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Abstract

Memory analysis has been successfully utilized to detect malware in many high profile cases. The use of signature scanning to
detect malicious tools is becoming an effective triaging and first response technique. In particular, the Yara library and scanner
has emerged as the defacto standard in malware signature scanning for files, and there are many open source repositories of yara
rules. Previous attempts to incorporate yara scanning in memory analysis yielded mixed results. This paper examines the differences
between applying Yara signatures on files and in memory and how yara signatures can be developed to effectively search for malware
in memory. For the first time we document a technique to identify the process owner of a physical page using the Windows PFN
database. We use this to develop a context aware Yara scanning engine which can scan all processes simultaneously using a single

pass over the physical image.

1. Introduction

Memory Scanning has been used as a quick and powerful
way to detect anomalies or malicious software running on a
system. For example, pool scanning techniques have been used
to detect remnants of kernel objects such as exited processes,
file handles and other kernel data structures - even after these
have been freed from the active set (Sylve et al., 2016; Schus-
ter, 2006). Scanning techniques can be used to identify and
isolate encryption keys from process memory (Hargreaves and
Chivers, 2008), and detect unique signatures for malware fami-
lies (Oktavianto and Muhardianto, 2013).

There are a number of modes of applying scanning tech-
niques - one can scan the process’s virtualized view of mem-
ory, or the physical address space directly (i.e. the raw memory
image itself). In general, scanning the physical address space
tends to be faster because IO throughput is optimized (in the
case where the user wants to exhaustively scan all processes).
However scanning the Virtual Address Space may be more ef-
ficient when the user only wants to scan a targeted subset of
running processes.

The Yara library and scanner has emerged as the defacto stan-
dard for communicating signatures used to identify malware
files (Alvarez, 2016; Various, 2016). Popular memory forensic
frameworks, have provided the capabilities for applying Yara
signatures directly on memory images (The Volatility Founda-
tion, 2015; The Rekall Team, 2016).

In this paper we evaluate the existing state of the art in ap-
plying yara signatures within the memory analysis domain. In
particular we consider the practical difference of scanning in
the Virtual Process Address space, as opposed to scanning the
Memory image directly.

We describe for the first time a technique, dubbed “Context
Aware Scanning”, which uses the Windows PFN database to
rapidly identify the owner of each physical page, and where
that page is mapped in it’s virtual address space.
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Using this technique provides sufficient context about each
physical address to be able to associate related hits in a single
coherent signature - even when the scan is performed over the
physical address space. We demonstrate this technique as ap-
plied to the Yara scanning engine by implementing a powerful
new context aware scanning methodology.

The novel scanning technique dubbed “Context-Aware”
scanning, employs detailed understanding of the address trans-
lation process with optimized scanning of the physical address
space, we are able to gain performance advantage over exist-
ing techniques and efficiently scan multiple processes simulta-
neously. Finally we suggests guidelines for constructing more
robust, memory-centric signatures.

Finally we discuss the practical differences between the dif-
ferent scanning techniques discussed and their applicability in
effective malware identification.

2. Background

2.1. Malware identification through signature scanning

Identifying malware in files is a very common and estab-
lished technique (Sathyanarayan et al., 2008). There are a num-
ber of approaches. On the one end of the scale the NSRL fa-
cilitates hash comparison analysis (Flaglien et al., 2011). This
produces a high level of confidence if a hash matches that the
file belongs to the suspected set. However, exact hash matching
is very sensitive to small variations in the underlying file.

Commonly malware samples are not exactly identical, but
rather are customized or are built from common source trees.
Therefore malware samples can be clustered into malware fam-
ilies, suggesting that several samples are related to one another,
although not identical.

Similarity hash matching is less sensitive to small variations
in specific files and can be used to classify malware samples
into respective families. However, calculating the similarity
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rule Mozart {
meta:
author = ‘‘Nick Hoffman’’
description = ‘‘Detects samples of the Mozart POS RAM scraping utility’’
strings:

$pdb = ‘‘z:\\Slender\\mozart\\mozart\\Release\\mozart.pdb’’ nocase wide ajscii

$output = {67 61 72 62 61 67 65 2E 74 6D 70 00}

$service_name = ‘‘NCR SelfServ Platform Remote Monitor’’ nocase wide ascifi

$service_name_short = ¢‘NCR_RemoteMonitor’’

$encode_data = {B8 08 10 00 00 E8 7?7 77 77 77 A1 77 77 7? 77 53 55
8B AC 24 14 10 00 00 89 84 24 0C 10 00 00 56 8B C5 33 F6 33 DB 8D 50 01 8D
A4 24 00 00 00 00 8A 08 40 84 C9 77 77 2B C2 89 44 24 0C ?7 77 8B 94 24 1C
10 00 00 57 8B FD 2B FA 89 7C 24 10 ?7 77 8B 7C 24 10 8A 04 17 02 86 EO BA
40 00 88 02 B8 77 77 77 77 46 8D 78 01 8D A4 24 00 00 00 00 BA 08 40 84 C9
?7 77 2B C7 3B FO 7?7 77 33 F6 8B C5 43 42 8D 78 01 8A 08 40 84 C9 7? 77 2B
C7 3B D8 77 7? SF 8B B4 24 1C 10 00 00 8B C5 C6 04 33 00 8D 50 01 8A 08 40
84 C9 77 77 8B 8C 24 20 10 00 00 2B C2 51 8D 54 24 14 52 50 56 E8 77 77 7?7
77 83 C4 10 8B D6 SE 8D 44 24 0C 8B C8 5D 2B D1 5B 8A 08 88 0C 02 40 84 C9
77 77 8B 8C 24 04 10 00 00 E8 77 ?? 77 7?7 81 C4 08 10 00 00}

condition:
any of ($pdb, $output,
all of ($servicex)

