Scalars and Vectors

Syllabus

2.0 Introduction

- 2.1 Addition and substraction of vectors
- 2.2 Product of vectors

If we have any two skew vectors \vec{a} and \vec{b} , the right-hand rule is used to determine the direction of third vector \vec{c} . Vector \vec{c} is normal to the plane containing vectors a and b such that $\vec{c} = \vec{a} \times \vec{b}$.

Formulae

1. Magnitude of resultant of two vectors \overrightarrow{P} and

 $R = \sqrt{P^2 + Q^2 + 2PQ\cos\theta}$

2. Direction of resultant vector :

$$\alpha = \tan^{-1} \left[\frac{Q\sin\theta}{P + Q\cos\theta} \right]$$

Where \overrightarrow{P} and \overrightarrow{Q} are two adjacent vectors

3. Commutative law of vector addition :

$$\vec{P} + \vec{Q} = \vec{Q} + \vec{P}$$

4. Associative law of vector addition :

$$\overrightarrow{P}(\overrightarrow{Q} + \overrightarrow{R}) = (\overrightarrow{P} + \overrightarrow{Q}) + \overrightarrow{R}$$

5. Distributve law of multiplication over addition :

i.
$$\vec{P} \cdot (\vec{Q} + \vec{R}) = \vec{P} \cdot \vec{Q} + \vec{P} \cdot \vec{R}$$

$$\vec{\mathbf{n}}. \quad \vec{\mathbf{P}} \times (\vec{\mathbf{Q}} + \vec{\mathbf{R}}) = \vec{\mathbf{P}} \times \vec{\mathbf{Q}} + \vec{\mathbf{P}} \times \vec{\mathbf{R}}$$

6. Distributive law of multiplication over subtraction :

$$\vec{P} \cdot (\vec{Q} - \vec{R}) = \vec{P} \cdot \vec{Q} - \vec{P} \cdot \vec{R}$$

i.

7.

ii.
$$\vec{P} \times (\vec{Q} - \vec{R}) = \vec{P} \times \vec{Q} - \vec{P} \times \vec{R}$$

Magnitude of resolution of a vector : i. along two dimensional rectangular components

$$R = \sqrt{R_x^2 + R_y^2}$$

ii. along three dimensional rectangular components

$$\mathbf{R} = \sqrt{\mathbf{R}_{\mathrm{x}}^2 + \mathbf{R}_{\mathrm{y}}^2 + \mathbf{R}_{\mathrm{z}}^2}$$

8. Angle of inclination of resultant with positive direction of X-axis :

$$\theta = \tan^{-1} \left(\frac{R_y}{R_x} \right)$$

9. Scalar (dot) product of two vectors :

i.
$$\vec{P} \cdot \vec{Q} = PQ \cos\theta$$

ii. $\cos\theta = \frac{\vec{P} \cdot \vec{Q}}{|\vec{P}||\vec{Q}|}$

iii.
$$\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$$

iv.
$$\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$$

Scalars & Vectors

- v. If $\overrightarrow{P} = P_x \hat{i} + P_y \hat{j} + P_z \hat{k}$ and $\overrightarrow{Q} = Q_x \hat{i} + Q_y \hat{j} + Q_z \hat{k}$, $\overrightarrow{P} \cdot \overrightarrow{Q} = P_x Q_x + P_y Q_y + P_z Q_z$
- 10. Vector (cross) product of two vectors :
 - i. $\vec{P} \times \vec{Q} = PQ\sin\theta$

ii.
$$\sin \theta = \frac{\overrightarrow{P} \times \overrightarrow{Q}}{|\overrightarrow{P}|| \overrightarrow{Q}|}$$

iii. Unit vector perpendicular to the cross product

$$\hat{n} = \frac{\vec{P} \times \vec{Q}}{PO \sin \theta}$$

iv. Cross product of unit vectors

$$\hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{k}} = \mathbf{0}$$
$$\hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}}, \, \hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}}, \, \hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}}$$

v. If
$$P = P_x \mathbf{i} + P_y \mathbf{j} + P_z \mathbf{k}$$

and $\vec{Q} = Q_x \hat{\mathbf{i}} + Q_y \hat{\mathbf{j}} + Q_z \hat{\mathbf{k}},$
 $\vec{P} \times \vec{Q} = (P_y Q_z - P_z Q_y) \hat{\mathbf{i}} - (P_x Q_z - P_z Q_x) \hat{\mathbf{j}}$
 $+ (P_x Q_y - P_y Q_x) \hat{\mathbf{k}}$

$$\vec{x} \cdot \vec{P} \times \vec{Q} = \begin{vmatrix} 1 & j & k \\ P_x & P_y & P_z \\ Q_x & Q_y & Q_z \end{vmatrix}$$

11. Direction cosine of a vector :

i.
$$\cos \alpha = \frac{R_x}{R}$$
 ii. $\cos \beta = \frac{R_y}{R}$

iii.
$$\cos \gamma = \frac{R_z}{R}$$

- 12. Area of parallelogram : | cross product of two vectors representing adjacent sides |
- 13. Area of triangle :
 - $\frac{1}{2}$ × | cross product of two adjacent sides |

- 1. Scalars are added, subtracted and divided algebraically.
- 2. Vectors are added and subtracted geometrically.
- 3. The vectors acting in the same plane are called coplanar vectors. The vectors which are perpendicular to each other are called orthogonal vectors.
- 4. Commutative and associative laws are true for vector addition but not true for subtraction of vectors.
- 5. Two vectors can be added by using either triangle law or parallelogram law of vector addition.
- 6. If two vectors \vec{P} and \vec{Q} lie at an angle θ , then the magnitude of their resultant is given by

$$R = \sqrt{P^2 + Q^2 + 2PQ\cos\theta}$$

- i. If $\theta = 0^0$ i.e., two vectors are parallel then R = P + Q
- ii. If $\theta = 90^{\circ}$ i.e., two vectors are perpendicular then

$$R = \sqrt{P^2 + Q^2}$$

- iii. If $\theta = 180^{\circ}$ i.e., they have common point but acting in opposite direction then R = P - O
- iv. Range of resultant of two vectors is,

$$\vec{P} - \vec{Q} \leq \vec{R} \leq \vec{P} + \vec{Q}$$

7. If a vector \overrightarrow{P} splits up into two rectangular components then it is given by

$$\vec{P} = \vec{P}_x + \vec{P}_y$$

Horizontal component of $\vec{P} = \vec{P}_x = P \cos \theta$

Vertical component of $\vec{\mathbf{P}} = \vec{\mathbf{P}}_{v} = P \sin \theta$

8. For three rectangular components i.e., along x, y and z axis

$$\vec{\mathbf{P}} = \vec{\mathbf{P}}_{x} + \vec{\mathbf{P}}_{y} + \vec{\mathbf{P}}_{z}$$

- 9. Division of vectors is not allowed as directions cannot be divided.
- 10. Angle between two vectors can be determined either by using dot product or cross product of two vectors.

θ	$\overrightarrow{P.Q}(PQ\cos\theta)$	$\vec{P} \times \vec{Q}(PQ\sin\theta)$
0^0	PQ	0
90 ⁰	0	PQ
180^{0}	- PQ	0

Scalars & Vectors

Mindbenders

- 1. The magnitude of a vector is a scalar while component of a vector is a vector.
- 2. A quantity having magnitude and direction is not necessarily a vector. eg.: time, finite, angular displacement and electric current. These quantities have magnitude and direction but they are scalars. This is because they do not obey the laws of vector addition.
- 3. The resultant of two vectors of unequal magnitude can never be a null vector.
- 4. The magnitude of rectangular components of a vector is always less than the magnitude of the vector.
- 5. Unit vector does not have any dimensions and unit. It is only used to specify direction.
- If the frame of reference is rotated or displaced, 6. the vector will not change. If the frame of reference is translated only the components of the vector change. If the frame of reference is rotated the components as well as direction cosines of the vector change.
- 7. A physical quantity which has different values in different directions is called a tensor. e.g.: Moment of inertia

Shortcuts

between $\stackrel{\rightarrow}{A}$ and $\stackrel{\rightarrow}{B}$ is 90°. Also some values that A, B and C can have are: i. A = 3, B = 4, C = 5ii. A = 5, B = 12, C = 13

- iii. A = 8, B = 15, C = 17
- 3. If $|\vec{A} \times \vec{B}| = |\vec{A} \vec{B}|$, then the angle between \vec{A} and $\stackrel{\rightarrow}{\mathbf{B}}$ is 90°.
- Angle between $(\vec{A} + \vec{B})$ and $(\vec{A} \times \vec{B})$ is 90°. 4.
- Angle between $(\hat{i} + \hat{j})$ and \hat{i} is 45° and that 5.
 - between $(i+i)^{\wedge}$ and k^{\wedge} is 90°.
- 6. Unit vector :

i. along $(\hat{i} + \hat{j})$ is $(\hat{i} + \hat{j})/\sqrt{2}$

ii. along
$$(\hat{i}+\hat{j}+\hat{k})$$
 is $(\hat{i}+\hat{j}+\hat{k})/\sqrt{3}$

iii. along
$$(\hat{i} - \hat{j})$$
 is $(\hat{i} - \hat{j})/\sqrt{2}$

7. Two vectors are collinear if their dot product equals the product of their magnitudes and their cross product is zero.

When a bird has to fly, it presses air with its two wings along on oblique direction. The resultant of the reactions on the two wings of the bird enables it to fly up in the sky. Thus, it is an example of composition of vectors.

Multiple Choice Questions

Classical Thinking

2.0 Introduction

1.	Vectors are physic	al quantities which are
/	completely specified	by
	a) magnitude only	
	b) number only	
	c) direction only	
	d) both magnitude an	d direction
2.	The magnitude of a v	vector cannot be
	a) zero	b) negative
	c) positive	d) unity
3.	Which of the following	ng is a scalar?
	a) Displacement	b) Kinetic energy
	c) Couple	d) Momentum
4.	Which of the following	ng is a scalar?
	a) Torque	b) Linear momentum
	c) Electric field	d) Electric potential
5.	Out of the following p	hysical quantities which is
	NOT a scalar ?	
	a) Angular velocity	b) Angular frequency
	c) Number of moles	d) Total path length
6.	Which of the following	g quantity is a vector?
	a) pressure	b) time
	c) impulse	d) charge

2

3

4

5

\frown			
\bigcirc	Scalars	& Vec	tors 4
7.	The vectors of the same quantity having same		a) $\stackrel{\rightarrow}{}_{A}$ and $\stackrel{\rightarrow}{}_{B}$ act in the same direction
	a) parallel vectors b) equal vectors		b) \overrightarrow{A} and \overrightarrow{B} act in the opposite direction
8.	c) zero vectors d) negative vectors A single vector which produces the same effect		c) $$ and $$ are different physical quantities
	of two or more vectors is called		d) $$ and $$ have some magnitude
	c) positive vector d) equal vector	17.	Law of polygon of vectors is a repeated use of $A = A = A = A$
) 1	Addition and subtraction of voctors		a) triangle law of vectors
).	Choose the INCORRECT statement.		b) parallelogram law of vectors
	a) Vectors having same direction can be added.		 d) multiplication law of vectors
	b) Vectors having same magnitude can be added.	18	In parallelogram law of vectors the direction of
	c) Vectors having different physical quantities can be added.	10.	resultant vector is given by
	d) Vectors representing same physical quantity		a) $\tan \alpha = \frac{Q\cos\theta}{1-2}$
10	can be added.		$P + Q\sin\theta$
10.	a) non-commutative only		$\log \tan \alpha = - Q \sin \theta$
	b) non-associative only		b) $\tan \alpha = \frac{1}{P + Q\cos\theta}$
	c) neither non-commutative nor non-associative		P sin A
	d) neither commutative nor associative		c) $\tan \alpha = \frac{1}{P + \Omega \cos \theta}$
1.	The process of finding the resultant of two or	7	1 + Q0030
	more vectors is called		$P\cos\theta$
	a) resolution of vectors only	D	d) $\frac{1}{P} + Q\cos\theta$
	c) subtraction of vectors only		
	d) composition of vectors	19.	If vector $\mathbf{A} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$, its magnitude is
2.	The resultant of two vectors will be maximum, if		a) 1 b) $\sqrt{3}$
	a) equal vectors b) parallel vectors		
	c) coplanar vectors d) orthogonal vectors		c) $\sqrt{9}$ d) $\sqrt{29}$
3.	The resultant of two vectors will be minimum, if	20.	A vector is represented by $\vec{\mathbf{p}} = 3\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$, its
	a) equal vectors		length in XY plane is
	b) parallel to each other		a) 2 unit b) $\sqrt{5} \text{ unit}$
	c) coplanar vectors		a) 2 unit 0 $\sqrt{5}$ unit
4.	d) perpendicular to each other The process of finding the components of a given		c) $\sqrt{10}$ unit d) $\sqrt{15}$ unit
	a) composition of vector	21.	The direction cosines of $\vec{A} = -\hat{i} + 2\hat{j} + 3\hat{k}$ is
	b) multiplication of vector		
	c) addition of vector		a) $\frac{1}{\sqrt{1+1}}, \frac{2}{\sqrt{1+1}}, \frac{3}{\sqrt{1+1}}$ b) $-\frac{1}{\sqrt{1+1}}, \frac{2}{\sqrt{1+1}}, \frac{3}{\sqrt{1+1}}$
~	d) resolution of vector		$\sqrt{14} \sqrt{14} \sqrt{14} \sqrt{14} \sqrt{14} \sqrt{14} \sqrt{14}$
5.	If the component of one vector in the direction of another vector is zero, then those two vectors		1 -2 3 -1 2 -3
	are .		c) $\overline{\sqrt{14}}, \overline{\sqrt{14}}, \overline{\sqrt{14}}$ d) $\overline{\sqrt{14}}, \overline{\sqrt{14}}, \overline{\sqrt{14}}$
	a) parallel to each other	22	In a cartesian coordinate system, the coordinate
	b) opposite to each other	22.	of two points P and O are $(2, 3, -6)$ and $(-2, -5, 7)$
	c) coplanar vectors d) perpendicular to each other		respectively, the vector \overline{PQ} is represented by
	a) perpendicular to calculation $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$		
6.	Under what condition $ A+B = A + B $ holds		a) $-4\hat{i}-8\hat{j}-13\hat{k}$ b) $-4\hat{i}+8\hat{j}-13\hat{k}$
	good ?		c) $A_i^{\circ} \otimes A_i^{\circ} \otimes A$
		I	-7 - 41 - 0 - 13K $-7 - 41 - 0 - 13K$

