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Musical norms evolve over time. In the eleventh century parallel perfect fifths
were tolerated, and perfect fourths were considered more consonant than
thirds. In the eighteenth century parallel perfect fifths were not tolerated,
and thirds were considered more consonant than perfect fourths. And in the
twentieth century all manner of traditional prohibitions collapsed as composers
revelled in the sense that everything was permitted. Despite such changes,
however, certain musical principles remain relatively constant across styles.
One of the most important of these dictates that harmonies should, in general,
be connected by

 

 efficient voice leading.

 

 That is, notes should be distributed
among individual musical voices so that no voice moves very far as harmonies
change. Ex. 1 supplies a few representative passages. In each case, the music
exploits the shortest possible path between successive chords, in a sense to be
defined below.
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 Efficient voice leading is not simply a matter of performers’
physical comfort, although that is certainly a factor. It also enables listeners to
segregate the auditory stimulus into a series of independent musical lines,
which is a prerequisite for understanding polyphony.
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Efficient voice leading is so ubiquitous that we tend to take it for granted.
But upon reflection it is rather remarkable that composers manage so consistently
to find the shortest route from chord to chord. There are 57,366,997,447
distinct voice leadings between two hexachords.
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 There are 288 bijective voice
leadings from a half-diminished seventh chord to the twelve dominant seventh
chords.
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 Yet almost any composer, theorist or undergraduate student of

Ex. 1 Efficient voice leading in several musical styles: (a) Ad organum faciendum
(eleventh century); (b) Landini, Sy dolce non sono; (c) J.S. Bach, Das wohltemperierte
Klavier I, Fugue No. 3 in CC major, BWV 869 (final cadence, upper four voices only);
(d) Wagner, the ‘Tarnhelm’ motive (upper three voices only); and (e) a common
jazz ii–V–I voicing (upper four voices only)
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harmony can quickly find the most efficient voice leading between two
hexachords, or a maximally efficient bijective voice leading from a particular
half-diminished seventh chord to any of the twelve dominant seventh chords.
The puzzle lies in the mismatch between the large number of possibilities and
our apparent ease in sorting through them.

We can complicate our puzzle by noting that students receive little explicit
conceptual instruction in identifying efficient voice leadings. Music teachers
tend to provide examples augmented with relatively uninformative exhortations:
we enjoin our students to obey the ‘law of the shortest way’ – that is, to minimise
the overall voice-leading distance between successive chords
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 – without telling
them precisely what this means or how to do it. And students comply, easily
and for the most part without complaint. How can this be? What is it that even
the elementary harmony student knows which allows him or her to identify the
smallest voice leading so readily from among such a large field of possibilities?
Can we develop explicit algorithms or recipes that simulate the tacit knowledge
regularly deployed by musicians?

This article attempts to answer this last question, offering tools for con-
ceptualising voice leading and methods for identifying minimal voice leadings
between arbitrary chords. Section I demonstrates that voice leadings, like
chords, can be classified on the basis of transpositional and inversional
equivalence. This allows us to group the large number of voice leadings into
more manageable categories. Sections II–IV turn to voice leadings without

 

voice crossings.

 

 Crossing-free voice leadings are important, first, because
avoidance of voice crossings facilitates the perception of independent polyphonic
voices,
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 and second, because for any ‘reasonable’ method of measuring
voice-leading size (to be defined below), removing voice crossings never makes
a voice leading larger. Thus we need only consider the crossing-free voice
leadings in our search for a minimal voice leading between chords.

Sections II and III consider an even more restrictive, but musically very
important class of voice leadings: those which are both crossing-free and bijective.
This restriction permits an even more drastic act of cognitive simplification:
there are 57,366,997,447 voice leadings between any two hexachords, 31,944
of which are crossing-free – but only 

 

six

 

 of these are both bijective and crossing-
free. Bijective voice leadings are important because the number of voices in
Western music typically remains constant, at least over small stretches of musical
time. (In many cases, this is because of limits on the number of available
instruments.) Furthermore, minimal voice leadings are often bijective, although
they need not always be. Sections II and III present explicit methods for finding
minimal bijective, crossing-free voice leadings. Section IV drops the requirement
of bijectivity, showing how to identify a minimal voice leading (not necessarily
bijective) between arbitrary chords. Together, these sections formalise and extend
one aspect of the sophisticated intuitive knowledge that musicians possess.

It should be emphasised that this article formalises only one small portion
of implicit musical knowledge. Musicians typically need to find efficient voice
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leadings while also satisfying additional style-specific constraints. Thus the
voice leading in Ex. 2, although minimal, would be unacceptable to an eighteenth-
century composer, as it contains parallel perfect fifths. (It would be acceptable
to a medieval or modern composer, however.) This paper will not attempt to
model style-specific contrapuntal norms. Consequently, I will not discuss
forbidden parallels, resolution of leading notes, completion of aggregates or the
role of the bass voice in sounding chord roots. Instead, I will focus on a
more general skill which I take to be important in a variety of different styles:
finding efficient voice leadings between arbitrary chords. My methodological
assumption is that finding efficient voice leadings in general is an isolable
component of the skill involved in finding efficient voice leadings while
also satisfying additional style-specific constraints. Furthermore, the ideas and
algorithms in this article can be relatively easily adapted to account for these
additional restrictions.

Although the main purpose of this article is to provide tools for thinking
about voice leading, I will pause at several points to consider practical applications.
Section I (c) shows how to extend ‘neo-Riemannian’ harmonic ideas, defining
generalised ‘dualistic chord progressions’ and explaining why Riemann’s think-
ing should have come to play such an important role in recent investigations
of voice leading. Section II (b) investigates the principles underlying tritone
substitution – a technique important in nineteenth-century chromaticism and
central to modern jazz. Finally, Section III (b) outlines a new analytic approach
to two celebrated nineteenth-century pieces: the Prelude to Wagner’s 

 

Tristan
und Isolde

 

 and Debussy’s 

 

Prélude à l’après-midi d’un faune.

 

 My hope is that these
investigations will motivate more analytically and historically minded readers
to engage with the somewhat abstract theorising in the rest of the article.

 

I

Classifying Voice Leadings

 

(a) Definitions

 

I use scientific pitch notation, in which C4 is middle C, C3 is an octave below
middle C, C5 is an octave above middle C, and so on. Spelling is unimportant:

Ex. 2 A maximally efficient voice leading between C major and D minor triads
which would be unacceptable to composers of the eighteenth century
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B

 

C

 

3, C4 and D

 

ww

 

4 are all equivalent names for the same pitch. I also use real
numbers to refer to pitches: here, C4 is 60, C

 

C

 

4 is 61, D4 is 62, and so on.
Real numbers in the range 0 

 

≤

 

 

 

x

 

 

 

<

 

 12 also refer to pitch classes: to find the
pitch class corresponding to a pitch, divide by 12 and keep only the remainder.
Curly brackets {} are used when order is not significant: {

 

a

 

, 

 

b

 

, 

 

c

 

} is the same
as {

 

b

 

, 

 

c

 

, 

 

a

 

}. Regular parentheses () are used when order is significant: (

 

a

 

, 

 

b

 

, 

 

c

 

)
is distinct from (

 

b

 

, 

 

c

 

, 

 

a

 

). The term ‘chord’ refers either to multisets of pitches
or pitch classes, as the context requires.

 

7

 

Ex. 3a depicts a 

 

pitch-space voice leading

 

, or 

 

voice leading between pitch sets

 

:
five melodic voices moving from the chord {G2, G3, B3, D4, F4} to {C3, G3,
C4, C4, E4}. The voice leading can be represented using the notation (G2,
G3, B3, D4, F4) 

 

→

 

 (C3, G3, C4, C4, E4). This indicates that the voice
sounding G2 in the first chord moves to C3 in the second chord, that the voice
sounding G3 in the first chord continues to sound G3 in the second chord,
and so on. The order in which the voices are listed is not significant; what
matters is the progression of each voice. Consequently, one could just as well
represent Ex. 3a as (F4, D4, G2, B3, G3) 

 

→

 

 (E4, C4, C3, C4, G3). Formally,
a voice leading between pitch sets 

 

A

 

 and 

 

B

 

 is a set of ordered pairs of pitches
(

 

a

 

, 

 

b

 

) such that 

 

a

 

 is a pitch in 

 

A

 

 and 

 

b

 

 is a pitch in 

 

B

 

, and each pitch of each
chord appears in at least one pair. A voice leading between pitch sets is 

 

bijective

 

if each pitch of 

 

A

 

 appears as the first element in precisely one pair, and each
pitch of chord 

 

B

 

 appears as the second element in precisely one pair.
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The voice leading in Ex. 3b is closely related to that in Ex. 3a; all that has
changed is the octave in which some voices appear. We can represent what is
common to the two voice leadings by writing  (C, G,
C, C, E). This notation indicates that one of the voices containing G, whatever
octave it may be in, moves up five semitones to C; the other voice containing
G is held over into the next chord; the B moves up by semitone to C; and so
on. This sort of octave-free voice-leading schema can be described as a

 

pitch-class voice leading,

 

 or 

 

voice leading between pitch-class sets.
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 The numbers
above the arrow, here (5, 0, 1, −2, −1), determine a set of paths in pitch-class

Ex. 3 Three voice leadings between G7 and C

(G, G, B, D, F) , , , ,  5 01 2 1− −⎯ →⎯⎯
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space.10 The pitch-space voice leadings in Exs. 3a and b are instances of the
pitch-class voice leading  (C, G, C, C, E). Ex. 3c is
not an instance of this pitch-class voice leading, since here G moves to C by
seven descending semitones rather than five ascending semitones. (The specific
path travelled by each voice matters!) If the number of semitones x moved by
each voice lies in the range −6 < x ≤ 6, then I will omit the numbers over the
arrow. For example, I will write (G, G, B, D, F) → (C, G, C, C, E) for the
pitch-class voice leading in Exs. 3a and b. This indicates that each voice moves
by the shortest possible path to its destination, with the (arbitrary) convention
being that tritones are assumed to ascend.11 Formally, a voice leading between
pitch-class sets A and B is a set of ordered pairs (a, p), where a is a pitch class
in A, p is a real number which determines a path in pitch-class space from a
to a pitch class b in B, and the voice leading contains a path associating each
pitch class in one set with some pitch class in the other.12

Pitch-class voice leadings can be understood as convenient abstractions of
the sort composers regularly deploy. Without such abstractions, musicians
would need to conceptualise very similar voice leadings – such as those in
Ex. 4 – as being completely distinct, with no relation to one another. It is far
simpler, and far more practical, to understand the two voice leadings in Ex. 4
as instances of a single underlying compositional principle: you can transform a
C major triad into an F major triad by moving the E up by one semitone and the G
up by two semitones. Pitch-class voice leadings are simply tools for formalising
such general principles and thus for modelling one aspect of the composer’s
craft. Of course, in actual compositional contexts, pitch-class voice leadings
will necessarily be represented by specific pitches. But as we shall shortly see,
composers often have a great deal of freedom over how to dispose pitch classes
in register, and in such contexts pitch-class voice leadings are very useful. For
this reason, the present article will be largely concerned with pitch-class voice
leadings, rather than their more specific pitch-space counterparts.

A pitch-space voice leading is crossing-free if all pairs of voices satisfy the
following criterion: if voice A is below voice B in the first chord, then voice A
is not above voice B in the second.13 A pitch-class voice leading is crossing-free
if and only if all of its instances are crossing-free. The voice leadings in Exs. 3a
and b are crossing-free when considered either as pitch-space voice leadings or
as pitch-class voice leadings. The voice leading in Ex. 3c is crossing-free when

(G, G, B, D, F) , , , ,  5 01 2 1− −⎯ →⎯⎯

Ex. 4 Two instances of the same compositional schema
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considered as a pitch-space voice leading, but not when considered as a pitch-
class voice leading. To see why, transpose the top voice down an octave: the
transposed voice leading is an instance of the same pitch-class voice leading,
but it has a crossing. Note that the term ‘voice crossing’, as applied to pitch-
class voice leadings, is a technical term of art: ordinary musical discourse uses
‘voice crossing’ only to refer to crossings in pitch space.

Music theorists have proposed many ways to measure the size of a voice
leading. Appendix A lists the main alternatives. Such proposals are at best
approximations, attempts to make composers’ intuitions, as embodied in
Western musical practice, explicit. For this reason I will not adopt any single
method. Instead, I will require that voice-leading metrics satisfy two intuitive
constraints. First, the size of a voice leading should be a non-decreasing
(monotonic) function of the distances moved by the voices.14 Second, remov-
ing voice crossings should never make a voice leading larger: the pitch-space
voice leading (p0, p1, … , pn−1) → (q0, q1, … , qn−1) should be no larger than
(p0, p1, … , pn−1) → (q1, q0, … , qn−1) when p0 < p1 and q0 < q1.

15 Every existing
music-theoretical method of measuring voice-leading size satisfies both require-
ments. I have elsewhere argued that any reasonable metric of voice-leading size
must satisfy these constraints.16 Rather than repeating that argument here, I will
simply assume that one of the existing music-theoretical metrics − or some
other metric satisfying the two constraints – is satisfactory. For such metrics,
there is always a minimal voice leading between any two chords (both in pitch
space and in pitch-class space) which is crossing-free.