$encode_data) or

Figure 1: A YARA rule used to detect the Mozart POS Malware.

hash is resource intensive and less accurate than simpler ap-
proaches (Breitinger and Baier, 2012).

The YARA matching engine is commonly used to strike a
balance between matching speed and matching accuracy (Grif-
fin et al., 2009; Alvarez, 2016). The YARA signature rule for-
mat is an easy to understand domain specific language (DSL).
A typical example of such a rule is given in Figure 1 which is
taken from a malware analysis report of the Mozart POS mal-
ware (Hoffman, 2015).

Each YARA rule contains several sections:

1. A metadata section is used to facilitate sharing and docu-
menting the creation of the rule and the analysis.

2. The strings section lists named strings which may be en-
coded as hex, have wildcards or specify case insensitive
matching or wide character match.

3. Finally the condition section specifies a logical match con-
dition which, if evaluates to True, will trigger the rule’s
matching. In order to build in some flexibility into the sig-
nature, the condition may specify that only some of the
strings should match, or a list of alternate matching condi-
tions.

Yara signatures allow for constructing flexible indicators
which can be used to recognize a sample as potentially belong-
ing to a particular malware family. There are a number of public
sources of Yara signatures (Various, 2016), however these are
often designed to work on static executable files, rather than
operate on the memory image of the running executable. In-
deed Yara provides for constructs which do not easily translate
to memory analysis (such as dereferencing data as file offsets,
and PE specific indicators). These specialized rules should be
avoided when writing signatures suitable for memory analysis.
In this paper we do not consider signatures with more complex
constructs than simple string matches evaluated in simple logi-
cal conditionals.

Before we can discuss the differences between scanning a
stand alone file and a process’s memory image, we need to un-
derstand how an executable is loaded into a process’s virtual
memory.
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Figure 2: A simplified illustration of Virtual to Physical address resolution in
the AMDG64 architecture. The Virtual Address is divided into bit groups and
each bit group represents an index into a different page table. The page table
entry contains a pointer to the next level table, if the page is valid.
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2.2. The Windows Virtual Memory

The following is a brief introduction to the concept of virtual
memory. While this is a widely understood concept in operating
system design, recent advances in memory analysis techniques
have made it possible to reconstruct a process’s virtual memory
view more accurately than previously possible (Cohen, 2015;
Gruhn, 2015).

Modern computer systems use a memory management unit
(MMU) to mediate access between the CPU’s memory bus and
the physical address bus. When the CPU attempts to access a
memory address, the MMU performs a transformation in hard-
ware on this address converting it to a Linear Address (Physical
Address). It is this physical address which is used to index into
the RAM chips in order to retrieve the data stored in that loca-
tion.

The transformation performed by the MMU is guided by the
use of page tables, which are configured and managed by the
operating system. When resolving a virtual address to its physi-
cal address, the MMU divides the virtual address into bit groups
and each bit group is used to index a different array of page ta-
ble entries (PTE). A simplified lookup process for 64 bit AMD
CPUs is illustrated in Figure 2 (Intel, 2015).

It is important to realize that each process and the kernel it-
self has its own unique set of page tables - and therefore, each
process has a unique view of virtual memory specific to itself.
In fact, each process is free to address its entire virtual address
space, relying on the MMU to route virtual address references
to physical pages or else to generate the appropriate page fault
interrupts for the kernel to resolve.

Figure 3 illustrates a typical process’s virtual memory layout.
The virtual address space is broadly divided into large contigu-
ous regions dedicated to specific uses by the process. For ex-
ample, a file mapping (such as an executable mapped into the
process’s address space) dedicates a specific range of virtual
addresses as backed by a file on disk. Alternatively the process
may allocate memory to be privately used by itself (for example
to be used by the heap or stack).

In order to keep track of the virtual address layout, the ker-
nel maintains a set of kernel data structures called the Virtual
Address Descriptors (VAD) (Dolan-Gavitt, 2007; Russinovich
et al., 2012). While each VAD represents a single contiguous
region, each page within this region can take on different states.
This is illustrated in Figure 3: The single mapped file region
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Figure 3: Examples of Virtual memory use between two processes.
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Figure 4: The kernel’s virtual address space management structures.

consists of both resident pages in physical memory as well as
virtual pages only backed by the file itself. If the process at-
tempts to access these notional mapped pages, the kernel will
map these pages from the file on demand - so that the entire file
appears to be mapped into the process’s virtual address space.

