at some expense of fairness. Our

simulations prove this intuition: XChange-NoWR achieves the best slowdown

ratio (2.23 and 2.17 for 64- and 8-core, respectively) over all other techniques. In

the meantime, XChange-WR achieves the best weighted speedup, and is con-

sistently 5% better than XChange-NoWR. On the whole, XChange-WR slightly

outperforms -NoWR in harmonic speedup.

Section 2.7.2 describes an example where mcf benefits by the budget redis-

tribution. Let us briefly discuss another example, XIDWCHAF, in the 8-core

configuration. In XChange-WR, the budget of cache- and power-sensitive apps

such as apsi and calculix are offered higher budget than memory-bound apps,

because their potential in deriving speedups from resources is higher. As a re-

sult, XChange-WR’s weighted speedup over Unmanaged is about three times

higher than XChange-NoWR’s (23.68% vs. 9.56%, respectively), but on the other

hand its slowdown ratio increases from 1.45 (XChange-NoWR) to 2.39.
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2.8 First-order Model Validation

Although we have shown significant improvements for both throughput and

fairness, a measure of XChange’s model accuracy is a useful insight. A key as-

pect of XChange’s utility model is the estimation of the memory phase, which

relies on the simplifying assumption that MLP remains unchanged across dif-

ferent cache allocations for any one application. To validate this memory phase

estimation, we run each application alone with all possible cache allocations.

Each run will give us the real length of memory phase under that specific cache

capacity, and the estimates for length of all the others.

Figure 2.3 shows the accuracy of the estimation. The average error is 7.63%,

indicating that our estimation is reasonably accurate. In general, we find that

accuracy decreases when predicting for cache allocations that are more distant

from the current allocation (e.g., predicting the length of memory phase under

one cache way when the core currently owns eight cache ways).

We also find that another source of error is UMON: With very limited L2

allocated cache size, L1 cache lines will be more often invalidated due to re-

placements in the L2 cache. As a result, for some applications, the L1 miss rate

will increase as L2’s allocation decreases, which is not captured well by UMON.
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2.9 Scalability

Our simulations so far have excluded from all the configurations studied the

overhead of searching through the resource allocation space. In this section, we

study the scalability of XChange against GHC when that overhead is factored

in. The hardware setup is as follows: an N-core CMP consumes 10N W of power

and holds a 4N-way, 0.5N MB L2 cache. Memory bandwidth is set to equal-share

with FQ scheduling [74]. We limit the amount of cache that a single core can ap-

propriate to 16 ways (2 MB) due to the UMON hardware overhead discussed in

Section 2.5. The hardware configuration is the same as the simulation described

in Section 2.6, and the synchronization/communication overhead across cores

is included in all cases.

Recall from Section 2.5.2 that we anticipate the resource allocation mech-

anisms to be implemented in the kernel. We actually implement GHC and

XChange as programs that we run on our simulation platform, and use the

number of cycles each algorithm takes to converge as the metric to measure

scalability.

As shown in Table 2.5, the total cycle count of GHC grows essentially

quadratically. Recall that GHC is inherently sequential: A single core is re-

sponsible for the entire search. During the hill-climbing period, that core has

to stop its normal execution to make the resource allocation decision on behalf

of the entire CMP. With 64 cores on the chip, it would take that core 34% of a

5-million-cycle interval to come up an allocation decision. During that time, all

the other cores would be running in a obsolete, probably suboptimal operating

point. Note that, even in cases in which the performance of the old and new
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# cores 8 32 64 128 256
GHC

Cycles (K) 43 484 1,697 6,418 24,903
% interval 0.87% 9.69% 33.95% 128% 498%

XChange-WR
Cycles (K) 9.47 12.49 15.89 22.64 52.70
% interval 0.19% 0.25% 0.32% 0.45% 1.05%

Table 2.5: Search overhead for GHC and XChange-WR. Interval is 5 million
cycles.

allocations for the interval were similar, the overall performance would be no

better than the one reported earlier in the evaluation. For a CMP with more than

64 cores, it is simply unfeasible to apply GHC for the interval chosen.

In contrast, the XChange market-based mechanism comes to an allocation

decision much more quickly. This is mainly for two reasons: (1) because most

of the work is done concurrently across all cores; and (2) because the local allo-

cation space each core needs to search is relatively small.

Table 2.5 shows the average cycle count for XChange-WR to converge, and

the percentage of the partitioning interval every core will diverge from normal

execution to compute allocation decision. For CMP systems with fewer than

128 cores, the system downtime of all market-based models is less than 0.5%.

Above 128 cores, the cycle count begins to increase more or less linearly with

the number of cores. This is because the master core needs to collect and sum

up all the bids from the agents in the system to compute the resource price, and

this centralized step starts to dominate the overall cycle count.

A potential way to alleviate this is to parallelize the price computation,

which is basically a reduction operation over the bids from the agents, into a tree

fashion. Another option is to make the partition interval longer (also for GHC),
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but this may make the market too insensitive to application phase changes. We

leave these and other possible options as future work.

2.10 Summary

We have proposed XChange, a market-based mechanism to dynamically allo-

cate multiple resources in CMPs. By formulating the CMP as a market, where

each core pursues its own benefit, the system is able to maintain a good bal-

ance between system throughput and fairness. Our evaluation shows that, com-

pared against an equal-share allocation, our market-based technique improves

system throughput (weighted speedup) on average by 21%, and fairness (har-

monic speedup) on average by 24% in a 64-core CMP system. Compared with a

state-of-the-art centralized allocation scheme [23], that is at least about twice as

much improvement over the equal-share allocation.

We have also shown that our market-based mechanism is largely distributed,

where agents concurrently strive to maximize their individual utility. As a re-

sult, our approach converges significantly faster than the state-of-the-art cen-

tralized optimization technique we compare against.

46



CHAPTER 3

REBUDGET: TRADING OFF EFFICIENCY VS. FAIRNESS IN

MARKET-BASED MULTICORE RESOURCE ALLOCATION VIA

RUNTIME BUDGET REASSIGNMENT

3.1 Introduction

Devising scalable chip-multiprocessor (CMP) designs is an important goal for

the upcoming manycore generation. A key challenge to scalability is the fact

that these cores will share hardware resources, be it on-chip cache, pin band-

width, the chip’s power budget, etc. Prior work has shown that freely contend-

ing for shared resources can penalize system performance [12, 23, 26]. Thus,

allocating resources efficiently among cores is key.

Unfortunately, single-resource, and more generally uncoordinated resource

allocation, can be significantly suboptimal, due to its inability to model the inter-

actions among resources [12]. A few solutions have been proposed to coordinate

resource allocation across multiple resources, and their performance estimation

methods range from trial runs [6, 26, 59], to artificial neural networks [12], and

to analytical models [23–25]. Unfortunately, these all rely on centralized mech-

anisms (e.g., global hill-climbing) to optimize system throughput, essentially

exploring the global search space sequentially, which may be prohibitively ex-

pensive, particularly in large-scale systems.

More recently, a number of market-based approaches have been introduced.

Chase et al. propose a static market [22], where the players reveal to the resource

supplier the amount of money each is willing to pay as a function of allocated
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service units, and the central market then allocates the available computing re-

sources so that monetary profit is maximized. Still, because the maximization

process is done by the supplier centrally, it is unclear whether it could deal with

a large-scale system efficiently.

In the context of distributed computing clusters, Lai et al. propose a market-

based solution to resource allocation that allows players to adjust their bids dy-

namically in response to the others bids to that resource [60]. Resource alloca-

tion is done in a largely distributed manner, which enables the system to scale

better than centralized approaches. Recently, in our XChange work [103], we

also propose one such dynamic market in the context of CMPs, and similarly

show that XChange is scalable due to its largely distributed nature: Instead of

making the resource allocation decision globally, each core in the CMP is ac-

tively optimizing its resource assignment largely independently of each other,

and participants demands are reconciled through a relatively simple pricing

strategy.

XChange also shows that it can achieve a good balance between system effi-

ciency and fairness. The study is purely empirical, however, and thus it does not

provide any guarantees on the loss of efficiency and fairness. It is well-known,

for example, that market mechanisms in equilibrium can sometimes be highly

inefficient—this is known as Tragedy of Commons [44]. Therefore, a number of

research efforts have focused on quantifying the efficiency loss compared to

the optimal resource allocation, known as the Price of Anarchy (PoA). For exam-

ple, Zhang studies a market where all players have the same amount of money

(budget) to purchase resources, and he finds that the overall system efficiency in

such a market can be low (1/
√

N of the maximum feasible utility, where N is the
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number of market players), but fairness is high (0.828-approximate envy-free, a

measure of fairness) [112]. This is consistent with our empirical observations in

the XChange work [103].

Recently, Zahedi and Lee propose a resource allocation mechanism named

elasticities proportional (EP) for CMPs [111], which does provide game-theoretic

guarantees such as Pareto efficiency, envy-freeness, etc. However, such guaran-

tees rely on the assumption that an application’s utility can be accurately curve-

fitted to a Cobb-Douglas function, where the coefficients are used as the “elas-

ticities” of resources. Our XChange work shows that EP can in fact perform

worse than expected when such curve-fitting is not well suited to the applica-

tions. In addition, although EP is proven to be Pareto-efficient, its efficiency loss

compared to global optimality is not quantified.

To improve system efficiency while sacrificing some fairness, our XChange

work discusses a wealth redistribution technique, which varies the players’ bud-

get based on an estimation of their potential for performance gain. However,

XChange’s wealth redistribution is an on/off technique, providing no “knob”

to control the efficiency vs. fairness trade-off. It is also not backed up by a the-

oretical result that would provide bounds for this trade-off. To the best of our

knowledge, there is no theoretic study that is able to quantify the loss of both

efficiency and fairness under an arbitrary budget assignment.

Contributions

The contributions of this chapter are as follows:
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— We introduce a new Market Utility Range (MUR) metric, which helps us

establish a theoretical bound for efficiency loss of a market equilibrium un-

der a constrained budget. Specifically, we show that, if MUR ≥ 0.5, then

PoA ≥ (1 − 1
4MUR ) ≥ 0.5 (i.e., the efficiency is guaranteed to be at least 50% of

the optimal allocation); and that if MUR < 0.5, then PoA ≥MUR.

— We introduce a new Market Budget Range (MBR) metric, which helps us eval-

uate the fairness of a market equilibrium under a constrained budget. We show

that any market equilibrium is (2
√

1 + MBR − 2)-approximate envy-free.

— We propose ReBudget, a budget re-assignment technique that is able to sys-

tematically control efficiency and fairness in an adjustable manner. We evaluate

ReBudget on top of XChange, using a detailed simulation of a multicore archi-

tecture running a variety of applications. Our results show that ReBudget is

efficient and effective. In particular, it can achieve 95% of the maximum feasi-

ble efficiency. Furthermore, when combined with the analysis using MUR and

MBR metrics, it can provide worst-case fairness guarantees.

3.2 Market Framework

This chapter adopts the general market-based resource allocation framework

proposed in our XChange work [103]. In this section, we describe our efficiency

and fairness models in the context of that framework.

Assume a market consisting of N players and M resources. Each player i has

a utility function Ui(ri) when it is allocated ri = (ri1, ri2, . . . , riM) resources. We

assume that a player’s utility functions is concave, nondecreasing, and continu-
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ous. Note that this may not always hold in the CMP context (e.g., the utility of

the allocated cache space [8, 103]). We describe how we address this issue later

in Section 3.4.

Every player i is allowed to bid bi j for resource j, and the sum of its bids can-

not exceed its budget Bi (i.e., the total amount of money it is allowed to spend):∑
j bi j ≤ Bi. The market reconciles those bids by adopting a proportional alloca-

tion scheme, which is widely used [60,112] and considered fair. The market first

collects bids from all the players, and then determines the price of each resource

j as follows:

p j =

∑N
i=1 bi j

C j
(3.1)

where C j represents the total amount of resource j. As a result, player i gets ri j

units of resource j proportionally to its bid: ri j =
bi j

p j
.

The essence of this type of market-based approach is that it is a largely dis-

tributed mechanism: the players independently traverse their local search space

to find the bids that maximize their own utilities, bringing the market toward

a resource allocation that is Pareto-optimal [75]. In order to find such opti-

mal bids, each player needs to solve an optimization problem, which can be

modeled as follows: Given the price p j of resource j announced by the mar-

ket, player i is able to compute the sum of other players’ bids to that resource:

yi j =
∑

i′,i bi′ j = p j × C j − bi j. By making the simplification that other players do

not change their bids and therefore yi j are constants, player i is able to make a

prediction on the amount of resource ri j it can get if it changes its bids from bi j

to b′i j:
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ri j =
b′i j

b′i j + yi j
C j (3.2)

Combining this equation with player i’s utility function Ui(ri), the player can

obtain its utility function vs. its bids: Ui(bi) = Ui(
bi j

bi j+yi j
C j). Then the optimization

problem a player needs to solve is:

maximize Ui(bi)

subject to
∑

j

bi j ≤ Bi

(3.3)

Using the Lagrangian multiplier method, we conclude that if such optimal

bids exist, there exists a player-specific constant λi > 0 such that, for any re-

source j:

∂Ui

∂bi j


= λi if bi j > 0

< λi if bi j = 0
(3.4)

Intuitively, we define λi j to be the rate of utility change (marginal utility) if

player i changes its bid on resource j by one unit: λi j = ∂Ui
∂bi j

. From Equation 3.4,

if player i submits non-zero bids on different resources j, the λi j for all those

resources are the same, and equal to λi in Equation 3.4. For resources with zero

bids, their λi j is necessarily smaller than λi. Otherwise, it contradicts the condi-

tion that the bids maximize the player’s utility.

Let’s use an illustrative example. Assume player i bids on two resources,

with λi1 = 1 and λi2 = 2. If the player moves one unit of bid from resource

1 to 2, its utility can be increased by 1 unit (-1 from resource 1 and +2 from

resource 2). As a result, the current bids are not optimal, and the player can
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keep improving its utility by adjusting its bids until λi j are equal, or the bids on

one of the resources drop to zero, beyond which no further profitable movement

is possible.

3.2.1 Market Equilibrium

Market equilibrium is a state where all the players have no incentive to change

their bids to improve utilities, and the resource prices remain stable. It is a de-

sirable state because it is proven to be Pareto-optimal (i.e., no other resource

allocation can make any one individual better off without making at least one

individual worse off [75]). In order to find a market equilibrium, we adopt an

iterative bidding–pricing process, similar to the one used in our recent XChange

work [103]. Such a process can be divided into two steps: (1) the market broad-

casts the current resource prices to all the players, and (2) the players adjust

their bids to maximize their own utilities. These two steps are repeated itera-

tively until the market converges—i.e., for any player, its utility changes negli-

gibly between two iterations. (In our implementation we detect this globally by

monitoring prices instead, and assume convergence when they fluctuate within

1%.)

Zhang [112] has shown that a market equilibrium always exists in a strongly

competitive market, where for any resource j, there always exists at least two

players placing non-zero bids.

Lemma 1. An equilibrium always exists for a strongly competitive market. The market

equilibrium may not be unique.
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3.2.2 Efficiency

Given the existence of a market equilibrium, its system efficiency, also known

as social welfare, is an important metric.

Definition 1. The efficiency of a system is defined as the sum of players’ utilities:

Efficiency =
∑

i Ui(ri).

Nissan et al. [75] show that the efficiency of a market equilibrium can be low.