This article’s central question is: ‘Given two pitch-class sets, how can we
find the most efficient voice leading between them?’ (Note: in what follows,
I will often use the term ‘voice leading’ as shorthand for ‘voice leading in
pitch-class space’.) It should be emphasised that composers regularly confront
this question. Suppose, for example, a composer has written the music shown
in Ex. 5a: he or she has chosen to write a root-position V7–I progression with
five voices, and has determined the registral position of the notes in the first
chord, as well as the registral position of the lowest note in the second chord.
The question then becomes: ‘How can the composer move the upper voices
most efficiently so as to form a C major chord?’ Since the notes of the second
chord can be placed in any register, this question is equivalent to the question
‘What is the most efficient (four-voice) pitch-class voice leading from G7 to C?’
A similar question might be asked by a composer who, having written the
chord in Ex. 5b, would like to resolve it to a dominant seventh chord by
maximally efficient voice leading. Which dominant seventh should the composer
choose, and what is the optimal voice leading? Again, the freedom to dispose
pitch classes in register makes it possible to use pitch-class voice leadings to
answer this question.

To be sure, the question ‘How do I find the minimal voice leading between
two pitch-class sets?’ is not the only one which must be answered when
composing. In many tonal styles, for example, the bass voice often moves by
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leap; thus, efficient voice leading tends to occur only between the upper
voices in the musical texture (Ex. 1c–e). Likewise, in many musical styles,
some voice leadings, although efficient, will be forbidden – perhaps because
they involve undesirable parallels (Ex. 2). Finally, composers often choose
non-minimal voice leadings, if only for the sake of variety. Thus finding the
most efficient voice leading between pitch-class sets is only one of the skills
necessary to compose in a particular musical style. The goal of this article is to
investigate this particular musical skill. This should be considered a prelude to,
rather than a replacement for, more detailed study of the contrapuntal norms
of specific styles.

(b) Classifying Voice Leadings

Pitch-class set theory categorises equal-tempered chords on the basis of
transpositional and inversional equivalence. This section will extend these
classifications to voice leadings. The result can be described, doing only
moderate violence to the English language, as the set theory of voice leadings. As
we will see, there is a crucial difference between traditional set theory and the
‘set theory of voice leadings’. This is because there are two ways in which
transposition and inversion can act upon a voice leading: uniformly, where the
same transposition or inversion applies to both chords; and individually, where
different transpositions or inversions apply to the chords. This distinction
between individual and uniform relatedness does not appear in traditional
set theory, which is concerned only with the classification of isolated pitch-
class sets.17

Intuitively, the voice leadings (C, E, G) → (C, F, A) and (G, B, D) → (G, C, E)
are very similar: they exhibit the same musical pattern at different transpo-
sitional levels, holding the root of a major triad fixed, moving the third up by
semitone and moving the fifth up by two semitones (Ex. 6a). Such voice
leadings can be said to be uniformly transpositionally related, or uniformly T-related.18

We can transform any instance of a voice leading into an instance of a uniformly
T-related voice leading simply by transposing all notes in pitch space.

Ex. 5 Two practical compositional questions
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The voice leadings (C, E, G) → (C, F, A) and (G, B, D) → (FC, B, DC) are
also similar, albeit slightly less so; each maps the root of the first chord onto
the fifth of the second, the third of the first chord to the root of the second
and the fifth of the first chord to the third of the second. Ex. 6b shows that we
can transform one voice leading into the other by applying a different transpo-
sition to each chord: we transpose (C, E, G) by seven semitones to produce
(G, B, D); but we transpose (C, F, A) by six semitones to produce (FC, B, DC).
For this reason, such voice leadings can be said to be individually transposition-
ally related, or individually T-related. The possibility of individual transpositional
relatedness marks the main difference between the ‘set theory of voice leadings’
and traditional set theory.

The distinction between individual and uniform relatedness extends
naturally to inversion. Ex. 7a shows that an instance of the voice leading
(C, E, G) → (C, F, A) can be inverted to produce an instance of (G, E w, C)
→ (G, D, B w): here, inversion around E w4/E4 sends C4 to G4, E4 to E w4, F4
to D4, G4 to C4 and A4 to B w3. More generally, a single inversion will
transform any instance of the voice leading (C, E, G) → (C, F, A) into an instance
of the voice leading (G, E w, C) → (G, D, Bw). These voice leadings are therefore
uniformly inversionally related, or uniformly I-related. Similarly, the voice leadings
(C, E, G) → (C, F, A) and (G, E w, C) → (GC, DC, B) are individually inversionally
related, or individually I-related, since it takes two inversions to transform an

Ex. 6 Individually and uniformly T-related voice leadings

Ex. 7 Individually and uniformly I-related voice leadings
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instance of the first voice leading into an instance of the second. Ex. 7b
demonstrates: here, we invert the first chord around Ew4/E4 but we invert the
second chord around E4. (Note: individual inversional relatedness still requires
that each chord in the first voice leading be related by some inversion to the
corresponding chord in the second voice leading; it is not permissible to invert
only one of the two chords.19)

The musical significance of the uniform relationships is clear: uniformly
T-related voice leadings exhibit the underlying musical pattern at different
transpositional levels, while uniformly I-related voice leadings are ‘mirror images’
of one another. Uniformly T- or I-related voice leadings always move their voices
by the same distances, although possibly in opposite directions.20 The musical
significance of individual T and I relationships is perhaps less clear: the voice
leading  (C, F, A)suggests a standard I–IV chord progression,
whereas the voice leading  (B, E, GC) sounds like an instance
of Schubertian chromaticism. Nevertheless, there is a clear sense in which two
individually T-related voice leadings are similar: as we will shortly see, each
voice leading relates structurally analogous notes, and their voices move by the
same distance up to an additive constant.21 Analogous points can be made
about individually I-related voice leadings.22 I will suggest that it can be quite
profitable to focus on these individual voice leading relationships, as they allow
us to sort the overwhelming multitude of voice leading possibilities into a much
smaller set of categories. This will be useful when we are searching for minimal
voice leadings between chords. It can also alert us to new relationships within
and between musical works.

(c) Excursus I: Dualism and the Theory of Voice Leading

We can describe our new ‘set theory of voice leadings’ using the inversionally
symmetrical (‘dualistic’) language of Oettingen and Riemann. Following these
theorists, let us label minor triads from top to bottom, so that G is the ‘root’, E w

the ‘third’ and C the ‘fifth’ of the minor triad {C, E w, G}. Let us also define the
‘principal direction’ of the triad as the direction in which the root moves by
seven semitones to reach the fifth. Using this labelling, we can say that (C, E,
G) → (C, F, A) and (G, Ew, C) → (G, D, Bw) each hold the root of the first
chord constant so that it becomes the fifth of the second chord, move the third
of the first chord by semitone in the principal direction so that it becomes the root
of the second chord, and move the fifth of the first chord by two semitones in
the principal direction so that it becomes the third of the second chord. The lesson
here is general. Uniformly T- or I-related voice leadings can always be described
using precisely the same terms, as long as we conceive of chords dualistically:
if we label the elements of set class A by arranging them in the ordering (a0,
a1, … , an−1), then we must label the elements of set-class Ix(A) based on their
position in the inversion of this ordering, (Ix(a0), Ix(a1), … , Ix(an−1)).

23

Thus the language of Riemannian dualism arises naturally when we
attempt to classify voice leadings on the basis of transpositional and inversional

(C, E, G) , ,  012⎯→⎯
(C, E, G) , ,  −⎯ →⎯101
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equivalence. This is, on one level, unsurprising: Oettingen and Riemann were
among the first theorists to emphasise inversion, and they explicitly used trans-
position and inversion to categorise chord relationships. Nevertheless, there is
something somewhat unexpected about the appearance of dualistic concepts in
our current enquiry. For Riemannian dualism is fundamentally a harmonic
theory – a theory whose principal concern is chords (‘Klangs’) and their rela-
tions. By contrast, voice leading is a contrapuntal matter and involves lines,
melodies and voices. Why, exactly, should dualistic harmonic concepts be so
useful to an investigation that is essentially contrapuntal?

It is worth pausing to consider this question. Let us define a chord progression
as a succession of unordered chords.24 For instance, the chord progression {C,
E, G, B w} ⇒ {E, GC, B}, or C7 ⇒ E, associates the unordered collection of
pitch classes {C, E, G, B w} with the unordered collection of pitch classes {E,
GC, B}.25 Unlike voice leadings, chord progressions do not associate the
elements of their respective chords: whereas the voice leading (C, E, G) → (B,
E, GC) maps C onto B, E onto E and G onto GC, the chord progression {C, E,
G} ⇒ {B, E, GC} does not specify any particular mapping between its notes.
A chord progression is simply a sequence of chords or Klangs, each considered
as an indivisible harmonic unit. Consequently, while any voice leading can be
uniquely associated with a particular chord progression, the converse is
not true.

Clearly, chord progressions, just like voice leadings, can be said to be
individually or uniformly T- and I-related, depending on whether it takes one
or two such operations to transform one into another. I will say that two chord
progressions are dualistically equivalent if they are uniformly T- or I-related.
Thus, a chord progression A ⇒ B is dualistically equivalent to φ(A) ⇒ φ(B)
for any transposition or inversion φ. For example, the chord progression C7 ⇒
E is dualistically equivalent to a w

Ø7 ⇒ g, since I6(C
7) = a w

Ø7 and I6(E) = g.26

Similarly, both progressions are dualistically equivalent to D7 ⇒ FC, aØ7 ⇒ g C,
and so on. It is easily seen that two progressions between major and minor
triads are dualistically equivalent if and only if they are instances of the same
Riemannian Schritt or Wechsel.27 Our definition simply extends the Schritts and
Wechsels, allowing us to say, for any two chord progressions, whether they are
dualistically equivalent or not.28

What does dualistic equivalence, so defined, have to do with voice leading?
We can now answer this question clearly. Transposition and inversion are the
only distance-preserving operations defined over all of pitch and pitch-class
space.29 Therefore uniformly T- and I-related voice leadings move their voices
by precisely the same distances, and are (for any reasonable metric) the same
size. For instance, the C dominant seventh chord can be linked to the E major
triad by the semitonal voice leading (C, E, G, B w) → (B, E, GC, B). Here two
voices move up by semitone, a third moves down by semitone and the fourth
does not move. Since aw

Ø7 ⇒ g is dualistically equivalent to C7 ⇒ E, we can
construct a precisely analogous voice leading between the Aw half-diminished
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seventh chord and the G minor chord: (A w, C w, D, FC) → (G, B w, D, G). Here
two voices move down by semitone, a third moves up by semitone and the
fourth does not move. From the standpoint of the theory of voice leading,
then, dualistic equivalence is important because it identifies pairs of chords
which can be linked by structurally analogous voice leadings that are of exactly
the same size.

Riemannian dualism re-entered contemporary music theory in the work of
David Lewin and Brian Hyer.30 This early ‘neo-Riemannian theory’ was largely
harmonic in character, treating ‘neo-Riemannian transformations’ as functions
between chords. Richard Cohn was the first to note that dualistic harmonic
ideas have a natural application to questions about voice leading: Cohn pointed
out, for example, that two consonant triads can be linked by single-semitone
voice leading only if they are related by the neo-Riemannian L and P transfor-
mations.31 This simple but profound observation led to an explosion of interest
in voice leading, much of it conducted in dualistic, neo-Riemannian terms.32

Surprisingly, however, there have been few attempts to explain why dualistic
harmonic terminology should play such a central role in fundamentally contra-
puntal investigations. Our ‘set theory of voice leadings’, now extended to chord
progressions, provides a clear account of why this is so.

II

Crossing-Free Voice Leading and Scalar Transposition

(a) The Scalar Interval Matrix

We will now use ideas from scale theory to investigate crossing-free voice
leadings. Sections II and III consider voice leadings which are both crossing-free
and bijective – mapping every element of the source chord onto precisely one
element of the target and vice versa.33 The musical justifications for this restriction
have already been discussed. Section IV broadens the focus to include non-
bijective crossing-free voice leadings.

The first task is to describe how to assign scale-degree numbers to an
arbitrary multiset. Define the ascending distance from pitch class a to b as the
length of the shortest non-descending path in pitch-class space from a to b.34

Let A be a multiset of pitch classes, and let (a0, a1, … , an−1) order the objects
of A based on increasing ascending distance from an arbitrarily chosen pitch
class a0.

35 We can identify each object’s position in the list with its scale degree.
By convention, we apply the same scale-degree numbers to all the transpositions
of A: thus, a0 + x is the first scale degree of Tx(A), a1 + x is the second, and
so on.36 (Note that any chord can be considered a scale; the term carries no
particular implications or ontological import beyond signifying that the chord’s
notes have been assigned scale-degree numbers.) In the special case where the
scale contains multiple instances of some pitch class, we need to define a
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variant of the ascending distance as follows: the ascending scalar distance from
ai to aj is equal to the ascending distance from ai to aj unless the two pitch
classes are equal and j < i, in which case it is equal to 12. Thus the ascending
scalar distance from the third to the second scale degree of (a0, a1, a2) = (C,
G, G) is 12 rather than 0.37

A scalar transposition is a crossing-free voice leading from a chord to itself
which moves every note by the same number of scale degrees.38 (Mathematically,
it maps each scale degree ai onto the scale degree ai+c (mod n), c scale degrees
away from ai.) It can be shown that any bijective crossing-free voice leading
from A to any of its transpositions can be written as a combination of two
crossing-free voice leadings:

The first voice leading is a scalar transposition which moves each note upwards
by c scale degrees; the second is a chromatic transposition which moves each
note by x semitones. The distances di are the ascending scalar distances from
ai to ai+c (mod n). Appendix B provides a proof.