Figure 4 illustrates the major data structures used by the ker-
nel to maintain information about the process’s virtual address
layout. There are two distinct structures - the page tables are
managed by the kernel but are created for the sole benefit of the
hardware’s memory management unit (MMU). Typically page
tables contain several levels which are traversed in the resolu-
tion process, but ultimately result in the discovery of a Page
Table Entry (PTE) managing the particular virtual address.

The hardware PTE is read by the MMU, and if it is found to
be in the Valid state, the MMU reads directly from the physical
memory. If the Valid bit is not set, the MMU generates a page
fault interrupt into the kernel’s page fault handler. The remain-
der of the PTE bits can be freely used by the operating system
for its own purposes.

Additionally, the kernel maintains a set of kernel data struc-

tures to keep track of the virtual address regions. Note that all
kernel data structures are allocated from Non-paged pool re-
sources and therefore are proceeded with their respective pool
tags.

The main data structure representing the entire memory re-
gion is called the Virtual Address Descriptor (VAD). Each VAD
represents a single contiguous range of virtual pages, and there-
fore each such virtual page is controlled via a Prototype PTE.
Note that Prototype PTEs are allocated as a large single array
from the pool area. Each VAD contains a pointer to a Control
Area structure, in turn containing a reference to the file mapped
into this region (in the case of a file mapping).

It is the interaction between the page tables and the VADs
which ultimately control what data the process sees when ad-
dressing a particular virtual address. In order to reproduce the
process’s view of its own virtual memory, we must replicate the
address translation process as faithfully as possible.

3. Scanning in the Virtual Address Space

When a process is started, it begins by mapping its own
Portable Executable (PE) file into the virtual address space (i.e.
a File Mapping is established between the file on disk and a
certain Virtual Address range) (Russinovich et al., 2012).

The Windows kernel will then load all the DLLs the process
needs into other Virtual Address ranges. Finally some private
ranges will be created for the process heap and stack and the
process will begin executing. As the process accesses different
parts from its executables and DLLs, these pages will be read
into memory (paged in) and the binary will execute code from
there.

Figure 5 illustrates the Virtual Address Descriptors from a
typical process on Windows.

There are some practical differences between scanning a sin-
gle executable file using a Yara rule and scanning the virtual ad-
dress space of a running process. The most obvious difference
is that the process address space contains more than a single
binary mapped into it - not only does it contain the original ex-
ecutable, but it also contains every DLL the binary loads. Since
the process memory is examined during the process’s runtime,
even dynamically loaded DLLs (i.e. those loaded by runtime
using the LoadLibrary API) will be visible. Some malware
samples dynamically load DLLs which do not explicitly appear
in their import table.

When scanning a process’s virtual memory, the Yara rule can
be made more sophisticated, as it can refers to strings in multi-
ple regions. For example, combining artifacts from the process
heap, code sections, and dependent DLLs. This additional in-
formation can be used to develop a stronger signature and re-
duce the false positive rate. For example, yara rules may be
written that detect use of certain APIs or external DLLs indica-
tive of behavioral traits. These indicators may not be visible
in the original malware sample, especially if the original exe-
cutable contains some form of obfuscation or packing.

Despite these obvious advantages to scanning in memory,
there are some practical challenges. When scanning through
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Figure 5: Virtual memory layout of a typical windows executable. Several Virtual Address Descriptors specify distinct regions for mapping executable files as well

as some private memory regions.

virtual memory, one must emulate the process’s view of its own
virtual memory. Since the Virtual Address space is sparse, the
scanner needs to skip over unused regions. Currently the Yara
library does not support streamed scanning. This means that
a single finite sized buffer must be given to the library, over
which a rule-set can be evaluated in whole. Therefore, we must
calculate where each page in the virtual address range will be
read from in the memory image, and then copy it into a single
contiguous finite sized buffer.
The procedure can be outlined therefore:

1. Enumerate all virtual memory ranges from all the process
VADs (Similar to those shown in Figure 5).

2. For each page in every VAD range, consult the page tables
according to the algorithm described in Section 3.1 below.
This provides the correct locations where data should be
read from.

3. Read the data for each virtual page and concatenate it into
a single large buffer.

4. Apply the Yara scanning engine on this buffer and report
any results.

While some memory analysis tools have supported running
Yara scanning for a while (The Volatility Foundation, 2015; The
Rekall Team, 2016), they suffer from some limitations.

Volatility uses a IMB buffer to evaluate the Yara rule. There-
fore all hits must occur within this small buffer. Since the
Yara library does not preserve state between calls, each buffer
is treated independently. It is therefore impossible to specify
a rule with hits further apart than the 1MB buffer. Volatility
does not parse Prototype PTEs (as described in Section 3.1) and
therefore is unable to add file mappings into the buffer - even
when the data is available in the memory image. Therefore the
likelihood that a string will be missed is increased.

Although Rekall can process Prototype PTE pages and has
more complete virtual address processing implementation, the

need to partition the virtual address space into finite sized
buffers so they can be handed to the Yara library also neces-
sitate operating on individual 10Mb buffers.

3.1. Windows specific address translation

In order to facilitate more accurate scanning of the virtual ad-
dress space, we need to understand how Windows specifically
manages the virtual memory and how to recover each virtual
page from a process’s virtual address space.

