
Scalars, Vectors and Tensors
A scalar is a physical quantity that it represented by a dimensional num-

ber at a particular point in space and time. Examples are hydrostatic pres-
sure and temperature.

A vector is a bookkeeping tool to keep track of two pieces of information
(typically magnitude and direction) for a physical quantity. Examples are
position, force and velocity. The vector has three components.

velocity vector ~v = v1~x1 + v2~x2 + v3~x3 =
∑

i

vi~xi =

v1

v2

v3



Figure 1: The Velocity Vector

The magnitude of the velocity is a scalar v ≡ |~v|
What happens when we need to keep track of three pieces of information

for a given physical quantity?
We need a tensor. Examples are stress and strain. The tensor has nine

components.

stress tensor σij =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (1-25)

For stress, we keep track of a magnitude, direction and which plane the
component acts on.
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The Stress Tensor

stress tensor σij =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (1-25)

The first subscript keeps track of the plane the component acts on (de-
scribed by its unit normal vector), while the second subscript keeps track of
the direction. Each component represents a magnitude for that particular
plane and direction.

Figure 2: Four of the nine components of the stress tensor acting on a small
cubic fluid element.

The stress tensor is always symmetric σij = σji (1-26)

Thus there are only six independent components of the stress tensor.

Tensor calculus will not be required in this course.
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The Stress Tensor
EXAMPLE: SIMPLE SHEAR

σ12 = σ21 ≡ σ = F/A (1-27)

σ13 = σ31 = σ32 = σ32 = 0 (1-28)

σij =

σ11 σ 0
σ σ22 0
0 0 σ33

 (1-29)

EXAMPLE: SIMPLE EXTENSION

σij =

σ11 0 0
0 σ22 0
0 0 σ33

 (1-30)

EXAMPLE: HYDROSTATIC PRESSURE

σij =

−P 0 0
0 −P 0
0 0 −P

 (1-30)

The minus sign is because pressure compresses the fluid element.
Polymers (and most liquids) are nearly incompressible. For an incom-

pressible fluid, the hydrostatic pressure does not affect any properties. For
this reason only differences in normal stresses are important.

In simple shear, the first and second normal stress differences are:

N1 ≡ σ11 − σ22 (1-32)

N2 ≡ σ22 − σ33 (1-33)

The Extra Stress Tensor is defined as

τij ≡
{

σij + P for i = j
σij for i 6= j

(1-35)
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Strain and Strain Rate Tensors

Strain is a dimensionless measure of local deformation. Since we want
to relate it to the stress tensor, we had best define the strain tensor to be
symmetric.

γij(t1, t2) ≡
∂ui(t2)

∂xj(t1)
+

∂uj(t2)

∂xi(t1)
(1-37)

~u = u1~x1 + u2~x2 + u3~x3 is the displacement vector of a fluid element at
time t2 relative to its position at time t1.

Figure 3: Displacement Vectors for two Fluid Elements A and B.

The strain rate tensor (or rate of deformation tensor) is the time deriva-
tive of the strain tensor.

γ̇ij ≡ dγij/dt (1-38)

The components of the local velocity vector are vi = dui/dt (1-39). Since
the coordinates xi and time t are independent variables, we can switch the
order of differentiations.

γ̇ij ≡
∂vi

∂xj

+
∂vj

∂xi

(1-40)
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Strain and Strain Rate Tensors
EXAMPLE: SIMPLE SHEAR

γij =

0 γ 0
γ 0 0
0 0 0


Where the scalar γ = ∂u1/∂x2 + ∂u2/∂x1 (1-41)

γ̇ij =

0 γ̇ 0
γ̇ 0 0
0 0 0

 (1-51)

Where the scalar γ̇ ≡ dγ/dt.

EXAMPLE: SIMPLE EXTENSION

γij =

2ε 0 0
0 −ε 0
0 0 −ε

 (1-47)

Where the scalar ε ≡ ∂u1/∂x1.

γ̇ij =

2ε̇ 0 0
0 −ε̇ 0
0 0 −ε̇

 (1-48)

Where the scalar ε̇ ≡ dε/dt.
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The Newtonian Fluid

Newton’s Law is written in terms of the extra stress tensor

τij = ηγ̇ij (1-49)

Equation (1-49) is valid for all components of the extra stress tensor in
any flow of a Newtonian fluid. All low molar mass liquids are Newtonian
(such as water, benzene, etc.)

