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SCALING MATRICES TO PRESCRIBED ROW AND COLUMN MAXIMA * 

URIEL G. ROTHBLUMt, HANS SCHNEIDER;, AND MICHAEL H. SCHNEIDER§ 

Abstract. A nonnegative symmetric matrix B has row maxima prescribed by a given vector r, if for each 
index i, the maximum entry in the ith row of B equals rj. This paper presents necessary and sufficient conditions 
so that for a given nonnegative symmetric matrix A and positive vector r there exists a positive diagonal matrix 
D such that B = DAD has row maxima prescribed by r. Further, an algorithm is described that either finds such 
a matrix D or shows that no such matrix exists. The algorithm requires O(n 19 n + p) comparisons, O(p) 
multiplications and divisions, and O(q) square root calculations where n is the order of the matrix, p is the 
number of its nonzero elements, and q is the number of its nonzero diagonal elements. The solvability conditions 
are compared and contrasted with known solvability conditions for the analogous problem with respect to row 
sums. The results are applied to solve the problem of determining for a given nonnegative rectangular matrix 
A positive, diagonal matrices D and E such that DAE has prescribed row and column maxima. The paper 
presents an equivalent graph formulation of the problem. The results are compared to analogous results for 
scaling a nonnegative matrix to have prescribed row and column sums and are extended to the problem of 
determining a matrix whose rows have prescribed /p norms. 
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1. Introduction. A matrix B is called a symmetric scaling of a nonnegative square 
matrix A if B = DAD for some positive diagonal matrix D. A matrix B is called an 
equivalence scaling of a nonnegative rectangular matrix A if B = DAE for some positive 
diagonal matrices D and E. In this paper we give necessary and sufficient conditions that 
a given symmetric nonnegative matrix A has a symmetric scaling with prescribed row 
maxima. In particular, we show that for a given pattern (i.e., locations of strictly positive 
entries) if the class of symmetric nonnegative matrices with that pattern and having the 
prescribed row maxima is nonempty, then every nonnegative matrix with that pattern 
can be symmetrically scaled into the class. Thus, our conditions relate the prescribed 
row maxima to the pattern of the matrix A . 

Further, we describe an algorithm that for a given matrix A either determines a 
symmetric scaling B with prescribed row maxima or shows that no such scaling exists. 
Using our results for symmetric scalings, we also establish corresponding results for the 
problem of determining an equivalence scaling of a rectangular nonnegative matrix with 
prescribed row and column maxima. Our results have natural interpretations in terms 
of weighted undirected graphs. 

We call the problem of finding for a given square nonnegative matrix a symmetric 
scaling with prescribed row maxima max symmetric scaling and the problem of finding 
for a given rectangular nonnegative matrix an equivalence scaling with prescribed row 
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and column maxima max equivalence scaling. These problems are analogues of corre­
sponding well-studied scaling problems in which row and column sums are prescribed. 
We refer to the sum versions of these problems as sum symmetric scaling and sum 
equivalence scaling. The problem of sum equivalence scaling was described in the en­
gineering literature by Kruithof [10] and was considered by Sinkhorn [17], Brualdi [5], 
Sinkhorn and Knopp [18], Bregman [1], Menon [12], Menon and Schneider [13], 
Schneider and Zenios [16], and many other authors. The sum symmetric problem was 
considered by Brualdi [3], [4] and Marshall and Olkin [11]. 

One important application of sum equivalence scaling concerns the updating of 
(dynamic) data that is given in matrix form, e.g., traffic intensity between sources and 
destinations. When new data is not fully observable, but new marginals consisting of 
corresponding row sums and column sums are observable, a common technique is to 
replace the old data given by a matrix A by a scaling DAE whose row sums and column 
sums equal the observed marginals. Max equivalence scaling arises naturally when ob­
servations about the new data concern row and column maxima. 

We describe our notation in § 2 and list some solvability results for sum symmetric 
and sum equivalence scalings in § 3. We consider these problems both for a given pattern 
and for all subpatterns of a given pattern, and we add some new results in the latter case. 
In § 4 we give nine equivalent conditions for the existence of a solution of the max 
symmetric scaling. In § 5 we present an algorithm that, for a given nonnegative matrix 
A, either symmetrically scales A to have prescribed row maxima or determines that no 
such scaling can exist. In § 6, we apply the results of § 4 to study max equivalence scaling, 
and in § 7 we restate our results in terms of weighted undirected graphs. Finally, in § 8 
we unify max symmetric scaling and sum symmetric scaling by considering scaling prob­
lems in which the lp norms of the rows of the matrix are prescribed. 

2. Notation and definitions. For a positive integer n, we use the notation < n) to 
denote the set of integers {I, 2, ... , n}. For a subset I s:: < n), we use I e to denote the 
set < n ) \l, the complement of I with res pet to < n). The identity of n will always be clear 
from the context. The cardinality of a finite set S is denoted I S I. Also, we use the symbols 
c and s:: to denote strict and weak containment, respectively. 