	DGT MH –CET 11th PHYSICS Study Material													
\bigcirc	Scalars	& Vect	ors 5											
23.	Three coplanar vectors in arbitrary units are given by $\vec{A} = 4\hat{i} + 2\hat{j} - 3\hat{k}$, $\vec{B} = \hat{i} + \hat{j} + 3\hat{k}$ and $\vec{C} = 4\hat{i} + 3\hat{j} + 3\hat{k}$, the resultant is a) $8\hat{i} + 3\hat{j} + 3\hat{k}$ b) $5\hat{i} + 3\hat{j} - 3\hat{k}$ c) $9\hat{i} + 8\hat{j} + 12\hat{k}$ d) $9\hat{i} + 8\hat{j} + 3\hat{k}$	30.	a) 20 m/s b) 17.32 m/s c) 10 m/s d) 7 m/s A body of mass 10 kg is placed on a smooth inclined plane making an angle of 30° with the horizontal, the component of the force of gravity trying to move the body down the inclined plane is (g = 9.8 m/s ²) a) 98 N b) 49 N c) 10 N d) 5 N											
24.	The unit vector parallel to the resultant of the vectors $\vec{A} = 4\hat{i}+3\hat{j}+6\hat{k}$ and $\vec{B} = -\hat{i}+3\hat{j}-8\hat{k}$ is a) $\frac{1}{7}(3\hat{i}+6\hat{j}-2\hat{k})$ b) $\frac{1}{7}(3\hat{i}+6\hat{j}+2\hat{k})$ c) $\frac{1}{49}(3\hat{i}+6\hat{j}-2\hat{k})$ d) $\frac{1}{49}(3\hat{i}-6\hat{j}+2\hat{k})$	2.2 31.	Product of vectors The vectors $\vec{A} = 6\hat{i} + 9\hat{j} - 3\hat{k}$ and $\vec{B} = 2\hat{i} + 3\hat{j} - \hat{k}$ are a) parallel b) antiparallel c) perpendicular d) identical											
25.	If $\vec{A} = 3\hat{i} + 2\hat{j} - 4\hat{k}$ and $\vec{B} = 5\hat{i} - 7\hat{j} + 2\hat{k}$, which vector when added to $\vec{A} + \vec{B}$ will give unit vector along X-axis? a) $7\hat{i} + 5\hat{j} + 2\hat{k}$ b) $-7\hat{i} - 5\hat{j} + 2\hat{k}$ c) $-7\hat{i} + 5\hat{j} + 2\hat{k}$ d) $7\hat{i} + 5\hat{j} - 2\hat{k}$	32. 33.	 a) added b) subtracted c) multiplied d) divided Choose the WRONG statement. a) Scalar product of two vectors is a scalar quantity b) Dot product of two vectors obeys the distributive law of multiplication 											
26.	The magnitude of the resultant of two vectors \overrightarrow{p} and \overrightarrow{Q} is R. It is given by a) $R = \sqrt{P^2 + Q^2 + 2PQ\sin\theta}$ b) $R = \sqrt{P^2 + Q^2 + 2PQ\cos\theta}$ c) $R = \sqrt{P^2 + Q^2 + PQ\sin\theta}$ d) $R = \sqrt{P^2 + Q^2 + PQ\cos\theta}$	34.	 c) Dot product of a vector with itself is zero d) Scalar product of vector with itself is equal to square of its magnitude The scalar product of electric field intensity and area vector through which the line of force emerges is a) electric potential b) electric current c) electric charge density d) electric flux The example of dot product is 											
27.	Two equal forces acting at a point, at right angle to each other have a resultant of 14.14 N. The magnitude of each force is a) 28.28 N b) 24.14 N c) 10 N d) 7.07 N A body is acted upon by two forces of magnitudes		 a) angular momentum b) moment of force c) linear velocity of terms of angular velocity d) magnetic flux linked with the surface of mangetic induction 											
20.	F ₁ = $\sqrt{2}$ N and F ₂ = 3 N which are inclined at 45° to each other. The magnitude of resultant force acting on the body is a) 17 N b) 11 N c) $\sqrt{17}$ N d) $\sqrt{11}$ N	36.	Two vectors \overrightarrow{A} and \overrightarrow{B} are at right angles to each other then a) $\overrightarrow{A} \cdot \overrightarrow{B} = 0$ b) $\overrightarrow{A} \times \overrightarrow{B} = 0$ \overrightarrow{A} \overrightarrow{B}											
29.	The velocity of a body is 20 m/s making an angle of 30° with the horizontal, the vertical component of velocity is		c) $\frac{A}{A} = 0$ B d) $\frac{B}{A} = 0$											

	DGT MH –CET 11th PHYSICS Study Material											
\bigcirc	Scalars	& Vect	tors 6									
37.	Two vectors \vec{p} and \vec{Q} are given by $\vec{P} = 5\hat{i} + 7\hat{j} - 3\hat{k}$ and $\vec{Q} = 2\hat{i} + 2\hat{j} - a\hat{k}$, If they are mutually perpendicular then value of 'a' is a) 8 b) 5 c) 3 d) - 8	46.	The example of cross product is a) power b) torque c) work d) electric flux If $\vec{A} = -2\hat{i}+3\hat{j}-4\hat{k}$ and $\vec{B} = -3\hat{i}-4\hat{j}+5\hat{k}$ then $\vec{A}\times\vec{B}$ is									
38.	A force of $(5\hat{i}+6\hat{j})N$ makes a body to move on a rough surface with a velocity of $(4\hat{i}-2\hat{k})m/s$. What is the power ? a) 8 unit b) 13 unit c) 14 unit d) 24 unit	48.	a) $\hat{i} - 2\hat{j} - \hat{k}$ b) $-\hat{i} + 2\hat{j} - \hat{k}$ c) $-\hat{i} - 2\hat{j} + \hat{k}$ d) $-\hat{i} - 2\hat{j} - \hat{k}$ Determine a vector product of $\vec{A} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{A} = \hat{i} + \hat{j} + \hat{k}$									
39.	A constant force of $(2\hat{i}+3\hat{j}+5\hat{k})N$ produces a displacement of $(3\hat{i}+2\hat{j}+2\hat{k})m$. Then work done is a) 5 J b) 15 J c) 22 J d) 50 J	40	$\dot{B} = -3\hat{i} + \hat{j} - 2\hat{k}$ a) $3\hat{i} - \hat{j} + 4\hat{k}$ b) $-3\hat{i} + \hat{j} + 4\hat{k}$ c) $3\hat{i} + \hat{j} - 4\hat{k}$ d) $-3\hat{i} - \hat{j} + 4\hat{k}$ lf $\vec{P} = \hat{i} + $									
40.	The angle between the vectors $\vec{P} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{Q} = \hat{i} - 2\hat{j} + 3\hat{k}$ is a) 120° b) 90° c) 60° d) 45°	dy.	is a) $-3\hat{i}+4\hat{j}-5\hat{k}$ b) $3\hat{i}-4\hat{j}+5\hat{k}$ c) $3\hat{i}+4\hat{j}-5\hat{k}$ d) $3\hat{i}-4\hat{j}-5\hat{k}$									
41.42.	The angle between the following pair of vectors $\vec{A} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{B} = -\hat{i} - \hat{j} + 2\hat{k}$ is a) 150° b) 120° c) 90° d) 30° What is the dot product of two vectors of magnitude 3 and 5, if the angle between them is	50.	Linear momentum $\vec{p} = 2\hat{i} + 4\hat{j} + 5\hat{k}$ and position vector is $\vec{r} = 3\hat{i} - \hat{j} + 2\hat{k}$, the angular momentum is given by a) $3\hat{i} - 19\hat{j} + 14\hat{k}$ b) $13\hat{i} + 19\hat{j} + 14\hat{k}$									
43.	 60° ? a) 15 b) 8 c) 7.5 d) 5.3 The vector product of two vectors is a vector whose direction is given by a) Left hand thumb rule b) Right hand thumb rule c) Fleming's left hand rule 	51.	c) $-3\hat{i}-19\hat{j}+14\hat{k}$ d) $-13\hat{i}-11\hat{j}+14\hat{k}$ The area of triangle formed by the sides of vector \vec{A} and \vec{B} is a) $ \vec{A} \times \vec{B} $ b) $ \vec{A} \cdot \vec{B} $									
44.	 d) Biot-Savart's rule The magnitude of self cross product is a) zero b) magnitude of vector c) square of the magnitude of vector d) half the magnitude of vector 	52.	c) $\frac{1}{2} \vec{A} \cdot \vec{B} $ d) $\frac{1}{2} \vec{A} \times \vec{B} $ The area of the triangle having two sides $\vec{A} = \hat{i} - 2\hat{j} - 2\hat{k}$ and $\vec{B} = 2\hat{i} + 2\hat{j} + 3\hat{k}$ is									
45.	The vector product of two non-zero vectors is zero a) only when they are in the same direction b) only when they are making angle 60° c) only when they are perpendicular d) whey they are parallel or antiparallel	53.	a) $\sqrt{45}$ sq. unit b) 22.5 sq. unit c) 4.717 sq. unit d) 9.43 sq. unit Area of parallelogram whose adjacent sides are $(\hat{i}+2\hat{j}+3\hat{k})m$ and $(\hat{i}-3\hat{j}+\hat{k})m$ is									