Papadimitriou introduces the concept of Price of Anarchy (PoA) [76], which is the

lower bound of the efficiency of a market equilibrium compared with that of the

optimal allocation. Mathematically, let r∗i denote a feasible resource allocation

which maximizes the system efficiency, Ω be the set of resource allocation in

market equilibrium (recall that a market equilibrium may not be unique), and

rn ∈ Ω be a market equilibrium outcome. Let us also define optimal efficiency

OPT =
∑

i Ui(r∗i ), and efficiency in market equilibrium Nash(rn) =
∑

i Ui(rn
i ), the

Price of Anarchy is then defined as:

Definition 2. PoA = minrn∈Ω
Nash(rn)

OPT

Note that PoA is a lower bound, which means that the efficiency of any mar-

ket equilibrium rn is guaranteed to be greater than PoA ×OPT.

Zhang [112] studies PoA in a market with a proportionally balanced budget,

where a player is given a budget in proportion to its maximum utility, i.e., the

utility when it owns all resources. Zhang then shows:

Lemma 2. The equilibrium in a market with a proportionally balanced budget has a

Price of Anarchy PoA = Θ( 1
√

N
).
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Recall that N is the number of players; thus, Lemma 2 tells us that PoA will

worsen with the number of players, and thus it can be prohibitively low in a

large market.

3.2.3 Fairness

Envy-freeness (EF) is widely used to evaluate fairness of a resource allocation in

real life [14,99], and it’s recently introduced by Zahedi and Lee in the context of

resource allocation in CMPs [111]. It is a metric to evaluate how much a player

desires others’ resources compared to what it owns.

Definition 3. Envy-freeness (EF) of an allocation r = (r1, . . . rN) is EF(r) = mini, j
Ui(ri)
Ui(r j)

.

By definition, a resource allocation is envy-free when EF ≥ 1—i.e., players

prefer their own resources to those of others (at worst, they like them equally).

Although a market equilibrium is provably envy-free under some form of utility

constraints [111], in general it is not. And although it might seem that a market

equilibrium would be generally fair as long as every player is endowed with the

same budget, Zhang shows that this is not guaranteed [112]. As a result, Zhang

defines c-approximate envy-free (c ≤ 1) as follows:

Definition 4. A market is c-approximate envy-free, if the envy-freeness of any market

equilibrium is larger than c, i.e., for any player i, Ui(ri) ≥ c ·max j Ui(r j).

It is straightforward that the equilibrium is more “fair” if c is closer to 1

(players envy others less). Zhang then proves [112]:

Lemma 3. If each player in the market has the same budget, market equilibrium is at

least 0.828-approximate envy-free. The bound is tight in the worst case.
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Note that the bounds of efficiency and fairness proven by Zhang [112] may

not apply at the same time. Recall that Lemma 2 requires a proportionally bal-

anced budget assignment (i.e., a player’s budget is proportional to its maximum

achievable utility), while Lemma 3 assumes every player has an equal budget.

However, note that in the multicore resource allocation problem that we study,

the utility function is in fact a value normalized to the maximum utility (dis-

cussed in Section 3.4.1). As a result, the maximum utility is 1 for all the players,

and therefore these two markets are equivalent within the scope of this chapter.

Thus, by combining Lemma 2 and Lemma 3 in our context, we find although

a market with equal budget for all players has a good fairness guarantee, its

efficiency can be low (1/
√

N of optimal allocation in the worst case). In the

following sections, we study how budget assignment across players affects the

theoretical bound of efficiency and fairness, and how to utilize such theory to

design a budget re-assignment scheme to trade off efficiency and fairness sys-

tematically.

3.3 Theoretical Results

In this section, we introduce two new metrics that will serve our goal: Market

Utility Range (MUR) and Market Budget Range (MBR). By measuring MUR and

MBR in the market equilibrium, we can quantitatively understand the bound

of loss in efficiency and fairness. In addition, MUR and MBR can be used as a

guidance to adjust the budgets across players so that we can control the trade-

off between efficiency and fairness more effectively.
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3.3.1 Efficiency

According to Equation 3.4, in a market with a budget constraint, if player i

bids optimally to maximize its utility, its marginal utility of bids ∂Ui
∂bi j

is a player-

specific value λi, identical for all resources j with non-zero bids. Our intuition

is that, the larger the λi variation across players, the higher “potential” there is

to increase system efficiency by budget re-assignment, and therefore the lower

PoA efficiency guarantee the current market has.

Consider the following examples: Assume a budget-constrained market

with two players (A and B), such that λA = 1 and λB = 3 in equilibrium. It is

intuitive that if the market moves 1 unit of budget from A to B, the market’s

overall efficiency in equilibrium (which is the sum of A’s and B’s utilities) is

likely to increase (e.g., by 2 units, -1 from A and +3 from B). Consider, instead,

that λA = 1 and λB = 2. In that case, the same budget re-assignment also points

toward a market efficiency increase, but the improvement may be lower than in

the first case. Finally, consider that λA and λB are equal. In that case, the intu-

itive expectation is that a budget re-assignment will not have an effect in overall

market efficiency.

Consequently, let’s define Market Utility Range (MUR) as follows:

Definition 5. Maximum Utility Range is the maximum variation of marginal utility

λi across the market players, MUR = mini λi
maxi λi

By using such definition, we can prove that:

Theorem 1. If MUR ≥ 0.5, the Price of Anarchy of the market equilibrium PoA ≥

(1 − 1
4MUR ) ≥ 0.5, i.e., the overall market efficiency is guaranteed to be at least 50% of

optimal allocation; If MUR < 0.5, PoA ≥MUR.
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Figure 3.1: Relationship between Price of Anarchy and Market Utility Range
(left), and Envy-freeness and Market Budget Range (right), based on Theorem 1
and Theorem 2, respectively.

(The detailed proof can be found later in Section A.1.)

Not only does MUR provide a lower bound of overall market efficiency, it

can also be used to guide budget re-assignment to help improve the overall mar-

ket efficiency. As shown in the examples above, by moving a portion of budget

from a player i with lower λi to another player i′ with higher λi′ , MUR moves

toward 1.1 As a result, the PoA guarantee increases, and the actual market effi-

ciency hopefully increases accordingly.

3.3.2 Envy-freeness

A likely side effect of assigning different budgets to different players is that it

may impact fairness negatively. It is straightforward that the player with the

highest budget is able to purchase more resources than others, and therefore

it is likely to be “envied” by others. Hence, we hypothesize that a valuable

indicator of envy (or envy-freeness) of a market in equilibrium is the variation

1It is provable that player i’s marginal utility of bids λi decreases monotonically with a larger
budget.
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of the budget across players:

Definition 6. Market Budget Range is the maximum variation in budget across play-

ers, MBR = mini Bi
maxi Bi

.

Note that MBR is defined as the minimum budget divided by the maximum

budget, so that larger budget variation means lower MBR value. Based on this

definition, we can prove the following:

Theorem 2. A market equilibrium with budget range MBR is (2
√

1 + MBR − 2)-

approximate envy-free.

(The detailed proof can be found in Section A.2.)

The key insight here is that, by combining Theorem 1 and Theorem 2, we can

attempt to adjust the trade-off between efficiency and fairness: As Figure 3.1

shows, the more aggressively we re-assign the budget to make MUR closer to

1, the higher system efficiency we may achieve. However, it creates a larger

variation in players’ budgets, which in turn may hurt fairness. Note that such

budget re-assignments do not guarantee an actual improvement in either the effi-

ciency or the envy-freeness. Nevertheless, our expectation is that, by tightening

the efficiency/envy-freeness bounds according to our MUR and MBR theorems,

the resulting allocation at equilibrium will tend to move in the desired direction.

Therefore, we envision that an algorithm, by using MUR and MBR together, can

try to fine-tune a market’s trade-off between efficiency and fairness. We show

one such algorithm ReBudget in Section 3.4.2.

Finally, recall Zhang studies the Price of Anarchy in a balanced market [112],

but he doesn’t show its envy-freeness guarantee. But we can now prove that, in

the context of multicore chips (described in Section 3.4.1):
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Theorem 3. In a balanced market, where for any player i, Ui(C) = 1, Xi = σ(Ui(C) −

Ui(0)), the market equilibrium is guaranteed to be 0.718-approximate envy-free.

(The detailed proof can be found in Section A.3.)

3.4 ReBudget Framework

In this section, we first describe the basic framework for market-based resource

allocation. We then describe ReBudget, a practical heuristic based on the the-

oretical results in Section 3.3 to assign budgets across players, so that an ad-

justable trade-off between system efficiency and fairness can be accomplished.

3.4.1 Market-based Approach

Our basic market-based resource allocation framework, described in Section 3.2,

is a dynamic proportional market. In this framework, the goal is to find a market

equilibrium using an iterative bidding–pricing procedure, after which resources

are allocated proportionally to bids. This mechanism is detailed in Section 3.2.1.

Shared cache space and on-chip power are two of the most frequently tar-

geted resources in the literature [15, 18, 70, 79, 93, 106], and our evaluation of

ReBudget will focus on these two resources. Our mechanism, however, is a

general framework: As long as the resource’s utility function can be accurately

modeled, and such utility function is non-decreasing, continuous, and concave

(or can be made concave), the results of this thesis can be applied. (Note that

prior studies show that the utility of cache is often non-continuous—e.g., if par-
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Figure 3.2: Normalized utility under different cache allocation, running at the
highest possible frequency. The x-axis is the number of cache ways enabled.
Section 3.5 describes the setup.

titioned by cache ways—and non-concave [8, 103], which is not consistent with

our theoretical assumptions. We describe how to address such issue later in Sec-

tion 3.4.1.)

At any point in time, we guarantee that each core will be given a minimum

amount resources: one cache region (128 kB), and the power to run at minimum

frequency (800 MHz in our setup, Section 3.5) for free. The remaining cache

capacity and power budget are allocated using market-based mechanism. This

is to guarantee that each application is able to at least run regardless of its pur-

chasing power.

We now address the two major challenges in designing the market: how to

model the players’ utility, and how the players bid to maximize their utility.
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Utility Function

In the multicore resource allocation problem that we study, we define an ap-

plication’s utility to be its IPC, normalized to the IPC when it’s running alone

(and thus owns all the resources): Ui(ri) = IPC(ri)/IPCalone. Thus, the possible

values of Ui are between 0 and 1. To figure out the performance–resource rela-

tionship of the utility function, we adopt the monitoring technique of our recent

XChange work [103]: We divide the total execution time of an application into

compute and memory phases. The length of the memory phase under different

cache allocations is estimated using UMON shadow tags [79] and a critical path

predictor [70]. The length of the compute phase and the corresponding power

consumption is estimated using the power model developed by Isci et al. [18].

The sum of both phases is an estimation of the execution time given a particular

cache-power allocation. Note that this is all modeled dynamically online; no

prior off-line profiling is needed whatsoever [103].

Recall that in Section 3.2, in order to apply the theoretical results, the utility

function of a player is required to be concave, continuous, and non-decreasing

in shape. However, in computer architecture, this is not always true. On the one

hand, power is known to be concave [18,70], and fine-grained enough to regard

it as continuous. For example, Intel’s RAPL technique allows setting the CPU

power at a granularity of 0.125W [51]. On the other hand, it is well-known that

cache capacity is a non-concave, and non-continuous resource [8, 79].

Figure 3.2 shows the cache utilities of two representative applications, mcf

and vpr. The markers are the utilities (normalized IPC) of each application when

it is given different cache ways (no change in power budget). From the figure,

we can make two observations:
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First, such a utility function is not continuous, as it is partitioned by cache

ways which are relatively coarse-grained. To make it continuous, we adopt

Futility Scaling by Wang and Chen [101], a feedback control mechanism that can

precisely keep the partition size close to a target at the granularity of cache lines.

We empirically set the allocation granularity to 128 kB, and we call this a cache

region.

Second, cache utility may not be concave. Although vpr shows a concave

utility function, mcf clearly is not: its normalized utility is flat at 0.2 for 1 to

10 cache ways, and suddenly increases to 1.0 once it secures 12 ways (1.5MB).

This is because mcf ’s working set size is 1.5 MB, and 12 cache ways or more will

satisfy its need by reducing the L2 cache miss rate to be almost zero. To address

this issue, we apply Talus, a technique to convexify cache behavior [8]. Talus

works roughly as follows: First, based on an application’s actual cache utility, its

“convex hull” is derived, which is the convex set of the cache utility. The cache

allocation points on the hull are called “point of interest” (PoI), which are the

desired allocations. Next, to make cache utility continuous on the convex hull,

Talus divides the cache partition of a core into two “shadow” partitions. Given

an arbitrary cache partition target, Talus first finds its two neighboring PoIs, and

then adjusts the size of the shadow partitions accordingly. The access stream

is also divided correspondingly into the two shadow partitions. More details

can be found in Talus [8]. As shown in Figure 3.2, Talus effectively convexifies

the cache behavior to a convex hull, which satisfies the requirement of being

concave and non-decreasing.
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Bidding Strategy

Now that we have constructed a utility function for each player, according to

the market’s bidding–pricing procedure (Section 3.2), the next problem is how

each player finds its optimal bids to maximize its utility. Because both cache

and power utilities are concave, heuristics such as hill climbing are appropriate

in finding optimal solutions [8]. Therefore, we adopt a simple hill-climbing

technique as follows:

1. Each player i splits its budget Bi into equal bids bi j across all resources. In

addition, S , which is the amount by which a player will shift its budget across

resources, is set to be half of the bid.

2. Each player i computes the marginal utility λi j of all resources j. According

to the optimality condition in Equation 3.4, if a player’s bids are such that

they maximize the player’s utility, then the marginal utilities of all resources

which receive non-zero bids are necessarily identical—in other words, the

player has no incentive to re-allocate its budget across resources. Otherwise,

if λi j varies for different resources under the current bids, the player will

move an amount S of money from a resource k with lower λik to another one

k′ with higher λik′ , and such a move will tend to equalize the marginal utility

of these two resources (recall that the player’s utility function is concave,

which means that marginal utility λi j decreases as bid bi j increases).

3. S is halved, and the process is repeated, until one of the following two con-

ditions is met: (a) Either λi j of the resources stays the same (within 5% dif-

ference); or (b) S is smaller than 1% of the total budget. Because S decreases

exponentially with every step, and λi j is monotonic, such an algorithm will

quickly reach an optimal bids to the resources.
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3.4.2 Budget Re-assignment Algorithm

The mechanism discussed so far applies to individual players in the context

of a general budget-constrained market-based mechanism. In this section, we

describe ReBudget, a heuristic that works on top of the above mechanism. Re-

Budget assigns different budgets to players in an adjustable manner, so that a

trade-off between system efficiency and fairness can be made.

As is discussed Section 3.3, MUR and MBR are good metrics to indicate mul-

ticore efficiency and fairness. Using MUR, we can identify the lower bound of

system efficiency, as shown in Theorem 1. Moreover, due to the concavity of

utility, player i’s λi increases if its budget Bi is reduced. As a result, by reduc-

ing the budget of a player with low λi, system MUR, which is the maximum

variation of marginal utility λi across the market players, will move closer to 1,

potentially yielding a higher efficiency. On the other hand, however, by creat-

ing a larger budget variation across players, MBR will decrease (recall from Sec-

tion 3.3.2 that larger budget variation will decrease MBR), therefore opening the

door for the level of fairness (i.e., envy-freeness) to decrease as well.

In ReBudget, we attempt to maximize efficiency while guaranteeing a cer-

tain level of fairness. The system administrator can set a lowest acceptable

envy-freeness level, and using Theorem 2, the minimum MBR can be computed.

Then, the budgets of the players are re-assigned based on their λi value under

market equilibrium: those with lower λi will get a reduction in budget. We

define a player to be “low λi” if its λi is smaller than 50% of the maximum λi—

recall that, in Theorem 1, we find that when MUR is smaller than 0.5, the PoA

guarantee starts to decrease linearly. However, at any point in time, the budget

variation across players has to be maintained higher than the set MBR value.