This is a simple but powerful formula. It tells us that bijective crossing-free
voice leadings between transpositionally related chords are individually T-
related to scalar transpositions. Furthermore, we know from Section I (a) that,
for any reasonable method of measuring voice-leading size, there is always a
minimal voice leading between any two chords which is crossing-free. This
voice leading will combine a scalar transposition (by c scale steps) with a
chromatic transposition (by x semitones) which comes as close as possible to
neutralising it.

Fig. 1 illustrates. Fig. 1a presents a ‘transpositional’ voice leading which
sends each member of the C major triad up four semitones to the correspond-
ing member of the E major triad. Fig. 1b precedes this chromatic transposition
by scalar transposition down one scale step – moving G to E, E to C and C to
G. Since addition is commutative, it does not matter which voice leading
occurs first, as Fig. 1c shows. The two voice leadings combine to produce the
minimal bijective voice leading between the C and E major chords.39 For the
major triad, scalar transposition downwards by step comes closest to negating
chromatic transposition upwards by four semitones. Equivalently, scalar
transposition down by scale step provides the best approximation to T−4.

40

Fig. 1d shows the minimal voice leading between C and Ew dominant seventh
chords. This combines scalar transposition by one descending step with chromatic
transposition by three ascending semitones.

The investigation of bijective crossing-free voice leadings is greatly facilitated
by what I will call the scalar interval matrix. The rows of this matrix identify
the size of a multiset’s ascending scalar intervals. Equivalently, its rows record
the effect of scalar transposition upon each of the multiset’s objects.

( , ,  , )  ( , ,  , ) 
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Definition 1. Let A be a multiset with n objects, labelled (a0, a1, … , an−1) and
ordered by increasing ascending distance from pitch class a0. The scalar interval
matrix associated with A has elements Mi,j equal to the ascending scalar distance
from aj to ai+j (mod n).

41

The element M0,0 records the ascending scalar distance from a0 to a0, M1,2

records the ascending scalar distance from a2 to a3, M2,1 records the ascending
scalar distance from a1 to a3, and so on.42 Musically, the first row of the
interscalar interval matrix records the size of the zero-step scalar intervals, the
second row records the size of the one-step scalar intervals, and so on. Students
of serial theory will immediately recognise that the scalar interval matrix is
closely related to a ‘rotational array’.43 This means that the questions we shall
be asking about voice leading have close analogues in the realm of serial
composition, as will be explored in Section IV (b).44

Fig. 2 lists the scalar interval matrix for the diatonic collection. Here I have
arbitrarily chosen the traditional major-scale tonic as the first scale degree. The
first row shows, trivially, that all of the zero-step intervals in the scale have
chromatic size 0. The second row shows that the one-step intervals in the scale,
starting with the first scale degree, are of successive size (2, 2, 1, 2, 2, 2, 1);
that is, transposing a major scale up one scale step shifts the first scale degree
upwards by two semitones, the second scale degree by two semitones, the third
by one semitone and so forth. Likewise, the third row shows that the two-step

Fig. 1 Scalar and chromatic transposition
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intervals in the scale, starting with the first scale degree, are of size (4, 3, 3, 4,
4, 3, 3). The rest of the rows identify the size of the scale’s three-, four-, five- and
six-step intervals.

Scalar interval matrices make it easy to calculate the combined effects of
scalar and chromatic transposition: the rows of the matrix represent scalar
transpositions; we represent chromatic transposition by adding a constant to
these values. Thus we can use Fig. 2 to calculate the effect of transposing the
major scale upwards by three steps and downwards by five semitones:

The result signifies that the fourth scale degree ascends by one semitone and
all other scale degrees remain fixed: in other words, it describes the voice
leading (C, D, E, F, G, A, B) → (C, D, E, FC, G, A, B). Mathematically, one
can add the vector (0, 0, 0, 1, 0, 0, 0) to (0, 2, 4, 5, 7, 9, 11) (which lists the
elements of the C major scale in scale-degree order) to produce (0, 2, 4, 6, 7,
9, 11). The result contains the seven pitch classes of the G major collection,
starting with the fourth scale degree. To perform further calculations with this
vector we would need to rotate it so that it is once again in scale-degree order.

Note that we perform this calculation with real numbers, representing paths
in pitch-class space, rather than mod-12 pitch-class intervals. This permits us
to distinguish transposition by ascending perfect fifth (+7) from transposition
by descending perfect fourth (−5). Indeed, each of the numbers {… , −17,
−5, +7, +19, …} represents a distinct path in pitch-class space mapping C
onto G. The advantage of using real numbers, rather than mod-12 intervals, is
that real numbers allow us to distinguish ascending from descending motion:
in the previous paragraph, the vector (0, 0, 0, 1, 0, 0, 0) indicates that one
pitch class moves up by semitone, and not that it moves down by eleven
semitones. Traditionally minded readers, who may feel uncomfortable with
paths in pitch-class space, can convert to pitch-class intervals simply by
performing all calculations mod 12.

5 5 5 6 5 5 5 diatonic transposition by 3 ascending steps
−5 −5 −5 −5 −5 −5 −5 chromatic transposition by 5 descending semitones

0 0 0 1 0 0 0

Fig. 2 The scalar interval matrix for the diatonic collection
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Let us now use Fig. 2 to answer some simple questions about voice leading.
The point of these questions is not yet to produce novel musical insights; it is
just to develop a feel for working with the scalar interval matrix. Keep in mind
that a minimal crossing-free voice leading is also a minimal voice leading, since
no reasonable metric of voice-leading size can favour a crossed voice leading
over all of the uncrossed alternatives.

1. What is the minimal bijective crossing-free voice leading between two diatonic
collections a minor third apart? To answer this question we search for that row of
the scalar interval matrix whose values will best neutralise the chromatic
transposition: if we transpose downwards by three semitones, we look for the
row whose values come closest to the value 3, since 3 + −3 = 0. (The relevant
sense of ‘closeness’ here is given by a specific metric of voice-leading size; see
Appendix A.) According to any reasonable metric, the third row is closest to
3. Adding (4, 3, 3, 4, 4, 3, 3) to (−3, −3, −3, −3, −3, −3, −3), we obtain (1, 0,
0, 1, 1, 0, 0), indicating that the first, fourth and fifth scale degrees move
upwards by semitone. This is the voice leading (C, D, E, F, G, A, B) → (CC,
D, E, FC, GC, A, B).

2. What is the minimal bijective crossing-free voice leading which transforms the
Ionian mode into the Locrian? The minimal voice leading between two transposi-
tions of a multiset does not depend on our identification of scale degree 1.
Therefore, any minimal crossing-free voice leading between the Ionian and
Locrian modes will equally be a minimal crossing-free voice leading between
Dorian and Ionian, between Phrygian and Dorian, and so on. This allows us
to rephrase the question in a more general way: Which chromatic transposition
best neutralises scalar transposition downwards by scale step? Here we begin with
the last row of Fig. 2: (11, 10, 10, 11, 10, 10, 10). This represents scalar
transposition upwards by six steps; to model scalar transposition downwards
by step, subtract 12 from each entry, producing (−1, −2, −2, −1, −2, −2, −2).
The constant transposition which best neutralises this diatonic transposition
is (2, 2, 2, 2, 2, 2, 2), corresponding to transposition upwards by two
semitones.45 Adding the vectors produces (1, 0, 0, 1, 0, 0, 0), indicating that
the first and fourth scale degrees move up by semitone. This voice leading
is the maximally efficient voice leading which transforms C Ionian into CC

Locrian – and equally, D Ionian into DC Locrian, E Ionian into EC Locrian,
and so forth.

3. Which diatonic collections are linked by the smallest bijective voice leading?
Here we look for those rows of Fig. 2 whose elements most closely approximate
a constant value. These are the fourth and fifth rows: each changes a single
pitch class by a single semitone when combined with the appropriate chromatic
transposition. These voice leadings underlie the familiar practice of modulation
from tonic to dominant keys.46

4. What is a minimal bijective voice leading which maps the C of a C diatonic
collection onto the F of a D  diatonic collection? This question is not as easy as it
seems: by specifying the mapping C → F, we have lost the ability to make use
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of the ‘no crossings’ principle. This is because the minimal bijective voice
leading which sends note x of collection A into note y of collection B may
involve a crossing: for example, the minimal bijective voice leading which sends
note C of the C diatonic collection into note B of the G diatonic collection is
(C, D, E, F, G, A, B) → (B, D, E, FC, G, A, C). To answer our question we
must therefore ask: What is a minimal bijective voice leading which sends the
C diatonic collection, minus the note C, into the Dw diatonic collection, minus
the note F? We then combine this voice leading with the voice leading C → F
to obtain the desired voice leading. Since this procedure will in general require
us to identify minimal voice leadings between arbitrary multisets, we do not
yet have the tools to pursue it. However, the techniques discussed in Section
III will allow us to answer such questions.

5. Why is it that some chords have smaller voice leadings to their transpositions
than others do? The minimal voice leading between the C major and E major
triads, (C, E, G) → (B, E, GC), moves two notes by semitone and holds one
note fixed. By contrast, the minimal bijective voice leading from {C, CC, D} to
its T4 form, {E, F, FC}, involves at least twelve total semitones of motion among
the three voices. What accounts for this difference? Why is the major triad
capable of participating in such efficient voice leadings to its transpositions?

Although a rigorous answer to this question is beyond the scope of this
article, the basic principles are readily explained.47 Recall that a minimal
bijective crossing-free voice leading combines a chromatic transposition with
the scalar transposition which comes closest to neutralising it. Thus, if a scalar
transposition is almost equal to transposition by x semitones, then a chord will
have an efficient voice leading to its T−x form. In general, the more evenly the
chord divides the octave, the more closely its scalar transpositions will resemble
chromatic transpositions.48 For perfectly even chords, such as the tritone,
augmented triad, diminished seventh chord and whole-tone scale, scalar
transpositions are always exactly equal to chromatic transpositions; hence they
can be used to offset chromatic transposition precisely. For nearly even chords,
such as the perfect fifth, major triad, dominant seventh chord and major scale,
scalar transposition is almost equal to chromatic transposition.49 Here, scalar trans-
position almost offsets chromatic transposition, producing efficient voice leading.50

(b) Excursus II: Tritone Substitution

Let us now use scalar interval matrices to investigate an important but poorly
understood musical practice: ‘tritone substitution’, in which a dominant
seventh chord is replaced by its tritone transposition. We will see that tritone
substitution is as much a contrapuntal phenomenon as a harmonic one: the
substitution works not simply because tritone-related dominant seventh chords
share common tones, but also because their remaining notes can be linked by
efficient voice leading. Consequently, a dominant seventh chord can be
replaced by its tritone transposition without seriously disrupting a piece’s
harmonic or contrapuntal fabric. Scalar interval matrices will show us not only
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why this is so, but also that a surprisingly wide range of chords can participate
in tritone substitutions.

Ex. 8a presents an elementary voice-leading schema common to classical
music and jazz: a descending-fifth progression in which root-position and
second-inversion seventh chords alternate. Ex. 8b substitutes a wII7 chord for
the . Tritone substitution preserves two important features of the original:
the tritone F–B, containing the most active notes of the V7 harmony, and the
stepwise descending voice leading. Many discussions of tritone substitution
focus only on the first feature. But the second is also important: Ex. 8c replaces
the V7 with a French sixth containing the tritone F–B. The result does not
convey convincing dominant functionality. Similarly, Ex. 8d substitutes a wII
triad for a V triad; the substitution does not have as convincing an effect as that
of Exs. 8a and b. These examples suggest that tritone substitution is not simply
a matter of ‘preserving the tritone’ or learning to hear chords on wII as having
dominant function. It is also important that tritone substitution preserve a
phrase’s contrapuntal structure.

How does tritone substitution work? And what other chords might allow for
it? Scalar interval matrices can be used to answer these questions. Figs. 3a and
b contain the scalar interval matrices for the tritone and perfect fifth. The
matrices show that there is a trivial voice leading between any tritone and its
tritone transposition,51 since (6, 6) + (−6, −6) = (0, 0). We also see that there
is a voice leading between any perfect fifth and its tritone transposition which
moves the two notes by semitonal contrary motion, since (7, 5) + (−6, −6) =
(1, −1). Now consider any chord which can be partitioned into perfect fourths,
tritones or perfect fifths (a ‘generalised fourth chord’). Any such chord can be
connected to its tritone transposition by efficient voice leading: this is because
tritones can be held fixed, while perfect fourths can be transformed into
tritone-related perfect fifths (and vice versa) by contrary semitonal motion.52

Therefore, one can always replace any generalised fourth chord in any
sequence of chords by its tritone transposition: tritones will be preserved, and
the progression’s overall voice leading will remain recognisable.