	S Study Material		
	Scalars	& Vect	ors 7
a) $\sqrt{50} \text{ m}^2$	b) $\sqrt{150} \text{ m}^2$		a) number and unit b) number only
c) 25 m^2	d) $\sqrt{75} m^2$	2	c) unit only d) neither number nor unit
C) 25 III	u) $\sqrt{75}$ m ²	2.	A vector is not changed if
			a) it is divided by a scalar
Miscellaneous			b) it is multiplied by a scalar
If $\vec{\mathbf{p}} = \hat{\mathbf{i}} + 2\hat{\mathbf{i}}$	$A\hat{\mathbf{k}}$ and $\vec{\mathbf{o}} = \hat{\mathbf{i}} + \hat{\mathbf{o}} + \hat{\mathbf{k}}$ then		c) it slides parallel to itself
P = 1 + 2 J - 1	q = 1 + 2 J - K	2	d) all of these The surface its sector of a station surface is
$\begin{pmatrix} \rightarrow & \rightarrow \\ p & -p \end{pmatrix} \begin{pmatrix} \rightarrow & -p \\ p & -p \end{pmatrix}$		3.	The velocity vector of a stationary particle is
$\left(P+Q \right) \cdot \left(P-Q \right)$	is		a) zero vector b) vector with magnitude of velocity vector
	b) 15		a) scalar
a) $\frac{3}{25}$	d) 115		d) scalar with magnitude of velocity vector
C) 23	d) 115	4	If the angle between two collinear vectors is π
If $\vec{A} = 2\hat{i} + 3\hat{i} +$	$4\hat{k}$ and $\vec{B} = \hat{i} + 2\hat{i} + 3\hat{k}$. The	4.	radians, vectors are said to be
j·			a) antiparallel vectors
$1 \qquad c \left(2 \stackrel{\rightarrow}{\Lambda} \stackrel{-}{1} \right)$	$\vec{\mathbf{P}}$ $\left(\vec{\mathbf{A}} + 2\vec{\mathbf{P}} \right)$		b) parallel vectors
value of $\int 2A - I$			c) similar vectors
a) 30	b) 40		d) identical vectors
c) 55	d) 90	5	If the angular displacement is large it is a scalar
A particle moves	s from position	5.	quantity because
\rightarrow \land \land	1		a) its magnitude for large values cannot be
$s_1 = (3i+3j-6)$	\hat{k}_{m} to position of		calculated
		1	b) it is not coplanar for large values
$s_2 = (14i + 13j + 13j$	$(+9\hat{k})m$, under the action of a force		c) it will not obey the commutative law of vector
· · ·		D	addition
$\vec{F} = (4\hat{i} + \hat{j} + 3\hat{k})$	N. The work done by the force is		d) it will not obey principle of homogeneity
a) 200 I	b) 100 I	6.	Angular momentum is
c) 75 J	d) 50 J		a) a scalar b) a polar vector
	.,		c) an axial vector d) none of these
и	alking of a parson		
,,	aiking of a person	2.1	Addition and subtraction of vectors
		7.	The component of a vector may be
			a) equal to its magnitude
			b) double its magnitude
		-	c) greater than its magnitude
	Force of the		d) either greater or equal to its magnitude
	road on you	8.	Which of the following is NOT essential for three
Force on the roa	d		forces to produce zero resultant ?
			a) They should be in same plane
			b) It should be possible to represent then by the
	1		three sides of a triangle taken in the same order
Walking on a par	son is an example of resolution		c) They should act along the sides of
of a vector. When	a person walks, he presses the		parallelogram
ground obliquely	y, in the backward direction. The		a) The resultant of any two forces should be equal
ground offers an	equal and opposite reaction in		and opposite to the third force
the opposite dire	ction. The vertical component	9.	Following sets of three forces act on a body.
person. The hori	zontal component helps the		whose resultant cannot be zero ?
person to walk.			a) 10, 10, 10 b) 10, 10, 20 c) 10, 20, 20 c) 10, 20, 20 c) 10, 20, 20 c) 10, 20, 20 c) 10, 20 c)
		10	c) 10, 20, 30 d) 10, 20, 40
Critic	cal Thinking	10.	If more than three forces are acting on a heavy
Introduction			rigid body such that the body is in balanced state,
Scalars are ph	vsical quantities which are		a) collinear
completely spec	ified by		a) collinear
sempletery spee			o) copianar

~		DGT MH -CET 11th PH	IYSIC	S Study Material	l
\bigcirc		Scalars	& Vect	ors	8
	c) acting in randomd) represented by thvectors	direction e sides of a polygon of		c) $\frac{1}{\sqrt{2}}(\hat{i}+\hat{j}-\hat{k})$	d) $\frac{-1}{\sqrt{3}}(\hat{i}+\hat{j}-\hat{k})$
11.	The vector projectio	n of a vector $3\hat{i}+4\hat{k}$ on	19.	If $\vec{A} = 2\hat{i} + 6\hat{j}$ and	$\vec{B} = 4\hat{i} + 3\hat{j}$, the vector
	Y-axis is a) five	b) four d) zero		having the same mag \rightarrow is	initude as $\stackrel{\rightarrow}{B}$ and parallel to
12	A vector is represent	red by $3\hat{i}$, \hat{i} , $2\hat{k}$. Its length		A ¹³	$\sqrt{10}$ \land \land
	in XY plane is	JT+ J+ 2K · 8		a) $\frac{3}{2}(2i-6j)$	b) $\frac{\sqrt{10}}{4}(i-3j)$
	a) 2	b) $\sqrt{14}$		c) $\frac{\sqrt{10}}{4}(4\hat{i}+3\hat{j})$	d) $\frac{\sqrt{10}}{2}(\hat{i}+3\hat{j})$
13.	c) $\sqrt{10}$ A particle is simultar	d) $\sqrt{5}$ neously acted by two forces	20.	4 If the sum of two ur then magnitude of di	2 nit vectors is a unit vector, fference is
	equal to 4 N and 3 N .	The net force on the particle		a) $\sqrt{2}$	b) $\sqrt{3}$
	a) / N c) 1 N	d) between 1 N and 7 N		c) $\frac{1}{\sqrt{2}}$	d) $\sqrt{5}$
14.	The vectors $\stackrel{\rightarrow}{A}$	and \overrightarrow{B} are such that	21.	A vector \overrightarrow{a} is turned v	without a change in its length
1.5	$ \vec{A} + \vec{B} = \vec{A} - \vec{B} $. The vectors is a) 90° c) 0° The average function of the second sec	b) 180 ⁰ d) 45 ⁰	D	through a small ang and Δa are respective B_{A}	le d θ . The value of $ \Delta \vec{a} $ ely
15.	If the angle between t is $\sqrt{13}$ then the vec	them is 120° and the resultant tors are		a d θ a	A
	a) $\sqrt{3}$ N, $\sqrt{4}$ N c) 3 N, 4 N	b) $\sqrt{2}$ N, $\sqrt{5}$ N d) 7 N, 3 N		0 a) 0, adθ c) 0, 0	b) adθ, 0d) adθ, adθ
16.	$\stackrel{\rightarrow}{A}$ is a vector with	magnitude A, then the unit	22.	A vector of magnitud θ . What is the magn	le a is rotated through angle aitude of the change in the
	vector $\stackrel{\wedge}{A}$ in the dire a) \overrightarrow{AA}	ction of \overrightarrow{A} is b) $\overrightarrow{A} \cdot \overrightarrow{A}$		vector ? a) 2 a sin $\theta/2$ c) 2 a sin θ	 b) 2 a cos θ/2 d) 2 a cos θ
	c) $\overrightarrow{A} \times \overrightarrow{A}$	d) $\frac{\overrightarrow{A}}{A}$	23.	The resultant of two the magnitude of \overrightarrow{O} i	vector \overrightarrow{P} and \overrightarrow{Q} is \overrightarrow{R} . If s doubled, the new resultant
17.	If a unit vector is repr	resented by $0.5\hat{i} - 0.8\hat{j} + c\hat{k}$		becomes perpendicula	ar to \overrightarrow{P} . Then the magnitude
	then the value of c is a) $\sqrt{0.01}$	b) $\sqrt{0.11}$		of \overrightarrow{R} is	b) ()
10	c) 1	d) $\sqrt{0.39}$		u) I ' Q	d) $\frac{P+Q}{P+Q}$
18.	A unit vector in the the vector (\hat{z}, \hat{z})	direction of the negative of	2.2	Product of vectors	u) 2
	a) $\frac{-1}{\sqrt{3}}(-\hat{i}+\hat{j}-\hat{k})$	b) $\sqrt{3}(\hat{i}+\hat{j}-\hat{k})$	24.	A force vector applied $\vec{F} = 6\hat{i} - 8\hat{j} + 10\hat{k}$ an What will be the mass	d on a mass is represented as ad accelerates with 1 m/s ² . as of the body in kg?

	DGT MH –CET 11th PH	IYSICS Study Material
\bigcirc	Scalars	& Vectors 9
25.	a) $10\sqrt{2}$ b) 20 c) $2\sqrt{10}$ d) 10 Vectors $\vec{A} = 2\hat{i} - 3\hat{j} + a\hat{k}$ and $\vec{B} = 12\hat{i} - b\hat{j} + 6\hat{k}$ are parallel to each other, then value of 'a' and 'b' are a) 1, 18 b) 1, -18 c) -1, 18 d) -1, -18 16 c) -1, 18 c) -1, -18	 32. If A.B=0 and A×B=0, then which of the following conditions is necessary? a) A=1, B=0 b) A=0 and B=0 c) A=0 or B=0 d) A=0, B=1 33. If the ratio of the dot product of two vectors and cross product of same two vectors is √3, the two vectors make angle a) 30⁰ b) 45⁰
26. 27.	if a vector $2\hat{i}+3\hat{j}+8\hat{k}$ is perpendicular to the vector $4\hat{i}-4\hat{j}+m\hat{k}$, then the value of m is a) $\frac{1}{2}$ b) $-\frac{1}{2}$ c) 1 d) -1 A force $\vec{F} = 3\hat{i}+c\hat{j}+2\hat{k}$ acting on a particle	c) 90° d) 120° Miscellaneous 34. Select the WRONG one. a) $\vec{P} \times \vec{Q} \neq \vec{Q} \times \vec{P}$ b) $\vec{P} \times (\vec{Q} \times \vec{R}) = (\vec{P} \times \vec{Q}) \times \vec{R}$
28.	displaces it. The displacement is given by $\vec{s} = 4\hat{i}+2\hat{j}+3\hat{k}$ in its own direction. If the work done is 6 J, then value of 'c' is a) 0 b) 1 c) -6 d) 12 Work done when a force of $(7\hat{i} + 4\hat{i} + 4\hat{k})N$	c) $\vec{P} \cdot \vec{Q} = \vec{Q} \cdot \vec{P}$ d) $\vec{P} \times (\vec{Q} + \vec{R}) = \vec{P} \times \vec{Q} + \vec{P} \times \vec{R}$ 35. If \vec{A} and \vec{B} are two vectors then
29.	moves a body through a distance of 10 metre in its own direction is a) 160 J b) 120 J c) 90 J d) 10 J If $\vec{P} = \hat{i} = 2\hat{i} = 3\hat{k}$ and $\vec{O} = 4\hat{i} = 2\hat{i} + 6\hat{k}$, the	$ (\vec{A} + \vec{B}) \times (\vec{A} - \vec{B}) is $ a) $2(\vec{B} \times \vec{A})$ b) $(\vec{B} \times \vec{A})$
	angle made by $\vec{p} + \vec{Q}$ with X-axis is a) 30° b) 45° c) 60° d) 90°	c) $2\left(\vec{A} + \vec{B}\right)$ d) $2\left(\vec{A} - \vec{B}\right)$ 36. Given $\vec{P} \cdot \left(\vec{P} + \vec{Q}\right) = P^2$ then the angle between
30.	 Choose the CORRECT statement. a) The vector product does not obey commutative law but obeys distributive law of multiplication b) The vector product obeys commutative law of multiplication but does not obey distributive law of multiplication c) The vector product does not obey both commutative and distributive law of multiplication d) The vector product obeys both commutative and distributive law of multiplication 	$\vec{P} \text{ and } \vec{Q} \text{ is}$ a) 0° b) 30° c) 45° d) 90° 37. Assertion : If dot product and cross product of \vec{A} and \vec{B} are zero, it implies that one of the vector \vec{A} and \vec{B} must be a null vector. Reason : Null vector is a vector with zero magnitude.
31.	The sine of the angle between $3\hat{i}+\hat{j}+2\hat{k}$ and $2\hat{i}-2\hat{j}+4\hat{k}$ is a) 1 b) 0.91 c) 0.76 d) 0.67	 a) Assertion is True, Reason is True; Reason is a correct explanation for Assertion. b) Assertion is True, Reason is True; Reason is not a correct explanation for Assertion c) Assertion is True, Reason is False d) Assertion is False, Reason is True

