

Scalable High Performance Main Memory System Using PCM Technology

Moinuddin K. Qureshi

Viji Srinivasan and Jude Rivers

IBM T. J. Watson Research Center, Yorktown Heights, NY

International Symposium on Computer Architecture (ISCA-2009)

Jul-28-09

_	-	-	
	_		
	-	-	===
	_	-	

Main Memory Capacity Wall

More cores in system → More concurrency → Larger working set

Demand for main memory capacity continues to increase

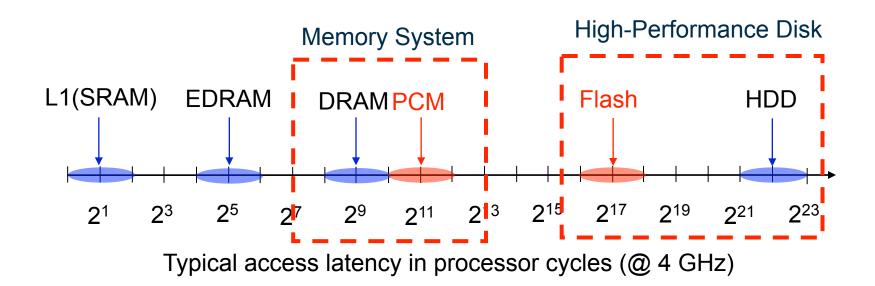
Main Memory System consisting of DRAM are hitting:

- 1. Cost wall: Major % of cost of large servers is main memory
- 2. Scaling wall: DRAM scaling to small technology is challenge
- 3. Power wall:

IBM P670 Server	Processor	Memory
Small (4 proc, 16GB)	384 Watts	314 Watts
Large (16 proc, 128GB)	840 Watts	1223 Watts

Source: Lefurgy et al. IEEE Computer 2003

Need a practical solution to increase main-memory capacity


2

The Technology Hierarchy

3

More capacity by cheaper, denser, (slower) technology

Phase Change Memory (PCM) promising candidate for large capacity main memory

_	

Introduction

- □ What is PCM ?
- Hybrid Memory System

Evaluation

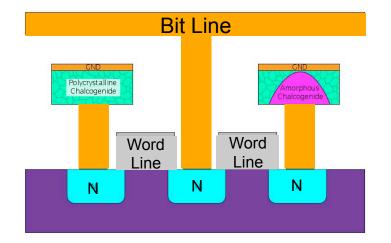
Lifetime Analysis

□ Summary

4

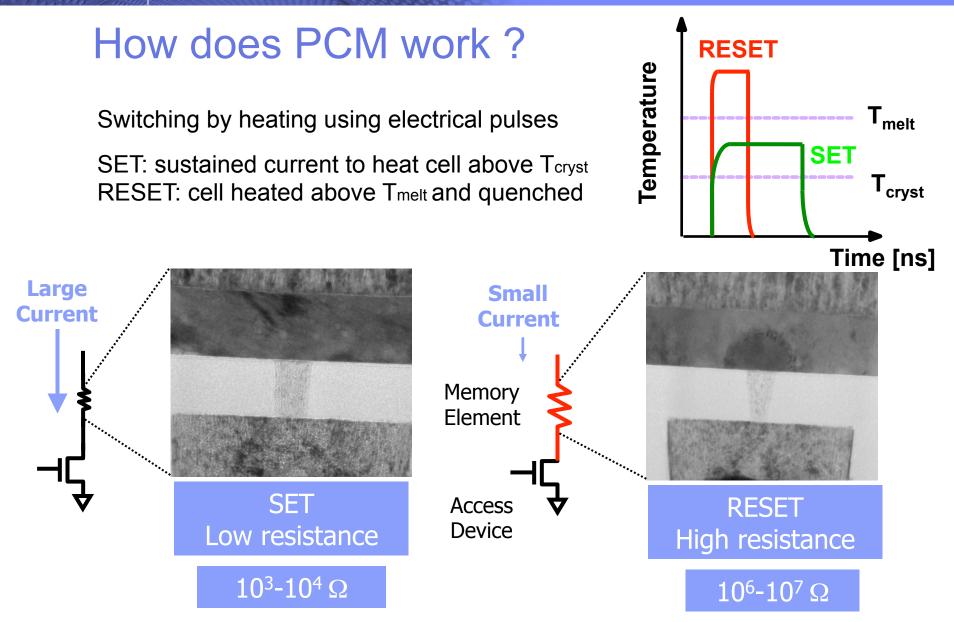
IBM

What is Phase Change Memory?