Ex. 9 shows that such substitutions can be found in both nineteenth-century
music and jazz. In Ex. 9a, the tritone substitution affects the upper four voices

Ex. 8 Tritone substitution as both a contrapuntal and a harmonic phenomenon

V3
4
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of a ii9–V9–I9 sequence; the result is a ii9–V9–I9 with an altered dominant chord.
(The bass does not participate in the substitution.) Ex. 9b applies the same
process to the six upper voices of a seven-voice ii–V–I progression. In Ex. 9c,
tritone substitution replaces the predominant chord in a iiø –V7 progression;
the result, as Finn Hansen has observed, is the opening of Tristan.53 (One could
also apply tritone substitution to the dominant chord, producing a transposed
version of the Tristan progression.) Ex. 9d, the Till Eulenspiegel progression,
relates by tritone substitution to the familiar viiø –I progression. Finally, Ex. 9e
presents a canonical modern-jazz ii–V–I voice leading: tritone substitution

Fig. 3 Some dyadic scalar interval matrices

(a) the six-semitone interval in chromatic space

(b) the seven-semitone interval in chromatic space

Ex. 9 Tritone substitution in jazz and classical music

3
4

3
4
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creates voice leading that, although not strictly stepwise, is still quite close
to the original.54

Ultimately, tritone substitution exploits the very same intervallic properties
which permit efficient voice leadings between fifth-related seventh chords.
Ex. 10a depicts an efficient voice leading between a dominant seventh chord
and its transposition by descending fifth. Ex. 10b depicts an efficient voice
leading between a dominant seventh chord and its tritone transposition. The
two voice leadings are individually T-related, and are very similar in size. (Both
voice leadings are efficient because the chords can be partitioned into fifths and
tritones, which bisect the octave evenly or almost evenly.) Traditional tonal
syntax exploits the voice leading in Ex. 10a to connect sequential fifth-related
dominant seventh chords. Tritone substitution exploits the voice leading in
Ex. 10b to replace a dominant seventh chord with its tritone transposition. In
this sense, the possibility of tritone substitution is latent in the basic voice-leading
routines of traditional tonality. Over the course of its history, tonal harmony
exploits this latent possibility with increasing frequency – beginning with the
introduction of augmented sixths in the eighteenth century, progressing
through the occasional use of tritone substitutions in the early nineteenth cen-
tury and culminating in their universal acceptance in modern jazz.

III

Interscalar Transpositions

(a) The Interscalar Interval Matrix

Section II developed tools for understanding bijective, crossing-free voice
leadings between transpositionally related chords. However, such voice leadings
make up only a small portion of Western contrapuntal practice; even the
simplest student exercise will feature voice leadings between major and minor
triads, minor sevenths and dominant sevenths, and so on. Accordingly, Section
III generalises the tools we have already developed. We will see that interscalar
interval matrices describe bijective crossing-free voice leadings between arbitrary
chords. These matrices are powerful analytical tools which allow us to

Ex. 10 Individually T-related voice leadings between dominant seventh chords
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consider real musical works in all their complexity. Section III (b) demonstrates
by sketching a new approach to two famous works of nineteenth-century
chromaticism.

Let A and B be n-object multisets. As before, we provide each multiset with
scale-degree numbers, ordering their notes on the basis of increasing ascending
distance from arbitrarily chosen pitch classes a0 and b0. Any bijective crossing-
free voice leading from A to any transposition of B can be written as a combi-
nation of three voice leadings:55

The first voice leading is a crossing-free voice leading which maps scale degree
i of A onto scale degree i of B. The second is a scalar transposition from B to
B. The third is a chromatic transposition which adds x to each note of B. We
can combine the first two voice leadings

where di = αi + βi. This is a crossing-free voice leading which sends scale degree
i in chord A to scale degree i + c in chord B. I will call this an interscalar
transposition by c steps, since it adds c to each scale degree while changing the
underlying scale in the process.56 (Note that the number of steps in an inter-
scalar transposition is relative to the arbitrary choice of scale degree 1 in the
two collections.) As before, a minimal bijective crossing-free voice leading from
A to B combines a chromatic transposition x with the interscalar transposition
which comes as close as possible to neutralising it.

The interscalar interval matrix is constructed as follows:

Definition 2. Let A and B be multisets each with n objects, labelled (a0, a1, … ,
an−1) and (b0, b1, … , bn−1) and ordered by increasing ascending distance from
pitch classes a0 and b0. Let Bi,j be the scalar interval matrix associated with B,
and let

be a crossing-free voice leading from A to B. The interscalar interval matrix
from A to B has entries Mi,j equal to Bi,j + αj.

57

Each row i of the interscalar interval matrix contains a crossing-free voice
leading which sends note aj to bj+i (mod n): the top row contains a voice
leading which sends ai to bi, the next row contains a voice leading which sends
ai to bi+1 (mod n), and so on. As before, the n rows of the matrix combine with

( , ,  , )  ( , ,  , ) 
( , ,  , ) 

, ,  , , ,  ,  

 (mod )  (mod )  (mod )
, ,  ,  

  a a a b b b
b b b

n n

c n c n n c n
x x x

n n
0 1 1 0 1 1

0 1 1

0 1 0 1… ⎯ →⎯⎯⎯ … ⎯ →⎯⎯⎯
… ⎯ →⎯

−
…

−
…

+ + − +
…

α α α β β β

⎯⎯
+ + … ++ + − +(   ,   ,  ,   ) (mod )  (mod )  (mod )b x b x b xc n c n n c n0 1 1

( , ,  , )  ( , ,  , ), ,  ,
 (mod )  (mod )  (mod )

 a a a b b bn
d d d

c n c n n c n
n

0 1 1 0 1 1
0 1… ⎯ →⎯⎯ …−

…
+ + − +

( , ,  , )  ( , ,  , ), ,  ,  a a a b b bn n
n

0 1 1 0 1 1
0 1… ⎯ →⎯⎯ …−

…
−

α α α



Scale Theory, Serial Theory and Voice Leading 21

Music Analysis, 27/i (2008) © 2008 The Author.
Journal compilation © 2008 Blackwell Publishing Ltd.

chromatic transpositions to yield the complete set of bijective crossing-free
voice leadings from any transposition of the first chord to any transposition
of the second. Students of serial theory will again recognise that interscalar
interval matrices are closely related to rotational arrays, as we shall note
further in Section IV (b).58

Fig. 4 shows how to construct the interscalar interval matrix which takes
{C, E w, G w, B w}, the half-diminished (or Tristan) chord, to {C, E, G, B w},

Fig. 4 Constructing an interscalar interval matrix

(a) Step 1. Arbitrarily choose a pitch class to serve as scale degree 1 for each of
the two chords, labelling the remaining notes on the basis of increasing ascending
distance from this pitch class

(b) Step 2. Construct a crossing-free voice leading in which both chords are listed
in scale-degree order

(c) Step 3. Construct the scalar interval matrix for chord B

(d) Step 4. Add the numbers above the arrow in Step 2 to each row of the matrix
in Step 3

(e) Result. The interscalar interval matrix for (C, Ew, Gw, Bw) and (C, E, G, Bw)
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the dominant seventh chord. We begin by assigning scale-degree numbers
to each chord. We then identify a crossing-free voice leading between them,
(C, Ew, Gw, Bw)  (C, E, G, B w), which lists each chord in scale-degree order.
We add the vector of numbers (0, 1, 1, 0) to each row of the scalar interval
matrix belonging to {C, E, G, B w}. The result is the interscalar interval matrix
for the Tristan and dominant seventh chords. The first row sends the root of
the half-diminished seventh to the root of the dominant seventh. It corresponds
to the voice leading (C, E w, Gw, B w) → (C, E, G, Bw). According to our labelling
of scale degrees, this is ‘interscalar transposition by zero steps’. The second row
sends the root of the half-diminished seventh to the third of the dominant
seventh, producing (C, E w, G w, B w) → (E, G, Bw, C). According to our labelling,
this is ‘interscalar transposition by one step’. The third row sends the root to
the fifth and the fourth row sends the root to the seventh, corresponding to
(C, Ew, Gw, Bw)  (G, Bw, C, E) and (C, E w, Gw, B w)  (B w, C, E, G),
respectively. Note that the numbers above the arrows are just the numbers in
the appropriate rows of the scalar interval matrix.

We can calculate voice leadings with this matrix exactly as before. To show
how this is done, I will pose five questions which echo our earlier investigation
of the diatonic scale.

1. What is the minimal bijective crossing-free voice leading between the C
half-diminished seventh and the FC dominant seventh? We look for that row of
Fig. 4e whose values come closest to six. This is the third row. Adding −6 to
each entry we obtain (C, Ew, Gw, Bw) → (CC, E, FC, AC).

2. What is the minimal bijective crossing-free voice leading which sends the root of
a half-diminished seventh into the third of some dominant seventh? We cannot
answer this question without specifying which metric of voice-leading size we
are using. For example, the ‘smoothness’ metric (see Appendix A) measures
the total number of semitones moved by all the voices. For this metric, chromatic
transposition by four descending semitones best neutralises interscalar transpo-
sition by ascending step, since (C, Ew, Gw, Bw) → (C, E w, Gw, A w) moves the four
voices by a total of two semitones. Other metrics, such as ‘parsimony’ and the
‘L∞ norm’, depend on the largest distance moved by any single voice. For these
metrics, chromatic transposition by three descending semitones minimises
interscalar transposition by ascending step.59 This is because the voice leading
(C, Ew, Gw, Bw) → (CC, E, G, A) moves none of its four voices by more than a
semitone. Smoothness and parsimony are equally legitimate conceptions of
voice-leading size. Their divergence underscores the need to remain flexible
about how we measure voice leading.

3. What is the minimal bijective crossing-free voice leading between a half-diminished
seventh and a dominant seventh? Here we find an embarrassment of riches. All
reasonable metrics agree that the half-diminished seventh is connected by minimal
bijective voice leading to no fewer than six distinct dominant seventh chords;
in each case, two voices each move by single semitone. In addition, every half-
diminished chord is connected to two more dominant seventh chords by

0110, , ,  ⎯ →⎯

7 7 6 6, , ,  ⎯ →⎯ 10 910 9, , ,  ⎯ →⎯
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the voice leadings described in the previous paragraph. Fig. 5 lists these possi-
bilities in the form of a table, where the vertical axis corresponds to interscalar
transposition and the horizontal axis corresponds to chromatic transposition.60

As we will see, the large number of voice leadings is due to the fact that both the
half-diminished and dominant seventh chords divide the octave almost evenly.

4. What minimal bijective voice leading sends the root of a C half-diminished
seventh chord to the seventh of an F  dominant seventh chord? This is a question
of the type we left previously unanswered (see again Section II (a), question
4). We can answer it now that we have the tools to find minimal bijective voice
leadings between arbitrary chords.

Since we have specified that the C must move to E, we do not know that
the overall voice leading will be crossing-free. However, we can require that the
voice leading between the remaining notes be crossing-free. Thus we can
reformulate the question as follows: What minimal bijective crossing-free voice
leading sends the C half-diminished seventh, minus the C, to the FC dominant
seventh, minus the E? In other words, what is the minimal bijective voice
leading between {E w, Gw, B w} and {FC, AC, CC}? Fig. 6 presents the relevant
interscalar interval matrix. We look for the row whose values are closest to 0
or 12, since we do not need to transpose either chord. This is the third row,
representing the voice leading (E w, Gw, B w) → (CC, FC, AC). We combine this with
C → E to produce the voice leading (C, E w, Gw, B w) → (E, CC, FC, AC). This
voice leading, although not crossing-free, is the minimal bijective voice leading
satisfying our constraint.

Fig. 5 Minimal crossing-free voice leadings between {C, E w, G w, B w} and several
transpositions of {C, E, G, B w}
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5. Why is it that some pairs of (transpositional) set classes can be linked by efficient
voice leading, while others cannot? For example, members of the half-diminished
and dominant seventh set classes can be linked by very efficient voice leading,
whereas no half-diminished chord can be linked to any chromatic tetrachord
by very efficient voice leading.61 Why is this? It can be shown that the size of
the minimal voice leading between the members of two transpositional set
classes depends on the similarity between their respective series of one-step
intervals.62 It follows that members of closely ‘clustered’ set classes, such as
{C, CC, D, Ew}, can be linked by efficient voice leading to members of other
clustered set classes, such as {C, CC, DC, E}, while members of extremely ‘even’
set classes, such as {C, E w, G w, B w}, can be linked by efficient voice leading to
members of other, extremely ‘even’, set classes such as {C, E, G, B w}. But there
can be no particularly efficient voice leading between ‘clustered’ and ‘even’
chords. Voice leading thus provides a quantitative representation of set-class
similarity, allowing us to measure the ‘distance’ (or ‘difference’) between set
classes using the size of the smallest voice leading between their members.63

Section IV (b) will show that the rows of the scalar interval matrix for the
chord Ix(A) are the rotated retrogrades of the corresponding rows of the scalar
interval matrix of A. It follows from the previous paragraph that a chord can
be linked by smooth voice leading to its inversion if and only if the second
row of its scalar interval matrix is approximately retrograde-symmetrical. For
example, the second row of the half-diminished seventh chord’s scalar interval
matrix is (3, 3, 4, 2), which is approximately equal to its retrograde, (2, 4, 3,
3); this is why the voice leading (C, Ew, Gw, Bw) → (C, D, FC, A) is efficient.64

Why are there so many other efficient voice leadings between half-diminished
and dominant seventh chords? As we saw in Section II, there are always
efficient voice leadings between distinct transpositions of extremely ‘even’ set
classes such as {C, Ew, Gw, Bw}: if A is extremely even, then there will be some
voice leading A → Tx(A) which is small. Consequently, if the voice leading B
→ A is small, then the combined voice leadings B → A → Tx(A) will also be
relatively small. There will therefore be efficient, bijective voice leadings from
any even chord B to multiple transpositions of another even set class A. This
is why there are so many voice leadings evident in Fig. 5.

(b) Excursus III: Tristan and the Prélude à l’après-midi d’un faune

The interscalar interval matrix can deepen our understanding of individual
works by showing how composers exploited the voice-leading possibilities

Fig. 6 The interscalar interval matrix for (E w, Gw, B w) and (G w, B w, Dw)
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available to them. To illustrate this, we will explore Wagner’s Tristan and
Debussy’s Prélude, focusing on the similarities between the two composers’
treatment of the half-diminished and dominant seventh chords. As we will see,
interscalar interval matrices provide useful tools for analysing these pieces,
allowing us to make sense of their otherwise elusive contrapuntal structures.