_	DGT MH –CET 11th PH	IYSICS Study Material
	Scalars	& Vectors 11
10.	The resultant force of 5 N and 10 N cannot bea) 12 Nb) 8 Nc) 4 Nd) 5 NThe maximum and minimum magnitude of theresultant of two given vectors are 17 units and 7units respectively. If these two vectors are at rightangles to each other, the magnitude of theirresultant isa) 18b) 16c) 14d) 13	 a) 60° b) 90° c) 100° d) 120° 18. Two forces 3 N and 2 N are at an angle θ such that the resultant is R. The first force is now increased to 6 N and the resultant because 2R. The value of θ is a) 30° b) 60° c) 90° d) 120° 19. The resultant of two forces 3P and 2P is R. If the first force is doubled then the resultant is also doubled. The angle between the two forces is
12.	If $\overrightarrow{a} = 4 \overrightarrow{i} - \overrightarrow{j}$, $\overrightarrow{b} = -3 \overrightarrow{i} + 2 \overrightarrow{j}$ and $\overrightarrow{c} = -\overrightarrow{k}$. Then the unit vector \overrightarrow{r} along the direction of sum of these vectors will be a) $\overrightarrow{r} = \frac{1}{\sqrt{3}} (\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k})$ b) $\overrightarrow{r} = \frac{1}{\sqrt{2}} (\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k})$ c) $\overrightarrow{r} = \frac{1}{3} (\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k})$ d) $\overrightarrow{r} = \frac{1}{\sqrt{2}} (\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k})$	a) 60° b) 120° c) 70° d) 180° 20. Two vectors \overrightarrow{A} and \overrightarrow{B} have equal magnitudes. If magnitude of $\overrightarrow{A} + \overrightarrow{B}$ is equal to n times the magnitude of $\overrightarrow{A} - \overrightarrow{B}$, then angle between \overrightarrow{A} and \overrightarrow{B} , then angle between \overrightarrow{A} and \overrightarrow{B} is
13.	The resultant of two forces, one double the other in magnitude, is perpendicular to the smaller of the two forces. The angle between the two forces is a) 60° b) 120° c) 150° d) 90°	a) $\cos^{-1}\left(\frac{n-1}{n+1}\right)$ b) $\cos^{-1}\left(\frac{n^2-1}{n^2+1}\right)$ D (c) $\sin^{-1}\left(\frac{n-1}{n+1}\right)$ d) $\sin^{-1}\left(\frac{n^2-1}{n^2+1}\right)$
14. 15.	Two forces are such that the sum of their magnitudes is 18 N and their resultant is perpendicular to the smaller force and magnitude of resultant is 12 N. Then the magnitudes of the forces are a) 12 N, 6 N b) 13 N, 5 N c) 10 N, 8 N d) 16 N, 2 N Two forces with equal magnitudes F act on a body and the magnitude of the resultant force is	21. The angle between two vectors A and B is θ . Vector R is the resultant of the two vectors. If R makes an angle $\frac{\theta}{2}$ with A, then a) A = 2B b) A = $\frac{B}{2}$ c) A = B d) AB = 1
	$\frac{F}{3}$. The angle between the two forces is a) $\cos^{-1}\left(-\frac{17}{18}\right)$ b) $\cos^{-1}\left(-\frac{1}{3}\right)$ c) $\cos^{-1}\left(-\frac{2}{3}\right)$ d) $\cos^{-1}\left(-\frac{8}{9}\right)$	2.2 Product of vectors 22. The magnitude of the component of the vector $2\hat{i}+3\hat{j}+\hat{k}$ along $3\hat{i}+4\hat{k}$ is a) $\frac{1}{2}$ b) $\frac{14}{5}$ 6
16.	Two forces of equal magnitude F are at a point. If θ is the angle between two forces then magnitude of the resultant force will be a) $2F\cos\frac{\theta}{2}$ b) $F\cos\frac{\theta}{2}$ c) $2F\cos\theta$ d) $\frac{F}{2}\cos\frac{\theta}{2}$	c) 2 d) $\frac{3}{5}$ 23. \overrightarrow{A} and \overrightarrow{B} are two vectors given by $\overrightarrow{A} = 2\hat{i} + 3\hat{j}$ and $\overrightarrow{B} = \hat{i} + \hat{j}$. The magnitude of the component of \overrightarrow{A} along \overrightarrow{B} is
17.	Two equal vectors have a resultant equal to either of them. The angle between them is	a) $\frac{5}{\sqrt{2}}$ b) $\frac{3}{\sqrt{2}}$

$\overline{}$	Scalars & Vectors												
\mathcal{I}		Scalars	& Veci	tors	12								
	c) $\frac{7}{\sqrt{2}}$	d) $\frac{1}{\sqrt{2}}$		c) $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$	d) $\cos^{-1}\left(\frac{1}{2}\right)$								
24.	If the two vecto	ors $\overrightarrow{A} = 2\overrightarrow{i} + 3\overrightarrow{j} + 4\overrightarrow{k}$ and	31.	The angle between	the vectors $(\hat{i} + \hat{j})$ and								
	$\vec{B} = \hat{i} + 2\hat{j} - x\hat{k}$ are p	perpendicular then the value		(j + k) is									
	of x 1s a) 1	h) 2		a) 30°	b) 45°								
	c) 3	d) 4	22	c) 60°	d) 90°								
25.	The vector $\vec{P} = a\hat{i} - a$	$\overrightarrow{i}_{i} + 3\overrightarrow{k}$ and $\overrightarrow{Q} = \overrightarrow{i} - 2\overrightarrow{j} - \overrightarrow{k}$	32.	A particle moves in the of a force \vec{r} such f	hat the value of its linear								
	are perpendicular to	o each other. The positive		momentum $(\vec{\mathbf{p}})$ at an	r time t is P = 2 cos t								
	a) 3	b) 4											
	c) 9	d) 13		$P_y = 2 \sin t$. The angle	e θ between \overrightarrow{F} and \overrightarrow{P} at a								
26.	Consider two ve	ctors, $\vec{F}_1 = 2\hat{i}_{\perp}\hat{s}_{\nu}$ and		given time t will be									
		J = 2 J + J K		a) $\theta = 0^{\circ}$	b) $\theta = 30^{\circ}$								
	$\vec{F}_2 = 3\hat{j} + 4\hat{k}$. The	magnitude of the scalar	33	In an clockwise syste	$m = 100^{\circ}$								
	product of these vec	tors is	55.										
	a) 20	b) 23	-	a) $j \times k = i$	b) $i \cdot i = 0$								
	c) $5\sqrt{33}$	d) 26		c) $\hat{j} \times \hat{j} = 1$	d) $\hat{k} \cdot \hat{j} = 1$								
27.	A force $(4\hat{i}+\hat{j}-2)$	\hat{k})N acting on a body	34.	For vectors \vec{A} and \vec{B}	making an angle θ which								
	maintains its velocity	$f(2\hat{i}+2\hat{j}+3\hat{k})ms^{-1}$. The	5	one of the following r	relations is correct?								
	power exerted is a) 4 W	b) 5 W		a) $\vec{A} \times \vec{B} = \vec{B} \times \vec{A}$	b) $\overrightarrow{A} \times \overrightarrow{B} = AB\sin\theta$								
	c) 2 W	d) 8 W		c) $\vec{A} \times \vec{B} = AB\cos\theta$	d) $\overrightarrow{A} \times \overrightarrow{B} = -\overrightarrow{B} \times \overrightarrow{A}$								
28.	When $\overrightarrow{A} \cdot \overrightarrow{B} = - \overrightarrow{A} $	$\vec{B}_{ }$, then	35.	A vector $\stackrel{\rightarrow}{A}$ points vert	tically upward and $\stackrel{\rightarrow}{B}$ points								
	a) \overrightarrow{A} and \overrightarrow{B} are per	rpendicular to each other		towards north. The ve	ector product $\overrightarrow{A} \times \overrightarrow{B}$ is								
	b) \overrightarrow{A} and \overrightarrow{B} act in	the same direction		c) along east	d) vertically downward								
	c) \overrightarrow{A} and \overrightarrow{R} act in t	he opposite direction	36.	Which of the following	ng relation is not correct?								
	d) $\stackrel{\rightarrow}{A}$ and $\stackrel{\rightarrow}{B}$ can ac	t in any direction		a) $\overrightarrow{V} = \overrightarrow{\omega} \times \overrightarrow{r}$	b) $\overrightarrow{V} = \overrightarrow{r} \times \overrightarrow{\omega}$								
29.	The angle betw	een the two vectors,		c) $\vec{\delta s} = \vec{\delta \theta} \times \vec{r}$	d) $V = r\omega$								
	$(\rightarrow \land \land \land)$	X	37.	What is the value	e of linear velocity, if								
	$\left(A = 3i + 4j + 5k\right) $	and $\vec{B} = 3\hat{i} + 4\hat{j} - 5\hat{k}m$ will		$\vec{\omega} = 3\hat{i} - 4\hat{j} + \hat{k}$ and \vec{r}	$\vec{r} = 5\hat{i} - 6\hat{j} + 6\hat{k}$								
	a) zero	b) 45°		a) $\hat{6i-2j+3k}$	b) $\hat{6i-2j+8k}$								
0	C) 90° The engle 0 between	u) 100°		c) $4\hat{i}-13\hat{j}+6\hat{k}$	d) $18\hat{i}+13\hat{j}-2\hat{k}$								
<i>.</i> 0.	unit vector along X-a	The vector $p = i + j + k$ and axis is	38.	If $\vec{A} \times \vec{B} = \vec{B} \times \vec{A}$, then	angle between \overrightarrow{A} and \overrightarrow{R}								
	.(1)	(1)		is									
	a) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$	b) $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$		a) π	b) $\pi/3$								
		(v -)		c) $\pi/2$	d) π/4								

a) 8 b)
$$8\sqrt{3}$$

c)
$$3\sqrt{8}$$
 d) 192

42. Three vectors satisfy the relation $\overrightarrow{A}, \overrightarrow{B}$ and

 $\vec{A} \cdot \vec{C} = 0$, then \vec{A} is parallel to

a) $\overrightarrow{B} \times \overrightarrow{C}$ b) $\overrightarrow{B} \cdot \overrightarrow{C}$ c) \overrightarrow{C} d) $\overrightarrow{\mathbf{p}}$

Miscellaneous

43. If $|\vec{A} \times \vec{B}| = \sqrt{3} \vec{A} \cdot \vec{B}$ then the value of $|\vec{A} + \vec{B}|$ is

a)
$$\left(A^2 + B^2 + \frac{AB}{\sqrt{3}}\right)^{1/2}$$

b) $A + B$
c) $(A^2 + B^2 + \sqrt{3}AB)^{1/2}$
d) $(A^2 + B^2 + AB)^{1/2}$

 $14\hat{i}+13\hat{j}+9\hat{k}$ due to a uniform force of

constant) acts on a particle moving in the X-Y plane. Starting from the origin, the particle is taken along the positive X-axis to the point (a, 0) and

- The vector sum of two forces is perpendicular to
 - c) are equal to each other
- d) are equal to each other in magnitude 48.
 - Which of the following statement is true?
 - a) When the coordinate axes are translated the component of a vector in a plane changes
 - b) When the coordinate axes are rotated through some angle components of the vector change but the vector's magnitude remains constant
 - c) Sum of \overrightarrow{a} and \overrightarrow{b} is \overrightarrow{R} . If the magnitude of
 - $\stackrel{\rightarrow}{a}$ alone is increased, angle between $\stackrel{\rightarrow}{b}$ and
 - $\overrightarrow{\mathbf{R}}$ decreases
 - d) The cross product of $3\hat{i}$ and $4\hat{j}$ is 12
- 49. If $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$ are two vectors then the value of

$$(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})$$
 is
a) $2(\vec{b} \times \vec{a})$ b) $-2(\vec{b} \times \vec{a})$
c) $(\vec{b} \times \vec{a})$ d) $\vec{a} \times \vec{b}$

Classical Thinking

1.	(D)	2.	(B)	3.	(B)	4. (1	D) 5	<i>.</i>	(A)	6.	(C)	7.	(B)	8.	(B)	9.	(D)	10.	(D)
11.	(D)	12.	(B)	13.	(D)	14. (I	D) 1	5.	(D)	16.	(A)	17.	(A)	18.	(B)	19.	(D)	20.	(C)
21.	(B)	22.	(D)	23.	(D)	24. (/	A) 2	.5.	(C)	26.	(B)	27.	(C)	28.	(C)	29.	(C)	30.	(B)
31.	(A) <	32.	(C)	33.	(C)	34. (1	D) 3	5.	(D)	36.	(A)	37.	(D)	38.	(D)	39.	(C)	40.	(C)
41.	(C)	42.	(C)	43.	(B)	44. (/	A) 4	5.	(D)	46.	(B)	47.	(D)	48.	(D)	49.	(A)	50.	(D)
51.	(D)	52.	(C)	53.	(B)	54. (H	B) 5	5.	(D)	56.	(B)						0.2		

Critical Thinking

1.	(A)	2.	(C)	3.	(A)	4.	(A)	5.	(C)	6.	(C)	7.	(A)	8.	(C)	9.	(D)	10.	(D)
11,	(D)	12.	(C)	13.	(D)	14.	(A)	15.	(C)	16.	(D)	17.	(B)	18.	(A)	19.	(D)	20.	(B)
21.	(B)	22.	(A)	23.	(B)	24.	(A)	25.	(A)	26.	(B)	27.	(C)	28.	(C)	29.	(B)	30.	(A)
31.	(C)	32.	(C)	33.	(A)	34.	(B)	35.	(A)	36.	(D)	37.	(B)	38.	(A)	39.	(D)		N. A
															1		Nerself		

Competitive Thinking

1.	(B)	2.	(C)	3.	(B)	4.	(C)	5.	(6)	6. (A)	7.	(A)	8.	(C)	9.	(A)	10.	(C
11.	(D)	12.	(A)	13.	(B)	14.	(B)	15.	(A)	16. (A)	17.	(D)	18.	(D)	19.	(B)	20.	(B
21.	(C)	22.	(C)	23.	(A)	24.	(B)	25.	(A)	26. (D)	27.	(A)	28.	(C)	29.	(C)	30.	(A
31.	(C)	32.	(C)	33.	(A)	34.	(D)	35.	(B)	36. (A)	37.	(D)	38.	(A)	39.	(A)	40.	(B
41.	(B)	42.	(A)	43.	(D)	44.	(C)	45.	(A)	46. (C)	47.	(D)	48.	(B)	49.	(A)	50.	(B