Let A be an m X n nonnegative matrix and let I and J be nonempty subsets of < m ) 
and < n), respectively. We use the notation Au to denote the I II X IJI submatrix of A 
corresponding to the rows and columns of A, indexed by I and J, respectively. We 
identify an index i and the set {i} . For example, when I = {i}, we write AiJ for Au. By 
convention, we write Au = ° if either I or J equals the empty set. 

For a vector r = (r., ... , rn) T E mn and subset I s:: < n), we use the notation rI to 
denote the subvector of r whose entries are ri for i E I, and we use r( I) to denote the 
element sum of rI o We follow the standard convention that the summation over the 
empty set is defined to be 0. Also, the value of maxiE I ri in the case of 1= 0 depends 
on the underlying group to which the elements ri belong. Specifically, if we are considering 
the entries of r as entries of the multiplicative group of nonnegative real numbers, then 
the maximization over the empty set is defined to be 0, whereas if the entries are viewed 
as elements of the additive group of real numbers, then the maximization over the empty 
set is defined to be -00. The additive case arises in § 7 when we consider graph versions 
of our results. Also, for a> 0, we define the operation ~ = +00. This operation will occur 
only in minimization expressions over sets containing an element of finite value. 

The n X n diagonal matrix whose diagonal entries are d., d2 , ••• , dn is denoted 
diag (d., d2 , •• • , dn). A diagonal matrix D = diag (d .. d2 , ••• , dn) is called positive if 
di > ° for i E < n ). For an n X n nonnegative symmetric matrix A, a matrix B is called 
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a symmetric scaling of A if B = DAD for some positive diagonal matrix D. For an 
m X n nonnegative matrix A, a matrix B is called an equivalence scaling of A if B = 

DAE for some positive diagonal matrices D and E. 
An m X n matrix P = [Pij] is called a pattern matrix if every entry of P is either 0 

or 1. Given two m X n pattern matrices P and pI, the matrix P' is a subpattern of P if 
P' ~ P. Given a m X n nonnegative matrix A = [aij], the pattern of A is the m X n 
pattern matrix P such that for i E ( m ) and j E ( n ) 

p .. = {I if aij > 0, and 
I) 0 otherwise. 

For an m X n pattern matrix P, we define the pattern class of P, written ll(P), to be the 
set of all m X n nonnegative matrices whose pattern is P. 

3. Existence conditions for sum scaling. We summarize numerous characterizations 
for the solvability of sum symmetric scaling and sum equivalence scaling. 

We call a matrix, or a vector, positive if all of its elements are positive. For a positive 
vector r = (ri ' .. . , rn)T E 9tn, let S(r) denote the set of all n X n nonnegative matrices 
A = [aij] such that 

(1) 
n 

~ aij = ri for i E ( n ) . 
j = I 

Conditions (i), (ii), (iii), and (vi) of the following theorem are contained in Brualdi 
[3], [4]. Conditions (iv) and (v) are, apparently, new. 

THEOREM 1. Let P be an n X n symmetric pattern matrix, and let r E 9tn be strictly 
positive. Then the following are equivalent: 

(i) Each symmetric A E ll(P) has a symmetric scaling Bin S(r). 
(ii) Some symmetric A E ll(P) has a symmetric scaling Bin S(r) . 

(iii) The set ll(P) n S(r) is nonempty. 
(iv) If I and J are subsets of ( n ) such that PIJ = 0, then r( I) ~ r( JC) with equality 

holding if and only if PIcI' = O. 
(v) If I and J are subsets of ( n ) such that PIJ = 0, then r(I n J) ~ r( (I U JY) 

with equality holding if and only if P(lnJ)C,(luJ)C = O. 
(vi) If{K, L, M} is any partition of(n) such that PK,KUL = 0, then r(K) ~ r(M) 

with equality holding if and only if PLUM,M = O. 
Proof. The equivalence of (i), (ii), (iii), and (vi) is given in Brualdi [3], [4]. The 

implication (iii) => (iv) is found in [13], and the equivalence of (iv) and (v) follows 
from the observations that r(/) = r(/ n J) + r(I\J) and r( JC) = r( (I U J) C) + r(I\J). 
Finally, to see that (v) => (vi), consider a partition {K, L, M} of ( n) such that 
PK,KUL = O. Then apply (v) to the sets K and K U L. D 

For positive vectors r = (r" . .. , rm)T E 9tm and c = (Ct, ... ,Cn)T E 9tn, let S(r, c) 
be the set of all m X n nonnegative matrices A = [aij] such that 

n m 

(2) ~ aij = ri for i E ( m ) and ~ aij = Ci for j E (n ) . 
j = 1 i = I 

The following theorem summarizes results of Menon [12] , Brualdi [2], and Menon and 
Schneider [13 ] . 

THEOREM 2. Let P be an m X n pattern matrix, and let r E 9tn and c E 9tm be strictly 
positive. Then the following are equivalent: 

(i) Each matrix A E ll(P) has an equivalence scaling Bin S(r, c). 
(ii) Some matrix A E ll(P) has an equivalence scaling Bin S(r, c). 