Phase change material (chalcogenide glass) exists in two states:

- 1. Amorphous: high resistivity
- 2. Crystalline: low resistivity

Materials can be switched between states reliably, quickly, large number of times


PCM stores data in terms of resistance

- Low resistance (SET state) = 1
- High resistance (RESET state) = 0

5

Key Characteristics of PCM

+ Scales better than DRAM, small cell size Prototypes as small as 3nm x 20 nm fabricated and tested [Raoux+ IBMJRD'08]

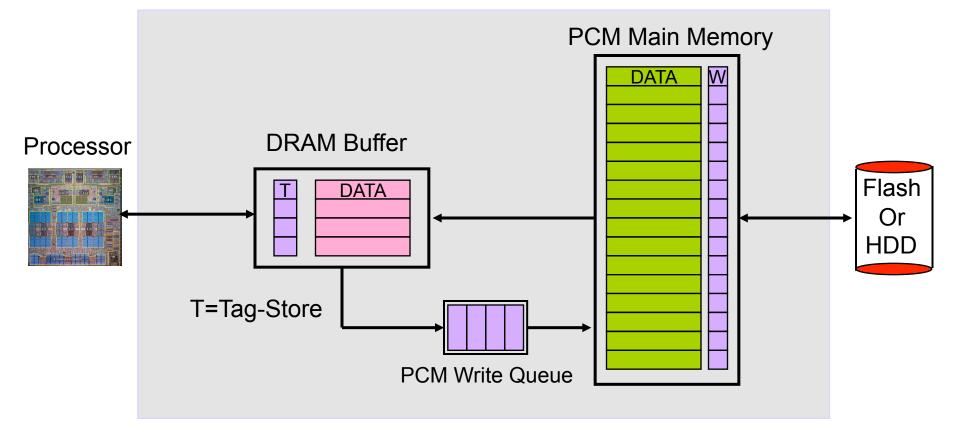
+ Can store multiple bits/cell → More density in the same area Prototypes with 2 bits/cell in ISSCC'08. >2 bits/cell expected soon.

+ Non-Volatile Memory Technology
 Data retention of 10 years → Power implications, system implications

Challenges:

- More latency compared to DRAM.
- Limited Endurance (~10 million writes per cell)
- Write bandwidth constrained, so better to write less often.

_	
_	
_	

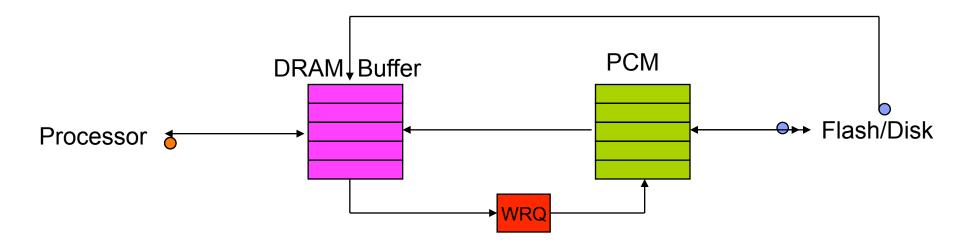

Introduction

- □ What is PCM ?
- Hybrid Memory System
- Evaluation
- Lifetime Analysis

Summary

Hybrid Memory System

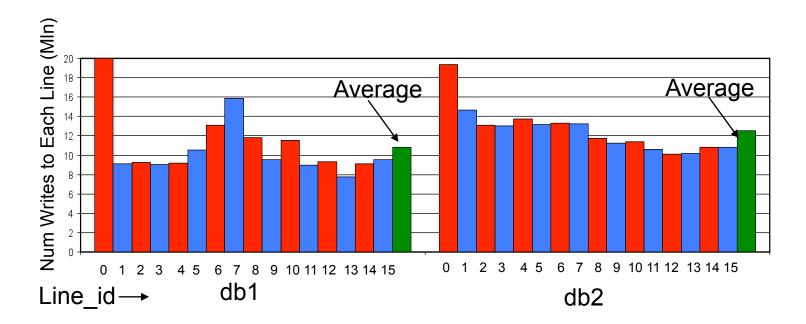
Hybrid Memory System:


- 1. DRAM as cache to tolerate PCM Rd/Wr latency and Wr bandwidth
- 2. PCM as main-memory to provide large capacity at good cost/power