Ex. 11 presents a series of progressions drawn from the Prelude to Tristan
und Isolde. In each case, a Tristan (or half-diminished) chord resolves to a
dominant seventh. The actual voice leading here is not always crossing-free:
indeed, it is a central motivic feature of the opera that ascending chromatic
motion produces voice crossings in pitch-class space. However, there is a well-
established analytical tradition that views these crossings as ‘surface’ events –
‘voice exchanges’ embellishing a more fundamental stepwise structure.65 We
shall find that it is analytically advantageous to adopt this view. For minimal
voice-leadings, although not present on the musical surface, play an important
role in determining the piece’s deeper voice-leading structure.

The bottom stave of Ex. 11 identifies the crossing-free voice leading most
closely corresponding to each progression. Below that stave, I describe each
voice leading using the notation Txty. Here Tx refers to chromatic transposi-
tion, while ty refers to the voice leading shown in row y of the matrix in Fig. 4e,
numbering rows from 0. (Thus, ty indicates interscalar transposition by y steps,
with the root of each chord considered to be scale degree 1.) The voice leading

Ex. 11 Half-diminished/dominant seventh progressions in the Tristan Prelude
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in Ex. 11a is labelled T−1t0, which indicates that we apply the top row of Fig.
4e to the chord (F, GC, B, DC), and then transpose the resulting voice leading
down by one semitone. This produces the voice leading (F, GC, B, DC) → (E,
GC, B, D) as shown on the bottom stave of Ex. 11a.

Ex. 11 shows that Wagner comprehensively explored the full range of inter-
scalar transpositions between the two chord types, making use of all four rows
of Fig. 4e. Furthermore, Ex. 11f, from bars 82 to 84, presents a single Tristan
chord acting as a ‘pivot’ between two different minimal voice leadings. The first
of these corresponds to a traditional iiØ7 →  progression, while the second
corresponds to the prototypical Tristan resolution (Ex. 11a). This passage is
emblematic of the Prelude as a whole, suggesting that alternative resolutions
of the Tristan chord are indeed one of its central preoccupations.

Most of the voice leadings shown in Ex. 11 are minimal voice leadings,
according to some standard measure of voice-leading size; indeed, all but two
of the voice leadings are uniformly T-related to a voice leading shown in Fig. 5.
This suggests a hypothesis about the deep structure of the Tristan Prelude:
although the surface of Wagner’s music involves voice exchanges and non-
minimal voice leadings, it embellishes a deeper structure that is fundamentally
determined by efficient voice leading. (Here it should be noted that the very
possibility of Wagner’s ubiquitous minor-third voice exchanges require
‘background’ voice leadings in which the relevant voices stay approximately
fixed; only then will the exchanging voices travel by approximately a minor
third. Hence the voice exchanges themselves subtly exploit the fact that the
background voice leadings are minimal.) Indeed, Wagner’s piece seems to be
propelled by the same facts about musical structure we used to generate
Fig. 5. We can imagine (re)composing the Tristan Prelude by first identifying
minimal voice leadings between Tristan and dominant seventh chords, then
decorating these voice leadings by adding motivic voice exchanges. In this
sense, the voice leadings in Fig. 5 may provide the underlying voice-leading
patterns from which the music’s surface is constructed.

Ex. 12 shows some progressions from an equally famous late nineteenth-
century work, Debussy’s Prélude à l’après-midi d’un faune. Here again we see
the composer making comprehensive use of the four interscalar transpositions
between a Tristan chord and its inversion. Ex. 12a, from the opening of the

Ex. 12 Half-diminished/dominant seventh progressions in the Prélude à l’après-midi
d’un faune

V3
4
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Prélude, recalls Ex. 11e. Ex. 12b uses a single Tristan chord to pivot between
two separate maximally efficient resolutions – just as Wagner does in Ex. 11f,
although the second resolution in Ex. 12b is different from Wagner’s.66 (Note
that the first three chords in the two progressions are identical.) Ex. 12c shows
another three-chord progression: chords 1–2 involve the prototypical Tristan
resolution of Ex. 11a; chords 2–3 utilise the retrograde of the interscalar
transposition in the fourth row of Fig. 4e. As in Tristan, all of the different
interscalar transpositions are explored. And, like Wagner, Debussy appears to
be particularly interested in minimal voice leadings – indeed, all of the voice
leadings shown in Ex. 12 are minimal voice leadings for some common metric.

Despite the many differences between Debussy’s and Wagner’s musical
languages, the resemblance between Exs. 11 and 12 is striking. The examples
suggest that the two works are animated by a similar compositional strategy of
exploring the efficient voice-leading possibilities between Tristan and dominant
seventh chords. The ideas and concepts in Sections I–III have given us
techniques for describing this process, allowing us to look in detail at the
various ways in which the two composers exploited the possibilities available to
them. What results, perhaps, is a more rigorous perspective on these two
famously unruly masterpieces of nineteenth-century chromaticism, one in
which voice leading plays a vital constructive role.67

IV

The T-Matrix and Non-Bijective Voice Leadings

(a) Doublings and the T-Matrix

Section III provides tools for investigating bijective crossing-free voice leadings
between arbitrary chords. But it did not show us how to find non-bijective
voice leadings, which of course play an important role in Western music: for
instance, elementary harmony exercises frequently involve minimal voice
leadings between four-note dominant seventh chords and three-note major
triads. Obviously, in such voice leadings, at least one note of the major triad
must be doubled. Interscalar interval matrices do not provide an efficient
means for determining which note to double: the best we can do is to
generate three separate interscalar interval matrices, corresponding to the
three ways of doubling one note of the major triad, and then compare the
twelve voice leadings in these three matrices.

Moreover, it occasionally happens that the minimal voice leading between
two chords is non-bijective. Ex. 13a presents one of the two minimal bijective
voice leadings between T6-related 3–8B {0, 4, 6} trichords. Ex. 13b presents
the minimal four-voice voice leading between these same trichords. Two pitch
classes, E and F C, in the source chord are related to a single pitch class, F C, in
the target. Likewise, two pitch classes, C and AC, in the target chord are related
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to a single pitch class, C, in the source. According to any of the standard metrics
of voice-leading size, Ex. 13b is smaller than Ex. 13a. Somewhat surprisingly,
increasing the number of voices decreases the overall voice-leading size.68

The fact that minimal voice leadings are sometimes non-bijective makes it
all the more remarkable that musicians manage to identify minimal voice lead-
ings so easily. Somehow, even the elementary harmony student can readily
answer questions such as ‘Given two chords A and B, what is the minimal voice
leading between them if we allow notes to be freely doubled?’ and ‘How do
we find the minimal voice leading from chord A to any transposition of chord
B if doublings are freely allowed?’ These simple-sounding questions are sur-
prisingly difficult – indeed, as we will see, it is no easy task to come up with
an efficient algorithm for answering them. Fortunately, however, the T-matrices
of serial theory provide useful tools for investigating non-bijective voice lead-
ings.69 In many practical cases, simple inspection of the T-matrix suffices to
identify the minimal voice leading (not necessarily bijective) between arbitrary
chords.

We define the T-matrix associated with two multisets as follows:

Definition 3. Let A and B be multisets labelled (a0, a1, … , an−1) and (b0, b1,
… , bm−1) and ordered by increasing ascending distance from pitch classes a0 and
b0. The T-matrix which takes A to B has elements Mi, j equal to the traditional
pitch-class interval from aj to bi.

(Note that we use traditional pitch-class intervals rather than paths in pitch-class
space: we consider intervals 11 and 1 to have size 1.70) Since the interval from
aj to bi is given by (bi − aj)mod 12, each element of the T-matrix contains the
difference (mod 12) between its row label and its column label. It is, in short,
a simple subtraction table. Its elements represent what Morris (1998) calls the
‘total voice leading’ between A and B – that is, every possible pitch-class
interval which can be formed between a note in the first chord and one in the
second.

Fig. 7 presents the T-matrix linking {G, B, D, F} to {C, E, G}. Each square
of the matrix contains the traditional pitch-class interval between its column

Ex. 13 Doubling and minimal voice leading
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label and its row label. The crossing-free voice leadings form a special sort of
closed loop through the matrix: a crossing-free voice leading is defined by a
series of one-unit right, downwards or diagonally right-and-downwards moves
in the matrix, wrapping around the matrix as a 2-torus, beginning at any point
in the matrix, ending at the same point and touching each column and row of
the matrix at least once. These restrictions ensure that an ascending scale step
in one collection is mapped onto either a unison or an ascending scale step in
the other.

Let us return now to the first question we asked above – ‘Given two multisets
A and B, what is the minimal crossing-free voice leading between them, if we
allow notes to be freely doubled?’ To answer this question we can construct the
T-matrix linking the multisets. We then look for the closed loop containing
values closest to 0, which only moves downwards, to the right or diagonally
downwards and to the right and which passes through every row and every
column. (The sense of ‘closest’ is, as usual, given by a metric of voice leading
size.) To answer the second question – ‘How do we find the minimal voice
leading from chord A to any transposition of chord B if doublings are freely
allowed?’ – we look for the closed loops which always move down, to the right
or diagonally down and to the right, passing through every row and every
column, and whose values come closest to a constant value.

Unfortunately, a good deal of computation is required to search these paths.
There are quite a large number of them, and for sizeable multisets with many
doublings, it is necessary to use a computer to investigate the possibilities.
Indeed, the problem of finding an efficient algorithm to perform the search is
non-trivial: even with midsize chords, there are enough possibilities (31,644 for
two hexachords) to make a brute-force solution unappealing, particularly in
real-time applications such as interactive computer music. Fortunately, there
is an alternative: we can use the ubiquitous computer-science technique of
‘dynamic programming’ to solve the problem in polynomial time.71 The technical
details of this algorithm are spelled out elsewhere.72

However, in practice, we can answer many musical questions by simple
inspection of the T-matrix. This is because adding voices generally tends to
increase the size of voice leadings. Finding the minimal voice leading between
multisets is therefore a matter of balancing the need to minimise the number
of voices with the need to make each voice move by minimal distances. Luckily
for the music theorist, it is often clear how to do this.

Fig. 7 The T-matrix linking {G, B, D, F} to {C, E, G}
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We will illustrate by asking two questions which address loose threads left
untied in the course of the previous discussion.

1. We saw above that one can reduce the voice leading between T6-related {0, 4,
6} trichords by doubling one note. Is there any way to reduce the voice leading further
by doubling more than one note? Fig. 8 provides the T-matrix for the voice leading
between {C, E, FC} and {FC, AC, C}. The voice leading shown in Ex. 13a begins
with the first element of the second row, moving down-and-right, down-
and-right and down-and-right. This yields the collection of values {10, 8, 0},
corresponding to the intervals moved by the three musical voices. The voice
leading shown in Ex. 13b begins at the same place, but moves down, down-
and-right, right, and down-and-right producing {10, 0, 2, 0}. This allows the
path to avoid the 8, instead touching upon the values 0 and 2. The sum of
these values, 2, is smaller than 4, the interval class to which 8 belongs. This is
why the doubling decreases the size of the voice leading for all standard
metrics.

Have we found the minimal voice leading between these chords? The answer
is yes. The four intervals in our voice leading, {10, 0, 2, 0}, are the four entries
in the matrix closest to 0; therefore any smaller voice leading must have fewer
voices. Looking at the down-and-right (NW/SE) diagonals of Fig. 8, we see
that all of the three-voice voice leadings are larger than our four-voice
voice leading. The four-voice voice leading in Ex. 13b is the minimal voice
leading between the two multisets – even if arbitrary doublings are allowed.

2. Earlier, we investigated the minimal voice leading between the Tristan chord
and the dominant seventh. Does doubling ever allow us to decrease the size of the
minimal voice leading between chords belonging to these two set classes? Fig. 5
demonstrates that the Tristan chord can be connected by two-semitone voice
leadings to seven different dominant seventh chords, and by four-semitone
voice leading to an eighth dominant seventh chord. For any acceptable metric,
these voice leadings are minimal, because each pitch class in the first chord
moves to the closest possible pitch class in the second. Since each pitch class
of the first chord moves to only one pitch class in the second, it is not possible
to decrease the size of these voice leadings further.

Fig. 9 shows the T-matrix connecting {C, Ew, Gw, Bw} to {C, E, G, Bw}. We
will use it to examine the voice leading between the Tristan chord and the four
remaining dominant seventh chords. These dominant sevenths are T1, T4, T7

and T10 of {C, E, G, Bw}. Since we are looking for voice leadings that come

Fig. 8 The T-matrix linking {C, E, FC} to {FC, AC, C}
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closest to negating chromatic transposition by one, four, seven and ten semi-
tones, we will be searching for the paths through Fig. 9 whose elements come
closest to eleven, eight, five and two.

We can find two cases in which doubling decreases the size of the voice
leading. The first begins in the first square of the second row, moving down-and-
right, down-and-right, down, down-and-right and right. This produces the
vector (4, 4, 4, 6, 6), which combines with the chromatic transposition (7, 7,
7, 7, 7) to yield the voice leading (C, Ew, Gw, Gw, Bw) → (B, D, F, G, B). (This
voice leading is closely related to the Till Eulenspiegel resolution of the Tristan
chord to the major triad, shown in Ex. 9d.) For all standard metrics, this voice
leading is smaller than the smallest bijective voice leading between the two
collections, (C, Ew, Gw, Bw) → (B, D, F, G). Since the values {4, 4, 4, 6, 6} are
the five matrix elements closest to 5, it follows that further doublings will not
decrease the size of the voice leading.