4 U. G. ROTHBLUM, H. SCHNEIDER, AND M. H. SCHNEIDER 

(iii) The set II(P) n S(r, c) is nonempty. 
(iv) If I and J are subsets of < m) and < n ), respectively, such that PIJ = 0, then 

r(/) ~ c(JC) with equality holding if and only if p/c,JC = 0. 
The following two theorems characterize solvability of sum equivalence scaling and 

sum symmetric scaling for subpatterns of a given pattern matrix P, respectively. 
THEOREM 3. Let P be an m X n pattern matrix, and let r E mm and c E mn be strictly 

positive . Then the following are equivalent: 
(i) For some subpattern pi of P, each A E II(P I

) has an equivalence scaling in 
S(r, c). 

(ii) For some subpattern P' ofP, some matrix A E II(P') has an equivalence scaling 
in S(r, c). 

(iii) For some subpattern P' of P, the set II(P I
) n S(r, c) is nonempty. 

(iv) If I and J are subsets of < m) and < n ), respectively , such that PlJ = 0, then 
r(/) ~ c(JC). 

Proof The equivalence of (i), (ii), and (iii) is immediate from Theorem 2 applied 
to a corresponding subpattern pi of P . A proof of the equivalence of (iii) and (iv) of 
Theorem 3, which is simpler than the one given in [14], can be found in [15]. 0 

THEOREM 4. Let P be an n X n symmetric pattern matrix, and let r E mn be strictly 
positive. Then the following are equivalent: 

(i) For some symmetric subpattern P' of P, each symmetric A E II(P') has a 
symmetric scaling in S(r, c). 

(ii) For some symmetric subpattern pi of P, some symmetric A E II(P I
) has a 

symmetric scaling in S( r, c). 
(iii) For some symmetric subpattern P' of P, the set II(P') n S(r) is nonempty. 
(iv) If I and J are subsets of < n) such that PIJ = 0, then r(/) ~ r(JC). 
(v) If I and J are subsets of < n) such that PIJ = 0, then r(/ n J) ~ r( (/ U In. 

(vi) If{K, L, M} is any partition of< n) such that PK,KUL = 0, then r(K) ~ r( M). 
Proof The equivalence of (i), (ii), and (iii) follows directly from Theorem 1, applied 

to a corresponding subpattern pi of P. 
(iii) => (iv) : If (iii) is satisfied for subpattern P' of P and I, J £ < n) with PIJ = 0, 

then P'IJ = 0, and it follows from the implication (iii) => (iv) of Theorem 1 that r(I) ~ 
r(JC

), and therefore (iv) holds. 
(iv) ¢> (v) => (vi): These implications follow from the arguments used to show the 

analogous implications of Theorem 1. 
(vi) => (v): Assume that (vi) holds and that I, J £ <n) with PIJ = 0. Then 

PInJ,J = 0, and by the symmetry of P we have PInJ,/\J = [p/\J,InJ] T = 0; therefore, 
PInJ,/UJ = 0. Applying condition (vi) to the partition {K, L, M} with K = In J, 
L = (/\J) U (J\l), and M = (/ U JY, it follows that r(I n J) = r(K) ~ r(M) = 

r«(/ U In. 
(iv) => (iii): We prove this implication using a modification of the technique used 

in the proof of Theorem 3.7 in [ 4]. Suppose that (iv) holds. It follows from the implication 
(iv) => (iii) of Theorem 3 with m = nand c = r that for some subpattern Q (which need 
not be symmetric) of P there exists a matrix C E II( Q) satisfying (2) with c = r. Then 
B = ! (C + C T ) satisfies (1) and BE II(P'), where pi = H Q' + QT) is a symmetric 
subpattern of P. 

We observe that it suffices to prove that for some subpattern pi (which need not be 
symmetric) of Pthere exists a matrix B E II(P I

) satisfying (2) with c = r(and, consequently, 
m = n). This follows because if B is such a matrix, then B' = HB + BT) satisfies (1) 
and B' E II(Q), where Q = !(P' + (pl)T) is a symmetric subpattern of P. Therefore, 
the implication follows from the implication (iv) => (iii) of Theorem 3. 0 
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4. Problem statement and existence conditions. We present our main result giving 
eight equivalent conditions characterizing the existence of a solution for max symmetric 
scaling. 

For a positive vector r = (r1,"" rn)T E mn, let M(r) denote the set of all n X n 
nonnegative matrices A = [aij] such that 

(3) max aij = ri for i E (n). 
jE(n) 

Also for a vector r E mn and scalar a E m, let the a-level set of r, denoted lev (r, a), be 
the set {i E (n) : ri ~ a} . Finally, if we have that A is an n X n symmetric matrix and 
I = lev (r, a) of 4>, we call Au an r-upper principal submatrix of A. 