The hardware generates a page fault while translating a page,
by calling an interrupt into the OS page fault handler, passing
in the faulting PTE. At this point the page fault handler uses a
number of flags to determine which state the PTE is in. Win-
dows uses the _MMPTE struct to describe the PTE which is
a union of all the possible states the PTE can be in (The cor-
rect member of the union is chosen based on the flags (Cohen,
2015)).

Figure 6 shows the algorithm used for resolution of the PTE
passed into the page fault handler (Sometimes termed the Hard-
ware PTE). The Rekall memory analysis framework imple-
ments this algorithm in order to emulate the page-fault handler
and deduce the correct physical page to use.

In the first stage the PTE might represent one of the following
states:

1. Valid PTE: If Bit O is set the PTE refers to a page in phys-
ical memory.

2. If the ProtoType bit is unset and the Transition bit is set the
page is in the Transition state. Its content is still valid and
therefore we can directly read the data from the image.

3. If both the ProtoType bit and the Transition bit are unset,
the PTE refers to a Software PTE (i.e. the data exists in
the pagefile). The offset into the pagefile can be calculated
from the PageFileHigh field. Except if the offset into the
pagefile is O, in this case, the VAD must be consulted and
the ProtoType PTE recovered from the VAD and analyzed
through the second stage algorithm.
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Figure 6: Hardware PTE resolution algorithm.

4. If the ProtoType bit is set, and the ProtoAddress field
is OxFFFFFFFF0O000 then the ProtoType PTE must be
fetched from the VAD entry corresponding with the rel-
evant address. The ProtoType PTE is then found by us-
ing the _MMVAD. FirstPrototypePte pointer. The retrieved
PTE is then processed further as a ProtoType PTE in the
second stage.

If a ProtoType PTE was retrieved in the first stage, it is ana-
lyzed again to try to resolve the page. ProtoType PTEs are al-
located from system pool and are not part of the hardware page
tables (i.e. The MMU never reads a ProtoType PTE directly),
but they share the same kernel structs and add some additional
PTE states. Figure 7 illustrates the algorithm for resolving a
prototype PTE. One major difference from the previous algo-
rithms is the case where the prototype bit is set in a ProtoType
PTE. The PTE then represents a Subsection Object (i.e. a File
Mapping). When the page fault handler encounters a Subsec-
tion PTE it simply reads the data from the file into a new phys-
ical page. However, in a memory analysis framework we are
unable to resolve this page without access to the corresponding
disk image.

Additionally if the ProtoType PTE is a Software PTE (i.e.
refers to the pagefile) but the offset into the pagefile is 0, the
PTE is considered a “Demand Zero PTE”. In this case the ker-
nel will re-purpose a zeroed page and remap it into memory on
demand.

When scanning the virtual address space one must resolve
the location of each virtual page independently. A typical ex-
ample of such resolution is shown in Figure 8. As the Figure
illustrates, contiguous virtual pages are rarely contiguous in the
physical address space and are typically interleaved with file
mapped pages (i.e. for these pages, the data is not present in
memory at all, but can be read from the file on disk on de-
mand) and pagefile pages (i.e. the needed data is in the page-
file). When Rekall assembles these pages into a single buffer it
needs to seek to random locations on disk and therefore disk 10
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Figure 7: Prototype PTE resolution algorithm.

0x7¢cbb8000 0x3000 File Mapping
C:\WINDOWS\system32\shell32.d1l @ 0x1£7400 (P)
0x7cbbb000 0x1000 Valid PhysAS @ 0x551c000 (P)

0x7cbbc000 0x1000 Valid PhysAS @ 0xel18000

0x7cbbd000 0x3000 Pagefile PF 0 @ 0x4fe000
0x7cbc0000 0x1000 Valid PhysAS @ 0x682b000
0x7cbc1000 0x6000 Transition PhysAS @ 0x282b000 (P)
0x7cbc7000 0x12000 Demand Zero (P)

Figure 8: An example of the output of Rekall’s vadmap plugin which explains
the location of consecutive virtual pages.

becomes a bottleneck, especially for very large images.

4. Scanning physical memory

In many ways scanning memory is analogous to feature ex-
traction in the traditional disk forensics domain. Each page in
the physical image is analogous to a sector on the raw disk.
Just as the filesystem ties related pages in the correct order into
logical “files” (Cohen, 2007), so do the page tables tie physical
pages into a logical “virtual address space”.

As we saw in the previous section, scanning the virtual ad-
dress space of each process is inefficient since each buffer
scanned must be assembled from a collection of non-contiguous
pages fetched from all over the physical address space. This is
akin to scanning each logical file from the filesystem, by re-
combining the discrete clusters which make up the logical file.

Taking guidance from the disk forensics domain, we can
recognize that scanning in the physical address space is much
faster since we can read large contiguous buffers from the im-
age. For example Bulk Extractor, carves salient details from
the raw disk, without regard to the filesystem at all (Garfinkel,
2013). Garfinkel (2013) describes how processing speed of
hard disks increases linearly with the number of available cores
demonstrating that direct feature extraction is a highly paral-
lelizable problem.