EXAMPLE: SIMPLE SHEAR

γ̇ij =

0 γ̇ 0
γ̇ 0 0
0 0 0

 (1-48)

τij =

 0 ηγ̇ 0
ηγ̇ 0 0
0 0 0

 (1-48)

The normal components are all zero

σ11 = σ22 = σ33 = 0 (1-53)

and the normal stress differences are thus both zero for the Newtonian
fluid

N1 = N2 = 0 (1-54)

EXAMPLE: SIMPLE EXTENSION

γ̇ij =

2ε̇ 0 0
0 −ε̇ 0
0 0 −ε̇

 (1-48)

τij = η

2ε̇ 0 0
0 −ε̇ 0
0 0 −ε̇

 (1-55)
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Vector Calculus (p. 1)

velocity ~v = vx
~i + vy

~j + vz
~k

~i, ~j, ~k are unit vectors in the x, y,
z directions

acceleration ~a = d~v
dt

= ax
~i + ay

~j + az
~k

~a = d~v
dt

involves vectors so it represents three equations:

ax = dvx

dt
ay = dvy

dt
az = dvz

dt

∴ ~a =
dvx

dt
~i +

dvy

dt
~j +

dvz

dt
~k

The vector is simply notation (bookkeeping).

Divergence n. ~∇ · ~v ≡ ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

If ∂vx

∂x
> 0 and ∂vy

∂y
> 0 and ∂vz

∂z
> 0

and vx > 0 and vy > 0 and vz > 0
then you have an explosion! ∴ the name divergence.
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Vector Calculus (p. 2)

Gradient n. ~∇P ≡ ∂P
∂x

~i + ∂P
∂y

~j + ∂P
∂z

~k

3-D analog of a derivative

Gradient operator makes a vector from the scalar P .

(whereas divergence made a scalar from the vector ~v).

Laplacian n. ∇2~v ≡ ∂2~vx

∂x2 + ∂2~vy

∂y2 + ∂2~vz

∂z2

∇2~v =

(
∂2vx

∂x2
+

∂2vx

∂y2
+

∂2vx

∂z2

)
~i

+

(
∂2vy

∂x2
+

∂2vy

∂y2
+

∂2vy

∂z2

)
~j

+

(
∂2vz

∂x2
+

∂2vz

∂y2
+

∂2vz

∂z2

)
~k

Laplacian operator makes a vector from a the vector ~v.

Also written as ~∇ · ~∇~v, divergence of the gradient of ~v.
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Conservation of Mass in a Fluid (p. 2)

THE EQUATION OF CONTINUITY

Consider a Control Volume

ρ = density (scalar)

~v = velocity vector

~n = unit normal vector on surface

ρ(~v · ~n)dA = net flux out of the control volume through small area dA.∫
S

ρ(~v · ~n)dA = net flow rate (mass per unit time) out of control volume.∫
V

ρdV = total mass inside the control volume.

d
dt

∫
V

ρdV = rate of accumulation of mass inside the control volume.

Mass Balance: d
dt

∫
V

ρdV = −
∫

S
ρ(~v · ~n)dA
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Conservation of Mass in a Fluid (p. 2)

d

dt

∫
V

ρdV = −
∫

S

ρ(~v · ~n)dA

Integral mass balance can be written as a differential equation using the
Divergence Theorem.

Divergence Theorem:∫
S

ρ(~v · ~n)dA =

∫
V

~∇ · (ρ~v)dV

∫
V

(
∂ρ

∂t
+ ~∇ · (ρ~v)

)
dV = 0

Control volume was chosen arbitrarily

∴
∂ρ

∂t
+ ~∇ · (ρ~v) = 0

Derived for a control volume but applicable to any point in space.

Cornerstone of continuum mechanics!!!

Applies for both gases and liquids.
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Conservation of Mass in a Liquid

A liquid is incompressible

Density ρ is always the same

∂ρ
∂t

= 0 ρ = constant

Integral Mass Balance

d

dt

∫
V

ρdV = −
∫

S

ρ(~v · ~n)dA

becomes ∫
S

(~v · ~n)dA = 0

Continuity Equation ∂ρ
∂t

+ ~∇ · (ρ~v) = 0

becomes ~∇ · ~v = 0 for incompressible liquids

In Cartesian coordinates:

~v = vx
~i + vy

~j + vz
~k

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
= 0 (1-57)
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Incompressible Continuity Equation for
Liquids

Cartesian Coordinates: x, y, z

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
= 0

Cylindrical Coordinates: r, θ, z

1

r

∂

∂r
(rvr) +

1

r

∂vθ

∂θ
+

∂vz

∂z
= 0

Spherical Coordinates: r, θ, ϕ

1

r2

∂

∂r
(r2vr) +

1

r sin θ

∂

∂θ
(vθ sin θ) +

1

r sin θ

∂vϕ

∂ϕ
= 0

All are simply ~∇ · ~v = 0

12