THEOREM 5. Let P be an n X n symmetric pattern matrix, and let r E mn be strictly 
positive. Then the following are equivalent: 

(i) Each symmetric A E II(P) has a symmetric scaling in M(r). 
(ii) Some symmetric A E II(P) has a symmetric scaling in M(r). 

(iii) The set II(P) n M(r) is nonempty. 
(iv) The set II(P') n M(r) is nonempty for some pattern matrix P' satisfying 

P' ~P. 

(4) 

(5) 

(6) 

(7) 

(v) If PIJ = 0 for subsets I, J c;;;. (n), then 

max ri ~ max rj. 
iE! jEJC 

(vi) If PIJ = 0 for subsets I, J c;;;. (n), then 

max ri ~ max rj. 
iE!nJ jE(IUJ)C 

(vii) If{K, L, M} is any partition of(n) such that PK,KUL = 0, then 

max ri ~ max rio 
iEK iEM 

(viii) IfPiJ = o for J c;;;. (n) and i E J, then 

ri ~ max rj. 
jEJC 

(ix) No upper r-principal submatrix of P has a zero row. 
Proof. The implication (i) => (ii) is trivial because II(P) is nonempty (P E II(P», 

and the implication (ii) => (iii) is straightforward because DAD E II(P) whenever A E 

II(P) and D is a positive diagonal matrix. Also, the implication (iii) => (iv) is trivial. 
(iv) => (v): LetA E II(P') n M(r) for some pattern matrix P' ~ P, and let I and J 

be nonempty subsets of ( n) such that PIJ = 0, and therefore P'IJ = AIJ = O. Because ri 
is the maximum of the entries in the ith row and A is symmetric, it follows directly that 

max ri = max max aij = max max aij = max max aij ~ max rj. 
iE! iE! jE(n) iE! jEJc jEJc IE! jEJc 

(v) => (vi): Let! and J satisfy the assumptions of condition (vi). Then PInJ,lUJ = 

o (see the proof of ( vi) => (v) in Theorem 4) and (5) follows by applying ( 4 ) to the sets 
In Jand IU J. 

( vi) => (vii): If K, L, and M satisfy the assumptions of condition (vii), ( 6) follows 
by applying ( 5) to the sets I = K and J = K ULand observing that K n (K U L) = K 
and [KU (KU L)]C = M. 

(vii) => (viii): If i and J satisfy the assumption of condition (vii), then 
{ { i }, J\ { i}, JC} is a partition of ( n) satisfying the assumptions of condition (viii), 
and (7) follows by applying ( 6 ). 
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(viii) ~ (ix): Suppose that for some a E lYt and J = {j E ( n ) I rj ~ a} =1= 0, the ith 
row of the upper principal submatrix PJJ is zero. Then, i E J £ ( n) , P jJ = 0, and rj ~ 
a > rj for j E JC. This violates condition (viii) for the partition { { i}, J\ { i}, JC} and 
therefore proves the implication. 

(ix) ~ (i): We prove this implication constructively in § 5 by exhibiting an algorithm 
that for a given nonnegative symmetric matrix A and positive vector r either finds a 
symmetric scaling of A in M(r) or finds an upper principal submatrix of A containing a 
zero row. 0 

The following observations compare max symmetric scaling and sum symmetric 
scaling. First, note that feasibility conditions (iii) and (iv) in Theorem 5 are equivalent. 
By contrast, there is no such equivalence for sum symmetric scaling, and the assertion 
that for some subpattern P' of P there is a matrix A in II( PI) satisfying ( 1 ) is not equivalent 
to condition (iii) of Theorem 1. In fact Rothblum and Schneider [14] provide separate 
characterizations of each of these two conditions. As a result of the equivalence of con­
ditions (iii) and (iv) of Theorem 5, conditions (v), (vi) , and (vii) of Theorem 5 are 
simpler than the analogous conditions (iv) , (v), and (vi) of Theorem 1. For example, 
for the nonequivalence for sum scaling consider 

P = C ~ ) and r = C ) . 
Then P E M( r), but there is no symmetric scaling of P whose rows sums are (1 , 1) T. 

Second, as a consequence of properties of the max operation, the set conditions 
(v) , (vi) , and (vii) of Theorem 5 are equivalent to the simple point conditions (vii) and 
(viii). No analogous simplification is possible for sum symmetric scaling. 

Third, a solution for sum symmetric scaling is unique, whereas a solution for max 
symmetric scaling need not be unique. For example, let 

A = G ~ ) and r = C ) . 
Then the general symmetric scaling of A that is in M(r) is given by 

B=(~ (2~) -1)A(~ (2~) _1)=(~2 (4a~) - 1) ' 
where ! ~ a ~ 1. 

5. The algorithm. We describe an algorithm for max symmetric scaling. For a given 
nonnegative symmetric matrix A and strictly positive vector r, our algorithm either finds 
a symmetric scaling of A in M(r) or certifies that no such scaling exists by showing that 
condition (ix) of Theorem 5 is violated. 