The second voice leading begins on the first square of the third row; its
values (7, 7, 9, 10, 9) combine with the transposition (4, 4, 4, 4, 4), producing
(C, Ew, Ew, Gw, Bw) → (B, D, E, GC, B). For some metrics, this voice leading is
smaller than the minimal four-voice alternative, (C, Ew, Gw, Bw) → (B, D, E, GC).
Close inspection of the matrix again reveals that further doublings will not
produce a smaller voice leading.

In the remaining cases, doubling does not reduce the size of the minimal four-
voice voice leading – at least not for any of the standard metrics. We conclude
that the minimal voice leading between a Tristan chord and a dominant seventh
will have four voices, except in the two cases mentioned above. We have now
found a minimal voice leading between the Tristan chord on C and each of the
twelve distinct transpositions of the dominant seventh, as shown in Fig. 10.
This table illustrates the possibilities available to a composer interested in
exploring minimal voice leadings between half-diminished and dominant
seventh chords. We have already seen that the table can be useful in investigat-
ing the music of Wagner and Debussy. Further exploration would show that it
can help to elucidate the music of a range of other nineteenth- and early
twentieth-century composers as well.

(b) Scale Theory and Serial Theory

The scalar and interscalar interval matrices are closely related to serial theory’s
rotational arrays, which are in turn closely related to T-matrices. Related

Fig. 9 The T-matrix linking {C, E w, Gw, B w} to {C, E, G, Bw}
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Fig. 10 The minimal voice leadings between {C, Ew, Gw, Bw} and all transpositions of {C, E, G, Bw}
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matrices also appear in tonal theory, as they represent both scalar transposi-
tions and key signatures. In this section I will explore these connections in
greater depth. Some of the ideas discussed (see for example subsections 1–2,
below) will be familiar to students of serial theory. Others (for example 5–6)
generalise observations familiar from tonal theory. Still others (for example
3–4) are indigenous to the subject of voice leading. The discussion will
therefore suggest some interesting correspondences between fairly disparate
fields of music theory.

The major difference between the matrices I use here and those of tradi-
tional serial theory is that I use paths in pitch-class space rather than traditional
pitch-class intervals. This is because I want to have my cake and eat it too: I
want the generality which comes from speaking about pitch classes, but I do
not want to eradicate the difference between ascending and descending
motion. The combination of these two desires, which might at first blush seem
contradictory, leads me to consider C4 and C5 to be instances of the same
object (the pitch class C), while still distinguishing the motion C4 → C5 (an
ascending octave, represented by a clockwise circuit around the pitch-class
circle) from the motion C5 → C4 (a descending octave, represented by an
anticlockwise circuit around the circle).73

1. Source and target chords in the matrix. We can consider the numbers in a
scalar or interscalar interval matrix (mod 12) to represent pitch classes rather
than paths or intervals: thus −1 represents B, −2 represents Bw, and so on. If
we do this, we find that the columns of an interscalar interval matrix contain
the ‘modes’ of the target sonority, while the matrix’s up-and-right (SW/NE)
diagonals contain the inversions of the modes of the source sonority. Thus the
columns of Fig. 2 contain the modes of the diatonic scale. The columns of
Fig. 4e contain the modes of the dominant seventh chord, as do the columns
of Fig. 11a. The first column of each matrix is in scale-degree order. In
Fig. 11a, the SW/NE diagonal running from the lower left corner of the matrix
to the upper right inverts the source chord in scale-degree order.74 (This is also
true of Figs. 2 and 4e, although in both cases the inversion of the target chord
is the same as the source chord.75) The diagonals parallel to the SW/NE diagonal
contain the inversions of the remaining modes of the source sonority.76

2. Interscalar interval matrices and T-matrices. As Babbitt, Morris and others
have noted, an interscalar interval matrix can be transformed into a T-matrix
by rotating each column so that the first row instead lies along its major
diagonal. (The major diagonal of a matrix descends from the upper left corner
to the lower right.) This amounts to rotating the ith column of the matrix
downwards by i places. (Numbering columns starting from 0.) Thus, appropri-
ate rotation of the matrix shown in Fig. 11a produces Fig. 11b, whose four
columns (again considered as pitch classes) represent four transpositions of a
dominant seventh chord, and whose four rows (considered as pitch classes)
represent four inversions of the source chord. This would be a T-matrix were
it not for the value −1 in the lower right corner. This number appears because
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interscalar interval matrices use real numbers representing paths in pitch-class
space rather than traditional mod-12 pitch-class intervals.

3. Matrix rows and inverse voice leadings. Fig. 11c presents an interscalar
interval matrix which takes {C, E, G, B w} to {C, E w, G, B}. Each row of the
matrix in Fig. 11a can be rotated and added to a row of Fig. 11c to produce
a constant vector (12i, 12i, 12i, 12i), where i is an integer. For example, adding
the first row of one matrix to the first row of the other produces the values (0,
0, 0, 0). Adding the second row of one matrix to the fourth row of the other,
rotated by one place, yields the values (12, 12, 12, 12). The third rows also
add to (12, 12, 12, 12) when one is rotated by two places. This is because the

Fig. 11 Various matrices linking (C, Ew, G, B) and (C, E, G, Bw)

(a) the interscalar interval matrix from (C, Ew, G, B) to (C, E, G, Bw)

(b) rotating the columns of Fig. 11(a) produces a T-matrix containing paths rather
than intervals

(c) the interscalar interval matrix from (C, E, G, Bw) to (C, Ew, G, B)

(d) rotating the columns of Fig. 11(c) produces a T-matrix containing paths rather
than intervals
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interscalar transpositions in one matrix counteract those in the other: for
every bijective crossing-free voice leading from {C, Ew, G, B} to {C, E, G, Bw}
there is a bijective crossing-free voice leading that sends {C, E, G, B w} back to
{C, E w, G, B}, returning every voice to the pitch class from which it began.
(Typically, the combination of the two voice leadings produces an additional
octave transposition; this is because both matrices represent ascending scalar
transpositions.) Similarly, the second row of Fig. 2 is the rotated complement
(mod 12) of the seventh row, the third row is the rotated complement (mod
12) of the sixth row, and so on. This reflects the fact that scalar transpositions
counteract each other: transposition upwards by one diatonic step, followed by
transposition upwards by six diatonic steps, is equal to transposition upwards
by an octave, and so on.

4. Matrices and inversion. Let MA→B be the interscalar interval matrix from
chord A to chord B. The rows of the interscalar interval matrix from Ix(B) to
Ix(A) will be the rotated retrogrades of the corresponding rows of MA→B.77 It
follows that the rows of the matrix from A to Ix(A) must be invariant under a
combination of rotation and retrograde, as Figs. 2 and 4e show. Similarly, the
rows of  will be the rotated retrogrades of the complements (mod 12)
of the rows of MA→B.78 When A and B are both inversionally symmetrical, then
each row i of MA→B, when rotated and retrograded, can be added to a row j of
MA→B (with i possibly equal to j) to produce a constant vector (c, c, … , c).
The constant c depends on the chords A and B.

Musically, this means that for any crossing-free voice leading between two
inversionally symmetrical chords, there will be a corresponding ‘inverted’
crossing-free voice leading between the first chord and a chord belonging to
the same set class as the second: for example, the voice leading (C, D, E, F,
G, A, B) → (C, D, Ew, F, G, A, B) transforms the C major scale into an
acoustic (melodic minor ascending) scale by lowering one note by a semitone.
Since both chords are inversionally symmetrical, we know there must be a
uniformly I-related voice leading (C, D, E, F, G, A, B) → (CC, D, E, F, G, A, B)
which sends the C major scale to an acoustic scale by raising one note by a
semitone. Thus, the crossing-free voice leadings between inversionally symmet-
rical chords can be grouped into uniformly I-related pairs. Such voice leadings
are an important component of Debussy’s modulatory practice.79

5. Sum of matrix rows. The (absolute) sum of the elements in each row i of
a scalar interval matrix will be equal to 12i. This is because scalar transposition
by n ascending steps spans a total distance of exactly n ascending octaves. For
example: the voice leading (C, E, G) → (E, G, C), which transposes the C
major triad up by one step, moves its three voices C → E, E → G and G →
C by a total of one octave.80 The rows of an interscalar interval matrix sum to
12i + c, where c is the sum of the paths αi in the crossing-free voice leading

 which is used to generate the
matrix (Definition 2). Thus the rows of Fig. 4e sum to 12i + 2, while the rows
of Fig. 11a sum to 12i. This feature of interscalar interval matrices links them
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more closely to scale theory, which is often concerned with ascending scalar
intervals, than to serial theory, which is more typically concerned with traditional
pitch-class intervals.

6. Key signatures. As Julian Hook first observed, the rows of the scalar
interval matrix in Fig. 2 can be understood as key signatures for the enhar-
monically equivalent keys C major, BC major, ACCC major, GCCCCC major, etc.81

Here the elements in each row indicate the number of sharps applied to each
letter name (C, D, E, F, G, A, B). Any of the standard major-scale key
signatures can be formed by adding a constant to any row of the matrix.82 Thus
we can use scalar interval matrices (and interscalar interval matrices) to explore
key signatures in precisely the same way that we use these matrices to explore
voice leadings. I have argued that there is a precise analogy between voice
leadings and key signatures: key signatures simply are voice leadings from a
‘basic scale’, which has been assigned the unadorned letter-names A, B, C, … ,
to a target scale, which is the scale represented by the key signature. Many of
the concerns in the present article, such as the avoidance of voice crossings and
minimising voice-leading size, arise naturally in the context of key signatures.
Thus there is a close connection between serial theory’s rotational arrays and
tonal theory’s key signatures, mediated by the topic of voice leading.

V

Conclusion

How, then, do musicians manage to find the minimal voice leading between
arbitrary chords? Have we internalised the procedures described in the preceding
sections, so that while composing we subconsciously construct scalar and inter-
scalar interval matrices? Do we use some other algorithm for determining
minimal voice leadings? Can we simply determine minimal voice leadings ‘by
sight’, in an intuitive manner which it is difficult for algorithms to simulate? Or
do we use some simpler but non-optimal heuristic which manages to identify
minimal voice leadings in the majority of interesting cases? (For example, do
we simply choose the smallest bijective voice leading and hope for the best?)
These important questions remain problems for future research. This article
is not a piece of empirical psychology, and it does not attempt to describe the
conscious or subconscious mental mechanisms involved in musical com-
position. Instead, it provides explicit recipes which allow us to extend and
systematise the implicit knowledge we seem regularly to deploy. This opens up
a range of new music-theoretical questions, including questions about how the
processes used by actual composers relate to the idealised processes described
here.

While our investigation does not yet bear directly on empirical psychology,
it does deepen our understanding of voice leading, a central but poorly under-
stood music-theoretical topic. As the mathematical music theorist Guerino
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Mazzola has written, ‘Although the theory of categories has been around since
the early 1940s and is even recognised by computer scientists, no attempt is
visible in American Set Theory to deal with the morphisms between pcsets’.83

This article, in essence, proposes a method for dealing with ‘morphisms
between pcsets’, understood as voice leadings between chords. We have seen
that a systematic understanding of voice leading allows us to shed new light
on topics as diverse as neo-Riemannian theory, tritone substitution, the relation
between serial theory and scale theory, key signatures, the Tristan Prelude,
similarities between Debussian impressionism and Wagnerian chromaticism
and the role of doublings in decreasing voice-leading size. It remains for future
work to extend this list. In particular, it can be shown that many of the ideas
in this article have a straightforward geometrical interpretation, and that the
mathematical concepts of ‘quotient space’ and ‘orbifold’ provide powerful and
natural tools for understanding voice leading.84 Even without this extension,
however, the techniques described in this article provide practical tools for
understanding, analysing and perhaps even composing music.

Appendix A

Measuring Voice Leading

Let (x0, x1, … , xn−1) → (y0, y1, … , yn−1) be a voice leading between two
multisets of pitches. Its displacement multiset is the multiset of distances
{|yi − xi|, 0 ≤ i < n}. Every existing music-theoretical method of measuring
voice-leading size depends only on the displacement multiset. We can therefore
model methods of comparing voice leadings as methods of comparing multisets
of nonnegative real numbers.

A. Smoothness. The size of a voice leading is the sum of the objects in the
displacement multiset.85 According to the smoothness metric, {2, 2} > {3.999}
> {1, 1, 1}. Smoothness is sometimes called the ‘taxicab norm’. It reflects
aggregate physical distance on keyboard instruments.

B. Lp norms. Smoothness is analogous to the L1 vector norm, although
vectors are ordered whereas multisets are not. The analogues to the Lp vector
norms can also be used to measure voice leadings when p ≥ 1.86 Callender uses
the L2 vector norm.87

C. L∞. According to the L∞ vector norm, the size of a displacement multiset
is its largest element. The musical terms ‘semitonal voice leading’ and ‘stepwise
voice leading’ refer to this measure of voice-leading size. Semitonal voice leadings
have an L∞ norm of 1; stepwise voice leadings have an L∞ norm less than or
equal to 2. The L∞ norm measures the largest physical distance moved by any
single voice on a keyboard instrument.

D. Parsimony. Parsimony is related to lexicographic ordering. It generalises a
notion introduced by Richard Cohn and developed by Jack Douthett and Peter
Steinbach.88 Given two voice leadings α and β, α is smaller (or ‘more
parsimonious’) than β if and only if there exists some real number j such that
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1. for all real numbers i > j, i appears the same number of times in the
displacement multisets of α and β; and

2. j appears fewer times in the displacement multiset of α than β.