65



We design an iterative method with exponential back-off:

(1) MBR is computed based on the lowest acceptable fairness level set by

the administrator. To start the bidding process for the market, each player is

assigned an equal budget B. The amount of budget re-assignment, named step,

is initialized to be (1 −MBR) · B
2 . (2) Players then use their budget to conduct

the algorithm we described in Section 3.4.1 to reach a market equilibrium. (3)

λi of each player is collected. If a player i’s λi value is lower than 50% of the

maximum λi in the market, its budget is reduced by one step. (4) step is halved,

and the algorithm returns to (2) to find a market equilibrium again. When step

is smaller than 1% of each player’s initial budget, or when no player’s budget is

decreased, the resulting market equilibrium is the final outcome.

This algorithm has two advantages: (1) The highest possible budget of any

player is B, and the lowest possible budget is MBR ·B (if the player gets a budget

decrease in all iterations). Therefore, the maximum variation of players’ budget

will stay within MBR, and the fairness level set by the designer is guaranteed.

(2) The exponentially decreasing step ensures that the process is fast, so that the

market is still efficient and scalable to deal with large-scale systems.

The above exponential back-off greedy algorithm is a show case of how

MUR and MBR can be used to guide budget re-assignment to optimize the sys-

tem. As we will show in Section 3.6, such an algorithm is in fact fast and efficient

in practice.
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3.4.3 Implementation

We now discuss the hardware and software implementation of ReBudget. On

the hardware side, ReBudget requires:

1. Hardware monitors to model an application’s utility–resource relationship.

As is discussed in Section 3.4.1, we adopt the same monitoring hardware as

we do in XChange. As a result, the overhead is 3.7 kB per core [103], and the

total overhead of the monitors is less than 1% of the total cache.

2. Extra states per partition and per cache line for partitioning the cache. We

adopt Futility Scaling to partition the L2 cache. and it incurs around 1.5%

storage overhead of the total cache [101].

On the software side, in order to handle the changing resource demands due

to context switches and application phase changes, our budget re-assignment

algorithm described in Section 3.4.2 is triggered every 1 ms to re-allocate re-

sources. Similar to XChange, such an algorithm can be piggybacked to the

Linux kernel’s APIC timer interrupt, with a low runtime overhead [103].

3.5 Experimental Methodology

3.5.1 Architectural Model

We evaluate ReBudget using SESC [81], a highly detailed execution-driven sim-

ulator, which we modified in-house to suit our experimental setup. We model
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4-way out-of-order cores; Table 3.1 shows the most important parameters of the

CMP. We also faithfully model Micron’s DDR3-1600 DRAM timing [49].

We use Wattch [16] and Cacti [87] to model the dynamic power consumption

of the processors and memory system. We adopt Intel’s power management ap-

proach for Sandy Bridge [82] to approximate the static power consumption as

a fraction of the dynamic power that is exponentially dependent on the system

temperature [21]. The run-time temperature of the chip multiprocessor is esti-

mated using Hotspot [89] integrated with SESC.

Our multicore chip is able to regulate two shared on-chip resources: power

budget and shared last-level cache. The power budget is regulated via per-core

DVFS, similar to Intel’s RAPL technique [51]. Each core can run at a frequency

between 800 MHz and 4 GHz, as long as the total power consumption remains

within p×10 W, where p is the number of processor cores. The last-level (L2)

cache is partitioned using Futility Scaling by Wang and Chen [101], at the gran-

ularity of 128 kB (one cache region). The total L2 cache capacity is p×512 kB. Due

to the overhead of UMON shadow tags [79], we limit its stack distance to be 16,

i.e., the shadow tags can estimate the miss rate for the cache with capacities

from 128 kB to 2 MB. We empirically observe that very few of our applications

benefit from cache regions larger than 2 MB, and even if they do, such a large

cache region is usually not affordable given the limited budget of each player.

With a dynamic sampling rate of 32, the shadow tags take up 3.6 kB per core,

which is less than 1% of the L2 cache size.

We guarantee that each core will have at least one cache region, and sufficient

power budget to allow it to run at the minimum frequency (800 MHz). The

remaining resources will be entirely distributed (i.e., no leftovers) based on a
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Table 3.1: System configuration.

Chip-Multiprocessor System Configuration
Number of Cores 8 / 64

Power Budget 80 W / 640 Wa

Shared L2 Cache Capacity 4 MB / 32 MB
Shared L2 Cache Associativity 16 / 32 ways

Memory Controller 2 / 16 channels
Core Configuration
Frequency 0.8 GHz - 4.0 GHz

Voltage 0.8 V - 1.2 V
Fetch/Issue/Commit Width 4 / 4 / 4

Int/FP/Ld/St/Br Units 2 / 2 / 2 / 2 / 2
Int/FP Multipliers 1 / 1

Int/FP Issue Queue Size 32 / 32 entries
ROB (Reorder Buffer) Entries 128

Int/FP Registers 160 / 160
Ld/St Queue Entries 32 / 32

Max. Unresolved Branches 24
Branch Misprediction Penalty 9 cycles min.

Branch Predictor Alpha 21264 (tournament)
RAS Entries 32

BTB Size 512 entries, direct-mapped
iL1/dL1 Size 32 kB

iL1/dL1 Block Size 32 B / 32 B
iL1/dL1 Round-Trip Latency 2 / 3 cycles (uncontended)

iL1/dL1 Ports 1 / 2
iL1/dL1 MSHR Entries 16 / 16

iL1/dL1 Associativity direct-mapped / 4-way
Memory Disambiguation Perfect

aWe anticipate multicore chips with different number of cores will not be fabricated under
the same technology, and thus expect the power consumption per core to decrease with the
technology. For simplicity, in our evaluation, we use a chip TDP of 10 W per core and a 65-nm
power model.

market-based resource allocation decision.

Workload Construction

We use a mix of 24 applications from SPEC2000 [91] and SPEC2006 [92] to eval-

uate our proposal. Each application is cross-compiled to MIPS ISA with -O2
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optimization using gcc 4.6.1. For all simulations, we use Simpoints [17] to pick

the most representative 200-million dynamic instruction block of each applica-

tion.

Our evaluation is based on multiprogrammed workloads because we antic-

ipate to allocate resources at the granularity of cores. For multithreading work-

loads, we can still allocate the resources at thread granularity if each thread is

running on a different core.2 Another choice is to allocate resources at the gran-

ularity of applications. All the threads of one application may share the same

resources, which is a reasonable assumption, because the demand of the threads

tend to be similar across threads of a parallel application in many programming

models.

To construct our multiprogrammed workloads, we classify the 24 applica-

tions into four classes based on profiling: Cache-sensitive (C), Power-sensitive

(P), Both-sensitive (B), and None (N). Then, we create six categories of multipro-

grammed workloads: CPBN, CCPP, CPBB, BBNN, BBPN, and BBCN. For each

category, we randomly generate 40 workloads for 8- and 64-core configurations.

The random generation works as follows: for an 8-core (64-core) configuration,

2 (16) applications are randomly selected from each application class (e.g., CPBN

means 2 (16) applications in each of C, P, B, and N, whereas CCPP will have 4

(32) applications in C and 4 (32) in P).

2Skewing resources within threads in a multi-threaded application (e.g., to alleviate synchro-
nization imbalance) is beyond our scope, can be incorporated orthogonally to our approach, and
has been studied elsewhere [11, 35].
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Performance Metrics

A key issue in resource allocation is the figure of merit. As is discussed in Sec-

tion 3.4.1, we define an application’s utility to be its IPC normalized by the IPC

when it’s running alone: Ui(ri) = IPC(ri)/IPCalone. The system efficiency can

therefore be computed as:

Efficiency =

N∑
i=1

Ui =

N∑
i=1

IPCi(ri)
IPCalone

i

(3.5)

We realize that this is exactly weighted speedup, a common metric to measure

system throughput, and has been widely accepted by the community. There-

fore, our Price of Anarchy study becomes meaningful in computer architecture:

it guarantees the lower bound of throughput in market equilibrium.

A system could achieve high throughput (i.e., weighted speedup) by starv-

ing one or two applications while benefiting all the others; however, system

fairness would suffer as a result, providing a bad experience to some users.

Therefore, we evaluate fairness using envy-freeness shown in Definition 3, which

is a widely used metric in economy, and has recently been introduced by Zahedi

and Lee to evaluate fairness in multicore chips [111].

3.6 Evaluation

We evaluate our proposal in two phases. In the first phase, we analytically study

the effectiveness of ReBudget by assuming that the applications’ utility func-

tions can be perfectly modeled and convexified. For this phase only, we exten-

sively profile each application using our simulation infrastructure. (Recall that
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ReBudget does not require off-line profiling; our second phase models utility

functions at run-time using hardware monitors, as described in Section 3.4.1.)

We sample 90 cache+power configuration points, with {1-6, 8, 10, 12, 16}

cache regions (10 possible allocations) and {0.8,1.2,1.6,. . ., 4.0} GHz (9 possible

allocations). For each point, we collect average IPC and power consumption.3

Then, we derive the convex hull of cache and power, and assume that their

utilities are perfectly concave and continuous. Finally, we analytically evaluate

the system efficiency and fairness by applying ReBudget and other competing

mechanisms to all 240 bundles.

In the second phase, we evaluate ReBudget in a simulated CMP environment

(SESC). The application’s utility is monitored at run-time, using the technique

described in Section 3.4.1. We apply Talus [8] and Futility Scaling [101] to make

cache behavior concave and continuous. Because of practical simulation time

constraints, we randomly select one application bundle per category, and run

it using detailed simulations. We use these results to validate our first phase

evaluation.

We conduct all the experiments on 8- and 64-core CMP configurations, and

find that the results are similar. Therefore, we omit the results for the 8-core

configuration, and focus on the large-scale 64-core configuration.

The allocation mechanisms evaluated are as follows: EqualShare, where re-

sources are equally partitioned among all processor cores. Two XChange mech-

anisms [103]:4 EqualBudget, where resources are partitioned using a market-

3Without loss of generality, our evaluation assumes that allocating more than 16 cache re-
gions (2 MB) does not yield any significant additional utility to any application. This is reason-
able for the input sets of the applications studied, and it allows us to complete profiling in a
reasonable time.

4Note we convexify applications’ utility, which is an improvement over the original
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Figure 3.3: Marginal utility λi of each application in a sample BBPC bundle. The
multiple copies of the same application in the bundle behave essentially the
same way, so only one of each is shown. λi is normalized to the maximum λi in
the bundle. MUR metric is also shown.

based procedure assuming equal budgets for all players; and Balanced, where

each player receives a budget proportional to the utility difference between its

maximum (2 MB L2 cache and 4.0 GHz frequency) and minimum (128 kB and

800 MHz) possible allocations, normalized to the former. ReBudget-step, where

resources are allocated using our ReBudget mechanism such that, at the end of

the first iteration (where all players run with equal budget), each player is as-

signed either its original budget or step less. (Recall that step is halved in each

subsequent iteration.) The initial budget is set to be 100 for all players. Finally,

MaxEfficiency, which is the resource allocation maximizing system efficiency, is

obtained by running an infeasible very fine-grained hill-climbing search (recall

that all utilities are concave).

XChange.
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Figure 3.4: Comparison of system efficiency (weighted speedup) and envy-
freeness among the proposed mechanisms in a 64-core configuration. System
efficiency results are normalized to MaxEfficiency. Workloads are ordered by
the efficiency of EqualShare.

3.6.1 Efficiency

For the first phase evaluation, Figure 3.4 reports the efficiency and envy-freeness

for EqualShare, MaxEfficiency, as well as XChange’s EqualBudget and Bal-

anced, and ReBudget with different aggressiveness (i.e., step) based on run-time

feedback. The bundles are ordered by the efficiency of EqualShare. We observe

that the efficiency of EqualShare compared to MaxEfficiency suddenly increases

for the last 40 bundles. Most of these bundles fall into the category of BBPN.

EqualShare works well for BBPN workloads because 75% of the apps in the

bundle are power sensitive, and equally distributing the power in EqualShare

works reasonable well. In addition, although the efficiency can be improved
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by giving more cache to “B” apps, they are not as cache-sensitive as “C” apps.

Therefore, EqualShare in cache performs better for BBPN bundles than others

such as CPBN.

EqualBudget vs. EqualShare

We first compare the efficiency between EqualBudget market-based mechanism

with EqualShare allocation. Figure 3.4a shows that in a 64-core configuration,

37% of the workloads in EqualBudget are able to achieve 95% of the social wel-

fare of the MaxEfficiency, and over 90% bundles are within 90%. This proves

that the market-based mechanism is robust, efficient, and scalable in this setup.

However, there are still 10% of the applications below 90% of the welfare

in optimal allocation. We observe that over half of these workloads fall in the

category of BBPC, where the number of applications favoring both resources

(50%) is much higher than the number of applications favoring power (25%) or

cache (25%) only. This is reminiscent of the well-known Tragedy of Commons [44].

MaxEfficiency strongly favors the apps which prefer only one resource, and the

“B” apps, which need both resources, are sacrificed for the sake of higher sys-

tem efficiency. The EqualBudget mechanism allows all the applications to fairly

contend with each other, even though the price is an efficiency that is not as

good as MaxEfficiency’s.

We look closely at an 8-core experiment using a BBPC bundle that contains

four “B” apps (apsi and swim, 2 copies each), two “C” apps (2 copies of mcf ),

and two “P” apps (hmmer and sixtrack). The overall efficiency of such bundle

with EqualBudget is 90% of MaxEfficiency, and we find its MUR = 0.40. Fig-
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ure 3.3 shows λi value of each app at market equilibrium. We can find that with

EqualBudget, “B” app swim has the lowest λi value, indicating that it is over-

budgeted and not use its money efficiently; on the other hand, “C” app mcf has

the highest λi value, showing that a budget increase can lead to a high utility

gain.

XChange-Balanced

XChange’s Balanced budget assignment is an intuitive way to distribute budget

among players to improve efficiency [103]. However, Figure 3.4a shows that it

does not outperform EqualBudget in efficiency too much, but in fact it loses in

fairness, as shown in Figure 3.4b. The reasons are: (1) With the exception of “N”-

type apps, which are not sensitive to any resources, the performance difference

between minimum and maximum utility of most apps are similar, especially

when we give out minimum resources for each player for free. Therefore, the

budget assignment is not very different from EqualShare. (2) Blindly setting the

player’s budget Bi proportionally to his “potential,” while ignoring the shape

of utility and MUR metric, is ineffective.

ReBudget

We evaluate the our ReBudget mechanism proposed in Section 3.4.2. We test

different aggressiveness, by setting the amount of budget decrease at each iter-

ation (i.e., step) to be 20 and 40. Figure 3.4a clearly shows that by re-assigning

the budget more aggressively, efficiency will improve for all bundles. Also, for

all the 240 bundles, ReBudget-40 achieves 95% of system efficiency of MaxEffi-
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ciency.

We look closely at the same 8-core bundle we study in Section 3.6.1. For

ReBudget-20, Figure 3.3 shows that swim, whose λi at 0.40 is the lowest under

EqualBudget, has its value increased to 0.46, because its budget drops from 100

(every player’s initial budget) to 61.25 units (minimum budget under ReBudget-

20). On the other hand, mcf, which has the highest λi, has its budget unchanged

(100). The budget of other apps are lowered to around 80, because their λi val-

ues are significantly lower than mcf. Note that λi of apsi and hmmer decrease,

even though their budgets are reduced. This is because the budget cut of swim

makes the prices of resources drop significantly. As a result, although apsi and

hmmer’s budgets are reduced, they can actually afford more resources, and their

λi decreases. Overall, the MUR of ReBudget-20 increases to 46%, compared to

40% in EqualBudget. Correspondingly, the efficiency of ReBudget-20 increases

to 96% of MaxEfficiency.