IBM

Lazy Write Architecture

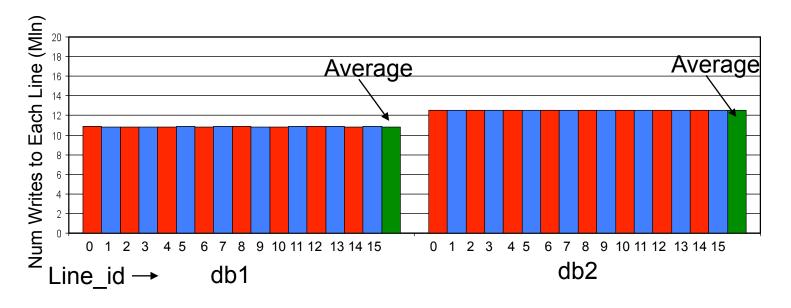
Problem: Double PCM writes to dirty pages on install



For example: Daxpy Kernel: Y[i] = Y[i] + X[i] Baseline has 2 writes for Y[i] and 1 for X[i] Lazy write has 1 write for Y[i] and 1 for X[i]

Line Level Write Back

Problem: Not all lines in a dirty page are dirty Solution: Dirty bits per line in DRAM buffer and write-back only dirty lines from DRAM to PCM


Problem: With LLWB, not all lines in dirty pages are written uniformly

Fine Grained Wear Leveling

Solution: Fine Grained Wear Leveling (FGWL) -When a page gets allocated page is rotated by a random shift value -The rotate value remains constant while page remains in memory

-On replacement of a page, a new random value is assigned for a new page -Over time, the write traffic per line becomes uniform.

FGWL makes writes across lines in a dirty page uniform

_	
_	
_	

Introduction

□ What is PCM ?

□ Hybrid Memory System

Evaluation

□ Lifetime Analysis

□ Summary

_	

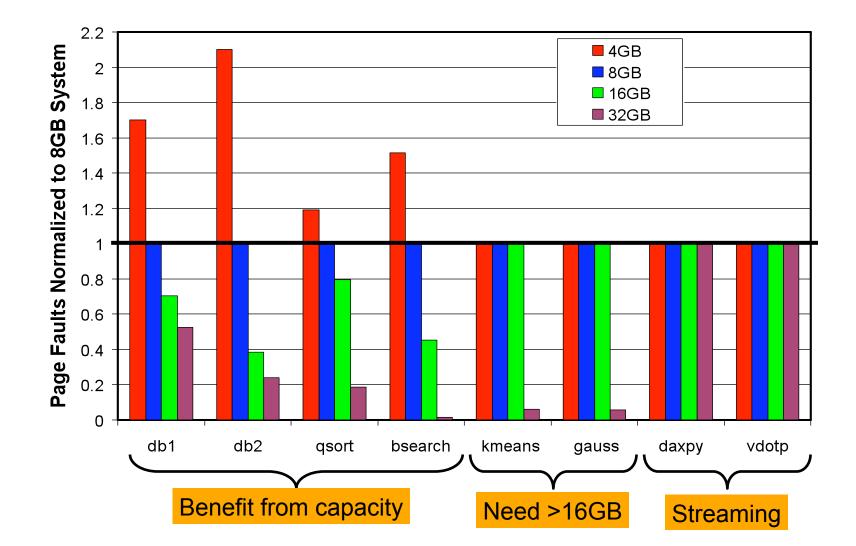
Evaluation Framework

Trace Driven Simulator:

16-core system (simple core), 8GB DRAM main-memory at 320 cycles HDD (2 ms) with Flash (32 us) with Flash hit-rate of 99%

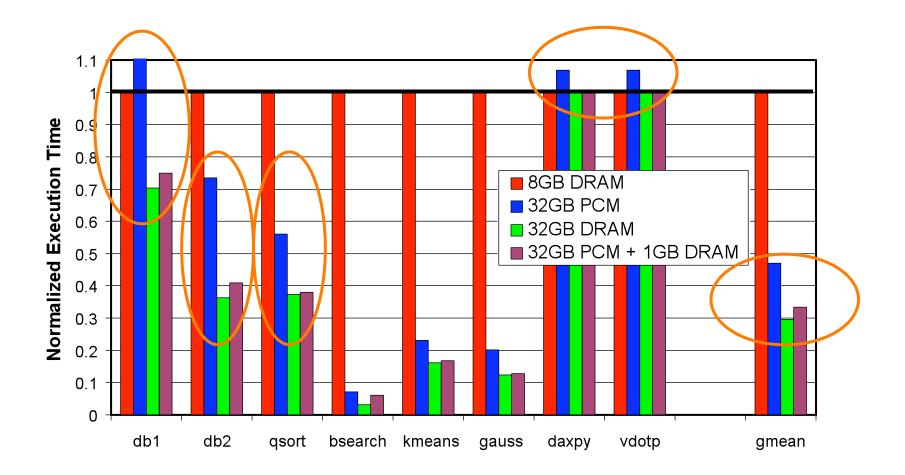
Workloads:

Database workloads & Data parallel kernels


- 1. Database workloads: db1 and db2
- 2. Unix utilities: qsort and binary search
- 3. Data Mining : K-means and Gauss Seidal
- 4. Streaming: DAXPY and Vector Dot Product

Assumption:

PCM 4X denser & 4X slower than DRAM → 32GB @ 1280 cycle read latency


_	-		_
_		_	
			STATISTICS.
_			

Reduction in Page Faults

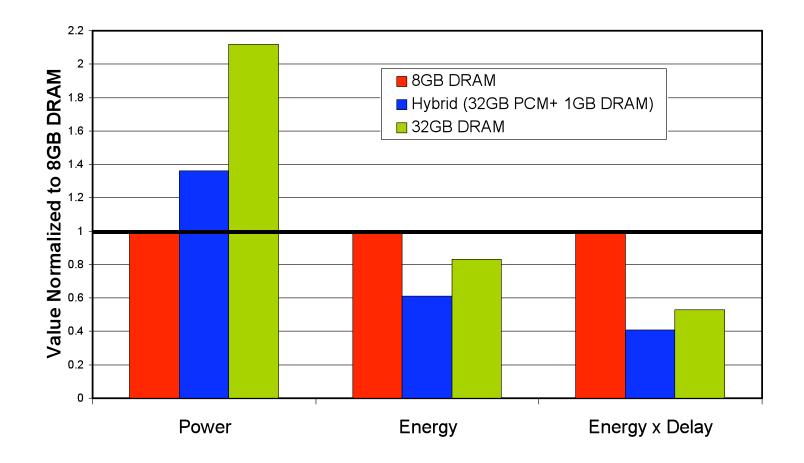
_	-		_
_		_	
			STATISTICS.
_			

Impact on Execution Time

PCM with DRAM buffer performs similar to equal capacity DRAM storage

	_	

Impact of PCM Latency


17

Hybrid memory system is relatively insensitive to PCM Latency

Power Evaluations

Significant Power and Energy savings with PCM based hybrid memory system

_	
_	
_	

Introduction

□ What is PCM ?

Hybrid Memory System

Evaluation

□ Lifetime Analysis

Summary

			_
	_	-	
_	_	_	
	-		

Impact of Write Endurance

B → Bytes/Cycle written to PCM
S → PCM capacity in bytes
Wmax → Max writes per PCM cell
Assuming uniform writes to PCM

Endurance (in cycles) = (S/B).Wmax

F → Frequency of System (4GHz)
Y = Number of years (lifetime)
There are 2²⁵ seconds in a year

Num. cycles in Y years = Y. $F.2^{25}$

For a 4GHz System, a 32GB PCM written at 1 Byte per Cycle $Y = \frac{Wmax}{4 \text{ million}}$

If Wmax = 10 million, PCM will last for 2.5 years

Lifetime Results

Table shows average bytes per cycle written to PCM and Average lifetime of PCM assuming Wmax = 10 million

Configuration	Avg. Bytes/Cycle	Avg. Lifetime
1GB DRAM + 32GB PCM	0.807	3.0 yrs
+ Lazy Write	0.725	3.4 yrs
+ Line Level Write Back	0.316	7.6 yrs
+ Bypass Streaming Apps	0.247	9.7 yrs

Proposed filtering techniques reduce write traffic to PCM by 3.2X, increasing its lifetime from 3 to 9.7 years

_	
_	

Introduction

□ What is PCM ?

□ Hybrid Memory System

Evaluation

□ Lifetime Analysis

□ Summary

			_
	_	-	
_	_	_	
	-		

Summary

- Need more main memory capacity: DRAM hitting power, cost, scaling wall
- PCM is an emerging technology 4x denser than DRAM but with slower access time and limited write endurance
- □ We propose a Hybrid Memory System (DRAM+PCM) that provides significant power and performance benefits
- Proposed write filtering techniques reduce writes by 3x and increase PCM lifetime from 3 years to 9 years

Not touched in this talk but important: Exploiting non-volatile memories for system enhancement & related OS issues.

Thanks!