THE MAX SYMMETRIC SCALING ALGORITHM 

Input: An n X n nonnegative symmetric matrix A and a strictly positive vector r E lYtn. 

Output: Either a positive diagonal matrix D such that DAD E M( r) or a subset J £ ( n ) 
and an index i E J such that AJJ is an r-upper principal submatrix of A with zero 
row AjJ. 

Step 0 (Initialization): Let aj for i E ( m) be the distinct values in the vector r listed in 
decreasing order. That is, 

{ajliE ( m) } ={ rjliE ( n ) } and al>a2> · · · >am . 

Set k = 1, J = 0, and d j = 1 for i = 1,2, . . . , n. 
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Step 1 (Push down): Set 

(8) 

(9) 

I = {i E < n > I r ; = ak} and J = {i E < n > I r; ~ ak}. 

If Au = 0 for some i E I, output (J, i) and STOP; otherwise, set the values d; for 
i E I so that d; ~ 1 and 

d;a;jdj ~ a k for i E I and } E J . 

Step 2 (Pull up): Select any i E I and set I = 1\ i . Set 

(10) 

If I -+ 0 , repeat Step 2. 

Step 3 (Termination): If k < m, replace k by k + 1 and return to Step 1; if k = m, then 
output D = diag (db d2 , ••• , dn ) and STOP. 

We observe that whenever the algorithm does not stop in Step 1, then AIJ has no 
zero row and we can achieve (9) by setting 

(11 ) d; = min {min {ak
} , I} for i E I. 

jE J aij 

The following lemma is crucial for our analysis. 
LEMMA 6. During the Max Symmetric Scaling Algorithm, after each execution of 

Step 2, we have 

(12) 

and 

(13) max d;aijdj = r; for i E J\I. 
jEJ 

Furthermore , the d's are non decreasing throughout consecutive executions of Step 2. 
Proof. We first show that the d's are nondecreasing and that if ( 12) and ( 13) hold 

at the beginning of an execution of Step 2, then they also hold at the end of that execution. 
Let s be the element selected out of I for the execution of Step 2, let d' and l' be, 
respectively, the values of d and I at the beginning of the execution of the current Step 
2, and let d" and I" be the values of d and I at the end of that execution. Thus, we are 
assuming that (12) and (13) hold for d = d' and I = 1'. Now the selection of s and the 
definition of d~ ensure that 

(14) max d~asjdj = ak = rs. 
j EJ 

As dJ = dj for} E J \ { s } and as the specialization of ( 12) with d = d' to i = s ensures 
that we have 

d~ aSjdj ~ rs for all} E J , 

we conclude that d~ ~ d~. As the remaining coordinates of d are unchanged, it follows 
that d" ~ d'. 

We next establish (12) and (13) with d = d" and I = 1". First, if i E J\ {s} and} E 

J\ {s}, then dT aijdj = di aijdj ~ rs. Also, (14) ensures that d~asjdJ ~ rs for all} E J. 
Next, for i E J we have from the symmetry of A, from ( 14) , and from the fact that rs = 
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fXk = min {rj 1 j E J} that 

completing the proof that ( 12) holds for d = d". Further, as it is assumed that ( 13) holds 
for d = d ' and I = 1', as d" ~ d ', and as we have seen that (12) holds for d = d", we 
conclude that ( 13) is also valid with d = d" and I = 1'. This fact combines with ( 14) to 
show that 

(15) max d7 aijdJ = ri for i E J\I" = (J\I') U {s}. 
j e J 

That is, ( 13) holds for d = d" and I = I". 
It remains to show that ( 12) and ( 13) hold upon each entrance of Step 2 from Step 

1. This fact is obvious for the first entrance of Step 2 from Step 1 because then J = I; 
hence, ( 12) follows from (9) and ( 13) is vacuous. Next, assume that ( 12) and ( 13) hold 
for the kth entrance of Step 2 from Step 1 and consider the (k + 1 )st entrance, assuming 
that Step 1 leads to Step 2 rather than to termination. Our earlier arguments show that 
( 12) and (13) will stay valid throughout consecutive iterations of Step 2; hence, they 
will hold at the (k + 1 )st entrance into Step 1. Let d', JI, and l' = 0 be the values of d, 
J , and I upon the (k + 1 )st entrance into Step 1, and let d", J", and 1" be the updated 
values of d, J, and I after the (k + 1 )st execution of Step 1. In particular, 1"\ 1" = 

JI\I' = JI, and (12) and ( 13) hold for d = d', I = 1', and J = J'. Further, as dJ = dj 
for j E 1"\ 1" = JI, we have from the validity of ( 13) for d = d', J = JI, and I = l' that 
for i E J"\I" = JI\I' 

d" d"- { d' d ' d" d"} max iaij j - max max iaij j , max iaij j 
je J" j e J' je J" 

(16) 

= max {ri' max d7 aijdJ} . 
j e l " 

Now, for j E 1", rj = fXk+ I = min { rj IJ E J"}; hence, the symmetry of A and (9) with 
d = d", J = 1", and I = 1" imply that for j E l' 