In ReBudget-40, swim, whose λi is still the lowest in ReBudget-20, get a fur-

ther budget cut to 20. As a result, its λi value increases from 0.46 to 0.72, as

shown in Figure 3.3. mcf in this case is no longer the highest in λi value: six-

track’s budget is decreased to 30 and it starts to request for more money. There-

fore, MUR of the system is increased to 0.59, and the efficiency is now 99% of

MaxEfficiency.

3.6.2 Fairness

We use envy-freeness as the metric to evaluate the fairness, as is discussed

in Section 3.2.3. We first look at the fairness comparison between EqualBudget
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Figure 3.5: Comparison of system efficiency (weighted speedup) and envy-
freeness among the proposed mechanisms in a simulated 64-core configuration.
System efficiency results are normalized to MaxEfficiency.

and MaxEfficiency. As expected, Figure 3.4b shows that EqualBudget is almost

envy-free, where in the worst case, it is still 0.93-approximate envy-free. On the

contrary, MaxEfficiency is unfair, which is typically 0.35-approximate envy-free.

Regarding the XChange-Balanced mechanism, the envy-freeness of most

workloads stays at 0.9, where in the worst-case it is 0.86-approximate envy-free.

It is not as good as EqualBudget, and considering its trivial efficiency gain, and
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no control over the aggressiveness in making trade-off between efficiency and

fairness, we consider such a mechanism to be ineffective.

On the other hand, the envy-freeness of ReBudget has a direct relationship

with its aggressiveness. Figure 3.4b shows that the typical envy-freeness of

ReBudget-20 and ReBudget-40 are 0.8 and 0.5, respectively, and none of the bun-

dles violates the theoretic guarantee provided by Theorem 2 (0.53 and 0.19). We

notice that there is a gap between the theory and reality. This is because what

Theorem 2 states is a theoretic lower bound, which should stand in all cases.

Such bound is tight, and it is not hard to construct a market to reach it5. Al-

though it does not happen on the applications we use, it could happen in the

real life. In addition, we show the envy-freeness of ReBudget-20 is consistently

higher than ReBudget-40 for all bundles. Therefore, besides the theoretic guar-

antee, MBR can be used as an accurate indicator of system fairness.

Combined with the findings in Section 3.6.1, we can conclude that the more

aggressive budgets are adjusted, the higher efficiency, and correspondingly the

lower fairness it is achieved. This is appealing, because system designers and

administrators can use the step as a “knob” to trade off one for the other.

3.6.3 Simulation Results

Besides the above analytical results, we implement ReBudget in architectural

simulator SESC. Figure 3.5 shows the system efficiency and envy-freeness of

the competing mechanisms. Such results are consistent to our analytical eval-

uation above: ReBudget improves system efficiency over EqualBudget by sac-

5Zhang shows an example in EqualBudget case [112].
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rificing fairness, and the more aggressive budget is re-assigned, the more effi-

ciency improvement it is achieved. On the other hand, EqualBudget achieves

the highest in envy-freeness, and MaxEfficiency, which targets at maximizing

system efficiency, is the worst in fairness. ReBudget successfully maintains its

rank between these two extremes, and aggressiveness gradually hurts system

performance as expected.

3.6.4 Convergence

A very important aspect of the market-based mechanism is how fast our algo-

rithm is in finding the equilibrium allocation. To the best of our knowledge,

there is no theoretic lower bound on the convergence time. However, in reality,

we find that EqualBudget and XChange-Balanced converge within 3 iterations

for 95% of the bundles. ReBudget mechanism spends a few more iterations, be-

cause it needs to re-converge after budget adjustment. However, the exponen-

tial back-off in budget change guarantees that the ReBudget process converges

fast. These findings are in line with prior studies (e.g., Feldman et al. find the

convergence time for a dynamic market is ≤ 5 iterations [40]). We also adopt

a fail-safe mechanism for the very rare cases that market cannot converge: we

simply terminate the equilibrium finding algorithm after 30 iterations.

3.7 Summary

In this chapter, we have introduce two new metrics, Market Utility Range (MUR)

and Market Budget Range (MBR), which help us establish a theoretical bound for
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the loss of efficiency and fairness of a market equilibrium under a constrained

budget, respectively. We have proposed ReBudget, a budget re-assignment tech-

nique that is able to systematically control efficiency and fairness in an ad-

justable manner. We evaluate ReBudget on top of our earlier XChange proposal

for market-based resource management in CMPs, using a detailed simulation of

a multicore architecture running a variety of applications. Our results show that

ReBudget is efficient and effective. In particular, when combined with the pro-

posed MUR and MBR metrics, ReBudget is effective at maximizing efficiency

under worst-case fairness constraints.
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CHAPTER 4

SWAP: EFFECTIVE FINE-GRAIN MANAGEMENT OF SHARED

LAST-LEVEL CACHES WITH MINIMUM HARDWARE SUPPORT

4.1 Introduction

Performance isolation is an important goal in server-class environments for a

variety of reasons, including throughput, quality of service, and even secu-

rity. Partitioning last-level caches in chip multiprocessors (CMPs) across ap-

plications is a popular approach to reducing or eliminating interference across

applications co-running on a CMP. It is a mechanism that can help (1) maxi-

mize resource utilization and system throughput, or trade off throughput vs.

fairness [103,104]; (2) provide quality-of-service (QoS) for latency critical work-

loads [66]; (3) protect the system from timing channel attacks, where a malicious

program is able to steal the secure information of another application, such as

the encryption key, by sharing the last-level cache [10]. A few approaches to

partitioning the cache space have been proposed.

Way partitioning allows cores in chip multiprocessors (CMPs) to divvy up

the last-level cache’s space, where each core is allowed to insert cache lines to

only a subset of the cache ways. It is a commonly proposed approach to curb-

ing cache interference across applications in chip multiprocessors (CMPs) [79].

Unfortunately, way partitioning is proving to be not particularly scalable, as

it affects cache latency and power negatively, eventually becoming impractical.

Consider that multiple current and upcoming server chip multiprocessor (CMP)

lines already comprise twenty, thirty, or even more cores; examples include In-

tel’s 22-core E5-2600 v4, IBM’s 24-core Power-9, Cavium’s 48-core ThunderX,
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or Qualcomm’s 64-core Hydra. Although some of these processors do include

hardware support for way partitioning, the granularity is too coarse to allow

for separate partitions for more than a handful of applications. Cavium’s Thun-

derX processor, for example, possesses 48 cores, however its last-level cache is

limited to “only” 16 ways. Similarly, Intel’s v4 CMP allows for no more than 20

different partitions across 22 cores.

Another approach to achieving cache partitioning is to restrict each appli-

cation’s page frames to certain “colors” (the shared bits between a physical ad-

dress’ page frame ID and cache index). In this case, page frames of each color

map onto a specific subset of the cache sets. Although this approach has been

adopted in real operating systems [62, 64, 109], it also does not scale beyond a

handful of colors.

A few architectural mechanisms for probabilistic fine-grain cache partition-

ing have been proposed [67, 85, 101]. However, these implementations require

extra hardware support, do not provide true isolation, and have not yet been

adopted in any commercial CMP to our knowledge.

Contributions

We propose SWAP, a fine-grained cache partitioning mechanism that can be

readily implemented in existing CMP systems. By cooperatively combining the

cache way (hardware) and set (OS) partitioning, SWAP is able to divide the

shared cache into literally hundreds of regions, therefore providing sufficiently

fine granularity for the upcoming manycore processor generation.
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We implement SWAP as a user-space management thread on Cavium’s

ThunderX, a server-grade 48-core processor with ARM-v8 ISA [97]. To enable

SWAP, we introduce small changes to the Linux page allocator, and leverage

ThunderX’s native architectural support for way partitioning.

Our results show that SWAP improves system throughput (weighted

speedup) by 13.9%, 14.1%, 12.5% and 12.5% on average for 16-, 24-, 32- and

48- application bundles with respect to no cache management. This is twice as

much speedup as what we can obtain by using only ThunderX’s way partition-

ing mechanism.

To our knowledge, SWAP is the first proposal of a fine-grained cache parti-

tioning technique that requires no more hardware than what’s already present

in commercial server-grade CMPs.

The chapter is organized as follows: Section 4.2 provides background and

comments on related work. Section 4.3 describes SWAP’s mechanism and de-

sign challenges. Section 4.4 discusses the hardware and software implementa-

tion. Section 4.5 explains our evaluation framework, and Section 4.6 evaluates

this SWAP proposal.

4.2 Background

4.2.1 Way Partitioning

One popular method to manage a set-associative cache is partitioning cache

ways. It is a desirable approach because: (1) each core can be assigned an in-
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dependent slice of the cache space, thereby reducing cache interference among

co-running applications; (2) adjusting allocations is relatively inexpensive and

can be accomplished lazily (i.e., cache lines in ways no longer part of an ap-

plication’s partition can still be accessed in place, until they are evicted). As

a result, chip manufacturers have begun to adopt such a technique into their

server processors [46].

Despite all these advantages, a well-known limitation of way partitioning is

that it cannot by itself support more than a handful of applications at a time [84].

This is because cache associativity cannot scale easily with number of cores, as

physical constraints result in increased latency and energy consumption.

4.2.2 Page Coloring

page frame number page offset

16 bits

offset  LLC index

7 bits13 bits

Bank 
index

32 bits

tag

28 bits

Color 
bits

Figure 4.1: Example of physical address mapping for page coloring, correspond-
ing to Cavium’s 48-core ThunderX architecture used in this study.

Page coloring [98] has been extensively used in industry and research com-

munity to improve the performance of the memory hierarchy. Instead of par-

titioning the cache “vertically” as in way partitioning, page coloring partitions

the cache “horizontally” by sets. When an application requests a new page from
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the system, the OS will select a free page from its memory pool, and map the

application’s virtual address to the physical address of the page. In doing so,

the OS may select a page frame whose page frame number (PFN) is of the ap-

propriate “color”—the overlapping bits between the page frame number and

last-level cache’s set index (Figure 4.1). By constraining the color bits of the

pages belonging to an application in this way, the OS may constrain an applica-

tion’s cache use to a subset of the cache sets.

Unfortunately, page coloring is hardly scalable, and it can incur significant

overheads if recoloring is needed. Consider, for example, that a PFN’s de-

fault size of 64KB allows for four color bits in Cavium’s 48-core ThunderX (Fig-

ure 4.1). Sixteen colors is hardly sufficient to provide adequate isolation across

48 cores. One might consider reducing the page size to increase the number of

colors, however this is typically counterproductive in the server market [47].

Even if a small page size were practical, page coloring still may not be able

to provide fine granularity by itself: A well-known limitation of page coloring

is that, by imposing page color restrictions on an application, only a portion of

the system memory is accessible to this application [114]. This may result in an

out-of-memory (OOM) error, even though the system may be awash with pages

of other colors.

Finally, re-partitioning the cache space by page coloring is a costly process: If

a page color is taken away from one application, all the associated page frames

have to be migrated to page frames in the application’s other colors, the appro-

priate TLB and cache entries flushed, etc.
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Figure 4.2: The relationship between execution time (normalized to the execu-
tion time with the entire 16MB cache) and cache capacity. Each cache capacity
may be consisted with different number of cache ways and colors, which is
shown in the different curves.

4.3 Mechanism

SWAP combines both set and way partitioning so that we can partition the

shared last-level cache in a two-dimensional manner into many tens or even

hundreds of regions, and then assign those regions to running applications. In

Cavium’s ThunderX 48-core processor, for example, the number of cache ways

and possible page colors is 16 each. Therefore, ThunderX’s shared L2 cache can

be partitioned into 256 independent regions. Note that, theoretically, assign-

ments may be chosen to overlap, but there is sufficient granularity to keep them

disjoint, which is generally preferable.

4.3.1 Challenges

Although combining set and way partitioning to enable fine-grained cache par-

titions may be intuitive, in practice several important challenges needed to be

addressed to make it practical. We discuss these next.
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Figure 4.3: An example of misaligned cache partitions that, on the one hand,
leaves some cache space unassigned while, on the other hand, it forces some
assignments to overlap.

Partition placement. Correctly allocating a partition involves more than just pick-

ing the right size. On the one hand, partitioning by cache ways and page colors

constrains the possible shapes and sizes of each cache partition. For example, in

the ThunderX processor, it is infeasible to create a partition of 17 cache regions

in the L2 cache with 16 ways and 16 colors. On the other hand, given a desired

partition size, there are multiple possible combinations of sets and ways to form

a rectangle with that size. For example, 4 × 4, 2 × 8, and 1 × 16 allocations all

offer the same capacity. Even if the partition size and shape of each application

is feasible and known, placement of the partitions is a challenge in its own right.

Figure 4.3 shows an example of partitions that are not successfully placed.

Due to the poor alignment, there is some wasted cache space on the top right

corner, and overlapping between partitions of P1 and P3, resulting in cache in-

terference between the two. As part of our proposed solution, we describe later

how we optimize the choice of partition placement.

Memory Pressure. As discussed in Section 4.2, page coloring not only limits the

number of cache sets an application can use, but also the amount of physical

memory that it can access. The memory system could be awash with free phys-

ical frames of a particular color, and yet those would not be available to other

applications that have been assigned a different color. Because SWAP employs
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page coloring, it is potentially subject to this problem. Although many colors

potentially enable a fine-grain management of cache set allocations, it constrains

each application to a small slice of the physical memory. Fortunately, this is not

a major concern for SWAP, because SWAP adopts a coarse-grained page color-

ing technique, achieving fine granularity by combining it with way partitioning.

In the ThunderX platform we study, for example, each page color covers 4GB

of the 64GB available main memory, and we assign at least two page colors to

each application (Section 4.3.2). As a result, we never observed out-of-memory

exceptions in any of our experiments.

Recoloring Overhead. Another major concern of page coloring is the potentially

heavy cost associated with dynamic recoloring. When a color is taken away

from an application, for example, all the pages with that color from that appli-

cation have to be remapped across the remaining assigned colors. Page remap

operations are cumbersome: they involve TLB and cache flushes, a page copy

from its old memory location to the new one, and an update of the correspond-

ing page table entry. Although efforts have been made to alleviate such over-

head, for example by performing “lazy” page migration, recoloring overheads

are generally non-negligible [62]. Therefore, SWAP needs to be carefully de-

signed to avoid giving/taking away colors to/from applications whenever pos-

sible.

Increased Conflict Misses in Way Partitioning. One disadvantage of cache way

partitioning is that it reduces the effective cache associativity of each partition,

potentially increasing the number of conflict misses [85,101]. Because SWAP in-

herits this disadvantage, we investigate the relationship between execution time

and the number of cache ways in the context of our experimental setup (Sec-
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tion 4.5), by statically sampling 30 different cache way+color configurations,

with {1, 2, 4, 8, 12, 16} cache ways and {2, 4, 8, 12, 16} page colors. As a re-

sult, the effective cache capacity ranges from 128KB to 16MB. Figure 4.2 shows

the execution time of each configuration, normalized to the execution time w/

16MB cache, for three sample SPEC applications. We find that, if the cache par-

tition is formed by only one cache way, the number of conflict misses increases

dramatically, and therefore the application’s execution time suffers by up to 40%

increase. On the other hand, for most applications, as long as their assigned par-

tition has more than two cache ways, their performance is largely determined

by the size of the assigned partition.

4.3.2 Algorithm

We propose a novel cache allocation mechanism to address these challenges.

The mechanism starts by collecting the miss-ratio curve (MRC) of each ap-

plication. The way the MRC is collected, whether using offline data or an

online profiler, is orthogonal to the mechanism and has been addressed else-

where [29–31,79]. It then runs the lookahead algorithm proposed by Qureshi and

Patt [79] to decide the optimal partition size of each core (in the unit of cache

regions), so that the sum of partition size of each core is the total cache capacity.