Thus, according to the metric of parsimony, {3 + ε} > {3, 3} > {3}, where ε
is any positive nonzero quantity, no matter how small.

Appendix B

A Bijective Crossing-Free Voice Leading from a Chord to One of Its Transpositions Can 
Be Written as a Combination of Scalar and Chromatic Transpositions

Consider a bijective crossing-free voice leading from a chord A = (a0, a1, … , an−1)
to one of its transpositions Tx(a0, a1, … , an−1). Assume A has no pitch-class
duplications. Suppose pitch class a0 moves to pitch class (ac + x)mod 12 by a path
of d0 semitones. We can write d0 = δ↑(a0, ac) + y, 0 ≤ c < n, where δ↑(a, b) is
the ascending distance from a to b. Here δ↑(a0, ac) represents a scalar transposi-
tion within chord A, while y represents a chromatic motion which will be the
same for all the notes in the chord.

Now consider pitch class a1, immediately above a0 in the source chord.
Since the voice leading is crossing-free, a1 must move to the pitch class
(ac+1 (mod n) + x)mod 12, which is the pitch class in the destination chord immediately
above that to which a0 moves. (Henceforth all subscript additions will be modulo
n unless otherwise noted: ac+1 stands for ac+1(mod n).) To see why, assume the
contrary. We could then construct an instance containing the four pitches p0,
q0, p1 and q1, where p0 belongs to pitch class a0, q0 is the pitch to which p0

moves (p0 + d0), p1 is the source-chord pitch immediately above p0[p0 + δ↑(a0,
a1)] and q1 is the target-chord pitch immediately above q0[q0 + δ↑(ac, ac+1)]. If
the voice originating at p1 does not cross the voice originating at p0, then it is
mapped onto a note above q1. (By hypothesis, it is not mapped onto q1, which
belongs to the pitch class (ac+1 + x)mod 12.) But then the voice terminating at q1

originates either below p0 or above p1 and hence creates a crossing. This
contradicts the hypothesis. By induction on the notes in chord A, we conclude
that each pitch class ai in the source chord moves to pitch class (ai+c + x)mod 12.

Now consider an instance containing p0, q0 and p1 as in the above paragraph.
We have shown that p1 must be mapped onto q1 + 12k for some particular integer
k. If k < 0, then the voice originating at p1 crosses p0 → q0, since q1 − 12 = q0 +
δ↑(ac, ac+1) − 12 is below q0. (This follows from the fact that A has no pitch-
class duplications, and hence the ascending distance from ac to ac+1 is greater
than 0 and less than 12.) Similarly, if k > 0, we can construct an instance containing
pitches p1, p0 + 12, and q0 + 12. (That is, we simply move the voice p0 → q0 up
by an octave.) The voice originating at p1 crosses (p0 + 12) → (q0 + 12) because
p1 = p0 + δ↑(a0, a1) < p0 + 12 and q1 + 12 > q0 + 12. (Again, A has no pitch-class
duplications, so 0 < δ↑(a0, a1) < 12.) It follows that k = 0 and p1 is mapped
onto q1. But
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q1 − p1 = (q0 + δ↑(ac, ac+1)) − (p0 + δ↑(a0, a1)) 

= p0 + d0 + δ↑(ac, ac+1) − p0 − δ↑(a0, a1) 

= δ↑(a0, ac) + y + δ↑(ac, ac+1) − δ↑(a0, a1) 

= δ↑(a1, ac+1) + y

Using induction over the chord A, we see that each pitch class ai moves by a
distance of δ↑(ai, ai+c) + y, where the first term represents scalar transposition
by c steps, and the second term represents chromatic motion by y semitones.

When A contains multiple copies of a single pitch class, the above proof
will not work since the distance δ↑(ai, aj) may be equal to 0 or 12. However,
because we are working in continuous pitch-class space, we can take any cross-
ing-free voice leading A → Tx(A) and add small quantities εi to any duplicate
pitch classes in A, producing a new voice leading A* → Tx(A*) which is
crossing free, has no pitch-class duplications, and is equal to A → Tx(A) in the
limit where the εi all go to 0. (Because the voice leading is bijective, this process
is straightforward: construct a crossing-free instance (p0, … , pn−1) → (q0, … ,
qn−1), so that both chords are in nondescending order and each spans an octave
or less; if either chord spans precisely an octave, then lower all copies of its top
pitch by a small amount δ so that it spans less than an octave; then add iε to
each note pi and qi, choosing ε so that nε < δ.) The above proof then gives us
the voice leading A* → Tx(A*). In the limit where δ and ε go to 0, the distance
δ↑(ai, ai+c) between any duplicate pitch classes ai and ai+c goes to 0 for i + c < n,
and to 12 for i + c ≥ n. This is the ascending scalar distance between the notes.

NOTES

The author wishes to express his thanks to Elisabeth Camp, Richard Cohn,
Robert Morris and Jason Yust.

1. The term ‘chord’ is somewhat anachronistic here, because early composers were
likely to think of harmonies as products of musical lines rather than as entities in
themselves. Nevertheless, they shared the sense that some verticalities (for example,
C–G) were acceptable and others (for instance, C–C C–D) were not, and that
voices in general were to move efficiently so as to form acceptable verticalities.

2. See Huron (2001).

3. The actual count depends somewhat on how one chooses to individuate voice
leadings. Here I am permitting ‘non-bijective’ voice leadings, in which a single
note in one chord is associated with multiple notes in the other; I am also
assuming that each pitch class moves to its destination by the shortest possible
path, as explained in Section I (a). A voice leading in this sense can be
represented as a set of ordered pairs (x, y) in which x is a pitch class in the first
chord, y is a pitch class in the second, and every element of each chord appears
in some pair.
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4. A mapping between two collections A → B is bijective if and only if it maps every
object in A onto a unique object in B and if a unique object in A is mapped onto
every object in B.

5. I use the phrase ‘law of the shortest way’ to refer to the general principle that one
should try to minimise the overall distance moved by the voices in any voice
leading. See Masson ([1694] 1967), Hostinsky (1879) and Schoenberg ([1911]
1983). Sources in the Western theoretical tradition do not fully specify what it
means to ‘minimise overall distance’: contemporary theory’s various metrics of
voice-leading size represent different ways of interpreting this prescription (as
indicated in Appendix A). All metrics agree, however, that the minimal voice
leading between two chords A and B need not map each note in A onto the
nearest note in B: for example, (C, CC, D) → (Bw, CC, D) is minimal (for all
standard metrics) even though C is closer to CC than to Bw.

6. See Huron (2001).

7. A multiset is an unordered collection in which cardinality is significant. Thus
the multiset of pitches {C4, C4, G4} is distinct from {C4, G4}. When analysing
voice leading it is often simpler to use multisets rather than sets. This is because
the number of ‘doublings’ in a chord affects its voice-leading capabilities: for
instance, the chord {C4, C4, C4, F5, FC5, G5} can be linked to one of its
pitch-space inversions by very efficient bijective voice leading, while the chord
{C4, F5, FC5, G5} cannot be; see Tymoczko (2006) and Callender, Quinn and
Tymoczko (2008). Consequently, Sections I–III of this article will model
chords using multisets. Section IV considers non-bijective voice leadings between
sets of pitch classes, thereby making closer contact with standard music-theoretical
terminology.

8. When A and B are multisets which potentially contain multiple copies of a given
pitch, we need to require that there be at least as many pairs whose first element
is a as there are copies of a in A, and at least as many pairs whose second element
is b as there are copies of b in B.

9. Or perhaps, less euphoniously, a ‘pitch-class-space voice leading’. This definition
corresponds to what I have elsewhere called a ‘path-specific’ voice leading
between pitch-class sets because it specifies the path along which each pitch class
moves to its destination. Other theorists, such as Morris (1998), Lewin (1998)
and Straus (2003), favour ‘path-neutral’ voice leadings which do not specify
particular paths. See Tymoczko (2005) for further discussion.

10. A path in pitch-class space is a real number indicating how far and in what
direction a pitch class moves: thus motion by eleven ascending semitones (+11)
is distinct from motion by one descending semitone (−1), even though these two
paths link the same pair of pitch classes. This is precisely analogous to the fact
that an ant could travel between 3 and 2 on an ordinary clock face either by
moving 1/12 of a circumference anticlockwise or 11/12 of a circumference clockwise
(see Tymoczko 2005).

11. Note that in passing from pitch to pitch-class space we lose the ability to say
whether a note in one voice is above or below a note in another. However, we
can still speak about the direction of the motion between notes in the same voice:
given the pitch-class voice leading (G, G, B, D, F) → (C, G, C, C, E) we can
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say that the F moves down by semitone to the E, but we cannot say whether the
E is above or below the B.

12. Once again, when A and B are multisets, we need to add the proviso that there
are as many paths beginning with pitch class a as there are copies of a in A, and
as many paths ending with pitch class b as there are copies of b in B.

13. If two voices sound the same pitch, then neither is above or below the other.

14. For example, the size of the voice leading (C4, E4) → (Bw3, G4) should depend
only on the fact that one voice moves by two semitones, while the other voice
moves by three semitones. Reducing the distance moved by any voice should not
increase the voice leading’s size.

15. One piece of evidence in favour of this requirement is that classical composers
typically choose to avoid voice crossings rather than preserve common tones:
given the melody D5 → C5 and the chord progression V–I in C major, classical
composers generally prefer the upper-voice pattern (G4, B4, D5) → (E4, G4,
C5), which avoids voice crossings, to (G4, B4, D5) → (G4, E4, C5), which
preserves the common tone G4. My proposal is that we measure voice leadings
such that this preference is consistent with the ‘law of the shortest way’.

16. See Tymoczko (2006).

17. Tymoczko (2004b) explicitly distinguished between individual and uniform
equivalence. At about the same time, Callender (2004) implicitly utilised this
notion in developing geometrical models where individual equivalences were
naturally represented. After a long and intensive period of collaboration, the
connection between these two investigations was described in Callender, Quinn
and Tymoczko (2008).

18. Note that although the definitions are stated here using pitch-class voice leadings,
they have analogues in pitch space.

19. The terminology employed in the current article diverges somewhat from that of
Callender, Quinn and Tymoczko (2008): what is here called individual I-relatedness
is there described as uniform I and individual T. The difference ultimately derives
from two different ways of conceiving of the TI group: Callender, Quinn and
Tymoczko analyse it as combining transpositions with a single ‘fixed’ inversion I0,
whereas I imagine it in this context as containing an equal number of transposi-
tions and inversions, with none of the latter being privileged. It is hoped that the
simplicity of the current terminology will outweigh any potential confusion.

20. If a voice leading moves ai to bi by di semitones, then a uniformly T-related voice
leading moves Tx(ai) to Tx(bi) by di semitones and a uniformly I-related voice
leading moves Ix(ai) to Ix(bi) by –di semitones. For example, the voice leadings (C,
E, G) → (C, F, A), (G, B, D) → (G, C, E) and (G, Ew, C) → (G, D, Bw) each
move one voice by zero semitones, one voice by one semitone and one voice by
two semitones.

21. More formally: if a voice leading moves pitch class ai to bi by di semitones, then any
individually T-related voice leading will move Tx(ai) to Ty(bi) by di + c semitones.

22. If a voice leading moves pitch class ai to bi by di semitones, then any individually
I-related voice leading will move Ix(ai) to Iy(bi) by c − di semitones.
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23. For example: suppose we order the elements of the C major triad so that C is
first, E is second and G is third. We can invert each element in the sequence (C,
E, G) around the semitone D–Ew to produce the sequence (G, Ew, C). We then
use this ordering to label the elements of the C minor triad so that G is first, Ew

is second and C is third. This is precisely what Riemann did, although he used
the labels ‘root’, ‘third’ and ‘fifth’ rather than ‘first’, ‘second’ and ‘third’.

24. Strictly speaking, this is a ‘pitch-class chord progression’. One could also define
progressions between chords of pitches.

25. Note that I use curly brackets {} and a double arrow ⇒ for chord progressions,
reserving regular parentheses () and the single arrow → for voice leadings.

26. In this paragraph capital letters refer to major triads, lower-case letters to minor
triads.

27. For a discussion of Schritts and Wechsels, see Klumpenhouwer (1994).

28. In the special case where chord B is invariant under every transposition and
inversion which leaves A invariant, we can model dualistically equivalent progres-
sions φ(A) ⇒ φ(B) using a function F which commutes with transposition and
inversion: F (φ(A)) = φ(F (A)) = φ(B), for all transpositions and inversions φ. Thus
for example the neo-Riemannian ‘P’ transformation can be modelled as a func-
tion which takes a major or minor triad as input and outputs the other major or
minor triad sharing its perfect fifth. See Lewin (1987) and Satyendra and Fiore
(2005). However, we cannot do this when A has symmetries which B does not,
because F(φ1(A)) = F(A) = B ≠ φ1(B), for some φ1. This is why I prefer to model
chord progressions as objects related by functions (transposition and inversion),
rather than as functions themselves.

29. See Lewin (1987) for an abstract, group-theoretical discussion. It is a fact of
elementary geometry that translations and reflections are the only isometries of
the line and circle. Musically, this means that transposition (translation) and
inversion (reflection) are the only distance-preserving functions over pitch space
(the line) and pitch-class space (the circle).