When extracting features from the raw disk, the analyst lacks
important context about those features. For example, if a cer-
tain email address is recovered, the analyst just knows that the




email address once existed on this disk, but they do not know
the logical file from which the email address was read. Typi-
cally in the disk forensic domain, one needs to build a reverse
mapping between all files in the filesystem and their clusters (or
perform an exhaustive search) in order to answer the question
“which file does this cluster belong to?” (Carrier, 2016).

In an analogous way, memory analysis frameworks aim to
answer a similar question “which process does this physical
page belong to?”. Current memory analysis frameworks tackle
this problem in a similar way - each page in every process’s vir-
tual address space is enumerated and the corresponding physi-
cal page is calculated. A large reverse mapping is constructed
mapping physical pages to their virtual pages. This algorithm
is used by Rekall’s pas2vas plugin (The Rekall Team, 2016).
However building this reverse map is slow.

In the disk forensic domain, one can leverage some filesys-
tem analysis to get some partial information. For example, most
filesystems have a bitmap that can quickly identify if a cluster
is in use at all (Carrier, 2005).

Luckily, in Windows there is an internal kernel data struc-
ture called the Page File Number Database (PFN DB) which
can be used to quickly get very accurate information about ev-
ery physical page (Russinovich et al., 2012). As we will see
below, this makes matters much simpler for the case of carving
physical memory, with no equivalent analog in the disk forensic
domain.

4.1. Using the PFN DB to describe a physical page

Given a physical address where a possible signature matched,
we would like to answer the following questions:

1. Which processes contain this page in their virtual address
space?

2. Where is this page mapped in each process’s address
space?

3. If the page is mapped from a file, what is the filename and
path?

4. If the page is a file mapping, where in the file is it from?

The Windows Page File Number database (PFN Db) is sim-
ply an array of MMPFN structs which starts at the symbol
“nt!MmPfnDatabase” and has a single entry for every physi-
cal page on the system. The MMPEN struct must be as small as
possible and so consists of many unions and can be in several
states as indicated by the MMPFN.u3.el.PageLocation field.
Depending on the state, different fields must be interpreted in
different ways. Below we discuss some of the states the PFN
entry can be in.

4.1.1. Free, Zero and Bad lists

Windows maintains three linked lists of available physical
pages. Free pages are those which are not used by anything and
can utilized at a later stage. Zero pages are those that have been
zeroed and may be immediately used. Bad pages are pages not
to be used by anything since Windows suspects they are backed
by faulty hardware.

4.1.2. Active pages

Active pages are physical pages currently in use by some-
thing. But what exactly?

The most important thing to realize is that each valid physical
page (frame) must be managed by a PTE of some sort (Refer
to the kernel’s management structures illustrated in Figure 4).
Since that PTE record must also be accessible to the kernel, it
must be mapped in the kernel’s virtual address space.

When the PFN entry is in the Active state, it contains 3 im-
portant pieces of information:

1. The virtual address of the PTE that is managing this phys-
ical page (in MMPFN.PteAddress).

2. The Page Frame (Physical page number) of the PTE that
is managing this physical page (in MMPFN.u4.PteFrame).
Note the above values provide both the virtual and physical
address of the managing PTE.

3. The OriginalPte value (usually the prototype PTE which
controls this page). When Windows installs a hardware
PTE from a prototype PTE, it will copy the original proto-
type PTE into this field.

Note that the managing PTE structure can be either a Hard-
ware PTE or a Prototype PTE (Figure 4).

4.1.3. Hardware managing PTE

If the managing PTE is a Hardware PTE, the field
MMPFN.u3.el.PrototypePte will be clear and the managing
PTE will reside in the System PTE area (i.e. the managing PTE
belongs in the hardware page tables region). This is the case
when the virtual page is valid and can be immediately used by
the hardware. Since the managing PTE itself must also be man-
aged by the kernel, its own managing PTE will reside in the
hardware page table area.

‘We can use this property to find the PTE which manages each
PTE all the way up to the top level. Each time we do this, we
will go back up the page tables until we reach to top most PTE
which manages itself.

The interesting thing is that in this case, the PTE that is man-
aging this page will belong in the Hardware page tables created
for the process which is using this page. That PTE, in turn will
also be accessible by a PDE inside that process’s page tables,
and so forth. This occurs all the way up to the root of the page
table (DTB or CR3) which is its own PTE.

Therefore if we keep following the PTE which controls each
PTE 4 times we will discover the physical addresses of the
DTB, PMLA4E, PDPTE, PDE and PTE belonging to the given
physical address. Since a DTB is unique to a process we im-
mediately know which process owns this page because it is the
process which owns this particular set of page tables.

Consulting the illustration in Figure 2 reveals that each bit
grouping in the virtual address is really an index into the rele-
vant page table. Knowing the DTB we can work forward and
discover the start of each page table and since we know the
actual PTE in each table that is used, we can calculate the re-
quired index that would have made the forward translation point
to the correct PTE. Thus from the index of each table we can
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Figure 9: Algorithm for reconstructing the Virtual Address from a Physical
Address.

assign these into the relevant bit grouping and just work our
way through the virtual address filling bit groupings in until the
entire virtual address is known. This algorithm is illustrated in
Figure 9.