Note that we guarantee 2 regions of cache space (128KB) for each core. More

details will be explained in Section 4.5. Note that the lookahead algorithm only

determines the size of each partition given the total cache capacity, not how

these are achieved in terms of ways vs. colors; this will be decided later by our

placement algorithm, which we describe next.
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Cache Partition Placement

An ideal partition should satisfy the following requirements: (1) partitions are

aligned well with each other, without any wasted or overlapping cache regions,

and (2) dynamic resizing should affect the fewest number of partitions during

phase changes.

In SWAP, cache partitions are classified into multiple coarse-grain classes

according to their size. Those in the same class are given the same number of

colors. If the size of a partition changes within the range of its class, the number

of colors it is given remains unchanged. The hope is that the partition may be

able to keep its original page colors, to avoid any time-consuming recoloring.

The general classification criterion for K colors (K = 16 in ThunderX) and S

cache size (16MB in ThunderX), is as follows: (1) partitions of size larger than

or equal to S/4 are afforded all K colors; (2) partitions whose size lies within

[S/8, S/4) are allowed K/2 colors; (3) partitions that fall within [S/16, S/8) are

assigned K/4 colors; and so forth, down to a minimum of two colors. In the case

of ThunderX, this classification comprises four classes Ci, i ∈ {16, 8, 4, 2}, where i

represents the number of colors assigned to applications in that class.

For placement (i.e., what specific colors each application receives), partitions

with more colors are placed first and to the “left” (as represented by a rectangle

of set rows by way columns) of partitions with fewer colors. Let us use an

example (illustrated by the top row of Figure 4.4) to explain how this placement

policy, combined with the classification criterion, can solve the alignment issue.

In this example, P1 is an 8-color-class partition, and P2 and P3 are both 4-color-

class partitions. Because P1 has more colors, it will always be placed to the left

of P2 and P3. Thus, the right boundary of P1 and the left boundary of P2 and
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Figure 4.4: A sample process of placing partitions based on their sizes and
classes. The figure assumes eight colors and eight ways. The top row show
an initial partition; center and bottom rows show the process of dynamically
repartitioning based on changing application demands.

P3 are aligned.

Based on these two policies, the placement algorithm works as follows:

1. Each color maintains a “usage” counter (initialized to 0, as is shown in step

a1 of Figure 4.4), which measures the number of cache ways of that color which

have been already assigned.

2. The partitions are first classified into different classes according to the criteria

mentioned above. Then the number of cache ways is trivially computed, by

dividing the partition size by the number of colors, rounded down to an integer

(not necessarily a power of 2).
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3. We place cache partitions, in order from larger to smaller. For each partition,

SWAP tries to find a set of consecutive colors with as little usage as possible.

After the set of colors is determined, the partition will update the usage counter

of its assigned colors, and the algorithm will move on to the next partition.

Step a2 to a4 of Figure 4.4 shows such an example with 8 cache ways and 8

colors, where the sizes of the three partitions, P1, P2, and P3, are 40, 12, and 12,

respectively. Because P1 is the largest partition and is allocated more than half

of the available regions, it is a C8 partition, and is assigned all 8 colors according

to the classification criterion. The usage counter of all the colors are updated to

5, since P1 receives five ways. The system then picks the top four colors for P2

(P2 is in class C4), and it increases their usage counter by 3 each (the number of

ways allocated to P2). When looking to place P3 in class C4, the least used colors

are picked, again in this case updating their counter to 3 each, since that is the

number of ways allocated to P3 as well.

4. If a core is given the minimum cache space (2 regions), SWAP assigns one

way and two colors to it, which may significantly hurt its performance due

to conflict misses. As a result, in that case we may horizontally coalesce two

or more minimum-sized partitions, using the same set of colors. Although

colescing may introduce some interference, we experimentally observe that it

greatly reduces conflict misses (and that this kind of applications are often

cache-insensitive anyway).
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4.3.3 Reducing Recoloring Overhead

Our algorithm for recoloring strives to minimize color re-assignments. Specif-

ically: (1) if a partition stays within its class, it should stick with its prior color

assignment; (2) if a partition is downgraded to a class with fewer colors, its

new colors should be a subset of its prior color set, so that only the “orphaned”

pages need to be migrated; (3) if a partition is upgraded so that more colors are

made available to it, it should attempt to add the set of colors that have the least

“pressure” (smallest usage counter) at the time the partition is (re)placed. We

continue to use Figure 4.4 (middle and bottom rows) to show this repartitioning

process, where the sizes of P1, P2, and P3 and changed from 40, 12, 12 regions,

to 8, 8, and 48 regions, respectively.

1. The partitions are classified into different classes as before.

2. Before placing the partitions, we first reset the usage counter (step b1), and

then estimate new usage for each color as follows: (1) If a partition is upgraded

to a class with more colors (P3 in the example), we do not increase the usage of

any color, as is shown in step b2 of Figure 4.4. This is because the new partition

will explicitly seek to expand into the least used colors. (2) If a partition stays in

the same class (P2), we increase the usage of each color by the number of ways

the partition will receive (step b3). This is to discourage other partitions that

migrate into the same class from occupying these colors during placement. The

goal is to allow applications that stay in the same class to keep their colors. (3) If

the partition’s class is downgraded (P1), the estimated new usage of the colors

it currently maps to is increased by the number of cache ways the partition

will receive, multiplied by the ratio of new to old number of colors for that
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partition. For example, P1 previously owned all 8 colors in Figure 4.4, it is now

downgraded to a 4-color class. The usage counter of colors 0-7 will be updated

by the number of ways the new partition will receive, multiplied by 0.5. The

rationale here is that the new partition will subset all former colors with equal

probability, so on average each such color will see its usage affected equally and

proportionally to the new allocation. (Recall that at this point we still do not

know which colors will be picked.)

3. We start placing the cache partitions from larger to smaller, following the orig-

inal algorithm, only that the expected usage is already initialized as explained

above, and thus not computed from zero, but adjusted during actual placement.

For example, in step c3 of Figure 4.4, we assign colors 4-7 to downgraded par-

tition P1, because those colors show lower estimated usage (since colors 0-3 are

“reserved” by P2). On the other hand, as a partition that remains in its same

class, P2 will again pick its former colors (step c4). After placing each parti-

tion, usage for each color is adjusted to reflect the actual usage by that partition,

by compensating with respect to the estimated usage previously calculated and

accounted for, as is shown in step c3.

It is possible that a partition whose class is either unchanged or downgraded

may find the expected usage of its previously assigned colors high enough that

the partition may not be able to get the number of cache ways it needs. In that

case, we allow the partition to move to a new set of colors that can accommo-

date its size; specifically, the partition will seek to move to a set with minimum

calculated usage.
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4.4 Implementation

In this section we describe the existing hardware support that we leverage to

implement SWAP, the software changes that we make to the operating system,

and the interaction between them.

The ThunderX 48-core CMP is an ARM-based processor aimed at the

server/datacenter market. It provides the ability to allocate the shared L2 cache

by cache ways, up to 16 partitions. ThunderX provides a special register per

core, which specifies the cache ways that a core can insert cache lines into. (Cores

can still access lines in any cache way.) Once cache ways are assigned to cores

(see Section 4.3.2), SWAP configures the per-core registers so that the assign-

ment may be enforced.

In order to further partition the cache by sets, we implement page color-

ing [62, 64, 110] in the Linux kernel that runs on the ThunderX system, by mod-

ifying its buddy memory allocator to fit our needs. We color user pages only;

kernel pages are allocated using Linux’s default mechanism.

In the buddy system, free physical pages are stored in multi-level free lists,

where the kth-order free list contains pages which is composed of 2k consecutive

64KB pages. We create multiple bins out of each list, with each bin caching pages

of a specific color.

When a page fault occurs to a user application, the kernel first selects a page

color in a round-robin fashion among all the allowable colors for that applica-

tion. Then, it fetches a page of that color. When a bin is running out of pages,

SWAP requests more free pages from the Linux buddy system and uses them to

96



refill the bins.

A potential issue with page coloring is that some of modern processors adopt

hashed indexing, where the index to the last-level cache is XORed with bits in the

physical address [63]. Fortunately, because the physical address of a free page is

readily available in the kernel, its color can be easily computed by hashing the

appropriate bits.

SWAP works well with the large page sizes often found in server settings–

in ThunderX’s case, 64KB. It can also work well with smaller page sizes (e.g.,

standard 4KB pages), as long as the number of bits assigned for coloring is kept

small, to skirt the issues of memory pressure and recoloring overhead described

before. SWAP as is would not be able to leverage page coloring for very large

“superpage” sizes supported in some architectures (e.g., 512MB for ThunderX),

as the page offset would be very long, and therefore there would be no over-

lap between the page number and the cache index. Very large superpages are

usually relegated to the uncommon case of servers with terabytes of physical

memory [50], and produce undesirable side effects [32, 54, 58, 72, 77]. For exam-

ple, database vendors often recommend users to turn off large superpage sup-

port [58, 72], because many database workloads tend to exhibit sparse rather

than contiguous memory access patterns. Large superpages may also cause the

system to run out of memory [32].

We follow a lazy approach to page migration for dynamic recoloring [62]:

When a color is added to or taken away from an application, we eagerly walk

through the application’s page table and redistribute the application’s pages

across the colors assigned to it. For each page marked for migration to a dif-

ferent color, we reset the access flag (AF) in the page table entries (PTE) of the
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Table 4.1: CMP configuration.

ThunderX CN8800 [2, 19]
Number of Cores 48

Frequency 2.0GHz
L1 ICache 78 kB,

128B cache line size
L1 DCache 32 kB,

128 cache line size
L2 Cache 16 MB, 16-way set associative,

128B cache line size
Memory Controller 64GB, 4 channels, DDR4 2133,

aggressive bank reordering

application’s pages of that color, and set one other unused bit in each such PTE

(we call it the Pending bit). Naturally, the corresponding TLB and data cache

entries are also flushed. However, the application’s marked pages are not imme-

diately migrated. Rather, as pages for that application with AF=0 are accessed

(which generates a page fault), if the Pending is set, the page will be migrated

to its new color at that point (and the Pending bit will be reset). Then, the AF

bit will be set, and the page fault handler will complete.

4.5 Experimental Setup

4.5.1 Hardware Platform

We evaluate SWAP on a Cavium ThunderX CN8800 rack server. The configura-

tion of the processor is shown in Table 4.1.

ThunderX supports hardware cache way partitioning, as is described in Sec-

tion 4.4. We also develop a set of microbenchmarks similar to what Saavedra

et al. [83] propose to verify the specifications related to the memory hierarchy
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(cache capacity, associativity, etc).

In addition, we check whether there is an overlap between the color bits and

the memory channel and bank bits, as page coloring may restrict a core’s acces-

sibility to the memory channels/banks. To do this, we run the microbenchmarks

proposed by Yun et al. [110] to detect the location of those bits, and we find that

the memory channel and bank bits reside within the page offset, and therefore

there is no overlap with the color bits.

4.5.2 Software Platform

We prototype SWAP in the ThunderX platform running Ubuntu Trusty Tahr

14.04 with kernel version 3.18.0. SWAP runs as a user space management pro-

cess, which includes (1) the algorithm described in Section 4.3.2 to decide the

allowable cache region of each application; (2) the ability to write hardware

registers to reconfigure cache way partition, and to interact with the underly-

ing Linux kernel for page coloring (the implementation details are described

in Section 4.4); and (3) a performance tracking thread which is triggered every

2 seconds to read hardware performance counters, such as the number of L2

cache misses.

4.5.3 Workload Construction

We use a mix of 22 applications from SPEC2000 [91] and SPEC2006 [92] to create

multiprogrammed workloads for evaluation. Each application is compiled na-

tively to an ARM executable, using gcc 5.1.0 with -Ofast optimization. We clas-
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Table 4.2: Multiprogrammed workloads evaluated for simulation. Combining
cache-insensitive (I), cache-sensitive (S), and thrashing (T) applications.

MP1
vpr - twolf - art - lbm S 4

vpr - ammp - bzip2- libquantum S 2T 2

MP2
milc - soplex - lbm - art T 4

leslie3d - bwaves - GemsFDTD - bzip2 T 2S 2

MP3
vpr - twolf - milc - libquantum S 4

ammp - bzip2 - bwaves - soplex T 4

MP4
mcf - milc - libquantum - leslie3d T 4

bwaves - GemsFDTD - twolf - swim T 4S 2

MP5
mcf - soplex - libquantum - leslie3d T 4

bwaves - lbm - swim - art T 2S 2

MP6
gamess - hmmer - milc - mcf I4

tonto - h264ref - lbm - art T 2S 2

MP7
twolf - art - leslie3d - bwaves S 4

bzip2 - mcf - GemsFDTD - libquantum T 4

MP8
vpr - twolf - libquantum - milc S 4

ammp - art - mesa - sixtrack T 2I2

MP9
twolf - vpr - lbm - libquantum S 4

bzip2 - omnetpp - mesa - gobmk T 2I2

MP10
milc - soplex - h264ref - vpr T 4

libquantum - leslie3d - perlbench - mcf S 2I2

sify the 22 applications into Cache-sensitive (S), Cache-insensitive (I), and Thrashing

(T) using offline profiling, and then create ten 8-application bundles that consist

of a mix of applications from these three categories, as shown in Table 4.2. When

the number of active cores exceeds the number of applications in a bundle, the

bundle is replicated across the chip. For example, 4 copies of MP1 would run in

a 32-core configuration.

SWAP needs an estimate of the application’s cache miss rate vs. capacity

curve (MRC), which is used by the lookahead algorithm to produce the opti-

mal size of each partition (described in Section 4.3.2). In server-class environ-

ments, profile information can be obtained efficiently in a variety of ways, as ad-

dressed elsewhere [29–31]. Alternatively, it could be collected using additional

hardware support (e.g., UMON [79]). In this paper, we use the applications’

miss-per-kilo-cycle (MPKC) profile, by sampling 30 different cache way+color

configurations, with {1, 2, 4, 8, 12, 16} cache ways and {2, 4, 8, 12, 16} page
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colors (the effective cache capacity ranges from 128KB to 16MB).

Besides SPEC, we also use a latency-critical workload, namely memcached

from Cloudsuite [41], to study how SWAP guarantees QoS. Due to the lack of

10Gbit Ethernet support, we run the memcached server and clients on the same

chip to avoid Ethernet becoming the bottleneck. Although packets are not phys-

ically transmitted via Ethernet, they still go through most of the OS networking

layers, and therefore the cache behavior of the memcached server remains the

same. In addition, in order to guarantee isolation between clients and server,

we allocate 2 exclusive cache ways to all the client threads, which we find is

good enough to issue requests in a timely manner. As recommended by Cloud-

suite, we run one instance of the memcached server with 4 threads, and the QoS

target is set such that 95% of the requests are serviced within 10ms [37]. The

memcached client runs with 8 threads, and we configure the issue rate to 190K

requests per second1.

4.5.4 Performance Metrics

We use weighted speedup and L1 miss latency to evaluate our fine-grained

cache partition, both of which can be obtained by SWAP’s performance track-

ing thread described above. Weighted speedup measures the overall system

throughput [38]. It is the arithmetic mean of the ratio between IPCshared
i and

IPCalone
i for all applications i, where IPCshared

i is the IPC obtained while running

application i in a loaded system, and IPCalone
i is the IPC when running unmo-

lested.
1We find that 190K is the maximum issue rate for the memcached server to meet its QoS

target even if it is given the entire cache.