Hints

Classical Thinking Resultant vector = $\vec{A} + \vec{B} + \vec{C}$ 23. $= (4\hat{i} + 2\hat{j} - 3\hat{k}) + (\hat{i} + \hat{j} + 3\hat{k}) + (4\hat{i} + 5\hat{j} + 3\hat{k})$ $\vec{A} = 3\hat{i} + 2\hat{i} - 4\hat{k}$ 19 $= 9\hat{i} + 8\hat{j} + 3\hat{k}$ $|\vec{A}| = \sqrt{(3)^2 + (2)^2 + (-4)^2} = \sqrt{29}$ Resultant of vectors A and B 24. $\vec{P} = 3\hat{i} + \hat{i} + 2\hat{k}$ 20. $\vec{\mathbf{R}} = \vec{\mathbf{A}} + \vec{\mathbf{B}}$ $= 4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 6\hat{\mathbf{k}} - \hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 8\hat{\mathbf{k}}$ Length in XY plane = $\sqrt{(3)^2 + (1)^2} = \sqrt{10}$ unit $\vec{R} = 3\hat{i} + 6\hat{j} - 2\hat{k}$ Magnitude of $\vec{A} = |\vec{A}| = \sqrt{(1)^2 + (2)^2 + (3)^2}$ 21. $\hat{\mathbf{R}} = \frac{\vec{\mathbf{R}}}{|\vec{\mathbf{R}}|} = \frac{3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - 2\hat{\mathbf{k}}}{\sqrt{3^2 + 6^2 + (-2)^2}}$ Direction cosine = $-\frac{1}{\sqrt{14}}$, $\frac{2}{\sqrt{14}}$ and $\frac{3}{\sqrt{14}}$ $=\frac{3\hat{i}+6\hat{j}-2\hat{k}}{7}$ $\overrightarrow{PO} = \overrightarrow{O} - \overrightarrow{P}$ 22. 25. $\vec{A} + \vec{B} = (3\hat{i} + 2\hat{j} - 4\hat{k}) + (5\hat{i} - 7\hat{j} + 2\hat{k})$ $= (-2\hat{i} - 5\hat{j} + 7\hat{k}) - (2\hat{i} + 3\hat{j} - 6\hat{k})$ $\vec{A} + \vec{B} = 8\hat{i} - 5\hat{j} - 2\hat{k}$ $= -4\hat{i} - 8\hat{i} + 13\hat{k}$

Let
$$\vec{P}$$
 be the vector when added to $\vec{A} + \vec{B}$
gives a unit vector along X-axis.
 $\vec{P} + 8\hat{i} - 5\hat{j} - 2\hat{k} = \hat{i}$
 $\Rightarrow \vec{P} = -7\hat{i} + 5\hat{j} + 2\hat{k}$
27. $14.14 = \sqrt{F_i^2 + E_i^2} + 2F_iF_2 \cos 90^\circ$
But $F_1 = F_2 = F$
 $\therefore 14.14 = \sqrt{F_i^2 + E_i^2} + 2F_iF_2 \cos 90^\circ$
But $F_1 = F_2 = 10$ N
28. $F = \sqrt{F_i^2 + F_2^2} + 2F_iF_2 \cos 9$
 $= \sqrt{(\sqrt{2})^2 + (3)^2 + 2(\sqrt{2})(3)\cos 45^\circ}$
 $F = \sqrt{2 + 9 + 6}$
 $F = \sqrt{17}$ N
29. Vertical component of velocity,
 $v_y = 10$ m/s
30. Component of force of gravity $= F_y = F \sin \theta$
 $F_y = mg \sin 30^\circ = 10 \times 9.8 \times \frac{1}{2} = 49$ N
31. $\vec{A} = 3(2\hat{i} + \hat{3}\hat{j} - \hat{k}) = 2\vec{B}$
 $As \vec{A}$ is scalar multiple of \vec{B} , \vec{A} and \vec{B} are
parallel.
34. Electric flux $d\phi = \vec{E} \cdot d\vec{s}$
35. $\phi = \vec{B} \cdot \vec{A}$
where, \vec{B} is magnetic induction and \vec{A} is area
vector.
37. $\vec{P} \cdot \vec{Q} = 0$ ($\because \vec{P} \perp \vec{Q}$)
($\hat{5}\hat{i} + 7\hat{j} - 3\hat{k}$). $(2\hat{i} + 2\hat{j} - a\hat{k}) = 0$
($\hat{5}\hat{i} + 7\hat{j} - 3\hat{k}$). $(2\hat{i} + 2\hat{j} - a\hat{k}) = 0$
($\hat{5}\hat{i} + 7\hat{j} - 3\hat{k}$). $(2\hat{i} - 2\hat{j} - a\hat{k}) = 0$
 $\therefore a = -8$
38. Power $= \vec{F} \cdot \vec{v}$
 $= (\hat{5}\hat{i} + \hat{6}\hat{j}) \cdot (\hat{4}\hat{j} - 2\hat{k}) = 24$ unit
 $= \hat{5}\hat{i} + \hat{6}\hat{j} \cdot (\hat{4}\hat{j} - 2\hat{k}) = 24$ unit
 $= \hat{5}\hat{i} + \hat{6}\hat{j} \cdot (\hat{4}\hat{j} - 2\hat{k}) = 24$ unit
 $= \hat{3}\hat{i} - \hat{1} + 4\hat{k}$

49.
$$\vec{P} \times \vec{Q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ 3 & 1 & -1 \end{vmatrix}$$

 $= \hat{i}(-2-1) - \hat{j}(-1-3) + \hat{k}(1-6)$
 $= -3\hat{i} + 4\hat{j} - 5\hat{k}$
50. Angular momentum
 $= \vec{r} \times \vec{p}$
 $= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 2 \\ 2 & 4 & 5 \end{vmatrix}$
 $= \hat{i}(-5-8) - \hat{j}(15-4) + \hat{k}(12+2)$
 $= -13\hat{i} - 11\hat{j} + 14\hat{k}$
52. Area of triangle $= \frac{1}{2} |\vec{A} \times \vec{B}|$
 $\therefore \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & -2 \\ 2 & 2 & 3 \end{vmatrix}$
 $= \hat{i}(-6+4) - \hat{j}(3+4) + \hat{k}(2+4)$
 $= -2\hat{i} - 7\hat{j} + 6\hat{k}$
 $\therefore |\vec{A} \times \vec{B}| = \sqrt{(-2)^2 + (-7)^2 + (6)^2} = \sqrt{89}$
Area of triangle $= \frac{\sqrt{89}}{2} = 4.717$ sq. unit
53. Let $\vec{P} = \hat{i} + 2\hat{j} + 3\hat{k}, \vec{Q} = (\hat{i} - 3\hat{j} + \hat{k})$
Area of parallelogram $= |\vec{P} \times \vec{Q}|$
 $\vec{P} \times \vec{Q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 1 & -3 & 1 \end{vmatrix}$
 $= \hat{i}(2+9) - \hat{j}(1-3) + \hat{k}(-3-2)$
 $= 11\hat{i} + 2\hat{j} - 5\hat{k}$
 $\therefore |\vec{P} \times \vec{Q}| = \sqrt{(11)^2 + (2)^2 + (-5)^2}$
 $= \sqrt{121+4+25} = \sqrt{150}$ m²
54. $\vec{P} + \vec{Q} = (\hat{i} + 2\hat{j} - 4\hat{k}) + (\hat{i} + 2\hat{j} - \hat{k})$
 $= 2\hat{i} + 4\hat{j} - 5\hat{k}$

$$\vec{\mathbf{P}} - \vec{\mathbf{Q}} = (\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 4\hat{\mathbf{k}}) - (\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}) = -3\hat{\mathbf{k}}$$

$$(\vec{\mathbf{P}} + \vec{\mathbf{Q}}) \cdot (\vec{\mathbf{P}} - \vec{\mathbf{Q}}) = (2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 5\hat{\mathbf{k}})(-3\hat{\mathbf{k}})$$

$$= 15$$
55.
$$(2\vec{\mathbf{A}} - \vec{\mathbf{B}}) = 2(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}}) - (\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}})$$

$$= 3\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$$

$$(\vec{\mathbf{A}} + 2\vec{\mathbf{B}}) = (2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}}) + 2(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}})$$

$$= 4\hat{\mathbf{i}} + 7\hat{\mathbf{j}} + 10\hat{\mathbf{k}}$$

$$(2\vec{\mathbf{A}} - \vec{\mathbf{B}}) \cdot (\vec{\mathbf{A}} + 2\vec{\mathbf{B}})$$

$$= (3\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 5\hat{\mathbf{k}})(4\hat{\mathbf{i}} + 7\hat{\mathbf{j}} + 10\hat{\mathbf{k}})$$

$$= 12 + 28 + 50 = 90$$
56. $\vec{\mathbf{s}} = \vec{\mathbf{s}}_2 - \vec{\mathbf{s}}_1$

$$= (14\hat{\mathbf{i}} + 13\hat{\mathbf{j}} + 9\hat{\mathbf{k}}) - (3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 6\hat{\mathbf{k}})$$

$$= 11\hat{\mathbf{i}} + 11\hat{\mathbf{j}} + 15\hat{\mathbf{k}}$$

$$\mathbf{W} = \vec{\mathbf{F}} \cdot \vec{\mathbf{s}}$$

$$= (4\hat{\mathbf{i}} + \hat{\mathbf{j}} + 3\hat{\mathbf{k}})(11\hat{\mathbf{i}} + 11\hat{\mathbf{j}} + 15\hat{\mathbf{k}})$$

$$= 44 + 11 + 45 = 100 \text{ J}$$
Critical Thinking
4. The vectors acting along parallel straight lines a

- 4. The vectors acting along parallel straight lines are called collinear vectors. When they are in same direction, angle between them is 0^{c} and they are said to be parallel vectors. When they are in opposite direction, angle between them is π^{c} and they are said to be antiparallel vectors.
- 6. A vector representing rotational effects and is always along the axis of rotation in accordance with right hand screw rule is called an axial vector.

9. Resultant of forces will be zero when they can be represented by the sides of a triangle taken in same order. In such a case, the sum of the two smaller sides of the triangle is more than the third side.

> Only in option (D), sum of the first two forces is smaller than third force, thus not forming a possible triangle.

11: As the multiple of \hat{j} in the given vector is zero therefore this vector lies in XZ plane and projection of this vector on Y-axis is zero.

12.
$$\vec{R} = 3\hat{i} + \hat{j} + 2\hat{k}$$

$$\therefore \quad \text{Length in XY plane} = \sqrt{R_x^2 + R_y^2} = \sqrt{3^2 + 1^2} \\ = \sqrt{10}$$

13. If two vectors A and B are given then the resultant $R_{max} = A + B = 7N$ and $R_{min} = 4 - 3 = 1N$ i.e., net force on the particle is in between 1 N and 7 N.

14. As
$$|A+B| = |A-B|$$

$$\therefore \qquad \mathbf{A}^2 + \mathbf{B}^2 + 2\mathbf{A}\mathbf{B}\cos\theta = \mathbf{A}^2 + \mathbf{B}^2 - 2\mathbf{A}\mathbf{B}\cos\theta$$

- $\therefore \qquad 4AB \cos \theta = 0 \Rightarrow \cos \theta = 0,$
- $\therefore \quad \theta = 90^{\circ}$

15.
$$5 = \sqrt{F_1^2 + F_2^2 + 2F_1F_2 \cdot \cos 90^\circ}$$

$$25 = F_1^2 + F_2^2 \quad \dots \dots (i)$$

When $\theta = 120^\circ$

$$\sqrt{13} = \sqrt{F_1^2 + F_2^2 + 2F_1F_2 \cos 120^\circ}$$

$$13 = 25 + 2F_1F_2\left(-\frac{1}{2}\right)$$

$$13 = 25 - F_2F_2$$

$$F_1F_2 = 12$$

 $F_2 = \frac{12}{F_1}$ (ii)

Substituting equation (ii) in (i)

$$F_1^2 + \frac{144}{F_1^2} = 25$$

$$F_1^4 + 144 = 25 F_1^2$$

$$F_1^4 - 25 F_1^2 + 144 = 0$$

$$(F_1^2 - 9) (F_1^2 - 16) = 0$$

$$F_1, F_2 = 3, 4$$

16.
$$\hat{A} = \frac{\vec{A}}{|\vec{A}|} = \frac{\vec{A}}{|\vec{A}|}$$

17. Magnitude of vector = 1

$$\sqrt{\mathbf{a}_x^2 + \mathbf{a}_y^2 + \mathbf{a}_z^2} = 1$$

 $\therefore \quad \sqrt{0.5^2 + 0.8^2 + c^2} = 1$
 $\sqrt{c^2 + 0.89} = 1$
 $\therefore \quad c^2 = 0.11$
 $\therefore \quad c = \sqrt{0.11}$

18. Negative of the given vector be A. $\vec{A} = -(-\hat{i} + \hat{j} - \hat{k})$

> Unit vector in direction of $\hat{A} = \frac{A}{|\vec{A}|}$ $= \frac{-(-\hat{i} + \hat{j} - \hat{k})}{\sqrt{(1)^2 + (-\hat{l})^2 + (1)^2}}$ $= \frac{-1}{\sqrt{3}} (-\hat{i} + \hat{j} - \hat{k})$