Therefore in the case that the managing PTE is in the hard-
ware page tables, we can calculate directly the virtual address
and the process which owns the physical page. Note that by
its nature, such a virtual address represents a page private to
this process. If the page is shared with another process or file
mapping, the controlling PTE will be a prototype PTE.

4.1.4. Prototype managing PTE

If the flag MMPFN.u3.el.PrototypePte is set, the managing
PTE is a prototype PTE. This means it is allocated from kernel
pool memory. Typically Prototype PTEs are used to manage
mapped memory (either shared memory, file mapping or private
mapping).

If one attempts to use the algorithm described in Section
4.1.3 to find the DTB for the virtual address space, one will find
that the DTB will always be the kernel’s own DTB. This makes
sense since the managing PTE is allocated from kernel pool and
therefore it is only mapped from the kernel’s page tables.

However, we do know that the managing PTE must belong
inside a SUBSECTION object. As Figure 4 illustrates, mapped
memory is managed by the SUBSECTION kernel data structure.
The SUBSECTION object contains a linear array of prototype
PTEs, each manage a single page from the specified mapping.
Note that the file mapping managed by the SUBSECTION ob-
ject does not need to begin from the middle of the file. The
mapping can represent a small view into the file, starting from
SUBSECTION.StartingSector.

As can be seen in Figure 4, when a process maps a file,
it receives a new VAD descriptor. The MMVAD struct stores
the first mapped PTE in MMVAD.FirstPrototypePte inside the
SUBSECTION object as well as a pointed into the SUBSEC-
TION.ControlArea, in turn pointing at the FILE_OBJECT with

its filesystem path. Therefore by enumerating all VAD descrip-
tors from all processes, we can immediately identify all the
VAD descriptors which contain the managing PTE in their Pro-
totype PTE arrays. If a VAD descriptor represents a file map-
ping we can get the full filename to the mapped file.

Building the initial lookup table is very fast since we just
need to traverse the VAD trees for each process and identify the
prototype PTE ranges for each descriptor.

The Rekall pfov plugin implements this algorithm, and it
is able to reveal extra information about specific physical ad-
dresses.

[1] win7.elf 13:45:07> ptov 0x15bf0000

File Mapping (C:\Windows\System32\oleaut32.dll @ 0x8a600
Mapped in 0xfaB80024f85d0 svchost.exe 236 @ Ox7feff37b000
Mapped in 0xfa80028a1640 WmiPrvSE.exe 592 @ Ox7feff37b000
Mapped in 0xfaB80023f6770 svchost.exe 608 @ Ox7feff37b000
Mapped in 0xfa8002522b30 svchost.exe 624 @ Ox7feff37b000
Mapped in 0xfa800242a350 svchost.exe 716 @ Ox7feff37b000

[1] win7.elf 13:48:29> ptov 0x15b£2000
DTB 0xfd06000 Dwning process: 0xfa80025b4060 svchost.exe 1092
PML4EQ@ 0xfd06f68 = 0xfd06863

PDPTEQ@ 0xfd06000 = 0x1a30000016da7867
PDEQ@ 0x16da7000 = 0x300000016cea867
PTEQ 0x16cea008 = 0x3c0000000£89c867
Physical Address 0x15bf2000

Virtual Address 0x2e3000 (DTB

0xfd06000)

Figure 10: Rekall’s prov plugin. Top: The physical address belongs to a mapped
DLL (oleaut32.dll) at offset 0x8a600 in the DLL file. The page is shared be-
tween many different processes on the system and it happened to be mapped at
the same virtual address in all of them. Bottom: The private page is owned by
the svchost.exe executable and mapped at virtual address 0x2e3000.

5. Context aware signature scanning

We have seen in Section 2.1 how signatures can be written to
balance false positives and flexibility and resilience to malware
evolution. Specifically we saw that good Yara signatures typi-
cally contain more than one string and potentially some “fuzzi-
ness” to allow for only some of the signatures to match. For
example a common technique is to match on N out of M strings.

The problem is that when scanning in the physical address
space, one collects some physical pages into a scan buffer and
then applies the signature to that. However, the scan buffer ac-
tually contains a random set of pages from different processes,
mapped files, and kernel code. On the other hand the signa-
ture is written with the view that the strings will be matched
on the same binary file, or process virtual address space. In
other words, each signature expects an implied Context around
the signature (e.g. 3 of 5 strings must match within a particular
process), but scanning in the physical address space mixes up
the contexts from many processes within the same buffer.

On the other hand, applying the signature one page at the
time is unlikely to match any reasonable signature because Yara
will consider each scan buffer independently from other buffers
(The yara library keeps no context between independent scans),
only exasperating the problems noted in Section 3.

We have therefore developed a novel algorithm for applying
Yara signatures on the physical address space - achieving both
optimized scanning throughput and accurate signature match-
ing.




5.1. Applying Yara Signatures over physical memory

Armed with the algorithms described in Section 4.1 we can
rapidly extract context information from every physical ad-
dress, such as name of process, mapped file etc. The challenge
is to use this context information with existing Yara signatures.