101



95 %

100 %

105 %

110 %

115 %

120 %

125 %

130 %

135 %

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10 AVG
30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

110 %

W
ei

gh
te

d 
S

pe
ed

up

 

WAY SET SWAP WAY SET SWAP

(a) 16 cores

95 %

100 %

105 %

110 %

115 %

120 %

125 %

130 %

135 %

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10 AVG
30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

110 %

N
or

m
al

iz
ed

 L
1 

M
is

s 
La

te
nc

y

 

WAY SET SWAP WAY SET SWAP
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(c) 32 cores
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(d) 48 cores

Figure 4.5: Comparison of system throughput (weighted speedup) and L1 miss
latency for Baseline, WAY, SET and SWAP. Both weighted speedup and L1 miss
latency are normalized to Baseline. The bars show the weighted speedup, while
the lines show the L1 miss latency normalized to baseline.

We also use L1 miss latency to show the source of performance improve-

ment. L1 miss latency directly correlates with the number of cycles that proces-

sor pipeline is stalled by long latency memory operations, and is computed as

L2 access latency + L2 miss rate ×memory latency. An effective cache manage-

ment technique should not only decrease the L2 miss rate of each application,

but also reduce the overall memory contention, which further improves the L1

miss latency, and thus the IPC.

4.6 Evaluation

We evaluate our SWAP proposal against a Baseline configuration, where the

shared L2 cache is freely contended by all 48 cores. We also compare SWAP
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Figure 4.6: The breakdown of a sample bundle MP10 running on 24 and 48 cores
in ThunderX. The bars show the IPC (normalized to IPCalone), and the lines show
the normalized L1 miss latency of each application.

with a best-effort cache way partitioning (WAY) and page coloring technique

(SET).

Our evaluation is done in four scenarios: First, we study the case of static

partitioning, where cache repartitioning is not needed. Second, we study a sce-

nario with real-time evolving workloads, with applications coming and going,

and where the dynamic cache partitioning is involved to react to the chang-

ing cache demands. We also study the overhead of the dynamic SWAP in the

ThunderX platform. Third, we study how SWAP guarantees the quality of ser-

vice (QoS) of latency-critical workloads, and improves the throughput of back-

ground batch applications at the same time. Note that all of the above experi-

ments are done on a real ThunderX rack server. Finally, we compare SWAP with

recently proposed probabilistic cache partitioning in the simulator.

4.6.1 Static Partitioning

In the static partitioning experiments, we run SWAP on 16, 24, 32 and 48 cores

of a ThunderX 48-core processor, with the applications bundles detailed in Sec-
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tion 4.5.3. SWAP first reads the MPKC profile of each application, and then

computes the size, shape, and placement of each core’s cache partition in the

shared L2, based on the algorithm discussed in Section 4.3.2. When an applica-

tion finishes before the whole bundle has finished, the same application is again

instantiated on the same core. It naturally inherits the cache partition of the

core, and therefore no repartition is needed. The purpose of this experiment is

to measure the partitioning quality of SWAP.

We first compare SWAP with Baseline (no cache partitioning involved), and

the results are shown in Figure 4.5. SWAP consistently outperforms Baseline for

all the bundles in all configurations, and the improvement does not decrease

with more active cores, showing a good scalability in large-scale CMPs. On

average, SWAP improves system throughput over Baseline by 13.9%, 14.1%,

12.5%, and 12.5% 16-, 24-, 32-, and 48-core configurations, respectively. We also

find that on average, SWAP reduces the chip’s overall L1 miss latency by 31.3%,

30.1%, 25.7%, and 17.6% for the core configurations we study.

We also compare SWAP with utility-based way partitioning (WAY) [79] and

page coloring technique (SET) [62]. Because there are only 16 cache ways or

page colors in ThunderX, it is impossible to give a disjoint cache partition to

each application in either mechanism, if the number of active cores is larger

than 16. We therefore design a variation of way partitioning that allows for

judicious sharing of cache ways for larger configurations as follows:

We begin by reserving a small number of cache ways as the “dump area.”

Then, we run Qureshi and Patt’s lookahead algorithm [79] to allocate the re-

maining cache ways. The lookahead algorithm iteratively finds the application

that has the highest marginal utility on cache capacity, and assigns the cache
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ways to it. We run such algorithm until all the cache ways are allocated (ex-

cept for the “dump” area). Then, all the remaining applications are assigned

the “dump” area. In addition, as discussed in Section 4.3.1, a partition with one

cache way usually introduces an excessive number of conflict misses, hurting

the application’s performance. As a result, we adopt an approach similar to

what Liu et al. propose [64], which coalesces the neighboring partitions if one

of the them has only 1 cache way. Such coalescing rule greatly helps reduce

conflict misses, and we find it significantly improves the performance of WAY.

We also study the effect of varying the size of the “dump area” from 2 to

6MB. We find that in general, the “dump area” should be as small as possible.

For 16, 24, and 32 cores, reserving 2 ways performs the best. However, for 48

cores, reserving 4 ways produces the most speedup because there are more than

30 applications in such “dump area.”

Our coarse-grained page coloring scheme (SET) works similarly to WAY.

However, because constraining the page colors also limits the amount of phys-

ical memory accessible by the applications, more colors should be reserved to

avoid an out-of-memory error (OOM). Our study shows that reserving 2, 4, 4,

and 6 colors can prevent OOM and produce the most speedup for 16-, 24-, 32-,

and 48-core configurations respectively.

Figure 4.5 shows the weighted speedup of WAY, SET, and SWAP normal-

ized to Baseline. Although WAY and SET perform well at small core counts,

their partitioning quality degrades as the number of active cores increases. We

look closely at a representative bundle MP10; Figure 4.6 shows the normalized

IPC and L1 miss latency of each application in the bundle in 24- and 48-core

configurations. In the 24-core configuration, both SET and WAY can provide a
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Figure 4.7: Real time throughput of Baseline, SET and SWAP of Sequence 2 in
the 48-core case over time (seconds).

2MB partition for each instance of the cache sensitive application vpr. SWAP,

on the other hand, can provide a tighter 1.5MB partition to each instance of vpr,

and the resulting savings are given to another sensitive application, mcf (whose

partition is in the dump area under SET and WAY). Although this improves the

overall system throughput by only 2% in the 24-core configuration, the effect is

amplified at higher core counts. Moreover, by reducing the overall L2 miss rate,

SWAP greatly alleviates memory contention in the 48-core configuration, and

thus helps even the non-sensitive applications. As a result, SWAP leads SET

and WAY by 16%. Overall, SWAP outperforms WAY and SET by 4.36%, 5.44%,

4.3%, and 7.14%, respectively, for 16-, 24-, 36-, and 48-core configuration.

4.6.2 Dynamic SWAP with Changing Workloads

It is not necessary to invoke cache repartition in the static experiments so far, be-

cause the applications running on a core are fixed in each bundle. In this section,

we evaluate SWAP in the scenario of workloads that come and go. Again, we
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keep the number of active cores to be fixed (16, 32, and 48 for this experiment).

Instead of running a fixed bundle, we generate a long sequence of SPEC applica-

tions, and we inject the applications from the top of the sequence to the system

until the number of active cores reaches the desired number. When an applica-

tion finishes, we fetch the next application from the sequence, and schedule it to

the currently idle core. This is similar to the scenario in clusters or data centers,

where a sequence of applications is waiting in the task queue for available cores.

Because the new application may show different cache characteristics, dynamic

cache repartitioning is needed. For example, assume that an application with a

large cache partition completes, and that a cache-insensitive one is introduced

into the system. The unwanted cache capacity of the new application will be

re-distributed to the other cores in the system, which triggers a system-wide

repartition.

For our 16-, 32-, and 48-core configurations, we construct a sequence of 32,

64, and 96 applications, respectively, which contains a mix of applications in

different categories (I, S, T). All the applications in the sequence have to finish

at least once, and when all of them finish, we terminate the experiment and

report the system throughput of the entire sequence. When the fetch reaches

the end of the sequence, it will start over from the head of the sequence, and

therefore no core will be idle.

We construct two sequences, both of which include 16 distinct SPEC bench-

marks (out of 22 that we use in this paper). Table 4.3 shows the SWAP’s im-

provement over Baseline and WAY in terms of weighted speedup. SWAP im-

proves the weighted speedup by 8% and 17% for the two sequences in the 16-

core cases, and the improvements increase to 11% and 20% for the sequences in
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Table 4.3: Comparison of system throughput (weighted speedup normalized to
Baseline) for SET, WAY, and SWAP in the dynamic experiment.

Cores Seq WAY SET SWAP Avg. Inj interval

16 1 1.04x 1.02x 1.08x 46s
2 1.11x 1.04x 1.17x 41s

32 1 0.97x 1.04x 1.11x 31s
2 1.04x 1.02x 1.20x 25s

48 1 0.92x 0.99x 1.11x 34s
2 1.00x 1.03x 1.15x 25s

the 32-core cases. Although WAY does fairly well in the 16-core sequences, its

partition quality drops significantly beyond that. Besides the scalability issue of

WAY and SET discussed in the static experiment in Section 4.6.1, another impor-

tant reason for the poor performance is that application’s injection rate is much

higher (shown in Table 4.3) with higher core count. An application may be be

frequently moved in and out from the “dump” area, which significantly hurts

performance. Figure 4.7 shows the real-time throughput (sum of IPC) of SWAP

vs. Baseline and SET. It is clear that SWAP outperforms Baseline and SET most

of the time, and it runs “ahead” of Baseline and SET.

4.6.3 SWAP Overhead

This section studies the overhead of our SWAP approach. The overhead comes

from two sources: (1) the execution time of the SWAP algorithm, which decides

the allowable cache region of each core; and (2) the overhead of page recoloring,

which involves migrating pages of an application from its old colors to the new

ones.
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Figure 4.8: Execution time distribution of the overall SWAP, and the placement
algorithm in 16-, 32-, and 48-core CMP.

Algorithm Overhead

As is described in Section 4.3.2, SWAP first runs the lookahead algorithm [79] to

decide the optimal partition size of each core, followed by our proposed place-

ment technique to decide the actual cache region. The complexity of the looka-

head algorithm is O(N2), where N is the number of active cores in the chip. Our

placement technique, which involves sorting all partitions by their size, has a

complexity of O(Nlog(N)).

Figure 4.8 shows the distribution of the execution time of SWAP mechanism

in 16-, 32-, and 48-core configurations. As is shown in Figure 4.8a, on aver-

age, the overall SWAP algorithm consumes 2ms, 6ms, and 8ms for 16-, 32-, and

48-core CMP (12ms in the worst case), which is negligible compared with the

25s repartition interval. Figure 4.8b shows the execution time of our placement

technique across different CMP configuration. Although it increases linearly, it

took less than 0.15ms even for the 48-core configuration.
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Table 4.4: Recoloring Overhead
app total # page overhead per

recolored repartition (ms)
bwaves 71400 213.00
leslie3d 8000 28.00
bzip2 4900 11.00

gobmk 1350 8.00
gromacs 1100 4.00

Recoloring Overhead

Our SWAP algorithm tries to avoid recoloring by taking the previous color as-

signment into consideration. However, recoloring is sometimes unavoidable

to produce high quality cache partitions, and therefore we study the overhead

of recoloring by micro-benchmarking. In the micro-benchmark, we actively re-

color 50% of the pages for each SPEC application every 20s, and record the sys-

tem time of that application. We consider the system time to be the aggregated

overhead of page recoloring. 2 Table 4.4 shows the overhead of some sample

applications. The overhead per recoloring heavily depends on the number of

pages being migrated. For the applications with large memory footprint (e.g.,

bwaves migrates 70K pages), the overhead is about 200ms. For the applications

that migrate thousands of pages, the overhead is negligible. In any case, the

overhead is small compared with the 25s application repartition interval in our

setup.
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Figure 4.9: Real time 95th tail latency of memcached co-running with 16-app
bundle MP1 over wall clock time (second).
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Figure 4.10: Comparison of system throughput (weighted speedup) of the back-
ground 16-app bundle for WAY and SWAP, when the QoS of memcached is sat-
isfied. Weighted speedup is normalized with Baseline.

4.6.4 Providing QoS Guarantees

A number of studies have found that the utilization of most datacenter servers

are low, and a primary reason is that the load of popular latency-critical (LC)

2This is a conservative estimation, because we account all the system time to be the overhead
of recoloring.
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workloads varies significantly due to diurnal patterns and unpredictable spikes

in user accesses [5, 65, 66]. A promising way to improve server utilization is

to launch batch workloads on the background to exploit the unused hardware

resources [28, 66]. A key to this approach is that the QoS of the LC workloads

should not be affected by the batch workloads. In this section, we propose to

use SWAP to maximize the background batch workloads, with a prerequisite of

guaranteeing the QoS of a popular LC workload memcached.

The memcached setup is described in Section 4.5.3. We use the multi-

programmed 16-app SPEC bundles detailed in Table 4.2 as the batch workloads.

In order to guarantee QoS of memcached, we allocate an independent cache par-

tition to the memcached server to avoid interference. In addition, the capacity

of such partition has to be dynamically adjusted to satisfy the QoS. We adopt a

feedback-based mechanism similar to the one proposed by Lo et al. [66], which

reads the tail latency every 30s. We start with two cache ways for the mem-

cached server, and when the QoS is not met, we increase the size of its partition

by one cache way. When QoS is met for a period of time (10 minutes in our

setup), we decrease the partition size to explore whether the QoS can still be

met. Figure 4.9 shows the tail latency of memcached over time when the server

either shares cache with a sample 16-app SPEC bundle MP1, or owns its ex-

clusive cache partition whose size is dynamically adjusted. We find that QoS

(95th tail latency at 10ms) is frequently violated in the case of shared cache,

but is satisfied most of the time in the exclusive cache case. A few spikes exist

in Figure 4.9b because: (1) the background applications exert higher memory

pressure due to phase change, which increases the penalty of L2 misses that

is no longer tolerable by memcached; (2) the partition size of memcached is

reduced for exploration (discussed above). In either case, our feedback-based
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mechanism reacts fast enough to reduce the tail latency to normal.

We use SWAP and WAY to partition the remaining cache capacity among the

background SPEC applications, and compare them with a Baseline where all the

SPEC applications share the cache capacity left by memcached.3 Note that the

partition of memcached server can only be adjusted by cache ways, because

the overhead of recoloring its pages is too much to guarantee QoS. As a result,

we exclude SET in this study. Figure 4.10 shows the system throughput of ten

16-app bundles managed by WAY and SWAP. Although memcached occupies a

non-trivial amount of cache space, SWAP is still able to provide enough gran-

ularity to partition the cache space, resulting in 8.10% improvement in system

throughput on average over Baseline. This almost doubles the improvement of

WAY, which suffers from the limited granularity.

4.6.5 SWAP vs. Probabilistic Cache Partition

Probabilistic cache partition mechanisms [85,101] have been proposed as a scal-

able cache management technique for large CMPs. However, to the best of our

knowledge, all those proposals require non-trivial hardware changes that are

currently unavailable on real processors. Therefore, in order to compare against

probabilistic cache partition mechanisms, we implement SWAP in architectural

simulator SESC [81]. However, we run into a dilemma: on one hand, simula-

tion is multi-order of magnitude slower than real machine execution, and we

can only simulate 100M instructions due to the time constraints. This is equiv-

alent to less than 1 second of actual execution, which is almost negligible com-

pared with hours of running in our real machine experiment; on the other hand,
3SWAP recolors pages that belong only to SPEC applications.
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Figure 4.11: SWAP vs. Futility Scaling (FS) and utility-based way partitioning
(UCP) with highly associative cache.

the overhead of SWAP is at the order of milliseconds, and we have to simulate

long enough to amortize this overhead. As a result, in SESC, we ignore the two

sources of SWAP overhead described in Section 4.6.3, and focus on whether

SWAP is able to provide the same quality of management as those probabilis-

tic cache partition mechanism. Other overheads, such as cache and TLB flush

due to page migration, are faithfully modelled. Note that the results of our real

machine studies include all the SWAP overheads.