30. See Lewin (1982) and Hyer (1995).

31. See Cohn (1996, 1997 and 1998).

32. See the various articles published in the particular issue of the Journal of Music
Theory dedicated to research in this area (1998), in particular those by Callender,
Childs and Douthett and Steinbach. The present article can be considered to be
part of the ‘explosion of interest’ occasioned by Cohn’s work.

33. There is a subtle point here with the potential to cause much confusion. Because
we permit chords to have duplicate pitch classes, bijective voice leadings may have
doublings. For instance, the voice leading (G, G, B, D, F) → (C, G, C, C, E),
shown in Ex. 3a, is a bijective voice leading from {G, G, B, D, F} (a chord with
two instances of the pitch class G) to {C, C, C, E, G} (a chord with three
instances of pitch class C). This is because every item of each chord (including
each of the individual ‘duplicates’) is related to one and only one item in the
other. Section IV relaxes this restriction, making it possible to treat (G, G, B, D,
F) → (C, G, C, C, E) as a non-bijective voice leading from {G, B, D, F} to {C,
E, G}.
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34. Mathematically, this is the smallest non-negative real number x such that a + x is
congruent to b modulo 12. ‘Ascending distance’ might just seem to be a new
name for the familiar pitch-class interval. However, theorists traditionally con-
sider the pitch-class interval 11 to be the same size as the interval 1 – the two
intervals belong to the same interval class and represent equal-sized steps taken
in opposite directions. By contrast, the ascending distance of eleven is eleven
times as large as the ascending distance of one (Tymoczko 2005). Ascending
distance plays an important role in scale theory. See, for example, Clough and
Myerson (1985).

35. The multiset {0, 4, 4, 7} has three elements (0, 4 and 7) and four objects (0, the
first 4, the second 4 and 7). When putting the multiset in scale-degree order we
keep track of the multiple instances of each element by assigning each object a
different scale-degree number.

36. Note that scale degrees are typically numbered from 1, whereas modular arith-
metic requires subscripts starting with 0. Thus, in the chord (a0, a1, … , an−1), a0

is the first scale degree, a1 is the second scale degree, and so on. This is an
unfortunate but unavoidable inconsistency between standard musical terminology
and standard mathematical notation.

37. The reasons for this are given in n. 80 and Appendix B.

38. Theorists often consider scalar transpositions in which a smaller chord is
transposed along a larger scale – for instance, when a C major triad is transposed
along the C major scale. Here I am concerned with the special case in which the
chord and scale are the same, such as when we shift the entire C major scale up
by scale step.

39. When I refer to a voice leading as ‘minimal’ without specifying a particular
metric, I mean it is minimal with respect to all metrics satisfying the two con-
straints in Section I (a).

40. In other words, scalar transposition down by step is a not-very-fuzzy ‘fuzzy trans-
position’. The term ‘fuzzy transposition’ was introduced by Quinn (1996); see
also Lewin (1998) and Straus (2003).

41. Here as elsewhere the elements of the matrix are labelled starting with 0, so that
the upper left corner is M0,0 and the lower right is Mn−1, n−1. The scalar interval
matrix is defined relative to the arbitrary choice of a first scale degree. (Choosing
a different first scale degree rotates the columns of the matrix.) This choice does
not affect in any important way the information contained in the matrix or the
way we calculate with it. I will therefore speak as if there were a unique scalar
interval matrix for each chord. See Rothenberg (1978).

42. An important terminological caution: the scalar interval matrix contains ‘ascend-
ing scalar distances’, as defined in the text. These are paths in pitch-class space,
rather than (traditional) pitch-class intervals.

43. A serial ‘rotational array’ has as its first row a series of pitch classes, usually
starting on zero. Its second row rotates the first to the left by one place, transpos-
ing it so that its first pitch is again zero. Subsequent rows continue this process
through all the rotations of the original row. Rotational arrays were used by
Stravinsky and have been studied by Babbitt (1964 and 1997), Rogers (1968),
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Morris (1988) and others. There are two differences between scalar interval
matrices and traditional arrays. First, scalar interval matrices contain paths in
pitch-class space rather than traditional pitch-class intervals. Thus these matrices
can contain the value 12 as well as 0. (Interscalar interval matrices, as we will see,
can also contain negative values.) Second, scales are ordered in pitch-class space,
whereas traditional twelve-note rows can be arbitrarily ordered.

44. Suppose a composer uses a row to present the main theme of a composition,
while in the recapitulation he or she wishes to evoke the main theme without
repeating it exactly. The composer might therefore look for that rotated and
transposed row which minimises the interval class between each order position in
the original theme and the corresponding order position in the recapitulation. The
relation between these two rows is analogous to the relation between two chords
linked by minimal crossing-free voice leading. Roeder (1984 and 1987) explores
the parallels between the temporal ordering in serial composition and the registral
ordering needed to analyse voice leading. Roeder’s concerns and methods are
important precursors to those of the present article. Lewin (1977) proposes – but
does not explore – an approach similar to Roeder’s. Regener (1974) and Chrisman
(1977) articulate points of intersection between scale theory and set theory.

45. Again, when I do not specify a metric all reasonable metrics are in agreement.

46. See Cohn (1996) and Tymoczko (2005).

47. See Tymoczko (2006).

48. Or if the chord can be represented as the union of equal-sized subsets which
themselves divide the octave evenly. Agmon (1991) and Cohn (1996) make
closely related observations. Block and Douthett (1994) describe a continuous
measure of evenness.

49. For example, the scalar transposition (C, E, G) → (E, G, C) moves its voices by
four, three and five semitones. These values are approximately equal to 4.

50. Alert readers will note that for very ‘clustered’ chords, such as {C, CC, D}, the
values in the scalar interval matrix, when considered as traditional pitch-class
intervals, are all approximately equal to 0. The scalar transpositions do not
generate minimal voice leadings, because they only enable us to offset chromatic
transposition by zero semitones. (Furthermore, these voice leadings involve cross-
ings when each pitch class moves to its destination by the shortest possible path.)
However, they can yield efficient voice leadings from the chord to itself. See
Tymoczko (2006).

51. A trivial voice leading moves each voice by 0 semitones.

52. For example, {C, E, G, Bw} is a generalised fourth chord, because it can be
partitioned into {C, G} and {E, Bw}. Efficient voice leading connects it to its
tritone transposition {CC, E, FC, AC}, moving the perfect fifth {C, G} by semitonal
contrary motion to {CC, FC} and holding the tritone {E, Bw} fixed.

53. See Hansen (1996).

54. Here, tritone substitution introduces a three-semitone w7 → 5 leap in the alto voice.
Such three-semitone leaps will appear when the original progression contains
a perfect fourth or perfect fifth which descends in parallel by major second.



Scale Theory, Serial Theory and Voice Leading 45

Music Analysis, 27/i (2008) © 2008 The Author.
Journal compilation © 2008 Blackwell Publishing Ltd.

55. The proof follows the same basic outlines as that given in Appendix B: we derive
an inequality 0 < X + 12k < 12 and show 0 < X < 12, which implies k = 0.

56. Santa (1999) discusses scale-to-scale operations related to interscalar transposi-
tion, and Hook (2007) discusses interscalar transpositions in pitch space.

57. The form of the interscalar interval matrix will depend on our identification of
the first scale degree and our choice of the crossing-free voice leading from A to
B. Since the same essential information is conveyed by all of these variant matri-
ces, I will speak somewhat loosely of the interscalar interval matrix.

58. See in particular Morris (1988).

59. Here we are attempting to find that value x such that the maximum of |4 + x|
and |x + 2| is as small as possible. Hence x = −3.

60. There is a striking similarity between this table and the voice leadings surveyed
in Childs (1998), which approaches some of the topics treated in this article from
a neo-Riemannian perspective.

61. Such voice leadings can involve no fewer than seven semitones of total motion,
as in (C, Ew, Gw, Bw) → (CC, D, Ew, C).

62. See Roeder (1984 and 1987). The point here is simply that the crossing-free voice
leading (x0, x1, … , xn−1) → ( y0, y1, … , yn−1) is small only when xi ≈ yi, for all i.
Hence, the ascending scalar distance from x0 to x1 must be approximately equal
to the ascending scalar distance from y0 to y1, the ascending scalar distance from
x1 to x2 must be approximately equal to the ascending scalar distance from x1 to
x2, and so on. The vector of ascending scalar distances between adjacent xi is
simply the second row of the chord’s scalar interval matrix.

63. It is interesting to compare this notion of ‘set class similarity’ to other measures
which have been proposed. See Quinn (2001), Straus (2003) and Callender,
Quinn and Tymoczko (2008).

64. Interested readers are encouraged to derive formulas relating the second row of
two chords’ scalar interval matrices to the crossing-free voice leadings between
them.

65. Compare Chapter 36 of Gauldin (1997).

66. Debussy uses similar progressions in the passage between rehearsal numbers 10
and 14 of ‘Fêtes’, the second of the orchestral Nocturnes.

67. In the course of future research I intend to apply these analytical techniques more
comprehensively with a view to determining the ways in which Debussy’s voice-
leading practices depart from those of Wagner. For example, in Tymoczko
(2004a), I argue that Debussy’s chords often give rise to non-diatonic scales at
the surface level, whereas Wagner’s typically do not.

68. Roughly speaking, this is because the three notes of the chord {C, E, FC} cluster
in two approximately antipodal regions of the pitch-class circle. In this sense, {C,
E, FC} is ‘close’ to {C, FC} and consequently inherits some of its voice-leading
properties. {C, FC} has a trivial voice leading to its tritone transposition, and
chords close to {C, FC}, such as {C, E, FC} and {C, F}, have efficient voice
leadings to their tritone transpositions. In the same way, the four notes of the
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chord {E, GC, B, DC} cluster in three more or less evenly spaced regions of
pitch-class space; consequently, {E, GC, B, DC} inherits some of the voice-leading
properties of {E, GC, C} and can be linked to its major-third transposition by
efficient voice leading.

69. T-matrices are a long-standing fixture of serial and atonal theory and have been
studied under various names by Alphonce (1974), Gamer and Lansky (1976) and
Morris (1987, 1988 and 1998). (The term ‘T-matrix’ is due to Morris.) Some of
this work addresses voice leading, either obliquely (as in Gamer and Lansky
1976) or explicitly (as in Morris 1998). The present article continues this
tradition.

70. The reason for this is that when using T-matrices, we assume each note will move
to its destination by the shortest possible path. We could create T-matrices using
paths in the range −6 < x ≤ 6, but these are virtually equivalent to pitch-class
intervals.

71. A problem can be solved in polynomial time if the number of calculations it
requires is determined by some polynomial of the input variables.

72. See Section 8 of the supplementary online materials to Tymoczko (2006). I have
written a simple computer program, which runs as a Java applet in Max, to find
the minimal voice leading between arbitrary chords using dynamic programming.
See http://music.princeton.edu/~dmitri/.

73. See Tymoczko (2005) and Callender, Quinn and Tymoczko (2008) for more
discussion of paths in pitch-class space.

74. Reading from the first entry in the fourth row of Fig. 11a upwards along the
diagonal to the fourth entry in the first row, one finds the pitch classes (Bw, G, E w,
Cw). Inverting this sequence around B, one obtains (C, Ew, G, B), which is the
source chord of Fig. 11a, listed in scale-degree order.

75. This is because Fig. 2 connects an inversionally symmetrical set class to itself,
while Fig. 4e connects a set class to its own inversion.

76. These diagonals wrap around, moving off the right edge of the matrix to reappear
on the left.

77. This is because pitch-class inversion reverses a multiset’s step-interval vector. See
Regener (1974) and Chrisman (1977) for discussion.

78. The first row of  will be the rotated retrograde of the complement of
the first row of MA→Β, the second row of  will be the rotated retrograde
of the complement of the last row of MA→Β, and so on.

79. See Tymoczko (2004a).

80. See Clough and Myerson (1985). There is a slight complication here in the case
of chords with multiple copies of a single pitch class: given the scale S = (a0, a1,
a2) = (C, C, C), if we want scalar transposition by one step to span an octave,
then we should take a0 to move to a1 by 0 semitones, a1 to move to a0 by 0
semitones and a2 to move to a0 by 12 semitones. This is what motivates the
definition of ‘ascending scalar distance’ in Section II (a).

81. See Hook (2003 and 2004).

M
x xA BI I( ) ( )→

M
x xA BI I( ) ( )→

http://music.princeton.edu/~dmitri/
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82. See Tymoczko (2005).

83. See Mazzola, Göller and Müller (2002), p. 257.

84. See Callender (2004), Tymoczko (2006) and Callender, Quinn and Tymoczko
(2008).

85. See Roeder (1984), Lewin (1998) and Straus (2003).

86. The Lp norm of the multiset {x0, x1, … , xn−1} is the quantity (Σ|xn|
p)1/p.

87. See Callender (2004).

88. See Cohn (1997) and Douthett and Steinbach (1998).
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ABSTRACT

Efficient voice leading, in which melodic lines move by short distances from
chord to chord, is a hallmark of many different Western musical styles. Although
musicians can often find maximally efficient voice leadings with relative ease,
theorists have not adequately described general principles or procedures for
doing so. This article formalises the notion of voice leading, shows how to classify
voice leadings according to transpositional and inversional equivalence and
supplies algorithms for identifying maximally efficient voice leadings between
arbitrarily chosen chords. The article also includes analytical and theoretical
discussions of neo-Riemannian theory, the ‘tritone substitution’ in contemporary
jazz, the music of Wagner and Debussy, the relation between harmony and
counterpoint and the connections between scale theory and serial theory.
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