Our approach, illustrated in Figure 11, is to convert the orig-
inal set of Yara signatures to a large, single, dummy signature
by extracting all the strings in the original signature into the
new single rule. The new rule contains a single condition “any
of them” which will fire whenever any of the strings are found
anywhere.

When any string is found in a physical page, we apply the
algorithm in Section 4.1 to reveal a set of context strings about
this physical address. These strings include all the unique con-
texts in which we wish to evaluate the original yara ruleset.
For example, using the prov plugin described earlier we can de-
rive all the owning processes (in case of a shared page) and the
mapped filename (in case of a mapped file). So a set of context
strings may describe a particular page as “Pid 127, “Pid 227,
“File:notepad.exe”.

We then build a map between each context string and the set
of hits found. For example, all the pages which contain the
string “Pid 12" are collected together. Note that if a page is
shared between multiple processes it will appear once for each
of its contexts.

Finally we create a small buffer for each unique context string
by copying the pages which produced hits into this buffer. Since
these pages matched the dummy rule we know that at least one
string of interest appears within them. Additionally, since all
these pages contain the same context we know these are related
(i.e. they are all part of the same process or mapped file). Since
the Yara ruleset does not care where in the buffer the strings
must match or their order, we can simply apply the original
Yara rule over this small buffer and allow the yara library to
evaluate the condition over them. The Yara signature would
again match the same strings, but this time the full condition is
evaluates, and if the condition fires, then the context is said to
match the signature and we report the hits.

In a sense, the reduced buffer is simply a relevant subset of
the original virtual address space, only containing pages of pos-
sible interest, concatenated in a random order.

6. Evaluation

This paper argues that by considering the entire Virtual Ad-
dress space, one can devise better signatures than simply con-
sidering each executable in turn. This is especially impor-
tant when there is nothing especially suspicious about the ex-
ecutable itself, rather in the way it is being used by an attacker.
This trend has been recently observed in the tactics used by
elite threat actors, and has been dubbed by some as “living off
the land” - or in other words actors which operate using cre-
dentials, systems, and tools which already exist on the compro-
mised systems (Counter Threat Unit Research Team, 2015).

To illustrate this point we consider the common case of an
attacker attempting to ex-filtrate large amount of data from the
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rule foo {
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Figure 11: Algorithm for applying Yara signatures over the physical address
space. First the Yara ruleset is converted to a dummy ruleset which will match
on any of the strings of interest. The dummy ruleset is then applied to the
physical memory, and for each hit a set of context strings is derived. Finally
all the hits with the same context string are concatenated together into a single
pseudo-buffer and the original ruleset evaluated over them.

system. However, rather than installing their own Remote Ac-
cess Trojan (RAT), the attacker chooses to simply use the ex-
isting Python installation on the target system. Python is a very
popular language (Van Rossum and Drake, 2011), and many
systems already have it installed. Python also comes with many
built in modules and one of the most useful is called Simple-
HTTPServer (Python Software Foundation, 2016). The attacker
can use this module to instantly create a web server which will
server all files from arbitrary directories. The attacker can then
use any browser to transfer the files to another system.

In order to emulate this scenario we used a Windows 10
Virtual Machine with 1Gb RAM. The machine had Python
2.7.12 installed from the official distribution site. We opened
a command prompt and changed directory to the user’s Doc-
uments and Settings folder. Once there, we ran the command
python.exe -m SimpleHTTPServer 8000.

We then started the Microsoft Edge browser and navigated to
http://127.0.0.1:8000/ to verify that the server was working. We
were greeted with a directory index listing all the files in the
users folder. We then used the Rekall forensic tool to acquire
memory into an AFF4 memory image.

While this ex-filtration technique is very effective, it is chal-
lenging to write an appropriate Yara rule using the traditional
memory analysis approach. The problem is that the Python pro-
gram is not suspicious at all - it is a very common executable,
and so we can not just trigger on its presence. Instead it is the
combination of how it is being invoked and its runtime state
which is suspicious.



rule python_httpserver {
strings:
$a = /python.+-m.+SimpleHTTPServer/ wide
$b = "<title>Directory listing for %s"
$c = "<title>Directory listing for /"

condition:
$a and $b and $c

Figure 12: A YARA rule used to detect python http servers. String $a indicates
amalicious command line invocation while string $b matches the template code
producing the directory listing. Either of these indicate that the python inter-
preter is running. The directory listing string is produced by the server and
should be found in the process heap.

Invoking the SimpleHTTPServer module from the command
line is particularly strange because the attacker is not running
a normal python script. Although this invocation is unusual, it
is not sufficient to just search for this string - this may produce
too many false positives (e.g. the documentation of the Sim-
pleHTTPServer might mention this as a valid way to run it or
a web page might describe this method). Note that the com-
mand line string with which the process is started only exists
in the process’s environment block (which is a private memory
mapping in a separate VAD region.), it is not part of the binary
itself.

We also note that the SimpleHTTPServer serves a directory
index HTML document when someone browses the web site.
We can recognize the string “<title>Directory listing for /” as
fairly unique for this page, making it an obvious choice for a
signature. This string is generated for each page by the python
interpreter and so we expect to find this string in the process
heap region.