We compare SWAP with traditional Unmanaged LRU policy; Futility Scal-

ing [101], which is a recently proposed probabilistic cache partition mechanism

that maintains fine-grained partition using a feedback control mechanism; and

utility-based way partitioning (UCP) [79] with a highly-associative cache. The

architectural configuration is the same as ThunderX processor described in Sec-

tion 4.5.1, with 32 active cores. The shared L2 cache is 16MB with 16 ways, un-

less specified otherwise. The application bundles are the same as the previous

real machine study.
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Figure 4.11 shows the system throughput (weighted speedup), normalized

to Unmanaged LRU policy. We first compare with UCP mechanism, which par-

titions the cache by ways. To give an independent partition to each core, we

evaluate UCP with 64 cache ways, which Cacti [73] reports a 25% increase in

access latency compared to 16 cache ways in ThunderX. UCP-ideal assumes the

same access latency. Figure 4.11 shows that SWAP outperforms UCP in 8 out of

10 bundles, which shows that SWAP with 16 cache ways provides a finer granu-

larity than UCP with 64 ways. The reason why UCP slightly outperforms SWAP

on bundle MP3 and MP4 is that SWAP constrains the shape of each partition,

thus not all partition sizes are allowed (e.g., the partition size is a multiple of its

number of colors).

We then compare SWAP with Futility Scaling (FS) [101]. FS maintains a “fu-

tility” index of each cache line, and evicts cache lines with the maximum futility

among the replacement candidates in the same set. Theoretically, FS is able to

maintain the partition size at the granularity of lines. However, we find SWAP

outperforms FS for 7 out of 10 bundles. This is because with 16 cache ways, the

number of replacement candidate (16) is not large enough to include all the lines

with large futility indices. As a result, we evaluate FS with 32 cache ways (FS-

32), and we find that SWAP achieves comparable performance improvement. In

addition to requiring fewer cache ways, SWAP does not require any extra hard-

ware and is readily available in commercial processors, without giving up any

performance improvement.
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4.7 Summary

We have proposed SWAP, a fine-grained cache management technique that

seamlessly combines set and way partitioning with minimum hardware sup-

port. SWAP can successfully provide hundreds of fine-grained cache partitions

to achieve effective cache partitioning in the manycore era. We have proto-

typed SWAP on a 48-core Cavium ThunderX running Linux, and shown aver-

age speedups over no cache partitioning that are twice as large as those attained

with way partitioning alone.
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CHAPTER 5

RELATED WORK

5.1 Resource Allocation in CMPs

In the context of resource allocation in multicore chips, shared cache and power

budget are most frequently addressed in the literature, and researchers have

shown that using fine-grained management of the available resources to pro-

vide optimized utilization is highly desirable as well as practical. Sanchez and

Kozyrakis, for example, show that fine-grained shared-cache cache partition-

ing is feasible in a large-scale CMP system [85], yielding greatly improved uti-

lization. Similarly, multiple power-oriented studies [18, 39, 57] show that fine-

grained, per-core DVFS regulation can greatly improve a CMP’s energy effi-

ciency. Intel has recently deployed a low-cost, fully-integrated voltage regula-

tor in Haswell [43], and other researchers are making significant advances in

supporting per-core DVFS [52, 88].

When it comes to the coordinated resource allocation in CMP systems, a

few solutions have been proposed to optimize system throughput by relying

on centralized mechanisms such as hill climbing. Choi and Yeung are among

the first to perform such hill climbing technique based on trial runs [26]. Since

then, a few proposals have been made to improve the performance estimation

method, such as artificial neural networks [12], and analytical models [23–25].

However, because the centralized optimization mechanisms essentially explore

the large global search space sequentially, which may take too long to converge

to an optimal operating point. In addition, they primarily optimize for system

throughput, largely ignoring fairness across applications.
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5.2 Market-based Resource Allocation

In the computer systems domain, Sutherland is believed to be the first one who

created a market to manage Harvard University’s computing resources [94].

Since then, a number of proposals have adopted such market-based approaches

to manage computer resources, whether it be bandwidth [71], memory alloca-

tion [45], or CPU scheduling [100]. For example, Harty and Cheriton integrate

a market-based memory allocator in the V++ operating systems [45], so that the

processes can trade off between memory capacity vs. time: whether they choose

to request large amount of memory over a short period of time, or small amount

of memory over a long period of time. They show this approach greatly helps

the operating system to enforce its administrative policy in controlling applica-

tions’ memory allocations.

In recent years, the concept of market has been introduced into distributed

systems and data centers [22,40,42,80]. Chase et al. propose a static market [22]

to allocate a single resource (compute service units), which is described in de-

tails in Section 2.2. Guevara et al. [42] adopt a similar approach to study the

optimal configuration of heterogeneous data centers. Because the maximiza-

tion process is done by the supplier centrally, it may not be efficient enough to

deal with a large-scale system.

To address such scalability issue, Lai et al. introduce contentions among the

selfish players, by allowing them to adjust their bids in response to the oth-

ers bids to that resources [60]. As a result, the resource allocation is done in a

largely distributed way. However, their study is purely empirical — they do not

have any guarantees on the loss of efficiency and fairness. On the other hand,
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Zahedi and Lee propose an “elasticities-proportional” (EP) mechanism [111],

which has game-theoretic guarantees such as Pareto Efficiency, Envy-freeness,

etc. However, the limitation of their study is that, they require each player’s

utility function to be curve-fitted to a Cobb-Douglas function, in order to obtain

its elasticities of the resources. In addition, although they prove EP is Pareto Ef-

ficient, they do not quantify the efficiency loss compared with global optimality.

5.3 Theoretical Studies of Market Equilibrium

Papadimitriou introduces the concept of Price of Anarchy (PoA) [76], which is

the lower bound of the efficiency of market equilibrium, compared with op-

timal allocation. Zhang [112] shows that in a balanced game, where each

player is assigned a budget proportional to its maximum utility, i.e., the utility

when it owns all the resources, the market equilibrium has a Price of Anarchy

PoA = Θ( 1
√

N
). On the other hand, Johari and Tsitsiklis [53] show that in a mar-

ket without budget constraint,1 the market equilibrium has a Price of Anarchy

PoA = 3/4.

5.4 Cache Partitioning in CMPs

Intelligently partitioning a CMP’s last-level cache can be an effective way to op-

timize execution of co-running application bundles. Existing cache partitioning

mechanisms generally fall into one of three categories: (a) hardware way par-

1the players are not constrained in their bids, and they try to to maximize their utility minus
the resource costs
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titioning; (b) software page coloring; or (c) probabilistic approaches that tweak

cache insertion and eviction.

5.4.1 Way Partitioning

In the single core environment, Albonesi is believed to be the first to propose

turning off unneeded cache ways to reduce cache energy [1]. Yang et al. im-

prove such technique by dynamically adjust the active cache capacity to accom-

modate the changing working set of an application [107,108]. Powell et al. adopt

an orthogonal approach, which applies way prediction and direct-mapping to

pinpointing the matching ways instead of probing all the ways [78].

In the multicore era, Suh et al. [93] propose to distribute L2 cache ways to

minimize the overall miss rate. Qureshi and Patt [79] improves their technique

by predicting the marginal utility of additional cache ways.

5.4.2 Page Coloring

Kessler and Hill were among the first to use page coloring to improve the uti-

lization of hardware cache, by distributing the physical pages evenly to differ-

ent cache sets [56]. Such technique was later adopted by commercial OS such

as FreeBSD [33]. A number of follow-up works further improve the cache uti-

lization, and reduce the overhead of page recoloring [86]. For multi-core chips,

Lin et al. [62] use page coloring to partition the shared cache among the cores

in a dual-core chip to improve system efficiency. There are also proposals to use

page coloring to partition memory banks [63,110], or even to manage cache and
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memory contention cooperatively [64].

5.4.3 Probabilistic Cache Partitioning

Sanchez and Kozyrakis propose Vantage [85], a replacement-based partition-

ing mechanism that can probabilistically guarantee the size of partitions across

applications. Wang and Chen [101] adopt a similar approach to maintaining

a partition’s cache size, by controlling the eviction priority of cache lines be-

longing to different cores. Although their simulation-based evaluations show

promise, both proposals require a non-trivial amount of additional hardware

support. For that same reason, their results cannot be validated by real imple-

mentations using commercial processors, where significant discrepancies could

arise [62]. Finally, it is unclear whether these probabilistic approaches would be

good enough for environments where strict isolation is highly desirable (e.g., to

reduce exposure to timing channel attacks).

5.4.4 Cache Partitioning for Tile-based CMPs

In tiled-based architectures, each cache tile constitutes the primary container

for the local core, and thus a natural partition exists. Lee et al. propose Cloud-

Cache [61], which explores allocating partitions potentially larger than tiles by

“borrowing” cache ways from remote tiles. Beckmann et al. improve Cloud-

Cache by favoring neighboring tiles, so that the cache access latency via on-chip

networks is minimized [7, 9].
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CHAPTER 6

CONCLUSION

This thesis explores novel approaches to dynamic and scalable resource allo-

cation in multicore systems. Most existing proposals for shared resource man-

agement in chip multiprocessors (CMP) are centralized, which has been proven

to work reasonably well at small scale (4-8 cores). However, the number of cores

on a CMP keeps piling up. Indeed, many microprocessor manufacturers nowa-

days have large-scale CMPs in their product line: From Intel’s Xeon line (10-18

cores), to ARM server processors (Cavium’s 48-core Thunder, Qualcomm’s 64-

core Hydra), and Intel’s Xeon Phi, which supports up to 288 threads contending

for shared resources simultaneously [4, 13, 20, 36, 96]. At such scale, the global

resource management technique is no longer practical, because the super-linear

increase in execution time makes global management infeasible to be applied to

large-scale CMPs.

Market mechanisms, which are widely used in real life, have been proved

to be a great success in allocating shared social resource at scale. We think a

market-based approach is also the right solution for scalable resource allocation

in large-scale CMPs. Our XChange proposal is believed to be the first to allocate

resources in a decentralized manner in large-scale CMP systems, by formulating

a purely dynamic, mostly distributed market: Sellers and buyers in the market

act individually to pursue their own benefit, and a well-regulated market of-

ten produces an outcome where everyone is reasonably happy. We prove the

effectiveness and efficiency of the market-based approach by (1) adopting an

iterative price discovery process to dynamically reconcile the resource supply

and demand; (2) shifting most of the effort to each individual core, so that the
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technique be scalable to large-scale CMPs; (3) employing hardware monitors

to construct application’s performance-resource relationship at runtime, so that

cores can accurately bid to maximize their utility; (4) providing a “knob,” which

we call wealth redistribution, to trade off system throughput and fairness effec-

tively.

Our solution can be adopted with very low overhead. In some Linux-based

SMP systems, all cores are simultaneously interrupted by an APIC timer every

1 ms to conduct a kernel statistics update routine. We propose to piggyback

on this interrupt to incorporate our price discovery mechanism. With this 1ms

as the re-allocation interval, our experiments show that the market-based ap-

proach can react fast enough to the dynamic behavior of the applications, and

significantly improve the system performance and resource utilization. We also

show that the market spends less than 0.5% of the time to reach the outcome for

CMP systems with fewer than 128 cores. The hardware requirement for work-

load characterization is also very lightweight.

In addition, we note that our proposed market-based approach is a general

framework, which can be applied to multiple shared hardware resources and a

variety of computational elements. We show success for general-purpose cores

on two arguably very important shared hardware resources, power budget and

cache capacity. Moreover, the “knob” we provide to trade off system efficiency

and fairness makes market-based mechanism applicable to a wide range of sys-

tems with different performance targets. We hope that our work inspires archi-

tects to revisit the resource allocation problem in large-scale CMP systems, and

apply our approach to systems with more shared resources, as well as other

types of cores.
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Despite the XChange’s scalability, superior system efficiency and fairness

against existing proposals, it is purely empirical, however, and thus it does not

provide any guarantees on the loss of efficiency and fairness. It is well-known,

for example, that market mechanisms in equilibrium can sometimes be highly

inefficient—this is known as Tragedy of Commons [44]. In such cases, the over-

all system efficiency is very low (1/
√

N of the maximum feasible utility, where

N is the number of market players). Even worse, because computing the opti-

mal resource allocation (OPT) often involves global optimization which is pro-

hibitively expensive, the system will not even realize it’s working in an inferior

operating point. In addition, prior market-based approaches are not able to

provide a “knob” to control the efficiency vs. fairness trade-off in a systematic

manner.

To address those issues, my thesis makes two important contributions to

the existing market-based resource allocation approaches: (1) by measuring the

Market Utility Range (MUR) and Market Budget Range (MBR) of the current

market, we can not only provide a theoretic guarantees of the system efficiency

and fairness, but also make a good estimate of these two. If MUR (MBR) in-

dicates a low throughput (fairness), a warning may be sent out to the system

administrator, so that appropriate regulation can be applied to the market; (2)

backed by the theoretical studies, we provide a practical “knob”, budget re-

assignment, which the system administrator can use to systematically trade

off system efficiency and fairness. Our experimental results using detailed

execution-driven simulations shows that our budget re-assignment technique

is intuitive, effective, and efficient in practice.
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Our budget re-assignment technique is an essential complement for the ex-

isting market-based resource allocation approaches, and is general enough to

be applied to multiple shared hardware resources and a variety of computa-

tional elements. We show success for general-purpose cores on two arguably

very important shared hardware resources, power budget and cache capacity.

Moreover, the “knob” we provide to trade off system efficiency and fairness

makes market-based mechanism applicable to a wide range of systems with

different performance targets. With enhanced robustness, monitoring support,

and adjustability between efficiency and fairness, we expect our work inspires

architects to revisit the resource allocation problem in large-scale CMP systems,

and make market-based approach more easily to be adapt in the real system

with confidence.

Our market-based approach relies on hardware and software support for

shared resource partition. Although fine-grained power partition has already

been supported by commercial chips (Intel’s RAPL technique [51]), fine-grained

cache partition remains to be a hard problem, especially for large-scale CMPs.

Two popular cache partition approaches are (a) hardware support for way par-

titioning, or (b) operating system support for set partitioning through page col-

oring. However, neither mechanism is able to scale beyond a handful of colors.

We propose SWAP [102], a fine-grained cache partitioning mechanism that

can be readily implemented in existing CMP systems. By cooperatively com-

bining the cache way (hardware) and set (OS) partitioning, SWAP is able to

divide the shared cache into literally hundreds of regions, therefore providing

sufficiently fine granularity for the upcoming manycore processor generation.
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We implement SWAP as a user-space management thread on Cavium’s

ThunderX, a server-grade 48-core processor with ARM-v8 ISA [97]. To en-

able SWAP, we introduce small changes to the Linux page allocator, and lever-

age ThunderX’s native architectural support for way partitioning. Our results

show that SWAP is able significantly improve system throughput (weighted

speedup), by twice as much speedup as what we can obtain by using only way

partitioning mechanism. To our knowledge, SWAP is the first proposal of a

fine-grained cache partitioning technique that requires no more hardware than

what’s already present in commercial server-grade CMPs.
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CHAPTER 7

FUTURE WORK

7.1 Accurate Online Utility Modeling

Accurate utility—resource modeling is critical to the resource allocation prob-

lem in CMPs. Our first attempt in XChange was to adopt a simple linear utility

model, as is discussed in Section 2.4. We found that such simple model cannot

maximize the potential of the market-based mechanism, and it sometimes may

not even outperform the baseline fair-share resource allocation. Similarly, our

experiments show that an important reason why REF [111] cannot achieve the

same performance and fairness benefit as XChange does is because it curve-fits

an application’s utility into Cobb-Douglas function. Although recent proposals

have improved performance estimation method from trial runs [26], to artificial

neural networks [12], and to analytical models [23–25], we think there is still po-

tential for improvement. For example, XChange’s utility model is based on two

well-known proposals that models cache and power utility. As we show in Sec-

tion 2.8, although the model’s relative error is low most of the time, there are

some cases where the model becomes inaccurate. Therefore, we believe more

research effort is necessary to further polish the existing utility modeling tech-

nique.