(17) 

Combining ( 16) and ( 17) we conclude that 

max d7 aijdJ = ri for all i E 1"\ 1". 
jeJ" 

That is, ( 13) holds for d = d", J = J", and I = 1". This fact and (9) ensure that ( 12) 
holds as well. Thus, both ( 12) and ( 13) hold at the end of (k + 1) st execution of Step 
1 and therefore at the entrance to Step 2. 0 

THEOREM 7. If the Max Symmetric Scaling Algorithm is executed with input A E 

!Rn x nand r E !Rn, then either the algorithm terminates in Step 3 with a positive diagonal 
matrix D such that DAD E II( r) or the algorithm terminates in Step 1 with J ~ < n ) and 
i E J such that AJJ is an r-upper principal submatrix of A with Au = o. The algorithm 
requires O( n In n + p) comparisons, O(p) multiplications and divisions , and O( q) square 
root calculations, where p and q are, respectively, the number of nonzero elements and 
the number of nonzero diagonal elements of the matrix A . 

Proof The algorithm must terminate as Step 1 is executed at most m times, and 
each execution of Step 2 reduces 1 I I. If the algorithm terminates in Step 1, then Au is a 
zero row of the r-upper principal submatrix AJJ • It follows from Lemma 6 that each 
time Step 3 is executed, we have (DAD)JJ E II(rJ) because I = 0 when Step 3 is exe-
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cuted. Therefore, if the algorithm terminates in Step 3, then J = < n > and (DADhJ = 

DAD E II(r). 
We finally determine the complexity of the algorithm. With O(n In n) comparisons, 

we can sort the values { ri liE < n > } as required in Step O. In total, Step I can be performed 
with p comparisons and p divisions, and Step 2 can be performed with p - n comparisons, 
p - q multiplications, p divisions, and q square root calculations. 0 

The following example shows that the square root calculations cannot, in general, 
be eliminated. Let 

A = [1] E W X 1 and r = (2) E mi. 

Then the only scaling DAD of A that is in II(r) has D = fl. If the diagonal elements of 
A are all zero, then because the square-root operation in (9) can be omitted, the algorithm 
can be executed over any linearly ordered group (multiplicative) Abelian group with 
zero, that is, a group G together with an element 0 such that aO = 0 = Oa for any a E G. 
In particular, if the underlying matrix is nonnegative, then the output elements will be 
in any subgroup that contains the input elements. The above example shows that this 
conclusion need not hold when A has nonzero diagonal elements. 

We note that a diagonal element au is considered twice in the course of an execution 
of the algorithm. If ri = CXk, we have au - aiid7 in the kth execution of Step 1, and then 
in one of the following executions of Step 2, Y CXk/ aii = Yri / aii is determined and is 
compared with other numbers to update di • Thus, the square rooting can be avoided if 
each original aii is the product of ri and the square of a known number. Consequently, 
the square rooting can be avoided in the "decision problem" where one determines 
whether or not there exists a scaling corresponding to a given vector r and matrices in a 
given pattern P. This is achieved by testing any matrix A in II(P) with aii = ri for all i 
with Pii =1= O. 

6. Equivalence scaling. We apply our results for max symmetric scaling to max 
equivalence scaling. 

For strictly positive r = (rl' . . . , rm)T E mm and c = (Ch ... , Cn)T E mn, let 
M( r, c) denote the set of all m X n nonnegative matrices A = [aiJ such that 

( 18) max aij = ri for i E < m> and max aij = Cj for j E < n >. 
jE (n) i E( m) 

In the following theorem we characterize the existence of a solution for the max 
equivalence scaling by reducing it to max symmetric scaling. 

THEOREM 8. Let P be an m X n pattern matrix, and let r E mm and c E mn be strictly 
positive. Then the following are equivalent: 

(19) 

(i) Some A E II(P) has an equivalence scaling in M(r, c) . 
(ii) Each A E II(P) has an equivalence scaling in M(r, c). 

(iii) The set II(P) n M(r, c) is nonempty. 
(iv) The set II(P') n M(r, c) is nonempty for some pattern matrix pi ~ P. 
( v) The vectors rand c satisfy 

max ri = max Cj; 
i E( m) jE( n) 

furthermore, if PIJ = 0 for subsets I ~ < m> and J ~ < n >, then 

(20) max ri ~ max Cj and max Cj ~ max ri. 
iEi jEJC jEJ iEiC 
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(vi) The following conditions hold: 
(a) The vectors rand c satisfy ( 19). 
(b) If Pi] = 0 for i E < m ) and J r;;. < n ) , then 

ri ~ max Cj. 
jeJC 

(c) IfPIj = o for I r;;. <m ) andj E <n ) , then 

Cj ~ max rio 
ielc 

(vii) The vectors rand c satisfy (19), and for all a E !R and subsets I = 

lev (a, r) r;;. < m ) and J = lev (a, c) r;;. <n ) , if I, J oF 0, then the submatrix PIJ contains 
neither a zero row nor a zero column . 