19. Magnitude of vector
$$\vec{A} = |\vec{A}|$$

$$= \sqrt{(2)^{2} + (6)^{2}}$$

$$= \sqrt{4 + 36}$$

$$= \sqrt{40}$$
Unit vector parallel to \vec{A} is $\frac{\vec{A}}{|\vec{A}|} = \frac{2\hat{i} + 6\hat{j}}{\sqrt{40}}$
Magnitude of vector $\vec{B} = |\vec{B}|$

$$= \sqrt{(4)^{2} + (3)^{2}}$$

$$= 5$$
Let \vec{p} be the required vector then $\frac{\vec{p}}{p} = \hat{p}$
 $\vec{p} = \hat{p} p = \left(\frac{2\hat{i} + 6\hat{j}}{\sqrt{40}}\right)5$

$$= \frac{\sqrt{10}}{4} \left[2(\hat{i} + 3\hat{j})\right] = \frac{\sqrt{10}}{2} (\hat{i} + 3\hat{j})$$

DGT Group - Tuitions (Feed Concepts) Xlth - Xllth | JEE | CET | NEET | Call : 9920154035 / 8169861448

20. Let \hat{n}_1 and \hat{n}_2 be the two unit vectors, then the sum is $\hat{\mathbf{n}}_{\mathbf{s}} = \hat{\mathbf{n}}_1 + \hat{\mathbf{n}}_2$ $n_{s}^{2} = n_{1}^{2} + n_{2}^{2} + 2n_{1}n_{2}\cos\theta = 1 + 1 + 2\cos\theta$ As ns is also a unit vector, $\Rightarrow 1 = 1 + 1 + 2 \cos \theta$ $\cos \theta = -\frac{1}{2} \implies \theta = 120^{\circ}$ Let the difference vector be $\hat{n}_d = \hat{n}_1 - \hat{n}_2$ $n_{d}^{2} = n_{1}^{2} + n_{2}^{2} - 2n_{1}n_{2}\cos\theta$ $= 1 + 1 - 2\cos(120^{\circ})$ $n_d^2 = 2 - 2(-1/2) = 2 + 1 = 3$ $n_d = \sqrt{3}$... From the figure, |OA| = a and |OB| = a21. Also from triangle rule, $\overline{OB} - \overline{OA} = \overline{AB} = \Delta \vec{a}$ $|\Delta a| = AB$ ÷. since $d\theta = \frac{arc}{radius} \Rightarrow AB = a d\theta$ $|\Delta \overrightarrow{a}| = ad\theta$ 8 Aa means change in magnitude of vector i.e., |OB| - |OA| $\mathbf{a} - \mathbf{a} = \mathbf{0}$ Δ. Hence, $\Delta a = 0$ 22. From the figure, $\vec{a}_{1} = \vec{a}_{1} + \Delta \vec{a}$ $\Rightarrow \Delta \vec{a} = \vec{a}_2 - \vec{a}_1$ Also $|\vec{a_2}| = |\vec{a_1}| = a$. $\Delta a = \begin{vmatrix} \vec{a} & \vec{a} \\ \vec{a}_{2} - \vec{a}_{1} \end{vmatrix} = \begin{bmatrix} a_{2}^{2} + a_{1}^{2} - 2a_{2}a_{1}\cos\theta \end{bmatrix}^{1/2}$ $= \left[2a^{2}(1-\cos\theta) \right]^{1/2}$ $= \left[2a^2(2\sin^2\theta/2) \right]^{\frac{1}{2}} = 2 a \sin \theta/2.$ 23. R P P+O=R $R^2 = P^2 + Q^2 + 2PQ \cos \theta$(i)

and $\tan \alpha = \frac{Q\sin\theta}{P + Q\cos\theta}$ When Q is doubled, resultant is perpendicular to P $R_{1}^{2} = P^{2} + 4Q^{2} + 4PQ \cos \theta$ (ii) From right angled triangle ADC $4Q^2 = R_1^2 + P^2$ B₂Q R $R_1^2 = 4O^2 - P^2$ Substituting in (ii) and solving, $P^2 + 2PQ \cos \theta = 0$(iii) Substituting (iii) in (i), R = O $Mass = \frac{Force}{Acceleration} = \frac{|F|}{a}$ 24. $=\frac{\sqrt{36+64+100}}{1}=10\sqrt{2}$ kg A and B are parallel to each other. This 25. implies $\vec{A} = m\vec{B}$. comparing X-component, $m = \frac{1}{c}$. Comparing Y-component, b = 18 and comparing Z-component a = 1. Let $\vec{A} = 2\hat{i} + 3\hat{i} + 8\hat{k}$ and $\vec{B} = -4\hat{i} + 4\hat{i} + m\hat{k}$. 26. For A perpendicular to B, $\vec{A} \vec{B} = 0$ $\left(2\hat{\mathbf{i}}+3\hat{\mathbf{j}}+8\hat{\mathbf{k}}\right)\left(-4\hat{\mathbf{i}}+4\hat{\mathbf{j}}+\mathbf{m}\hat{\mathbf{k}}\right)=0$ $\therefore -8 + 12 + 8m = 0$ $\therefore m = -\frac{1}{2}$ 27. $W = \vec{F} \cdot \vec{s}$ $\therefore \qquad 6 = \left(3\hat{i} + c\hat{j} + 2\hat{k}\right)\left(4\hat{i} + 2\hat{j} + 3\hat{k}\right)$ 6 = 12 + 2c + 66 = 18 + 2c- 8 105 2c = -12c = -6

 $+\left(\vec{B}\times\vec{A}\right)-\left(\vec{B}\times\vec{B}\right)$

 $+\left(\overrightarrow{\mathbf{B}}\times\overrightarrow{\mathbf{A}}\right)+\left(\overrightarrow{\mathbf{B}}\times\overrightarrow{\mathbf{A}}\right)$

 \Rightarrow $\mathbf{P}^2 + \overrightarrow{\mathbf{P}} \cdot \overrightarrow{\mathbf{O}} = \mathbf{P}^2$

 $\theta = 90^{\circ}$

both the vectors.

P

= **P**

 $tan\theta$. Hence option (A)

=>

⇒

PQ $\cos \theta = 0$

$$\begin{aligned} \mathbf{W} = \vec{\mathbf{F}} \cdot \vec{\mathbf{s}} - \mathbf{F} \mathbf{s} \cos \theta \\ \text{For force causing displacement in its own direction $\theta = \theta^{\theta} \\ \mathbf{W} = \mathbf{F} \mathbf{s} = (\sqrt{(7)^{2} + (4)^{2} + ((4)^{2})} \times 10) \\ = (\sqrt{49 + 16 + 16}) \times 10 = 9 \times 10 = 90 \text{ J} \\ \vec{\mathbf{P}} + \vec{\mathbf{Q}} = 5\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 3\hat{\mathbf{k}} \\ \text{Let } \alpha \text{ be the angle made by } \vec{\mathbf{P}} + \vec{\mathbf{Q}} \text{ with } X\text{-axis} \\ \cos \alpha = \left(\frac{\vec{\mathbf{P}} + \vec{\mathbf{Q}}}{|\vec{\mathbf{P}} + \vec{\mathbf{Q}}||\hat{\mathbf{1}}|} \\ = \frac{5}{\sqrt{5^{2} + (-4^{2}) + 3^{2}}} = \frac{5}{\sqrt{50}} = \frac{1}{\sqrt{2}} \\ \vec{\alpha} = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = 45^{\circ} \\ \vec{\mathbf{A}} = 3\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}, \ \vec{\mathbf{B}} = 2\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}} \\ \sin \theta = \frac{|\vec{\mathbf{A}} \times \vec{\mathbf{B}}|}{|\vec{\mathbf{A}}||\vec{\mathbf{B}}|} \\ \vec{\alpha} \times \vec{\mathbf{B}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{E}} \\ \mathbf{i} & \hat{\mathbf{I}} & \hat{\mathbf{B}} \end{vmatrix} \\ \vec{\mathbf{A}} \times \vec{\mathbf{B}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{J}} & \hat{\mathbf{E}} \\ \mathbf{i} & \hat{\mathbf{A}} & \hat{\mathbf{B}} \end{vmatrix} = \sqrt{8^{2} + (-8)^{2} + (-8)^{2}} = \sqrt{192} \\ \vec{\mathbf{A}} \times \vec{\mathbf{B}} = \frac{|\hat{\mathbf{A}} \times \vec{\mathbf{B}}|}{|\vec{\mathbf{A}}||\vec{\mathbf{B}}|} \\ \vec{\mathbf{A}} \times \vec{\mathbf{B}} = \frac{|\hat{\mathbf{A}} \times \vec{\mathbf{B}}|}{(\vec{\mathbf{A}} + \vec{\mathbf{B}})} = \sqrt{12} \\ \vec{\mathbf{A}} \times \vec{\mathbf{B}} = \frac{\hat{\mathbf{A}} \cdot \hat{\mathbf{B}}}{\sqrt{12} + (-2)^{2} + 4\hat{\mathbf{A}}} \\ \vec{\mathbf{B}} = \sqrt{(2)^{2} + (-2)^{2} + (-8)^{2}} = \sqrt{192} \\ \text{Let the two vectors be } \vec{\mathbf{A}} \text{ and } \vec{\mathbf{B}}, \\ \sin \theta = \frac{\vec{\mathbf{A}} \times \vec{\mathbf{B}}}{|\vec{\mathbf{A}}||\vec{\mathbf{B}}|} \\ \sin \theta = \frac{\sqrt{38}}{(14 + 4)^{2} + 2(2)^{2}} = \sqrt{14} \\ \vec{\mathbf{B}} = \sqrt{(2)^{2} + (-2)^{2} + (4)^{2}} = \sqrt{24} \\ \sin \theta = \frac{\sqrt{38}}{(14 + 4)^{2} + 2(-2)^{2}} = \sqrt{14} \\ \vec{\mathbf{B}} = \sqrt{(2)^{2} + (-2)^{2}} = \sqrt{14} \\ \vec{\mathbf{B}} = \frac{\sqrt{3}}{\sqrt{3}} = \sqrt{3} \quad \dots \theta = 30^{\circ} \\ \mathbf{B} = \frac{\vec{\mathbf{A}} \times \vec{\mathbf{B}}}{|\vec{\mathbf{A}}||\vec{\mathbf{B}}|} \\ \vec{\mathbf{B}} = \frac{\sqrt{3}}{\sqrt{3}} \quad \dots \theta = 30^{\circ} \\ \mathbf{B} = \frac{\sqrt{3}}{\sqrt{3}} \quad \dots \theta = 30^{\circ} \\ \mathbf{B} = \frac{\sqrt{3}}{\sqrt{3}} = \sqrt{3} \quad \dots \theta = 30^{\circ} \\ \mathbf{B} = \mathbf{C} =$$$

28.

4

29.

.....

 \mathcal{A}

31.

A

-

A

A

A

33.

P

Competitive Thinking

Resultant of two vectors A and B can be given by, $\vec{R} = \vec{A} + \vec{B}$ $|\vec{\mathbf{R}}| = |\vec{\mathbf{A}} + \vec{\mathbf{B}}| = \sqrt{\mathbf{A}^2 + \mathbf{B}^2 + 2\mathbf{A}\mathbf{B}\cos\theta}$ If $\theta = 0$ then $|\vec{\mathbf{R}}| = \mathbf{A} + \mathbf{B} = |\vec{\mathbf{A}}| + |\vec{\mathbf{B}}|$ 5. Initial position vector $\vec{r}_{i} = (-3\hat{i} + 4\hat{j} - 3\hat{k}) m$ Final position vector $\vec{r}_{2} = (7\hat{i} - 2\hat{j} - 3\hat{k}) m$ Displacement $\vec{r} = \vec{r_1} - \vec{r_2}$ $=(7\hat{i}-2\hat{j}-3\hat{k})-(-3\hat{i}+4\hat{j}-3\hat{k})=10\hat{i}-6\hat{j}$ $C = \sqrt{A^2 + B^2} = \sqrt{3^2 + 4^2} = 5$ 6. Angle between \vec{A} and \vec{B} is $\frac{\pi}{2}$ $\overline{AC} = \overline{AB} + \overline{BC}$ 7. AC = $\sqrt{(AB)^2 + (BC)^2} = \sqrt{(10)^2 + (20)^2}$ $=\sqrt{100+400}=\sqrt{500}=22.36$ km $R = \sqrt{12^2 + 5^2 + 6^2} = \sqrt{144 + 25 + 36}$ 8. $=\sqrt{205} \approx 14.31 \text{ m}$ $\mathbf{R} = \sqrt{\mathbf{F}_1^2 + \mathbf{F}_2^2 + 2\mathbf{F}_1\mathbf{F}_2\cos\theta}$ 9. $40\sqrt{3} = \sqrt{F^2 + F^2 + 2F^2 \cos 60^\circ} = \sqrt{3F^2}$ ·. \Rightarrow F = 40 N 10. $F_{max} = 5 + 10 = 15 \text{ N}$ and $F_{min} = 10 - 5 = 5 \text{ N}$ Range of resultant force is $5 \le F \le 15$ 11. $\mathbf{R}_{\max} = \mathbf{A} + \mathbf{B} = 17$ when $\mathbf{\theta} = \mathbf{0}^{\circ}$ $\mathbf{R}_{\max} = \mathbf{A} - \mathbf{B} = 7$ when $\theta = 180^{\circ}$ by solving, A = 12 and B = 5When $\theta = 90^{\circ}$ then $\mathbf{R} = \sqrt{\mathbf{A}^2 + \mathbf{B}^2}$ $\Rightarrow \mathbf{R} = \sqrt{(12)^2 + (5)^2} = \sqrt{169} = 13$ $\vec{r} = \vec{a} + \vec{b} + \vec{c} = 4\hat{i} - \hat{j} - 3\hat{i} + 2\hat{j} - \hat{k}$ 12. $=\hat{i}+\hat{j}-\hat{k}$ $\hat{\mathbf{r}} = \frac{\vec{\mathbf{r}}}{|\mathbf{r}|} = \frac{\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}}{\sqrt{1^2 + 1^2 + (-1)^2}} = \frac{\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}}{\sqrt{3}}$