In addition, we find that the support for accurate utility modeling is not

enough in real commercial processors, despite the existence of some industrial

efforts, such as the Intel’s Cache Monitoring Technique (CMT) [46]. The shadow

tag approach [79], for example, is not readily available in real processors, al-

though it is widely used in the research community to predict an application’s
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miss ratio curve under different cache capacities. Some software techniques

have been proposed [30, 95], but they incur high execution overhead, and also

rely on hardware counters that is not available on every processor. We believe

more industrial effort to incorporate utility modeling hardware into real proces-

sors is necessary.

7.2 More CMP Resources

In this thesis, we study two of the most important resources in CMPs: power

and cache. There are other shared resources that we haven’t explored, such

as memory bandwidth, on-chip interconnect network, etc. In addition, in the

simultaneous multithreading (SMT) processors, multiple threads run on a single

core, and share resources such as instruction fetch unit, reorder buffer, execution

units, a core’s private L1 cache, etc.

The market-based approach proposed by this thesis is a general framework,

which can be applied to all the resources mentioned above, as long as: (1) the

resource’s utility function can be accurately modeled; (2) the resource can be

effectively partitioned among the cores. Besides the importance of accurate util-

ity modeling we discussed in Section 7.1, effective resource partitioning is also

essential, especially for large-scale CMPs. This thesis has shown that SWAP, a

fine-grained cache partitioning technique, can significantly improve the system

throughput in a real 48-core CMP system. However, we find there is a lack of

support in the literature to manage some other important resources mentioned

above. For example, the ability of partitioning memory bandwidth in a real pro-

cessor is quite limited. Workarounds have been proposed, where the number of
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active applications is decreased in the system to reduce memory traffic [66], so

that the QoS of the important latency-critical workload is satisfied. This is not

ideal, however, because it reduces the utilization of the core resources. A recent

proposal by Zhou and Wentzlaff [115] adopts a statistical approach in memory

bandwidth partitioning, which is promising. We believe further research in reg-

ulating memory bandwidth, and other shared CMP resources, is essential to

exploit the full potential for market-based mechanism this thesis has proposed.

7.3 Heterogeneous Architecture and SOCs

This thesis studies the resource allocation problem in homogeneous large-scale

CMPs. We observe that there is a recent trend to make CMP heterogeneous, es-

pecially in the domain of mobile processors. For example, ARM has proposed

big.LITTLE [48], a heterogeneous processing architecture where the little cores

are designed for maximum power efficiency, and the big cores are tailored for

maximum compute performance. Integrating our market-based resource allo-

cation into such heterogeneous architecture is an interesting topic for future re-

search.

We also observe that many processors today, including mobile, desktop, and

server processors, are SOCs (system on-chip). Besides a composition of general-

purpose cores, SOCs often include multiple accelerators, which are designed for

specific tasks, such as video decoding, encryption and decryption, etc. They can

not only offload the cores in the SOC, but also achieve better performance and

energy efficiency. However, these accelerators may be heavily contended by the

tasks running on different cores, and therefore can be treated as resources in
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the SOC. Applying our market-based mechanism into the problem of allocating

shared accelerators to the competing cores is another important extension of this

thesis.

7.4 Theoretic Studies

We find that most of the works in the architectural community are based on the

intuitions of human experts. Although it has shown to work well in lots of cases,

we find that studying the theoretic properties may often improve the intuitive

mechanisms. This thesis shows a good example. XChange, a heuristic market-

based approach, is proved to be scalable and effective for the resource alloca-

tion problem in large-scale CMPs. In addition, it provides an intuitive “knob”,

wealth redistribution, to trade off system efficiency and fairness. ReBudget,

on the other hand, studies the theoretic lower bound in system efficiency and

fairness of the market-based approach. Based on these theoretic properties, Re-

Budget is able to trade off the efficiency and fairness in a systematic way, and

achieves a better throughput or fairness compared with XChange.

We do not overlook the importance of human intuitions. In fact, ReBudget

was developed as a combination of human intuitions, and rigorous mathemat-

ical proofs. We encourage researchers in our field to spend more times on the-

oretic studies, especially when today’s computer architecture is often times too

complicated for human intuitions alone.
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APPENDIX A

PROOF FOR REBUDGET

A.1 Proof of Theorem 1

We introduce λ value and budget utilization metric BU into the proof from

Johari and Tsitsiklis [53], so that such proof can be generalized to a budget

constraint problem. In a market equilibrium allocation rn where player i bids

xn
i , there exists λi > 0 for this player, such that for any resources j (recall

yi j =
∑

i′,i xi′ j):

∂Ui(rn
i )

∂xi j
=
∂Ui(rn

i )
∂ri j

∂ri j

∂xi j

=
∂Ui(rn

i )
∂ri j

(
C j

xn
i j + yn

i j
−

xn
i jC j

(xn
i j + yn

i j)2 )

=
∂Ui(rn

i )
∂ri j

1
pn

j
(1 −

rn
i j

C j
)


= λi if xi j > 0

< λi if xi j = 0

(A.1)

Let Vi(ri) =
∑

j
∂Ui(rn

i )
∂ri j

(ri j− rn
i j) + Ui(rn

i ). We find the equilibrium allocation rn for

Ui is also the equilibrium allocation for Vi:

∂Vi(rn
i )

∂xi j
=
∂Vi(rn

i )
∂ri j

∂ri j

∂xi j
=
∂Ui(rn

i )
∂ri j

∂ri j

∂xi j
.

Define Nash(U) to be the social welfare (sum of players’ utility) in market

equilibrium, where players have utility function Ui. Because the market equi-

librium allocation for Ui is also the equilibrium allocation for Vi, Nash(U) =

Nash(V). Also define OPT(U) to be the maximum social welfare under any fea-

sible resource allocation, where players have utility function Ui. Due to the

131



concavity of the utility function Ui, we have Vi ≥ Ui for any resource allocation

ri. Therefore, we have OPT(V) ≥ OPT(U). As a result:

Nash(U)/OPT(U) ≥ Nash(V)/OPT(V)

Define αi j =
∂Ui(rn

i )
∂ri j

, βi = Ui(rn
i ) −
∑

j αi jrn
i j, then we have Vi(ri) =

∑
j αi jri j + βi.

Let Wi(ri) =
∑

j αi jri j, B =
∑

i βi. Then we have:

Nash(U)
OPT(U)

≥
Nash(V)
OPT(V)

≥
Nash(V) − B
OPT(V) − B

=
Nash(W)
OPT(W)

(A.2)

Next, we show the Price of Anarchy assuming players have utility Wi. The

social welfare W =
∑

i Wi(ri) =
∑

i
∑

j αi jri j =
∑

j
∑

i αi jri j. It is easy to find that the

optimal social welfare is achieved if for resource j, all C j is given to the player i

that has maximum αi j:

OPT(W) =
∑

j

C j max
i
{αi j}

For market equilibrium allocation rn, we have Nash(W) =
∑

j
∑

i αi jrn
i j. Define

Nash j =
∑

i αi jrn
i j. From Equation A.1, each player has αi j

1
pn

j
(1 −

rn
i j

C j
) = λi for any

resource j if he submits a non-zero bid to it. Therefore, αi j ≥ pn
jλi. Without loss

of generality, we define α1 j = maxi{αi j}. Then we have:

Nash j =
∑

i

αi jrn
i j = α1 jrn

1 j +
∑
i,1

αi jrn
i j

≥α1 jrn
1 j +
∑
i,1
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{λi}(C j − rn

1 j)

From Equation A.1, we have pn
j =

αi j

λi
(1 − ri j

C j
), then:

Nash j ≥α1 jrn
1 j + α1 j

mini{λi}

λ1
(C j − rn

1 j)(1 −
rn

1 j

C j
)

≥α1 jrn
1 j + α1 j

mini{λi}

maxi{λi}
(C j − rn

1 j)(1 −
rn

1 j

C j
)
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Define BU = mini{λi}

maxi{λi}
, then:

Nash j ≥α1 j(rn
1 j + BU(C j − rn

1 j)(1 −
rn

1 j

C j
)

=α1 j[
BU
C j

(rn
1 j − (1 −

1
2BU

))2 + C j(1 −
1

4BU
)]

Therefore, if BU ≥ 1
2 , Nash j ≥ α1 jC j(1 − 1

4BU ), and:

Nash(W) =
∑

j

Nash j ≥ (1 −
1

4BU
)
∑

j

max
i
{αi j}C j

=(1 −
1

4BU
)OPT(W) ≥

1
2

OPT(W)

If BU < 1
2 , Nash j > α1 jC j · BU, then:

Nash(W) > BU ·OPT(W)

Combined with Equation A.2, we have:

• If BU ≥ 1
2 :

Nash(U)
OPT(U)

≥
Nash(W)
OPT(W)

≥ (1 −
1

4BU
) (A.3)

• If BU > 1
2 :

Nash(U)
OPT(U)

≥
Nash(W)
OPT(W)

≥ BU (A.4)

�

A.2 Proof of Theorem 2

We introduce budget variation BV into Zhang’s proof of envy-freeness with equal

budget, so that our results apply to a market with an arbitrary budget assign-

ment for players.
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The idea for proving envy-freeness is to prove that at market equilibrium, for

any bid vector z with 0 ≤ z j ≤ yn
i j, and

∑
j z j = maxi{Xi}, Ui(rn

i ) ≥ c·Ui(
z j

xn
i j+yn

i j
) always

stands.

To prove this, we construct the same Vi(ri) and Wi(ri) utility function for

player i as we did in Section A.1. We also define pi j =
αi jC j

xi j+yi j
, and therefore,

Wi(ri(xi)) =
∑

j pi jxi j. We also define the budget variation for player i:

BVi =
Xi

max j{X j}
(A.5)

By adopting the same technique as Zhang does [112], we construct a matrix

{b jk} for 0 ≤ j, k ≤ M, where M is the number of resources. Such matrix satisfies

the following three conditions:

b j j = min
j
{xi j, z j · BVi},

∑
k

b jk = xi j,
∑

j

b jk = zk · BVi

Because
∑

j
∑

k b jk = Xi, and
∑

k
∑

j b jk = BVi ·
∑

k zk = Xi, such matrix {b jk} exists.

Therefore, we have:

Wi(xi) =
∑

j

pi jxi j =
∑

j

pi j

∑
k

b jk =
∑

j

(pi jb j j + pi j

∑
k, j

b jk)

Based on Equation A.1, we define the marginal utility of bid xi j to be:

λi j =
∂Ui

∂xi j
= αi j

yi jC j

(xi j + yi j)2


= λi if xi j > 0

< λi if xi j = 0
(A.6)

Therefore, pi j/λi j =
xi j+yi j

yi j
> 1, pi j ≥ λi j, and we have:

Wi(xi) =
∑

j

(pi jb j j + pi j

∑
k, j

b jk)

≥
∑

j

(pi jb j j + λi j

∑
k, j

b jk)
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If b jk > 0, this implies xi j > 0. Then according to Equation A.6, λi j = λi ≥ λik,∀k.

Therefore:
Wi(xi) ≥

∑
j

(pi jb j j +
∑
k, j

λikb jk)

=
∑

k

(pikbkk + λik

∑
j,k

b jk)

Let Wik = pikbkk + λik
∑

j,k b jk, then:

• If zk ·BVi ≤ xik, then based on definition, bkk = zk ·BVi, and
∑

j,k b jk = zk − zk = 0.

Therefore,

Wik = pikbkk + λik

∑
j,k

b jk = pikzk · BVi (A.7)

• If zk · BVi ≥ xik, then bkk = xik, and
∑

j,k b jk = zk · BVi − xik. Therefore, we have:

Wik =pikxik + λik · (zk · BVi − xik)

=pikxik + pik
yik

xik + yik
(zk · BVi − xik)

=pikzik · (
yik · BVi

xik + yik
+

x2
ik

(xik + yik)zk
)

≥pikzik · (
yik · BVi

xik + yik
+

x2
ik

(xik + yik)yik
), zk ≤ yik

=pikzik ·
y2

ik · BVi + x2
ik

(xik + yik)yik

By fix yik, for any xik, we can get:

Wik ≥ pikzik · (2
√

1 + BVi − 2) (A.8)

The equality holds only when xik = yik · (
√

1 + BVi − 1).

Combining Equation A.7 and Equation A.8, we have:

Wi(xi) =
∑

k

Wik

≥min{BVi, 2
√

1 + BVi − 2} ·
∑

k

pikzik

=(2
√

1 + BVi − 2) ·Wi(z)
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Recall in Section A.1, Vi(xi) = Wi(xi) + βi. Also, because BVi = Xi
max j{X j}

≤ 1, we

have 2
√

1 + BVi − 2 ≤ 1. and therefore:

Vi(xi) =Wi(xi) + βi ≥ (2
√

1 + BVi − 2)(Wi(xi) + βi)

=(2
√

1 + BVi − 2) · Vi(z)

Again, recall in Section A.1, for any bid vector xi, Vi(xi) ≥ Ui(xi), and the

market equilibrium bid vector xn
i are the same for player with Ui or Vi utility

function, and therefore, we have:

Ui(xn
i ) = Vi(xn

i ) ≥ (2
√

1 + BVi − 2) · Vi(z) ≥ (2
√

1 + BVi − 2) · Ui(z)

Finally, for the all the players, define budget variation to be:

BV =
min{Xi}

maxi{Xi}
≤ BVi for ∀i

And therefore, for any player i,

Ui(xn
i ) ≥ (2

√
1 + BVi − 2) · Ui(z) ≥ (2

√
1 + BV − 2) · Ui(z) �

A.3 Proof of Theorem 3

A market with proportional budget is defined as: (1) for each player i, if he is

given all the resources C, his utility Ui(C) = 1 (or a player-independent con-

stant); (2) his budget is proportional to Ui(C) − Ui(0). Without loss of generality,

we let budget Xi = 1 −Ui(0). Therefore, the maximum Xi = 1, and BVi ≥ Xi. Also

we define a utility function for player i: Ūi(ri(xi)) = Ui(ri(xi)) − Ui(0). If players

are using Ūi to participate in the market, then based on Theorem 2, we have:

Ūi(xn
i ) ≥ (2

√
1 + BV − 2) · Ūi(z)
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It is easy to find that the market equilibrium of Ūi is also the equilibrium of Ui.

Therefore, we have:

Ui(xn
i ) =Ui(0) + Ūi(xn

i ) = 1 − Xi + Ūi(xn
i )

≥1 − Xi + (2
√

1 + BVi − 2) · Ūi(z)

≥1 − Xi + (2
√

1 + Xi − 2) · Ūi(z)

=Ui(z) ·
1 − Xi + (2

√
1 + Xi − 2) · Ūi(z)
Ui(z)

=Ui(z) ·
1 − Xi + (2

√
1 + Xi − 2) · Ūi(z)

1 − Xi + Ūi(z)

=Ui(z) · (2
√

1 + Xi − 2 +
(3 − 2

√
1 + Xi)(1 − Xi)

1 − Xi + Ūi(z)

Because Ūi(z) ≤ Xi, we have:

Ui(xn
i ) ≥Ui(z) · [2

√
1 + Xi − 2 + (3 − 2

√
1 + Xi)(1 − Xi)]

≥Ui(z) · 0.718

The equality holds only when Xi =
√

21−1
6 = 0.597. �
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