Proof. The implications (i) => (ii) => (iii) => (iv) follow from the arguments used 
to establish the corresponding implications in Theorem 5. 

(iv) => (v): Suppose that A E ll(P') n M(r, c) for some pattern matrix P' ~ P. 
Then 

max ri = max max aij = max max aij = max Cj. 
ie ( m) ie ( m) je ( n ) je ( n ) ie ( m) je ( n ) 

Furthermore, if PIJ = 0 for some I r;;. < m) and J r;;. < n), then 

max ri = max max aij = max I1.1ax aij ~ max Cj. 
ieI ieI jeJC jeJc leI jeJc 

A symmetric argument proves the second inequality in (20). 
(v) => (vi): This implication is trite because parts (b) and (c) of condition (vi) are 

the specializations of the second part of condition (v) for the cases of I = i and J = j, 
respectively. 

(vi) => (vii): Suppose that for some a E !R, I = lev (a, r) oF 0 and J = 

lev (a, c) oF 0. It follows that 

and 

ri ~ a > max Cj for i E I 
jeJC 

Cj ~ a > max ri for j E J. 
ielC 

Therefore, if PIJ has a zero row or a zero column, we get a violation of parts (b) or (c), 
respectively, of condition (vi). The implication (vi) => (vii) now follows because the 
first assertion of ( vii) is the same as part a of ( vi ) . 

(vii) => (i): For an m X n nonnegative matrix A, define the (m + n) X (m + n) 
matrix A' and the vector r' E !Rm + n by 

(21) 

It is straightforward to show that max symmetric scaling with input A' and r' has a 
solution D' = diag (d'l, d2, . . . , d'",+n) if and only if max equivalence scaling for A, r, 
and C has a solution D = diag (d'l, d2, ... , d'",) and E = diag (d'",+ 1, ••• , d'",+n). We 
conclude that condition (i) of Theorem 8 is equivalent to condition (i) of Theorem 5 
applied to A' and r'. It is straightforward to show that condition (vii) of Theorem 8 is 
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equivalent to condition (vii) of Theorem 5 when applied to A' and r'o Therefore, the 
equivalence of (i) and (vii) follows from Theorem 5. 0 

We observe that the reduction of max equivalence scaling to max symmetric scaling 
in the proof of Theorem 8 shows that max equivalence scaling can be solved by the Max 
Symmetric Scaling Algorithm. Moreover, the diagonal elements of the matrix A' defined 
in (21 ) are all zero. Therefore, it follows from the complexity analysis at the end of § 5 
that max equivalence scaling can be solved using O( (n + m) In (n + m) + p) comparisons 
and O(p) multiplications and divisions, where p is the number of nonzero elements of 
the matrix A. Further, we observe that max equivalence scaling can be solved over any 
linearly ordered Abelian group with zero. The example given in § 5 shows that in general 
max symmetric scaling does not have this property. Also, sum equivalence scaling does 
not have this property. For example, let 

A = C ~ ) and r = c = C ) . 
The only equivalence scaling of A with row and column sums all equality I is the matrix 

B=(V2-1 2-V2)=(1-2-1V2 
2-V2 V2-1 0 

o ) (V2 0) V2-I A
O I· 

We note that when a solution to max equivalence scaling exists, it need not be 
unique. For example, let 

A = G ~ ) and r = c = (:) . 

Then the general equivalence scaling B of A that is in M(r, c) is given by 

(I 0) (I 0) (4 a-I) 
B = 0 a A 0 a - I = 2a 4 ' 

where ! ~ a ~ 2. By contrast, the corresponding equivalence in sum equivalence scaling 
is unique. 

The results about max equivalence scaling were derived from results about max 
symmetric scaling. Historically, a reverse logic has been applied in the sum case as results 
about sum equivalence scaling are used to establish results about sum symmetric scaling 
(see Brualdi [2] and Csima and Datta [7]). The latter arguments use uniqueness (up to 
multiplicative scalar) of diagonal matrices D and E for which DAE has prescribed row 
sum vector r and column sum vector c. Hence, if A is symmetric and r = c, the fact that 
DAE and EA T D = EAD have the same row and column sums can be used to argue that 
(with proper normalization) D = E. But, as we have seen above, no such uniqueness 
results are available in the max case. 

7. Graphs. We observe that max symmetric scaling and the corresponding solv­
ability theorem have an equivalent undirected graph statement. An (undirected) graph 
is an ordered pair G = (V, E), where V is a finite set of vertices and E is a set of edges 
composed of unordered pairs of vertices. Given such a graph G = (V, E) and a vertex 
v E V, we let N( v) denote the set of neighbors of v, i.e., N( v) == {u E V: {u, v} E E}, 
In particular, we say that v is isolated if N( v) = cp. Note that by definition a graph 
may contain loops but may not contain repeated edges. For subsets S, T s::: V, we use 
[S, T] to denote the set of edges {u, v} E E with u E S and v E Tor u E T and v E S. 
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A weight function for a graph G = (V, E) is a real-valued function f defined on the 
edges E. For convenience, in this case we writefuv for f( {u, v}). A weighted graph is a 
triple (V, E,f), where (V, E) is a graph and f is a weight function for G. A potential for 
G is a real-valued function defined on the vertices V. For a nonempty subset Wof V, 
we define the subgraph induced by W to be the graph (W, E'), where E' contains all 
edges of E of the form e = {u, v} for vertices u, v E W. 