13.
$$\tan \alpha = \frac{2F\sin \theta}{F + 2F\cos \theta} = \infty (as \alpha = 90^{\circ})$$

 $F + 2F \cos \theta = 0$ $_{2F}$ R
 $\cos \theta = -\frac{1}{2}$ θ $\alpha = 90^{\circ}$
 $\theta = 120^{\circ}$ F
14. $|\vec{A}| + |\vec{B}| = 18$ (i)
 $12 = \sqrt{A^{2} + B^{2} + 2AB\cos \theta}$ (ii)
 $\tan \alpha = \frac{B\sin \theta}{A + B\cos \theta} = \tan 90^{\circ}$
 $\Rightarrow \cos \theta = -\frac{A}{B}$ (iii)
By solving (i), (ii) and (iii),
 $A = 13$ N and $B = 5$ N
15. $F_{net}^{2} = F_{1}^{2} + F_{2}^{2} + 2F_{1}F_{2} \cos \theta$
 $\left(\frac{F}{3}\right)^{2} = F^{2} + F^{2} + 2F^{2} \cos \theta$
 $\frac{F^{2}}{9} = 2F^{2}(1 + \cos \theta)$
16. $|\vec{F}_{R}| = |\vec{F} + \vec{F}| = \sqrt{F^{2} + F^{2} + 2F^{2}\cos \theta}$
 $= \left[2F^{2}(1 + \cos \theta)\right]^{\frac{1}{2}}$
 $= \left[2F^{2}(1 + \cos \theta)\right]^{\frac{1}{2}}$
 $= \left[2F^{2}(2\cos^{2}\theta/2)\right]^{\frac{1}{2}}$
 $= 2F \cos \theta/2$
17. Since, $R = \sqrt{A^{2} + B^{2} + 2AB\cos \theta}$
 $A = B = R$
 $\therefore A^{2} = 2A^{2} + 2A^{2} \cos \theta$
 $\therefore \cos \theta = -\frac{1}{2} = \cos 120^{\circ}$
 $\therefore \theta = 120^{\circ}$
18. Let $A = 3$ N and $B = 2$ N then
 $R = \sqrt{A^{2} + B^{2} + 2AB\cos \theta}$ (i)
Now $A = 6$ N, $B = 2$ N then
 $2R = \sqrt{36 + 4 + 24\cos \theta}$ (i)
From (i) and (ii), $\cos \theta = -\frac{1}{2}$

DGT Group - Tuitions (Feed Concepts) XIth - XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448

 $\theta = 120^{\circ}$

19.
$$R^2 = (3P)^2 + (2P)^2 + 2 \times 3P \times 2P \times \cos \theta$$

 $R^2 = 9P^2 + 4P^2 + 12P^2 \cos \theta$
 $R^2 = 13P^2 + 12P^2 \cos \theta$ (i)
 $(2R)^2 = (6P)^2 + (2P)^2 \times 2 \times 6P \times 2P \times \cos \theta$
 $4R^2 = 40P^2 + 24P^2 \cos \theta$
 $R^2 = 10P^2 + 6P^2 \cos \theta$ (ii)
From (i) and (ii)
 $13P^2 + 12P^2 \cos \theta = 10P^2 + 6P^2 \cos \theta$
 $3P^2 = -6P^2 \cos \theta$
∴ $\cos \theta = -\frac{1}{2}$
 $\theta = 120^\circ$

20. Let θ be the angle between \vec{A} and \vec{B} . Given, $|\vec{A} + \vec{B}| = n |\vec{A} - \vec{B}|$ $\therefore |\vec{A} + \vec{B}|^2 = n^2 |\vec{A} - \vec{B}|^2$, $A^2 + B^2 + 2 AB \cos \theta = n^2 [A^2 + B^2 - 2AB \cos \theta]$ $A^2 + A^2 + 2A^2 \cos \theta = n^2 [A^2 + A^2 - 2A^2 \cos \theta]$ $(\because A = B)$ $2A^2(1 + \cos \theta) = n^2 2A^2 (1 - \cos \theta)$ $1 + \cos \theta = n^2 (1 - \cos \theta)$ $(n^2 + 1) \cos \theta = (n^2 - 1)$

$$\cos \theta = \left(\frac{n^2 - 1}{n^2 + 1}\right)$$

$$\therefore \qquad \theta = \cos^{-1}\left(\frac{n^2 - 1}{n^2 + 1}\right)$$

21. The angle α which the resultant R makes with A is given by

$$\tan \alpha = \frac{B\sin \theta}{A + B\cos \theta}$$
$$\tan \left(\frac{\theta}{2}\right) = \frac{B\sin \theta}{A + B\cos \theta} \quad \left(\because \alpha = \frac{\theta}{2}\right)$$
$$\Rightarrow \frac{\sin \left(\frac{\theta}{2}\right)}{\cos \left(\frac{\theta}{2}\right)} = \frac{2B\sin \left(\frac{\theta}{2}\right)\cos \left(\frac{\theta}{2}\right)}{A + B\cos \theta}$$

Which gives $A + B \cos \theta = 2B \cos^2 \left(\frac{\theta}{2}\right)$ $\Rightarrow A + B \left[2\cos^2 \left(\frac{\theta}{2}\right) - 1 \right] = 2B \cos^2 \left(\frac{\theta}{2}\right)$

Which gives A = B.

22. Let
$$\vec{A} = 2\hat{i} + 3\hat{j} + \hat{k}$$
 and $\vec{B} = 3\hat{i} + 4\hat{k}$
 $\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta \Rightarrow \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|}$
 $\therefore |\vec{A}| \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|}$
 $= \frac{(2\hat{i} + 3\hat{j} + \hat{k}) \cdot (3\hat{i} + 4\hat{k})}{\sqrt{3^2 + 4^2}} = \frac{10}{5} = 2$

23.
$$\vec{A} \cdot \vec{B} = AB \cos \theta$$

 $\therefore |\vec{A}| \cos \theta = \frac{\vec{A} \cdot \vec{B}}{B} = \frac{2+3}{\sqrt{2}} = \frac{5}{\sqrt{2}}$

24.
$$\vec{A} \cdot \vec{B} = 0$$

 $(2 \times 1) + (3 \times 2) + [4 \times (-x)] = 0$
 $2 + 6 - 4x = 0$
 $8 - 4x = 0$
 $x = \frac{8}{2} = 2$

25.
$$\vec{P} \cdot \vec{Q} = 0$$

 $a^2 - 2a - 3 = 0 \implies a = 3$
26. $\vec{F_1} \cdot \vec{F_2} = (2\hat{j} + 5\hat{k})(3\hat{j} + 4\hat{k}) = 6 + 20 = 26$

27.
$$P = \vec{F} \cdot \vec{v}$$

= $(4\hat{i} + \hat{j} - 2\hat{k}) \cdot (2\hat{i} + 2\hat{j} + 3\hat{k})$
= $(8 + 2 - 6) W = 4 W$

28. $\vec{A} \cdot \vec{B} = AB \cos \theta$ Given, $\vec{A} \cdot \vec{B} = -|\vec{A}| |\vec{B}|$ i.e., $\cos \theta = -1$ $\therefore \quad \theta = 180^{\circ}$ i.e., \vec{A} and \vec{B} act in the opposite direction.

29.
$$\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|}$$

= $\frac{(3\hat{i}+4\hat{j}+5\hat{k})\cdot(3\hat{i}+4\hat{j}-5\hat{k})}{\sqrt{3^2+4^2+5^2}\sqrt{3^2+4^2+(-5^2)}}$
= $\frac{9+16-25}{\sqrt{25}\sqrt{25}} = 0$
 $\Rightarrow \theta = 90^{\circ}$

30. Unit vector along X-axis is
$$\hat{i}$$
.
 $\cos \theta = \frac{\vec{P} \cdot \hat{i}}{|\vec{P}||\hat{i}|} = \frac{(\hat{i} + \hat{j} + \hat{k}) \cdot (\hat{i})}{\sqrt{1^2 + 1^2 + 1^2} \sqrt{1^2}} = \frac{1}{\sqrt{3}}$
 $\Rightarrow \theta = \cos^{-1} \left(\frac{1}{\sqrt{3}}\right)$
31. $(\hat{i} + \hat{j}) \cdot (\hat{j} + \hat{k}) = 0 + 0 + 1 + 0 = 1$
 $\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|} = \frac{1}{\sqrt{2 \times \sqrt{2}}} = \frac{1}{2}$
 $\therefore \theta = 60^{\circ}$
32. $P_x = 2 \cos t, P_y = 2 \sin t$
 $\therefore \vec{P} = 2 \cot \hat{i} + 2 \sin t \hat{j}$
 $\vec{F} = \frac{d\vec{P}}{dt} = -2 \sin t \hat{i} + 2 \cos t \hat{j}$ (2cos $t\hat{i} + 2 \sin t \hat{j}$)
 $\vec{F} \cdot \vec{P} = (-2 \sin t \hat{i} + 2 \cos t \hat{j})(2 \cos t \hat{i} + 2 \sin t \hat{j})$
 $\vec{F} \cdot \vec{P} = 0$
 $\therefore \theta = 90^{\circ}$
34. $\vec{A} \times \vec{B} = AB \sin \theta \hat{n}$
Where, \hat{n} is a unit vector indicating the
direction of $\vec{A} \times \vec{B}$.
Vector product is non commutative,
 $\therefore \vec{A} = a\hat{k}$
Direction of vector A is along Z-axis
 $\therefore \vec{A} = a\hat{k}$
Direction of $\vec{A} \times \vec{B}$ is along west.
36. Vector product is non commutative,
 $\therefore \vec{V} = t \vec{x} \cdot \vec{\omega}$ and $\vec{V} = -(\vec{\omega} \times \vec{r})$
37. $\vec{V} = \vec{r} \times \vec{\omega} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & -6 & 6 \\ 3 & -4 & 1 \end{vmatrix}$
 $= \hat{i}(-6 + 24) - \hat{j}(5 - 18) + \hat{k}(-20 + 18)$
 $\vec{v} = 18\hat{i} + 13\hat{j} - 2\hat{k}$

AB sin $\theta = -AB \sin \theta$ 38. $2\mathbf{AB}\sin\theta = \mathbf{0}$ $\sin \theta = 0$ or $\theta = 180^{\circ}$ $\vec{\tau} = \vec{r} \times \vec{F} = (7\hat{i} + 3\hat{j} + k) \times (-3\hat{i} + \hat{j} + 5\hat{k})$ 39. $\vec{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 7 & 3 & 1 \\ -3 & 1 & 5 \end{vmatrix}$ $=\hat{i}(15-1)-\hat{j}(35+3)+\hat{k}(7+9)$ $\vec{\tau} = 14\hat{i} - 38\hat{j} + 16\hat{k}$ Angular momentum 40. $\vec{L} = \vec{r} \times \vec{p}$ in terms of component becomes $\vec{L} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \end{vmatrix}$ $|\mathbf{p}_{x} - \mathbf{p}_{y} - \mathbf{p}_{z}|$ As motion is in x-y plane (z = 0 and $p_z = 0$), hence $\vec{\mathbf{L}} = \vec{\mathbf{k}}(\mathbf{x}\mathbf{p}_{y} - \mathbf{y}\mathbf{p}_{x})$ Here x = vt, y = b, $p_x = mv$ and $p_y = 0$ $\vec{L} = \vec{k} [vt \times 0 - bmv] = -mvb\hat{k}$ Area of patallelogram = $|\vec{A} \times \vec{B}|$ 41 $\vec{\mathbf{A}} \times \vec{\mathbf{B}} = (\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) \times (3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + \hat{\mathbf{k}})$ $= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 3 & -2 & 1 \end{vmatrix}$ $= (8)\hat{i} + (8)\hat{j} - (8)\hat{k}$ $\therefore \quad \overrightarrow{\mathbf{A} \times \mathbf{B}} = \sqrt{64 + 64 + 64} = 8\sqrt{3}$ 42. $\vec{A} \cdot \vec{B} = 0; \vec{A} \cdot \vec{C} = 0$ $\vec{Z} \vec{D} = \vec{B} \times \vec{C}$ Ž. X \vec{A} is perpendicular to \vec{B} as well as \vec{C} . Let $\vec{\mathbf{D}} = \vec{\mathbf{B}} \times \vec{\mathbf{C}}$

23

The direction of \vec{D} is perpendicular to the plane containing \vec{B} and \vec{C} . Hence, \vec{A} is parallel to \vec{D} i.e., \vec{A} is parallel to $\vec{B} \times \vec{C}$.