Next, we define a mapping cI> from the set of symmetric nonnegative matrices to 
the set of weighted graphs. For an n X n symmetric nonnegative matrix A = [au], we 
define the mapping cI> by 

(22) 
4> 

A - (V, E,j), 

where 

V= ( n) , 

E = { {i, j} I au > O}, and 

fu = In au for { i, j} E E. 

It is easy to see that cI> is a bijection between the set of nonnegative symmetric matrices 
and the set of weighted graphs. 

We state the following lemma without proof. 
LEMMA 9. Let A be an n X n symmetric nonnegative matrix, and let (V, E,j) be 

the corresponding weighted graph under the mapping cI> in (22). Let r E ~n be strictly 
positive, and let s be the potential defined by Sj = In rj for i E ( n ) . Then the following 
are equivalent: 

(i) There exists a positive diagonal matrix D = diag (dJ , d2 , ••• , dn ) such that 
DADEM(r). 

(23) 

(ii) There exists a potential p such that 

max {pu + fuv + Pv} = Sv for v E V. 
UE N(v) 

Furthermore , D and p are related by Pu = In dufor u E ( n ) = V. 
The next theorem follows directly from Theorem 5 and the correspondence between 

matrices and graphs described in Lemma 9. 
THEOREM 10. Let G = (V, E) be a graph, and let s be a potential for G. Then the 

following are equivalent: 

(24) 

(i) For every weight function f for G there exists a potential p satisfying (23) . 
(ii) For some weight function f for G there exists a potential p satisfying (23). 

(iii) There exists some weight function f for G such that 

max fuv = Sv for v E V. 
UEN(v) 

(iv) There exists E' 5; E and some weight function f: E' ~ ~ such that 

max fuv = Sv for v E V, 
UEN'(v) 

whereN'(v) = {UE v: {u, v} EE'}. 
(v) If [S, T] = 0 for S, T 5; V, then 

max Sv ~ max SV' 
VE S VE TC 
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(vi) If [S, T] = 0 for S, T,;; v, then 

max Sv ~ max sv. 
vEsnT VE(SUT)C 

(vii) If{S, T, U} is any partition of V such that[S,SU T] = 0,then 

max Sv ~ max SV. 
VES VE U 

(viii) Let W';; V. If v E W is an isolated vertex of the subgraph induced by W, then 

Sv ~ max suo 
ueWC 

(ix) For every a E m, the subgraph ofG induced by the level set lev (s, a) has no 
isolated vertex. 

We observe that Theorem 8 also has an equivalent graph formulation in terms of 
bipartite graphs. We have omitted the details because they are straightforward. 

8. pth power scaling. For 0 ~ p ~ 00 and x E mn , we define the lp norm of x by 
II xll p. We consider the problem of determining a symmetric scaling of a given nonnegative 
symmetric matrix such that the rows of the resulting matrix have prescribed lp norms. 
Of course, the cases of p = I and p = 00 reduce to sum and max symmetric scaling, 
respectively. Here, we show that the cases of 0 < p < 00 can be reduced easily to the case 
of p = 1. 

For an m X n nonnegative matrix A and 0 < p < 00, the pth Hadamard power of 
A, written A (p), is the matrix whose ijth entry is (aij)p. Let Ai denote the ith row of the 
matrix A. For a strictly positive vector r E mn and 0 < p ~ 00, let SP(r) denote the set 
of all n X n nonnegative symmetric matrices B such that II Bi lip = ri for each i E < n >. 

It is easily seen that B E SP(r) if and only if B(p) E S(r(p». Moreover, B = DAD if 
and only if B(p) = D(p) A(p) D(p). Thus, as an immediate consequence of Theorem I, we 
obtain the following theorem. 

THEOREM 11 (lp-symmetric scaling). Let P be an n X n symmetric pattern matrix, 
let r E mn be strictly positive, and let p E m with 0 < p < 00. Then the following are 
equivalent: 

(i) Each symmetric A E II(P) has a symmetric scaling B E SP(r). 
(ii) Some symmetric A E II(P) has a symmetric scaling B E SP(r). 

(iii) The set II(P) n SP(r) is nonempty. 
(iv) If PIJ = 0 for I, J,;; < n >, then II r]ll p ~ II rJC lip with equality holding if and only 

if p]cJc = O. 
Conditions (v) and (vi) of Theorem 1 can also be extended in the obvious way. 

Further, analogous results can also be derived for the cases of -00 ~ p < O. 
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