43. $|\vec{A} \times \vec{B}| = \sqrt{3} \vec{A} \cdot \vec{B}$ AB sin θ = √3 AB cos θ ∴ tan θ = √3

$$\theta = 60^{\circ}$$

Now $|\vec{R}| = |\vec{A} + \vec{B}|$
$$= \sqrt{A^2 + B^2 + 2AB\cos^2}$$

$$= \sqrt{A^2 + B^2 + 2AB\left(\frac{1}{2}\right)^{1/2}}$$

$$= (A^2 + B^2 + AB)^{1/2}$$

4. V₁ †

$$If |\vec{V}_{1} + \vec{V}_{2}| = |\vec{V}_{1} - \vec{V}_{2}|$$

$$If |\vec{V}_{1} + \vec{V}_{2}| = |\vec{V}_{1} - \vec{V}_{2}|$$

$$then |\vec{V}_{1} + \vec{V}_{2}|^{2} = |\vec{V}_{1} - \vec{V}_{2}|^{2}$$

$$i.e., (\vec{V}_{1} + \vec{V}_{2}) \cdot (\vec{V}_{1} + \vec{V}_{2}) = (\vec{V}_{1} - \vec{V}_{2}) \cdot (\vec{V}_{1} - \vec{V}_{2})$$

$$On \text{ solving, } 4V_{1}V_{2} \cos \theta = 0$$

$$\theta = 90^{\circ}$$
So V_{1} and V_{2} will be mutually perpendicular.

45.
$$\mathbf{s} = \vec{r_2} - \vec{r_1} = (11\hat{i} + 11\hat{j} + 15\hat{k})$$

 $W = \vec{F} \cdot \vec{s}$
 $= (4\hat{i} + \hat{j} + 3\hat{k}) (11\hat{i} + 11\hat{j} + 15\hat{k})$
 $= (4 \times 11 + 1 \times 11 + 3 \times 15)$
 $= 100 \text{ J}$

46. For motion of the particle from (0, 0) to (a, 0) $\vec{F} = -K (y\hat{i} + x\hat{j}) \Rightarrow \vec{F} = -K a\hat{j}$ Displacement $\vec{r} = (a\hat{i} + 0\hat{j}) - (0\hat{i} + 0\hat{j}) = a\hat{i}$ So work done from (0, 0) to (a, 0) is given by $W = \vec{F} \cdot \vec{r} = -Ka\hat{j}.a\hat{i} = 0$ For motion (a, 0) to (a, a)

 $\vec{F} = K(a\hat{i} + a\hat{j})$ and displacement

 $\vec{r} = (a\hat{i} + a\hat{j}) - (a\hat{i} + 0\hat{j}) = a\hat{j}$ So work done from (a, 0) to (a, a),

$$W = \vec{F} \cdot \vec{r}$$

= -K(aî + aĵ).aĵ
= -Ka²

So total work done = $-Ka^2$

47. The sum of the two forces be,

$$\vec{F}_1 = \vec{A} + \vec{B}$$
(i)

The difference of the two forces be,

$$\vec{F}_2 = \vec{A} - \vec{B}$$
(ii)

Since sum of the two forces is perpendicula to their difference,

$$\vec{F}_1 \cdot \vec{F}_2 = 0$$

$$\Rightarrow (A + B) \cdot (A - B) = 0$$

$$\Rightarrow A^2 - A \cdot B + B \cdot A - B^2 = 0$$

$$A^2 = B^2$$

$$\Rightarrow |A| = |B|$$

Thus, the forces are equal to each other is magnitude.

$$\vec{a} + \vec{b} \times \vec{a} - \vec{b}$$

= $\vec{a} \times \vec{a} - \vec{a} \times \vec{b} + \vec{b} \times \vec{a} - \vec{b} \times \vec{b}$ (i)
Because, cross product of parallel vectors is
zero
Therefore,
 $\vec{a} \times \vec{a} = \vec{b} \times \vec{b}$

$$\vec{a} \times \vec{b} = \vec{0} \times \vec{b}$$

= $\vec{0}$ Because
 $\vec{a} \times \vec{b} = (ab \sin \theta) \hat{n} = -[(ba \sin \theta) \hat{n}]$
= $-\vec{b} \times \vec{a}$

Substituting the values in relation (i),

$$(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = 2(\vec{b} \times \vec{a})$$

50. Let
$$\vec{A} \cdot \left(\vec{B} \times \vec{A}\right) = \vec{A} \cdot \vec{C}$$

 $\vec{C} = \vec{B} \times \vec{A}$ which is perpendicular to both
 $\vec{C} = \vec{B} \times \vec{A}$ which is perpendicular to both

vectors A and B

$$\mathbf{A} \cdot \mathbf{C} = \mathbf{0}$$

24

DGT Group - Tuitions (Feed Concepts) Xlth – Xllth | JEE | CET | NEET | Call : 9920154035 / 8169861448

- A force $\vec{F} = 4\hat{i} + 3\hat{j} 2\hat{k}$ is passing through 1. the origin. Its moment about point (1, 1, 0) is
 - $(A) \quad -\hat{i} + \hat{j} + \hat{k}$
 - (B) zero
 - (C) $2\hat{i} + 3\hat{j}$
 - (D) $-2\hat{i} + 2\hat{j} \hat{k}$
- Assertion: If $\vec{a} = \hat{i} + 2\hat{j} 2\hat{k}$, $\vec{b} = 2\hat{i} + \hat{j} \hat{k}$, 2. then $|a| \neq |b|$.

Reason: Two unequal vectors can never have same magnitude.

- (A) Assertion is True, Reason is True; Reason is a correct explanation for Assertion.
- (B) Assertion is True, Reason is True; Reason is not a correct explanation for Assertion.
- (C) Assertion is True, Reason is False.
- (D) Assertion is False, Reason is True.
- Two forces of magnitudes 3 N and 5 N act at 3. the same point on an object. Which one of the following equations will satisfy the magnitude of the resultant force R in newtons?
 - (A) $2 \le R \le 5$
 - $(B) \quad 2 \le R \le 8$
 - (C) $3 \le R \le 5$
 - (D) $2 \le R \le 3$
- If A is a vector of magnitude 3 units due east. 4. What is the magnitude and direction of a

vector $-4\vec{A}$?

- (A) 3 units due east
- (B) 4 units due east
- (C) 12 units due east
- (D) 12 units due west
- A body constrained to move in Y direction, 5. subjected to a force given by is $\vec{F} = (-2\hat{i} + 15\hat{j} + 6\hat{k})$ N. What is the work done by this force in moving the body through a distance of 10 m along Z axis? (A) 100 1

(A)	190 J	(B)	00 J
(C)	150 J	(D)	20 J

6. Choose the incorrect option.

> The two vectors \vec{P} and \vec{Q} are drawn from a common point and $\vec{R} = \vec{P} + \vec{Q}$, then angle between P and Q is

- (A) 90° if $R^2 = P^2 + Q^2$ (B) less than 90° if $R^2 > P^2 + Q^2$ (C) greater than 90° if $R^2 < P^2 + Q^2$ (D) greater than 90° if $R^2 > P^2 + Q^2$

When vector $\hat{n} = a\hat{i} + b\hat{j}$ is perpendicular to 7. $(2\hat{i} + \hat{j})$, then a and b are

(A)
$$\frac{1}{\sqrt{5}}$$
, $\frac{-2}{\sqrt{5}}$ (B) -2, 0
(C) 0, -2 (D) $\frac{1}{\sqrt{2}}$, $-\frac{1}{\sqrt{2}}$

A force of -4Fk acts on O, the origin of the 8. coordinate system. The torque about the point (1, -1) is \$ 15 B .. 4

(A)
$$-4F(\hat{i}-\hat{j})$$
 (B) $4F(\hat{i}-\hat{j})$
(C) $-4F(\hat{i}+\hat{j})$ (D) $4F(\hat{i}+\hat{j})$

If \hat{i} , \hat{j} and \hat{k} are unit vectors along x, y and z-axis respectively, the angle θ between the vector $\hat{i} + \hat{j} + \hat{k}$ and vector \hat{j} is given by

(A)
$$\theta = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$
 (B) $\theta = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$
(C) $\theta = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (D) $\theta = \sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$

- Figure shows an overhead view of three 10. horizontal forces acting on a cargo canister that was initially stationary but now moving across a frictionless floor. The force magnitudes are $F_1 = 3$ N, $F_2 = 4$ N and $F_3 = 10$ N. What is the net work done on the canister by the three forces during the first 5 m of displacement?
 - (A) 3.813 J 1.53 J **(B)** \30° 18.6 J (C) (D) 38.13 J

9.

- 11. Å and B are the two vectors such that ratio of their dot product to magnitude of their cross product is 1/√3. Then the angle between A and B is

 (A) π^c/2
 (B) π^c/3
 (C) 0^c
 (D) π^c/6

 12. Two vectors P and Q lie in one plane. Vector R lies in a different plane. In such a case P+Q+R
 - (A) can be zero
 - (B) must be zero
 - (C) lies in the same plane as \vec{P} or \vec{Q}
 - (D) lies in the plane different from any of the three vectors.
- 13. A particle acted upon by constant forces $5\hat{i}+\hat{j}-2\hat{k}$ and $2\hat{i}+\hat{j}-2\hat{k}$ is displaced from the point $2\hat{i}+2\hat{j}-4\hat{k}$ to point $6\hat{i}+4\hat{j}-2\hat{k}$. The total work done by the forces in SI unit is (A) $20\sqrt{2}$ (B) 47 (C) 24 (D) 33
- 14. The x and y components of vectors A are 4 m and 6 m respectively. The x and y components of vector $(\vec{A} + \vec{B})$ are 12 m and 10 m respectively. Then what are the x and y component of vector \vec{B} ?
 - (A) 8 m, 4 m (C) 4 m, 8 m (D) 4 m, 6 m
- 15. The angle subtended by the vector $A = 6\hat{i} + 3\hat{j} + 4\hat{k}$ with the y-axis is

(A)
$$\sin^{-1}\left(\frac{3}{61}\right)$$

(B) $\sin^{-1}\left(\frac{3}{\sqrt{61}}\right)$
(C) $\cos^{-1}\left(\frac{3}{\sqrt{61}}\right)$
(D) $\cos^{-1}\left(\frac{4}{\sqrt{61}}\right)$

A particle moves in the x-y plane under the 16. action of a force F such that the components of its linear momentum p at any time t are $p_x = 3 \cos t$ and $p_y = 3 \sin t$. What is the magnitude of the vector \vec{F} ? $2\sqrt{2}$ 5 (A) (D) 4 (C) 3 Given $\vec{A} = 3\hat{i} + 2\hat{j}$ and $\vec{B} = \hat{i} + \hat{j}$. The 17. component of vector \vec{A} along vector \vec{B} is $\frac{1}{\sqrt{2}}$ **(B)** (A) (C) $\frac{5}{\sqrt{2}}$ (D) $\frac{7}{\sqrt{2}}$ A vector A is along the positive x-axis and its 18. vector product with another vector B is zero, then vector B could be (B) 4i (A) $\hat{i} + \hat{j}$ (C) $\hat{i} + \hat{k}$ (D) $-7\hat{k}$ What is the area of the triangle formed by 19. sides $\vec{A} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ and $\vec{B} = \hat{i} - 2\hat{k}$? (A) $\sqrt{13.5}$ unit (B) 13.5 unit (D) 5.22 unit (C) $\sqrt{109}$ unit The component of vector $\vec{A} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$ 20. along the direction of $\hat{j} - \hat{k}$ is (A) $\mathbf{a}_x - \mathbf{a}_y + \mathbf{a}_z$ (B) $\mathbf{a}_z - \mathbf{a}_y$ (C) $(\mathbf{a}_x - \mathbf{a}_y) / \sqrt{2}$ (D) $\frac{\mathbf{a}_y - \mathbf{a}_z}{\sqrt{2}}$ Answers to Evaluation Test 4. (D) 3. **(B)** (D) 2. (C) 1. (D) 8. **(B)** 6. (D) 7. (A) 5. 12. (D) 11. **(B)** 10. (C) 9 (A) 16. (C) 14. (A) 15. (B) 13. (C) 20. (D) 19. (D) 17. (C) 18. (B)