The string itself is generated from a template which is found
in the code (“<title>Directory listing for %s” - the %s is a
placeholder for the directory path), so seeing this template in
process memory is a very strong indication that this process has
the relevant python code loaded.

In isolation each of these strings is a very weak signal, but
together the strings add up to a strong signal. If a process is
started with the “-m SimpleHTTPServer” command line, im-
ports the SimpleHTTPServer python module code and also has
allocated in its heap memory the expanded string from the tem-
plate we can be quite confident that it ran this code. Such a rule
is illustrated in Figure 12.

Unfortunately, each string is expected to appear in different
virtual memory regions. As noted in section 3, current memory
analysis tools can not apply the same Yara signature on mul-
tiple different Virtual Address Ranges. This is primarily due
to the practical need to partition the Virtual Address space into
reasonably sized buffers for scanning, and the Yara library’s in-
ability to keep state between scanning operations.

To demonstrate this shortcoming we used Rekall’s yaras-
can plugin. We chose to scan the Virtual Address space in
all processes (there were 61 processes). Rekall was called
with the command “rekall yarascan —yara_file=test.yara —
scan_process_memory”. When invoked with these arguments,
Rekall applies the yara rule to every process’s virtual address
space. As noted previously, Rekall ends up scanning many

DLLs multiple times because they are shared with multiple
processes, therefore they appear in multiple Virtual Address
Spaces. The complete scan was therefore very time consuming
taking 4 minutes 58 seconds on this 1GB image. As expected
the yara rule did not fire. We repeated the same analysis using
Volatility’s yarascan plugin, and since it worked in a similar
way, it too did not return any hits.

To investigate why the rule did not fire we changed the
rule’s condition to “any of them” so that yarascan can report all
matches, and then we reran the scan only on the python process
in question. This time the rule fired many times for each string,
demonstrating that all the strings were in fact present in mem-
ory (See Figure 13. Closer inspection of the hits reveals that
every string hit was located in a different VAD range. When
Volatility or Rekall assembled the buffer to be scanned, only
data from the same memory range was passed, and therefore
only one of the strings was presents at the time - not enough to
fire to original ruleset.

6.1. Scanning physical memory

We implemented the algorithm described in Section 5.1 in a
new Rekall plugin named yarascan_physical. We then applied
this to the same physical memory image and saw that the python
process matched the signature, yet no other process matched.
The total scanning time was 56 seconds. Repeating the scan
only took 16 seconds since the SUBSECTION lookup map re-
mains cached between executions. Therefore it took 40 seconds
to build the SUBSECTION map by walking all VAD trees from
all processes.

In order to illustrate how the algorithm can discriminate be-
tween the correct match and possible false positives we again
modified the rule to match on any of the strings (this makes it
equivalent to the dummy rule described in Section 5.1). Sample
output from the plugin is shown in Figure 14 (Some similar hits
were removed for brevity).

While many processes did match one or more of the strings,
only the rogue python process matched all of them at the same
time. Each string was matched in a different VAD region.
String $a matched in the process environment block, while
string $b (string expansion template) matched in the process
heap, where python loaded the relevant code file. String $c
matched in a different heap region because it was served by the
python process when the Edge browser requested a directory
listing.

Unsurprisingly the Edge browser’s heap also contains the
generated directory listing, however the full signature does not
match it because it does not contain the string template (i.e. it
has no code to generate that string).

Finally we note that csrss.exe and cmd.exe both matched
the command line launching the SimpleHTTPServer, unsurpris-
ingly. This is expected since they both contain the console his-
tory buffers (Stevens and Casey, 2010).

6.2. Limitations

Although the technique described above works well for typ-
ical yara signatures, it has some limitations. Since we scan the



[1] test.raw 15:47:12> yarascan yara_file=’’/tmp/yara.rule’’, scan_process_memory=1

Offset

0xe000ed89£200 python_htt

pserver

0x11c1000

0xe000ed89£200 python.exe 3712 python_htt 0x2e4£000

pserver

0xe000ed89£200 python.exe 3712 python_htt 0x2ce2000

pserver

0xe000ed99d780 MicrosoftEdgeC 1816 python_htt

pserver

0x608259b000

0xe000ed293080 csrss.exe python_htt Ox6ee9e2e000

pserver

hexdump

Context

vad_0x11c0000+0x1000
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irectory
.listing
.for.%s<
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Figure 13: Output from Rekall’s traditional yarascan plugin, after the yara rule is modified to hit on any of the strings. While all the strings appear in the same
python process (pid 3712), each of them occurs in a different VAD region. Note that Rekall notation names each vad region by its start address so for example
“vad_0x11c0000+0x1000” means the hit occurs 0x1000 bytes into the VAD regions which started at virtual address 0x11c0000. Because each hit occurs in a
different part of the process, the traditional plugin does not scan all VAD regions at the same time, hence failing to trigger the rule which requires all strings to be

present.

physical address space we rely on the entirety of the string to ex-
ist within a single memory page (typically 4kb). If the signature
is split across a page boundary, it is unlikely that the next phys-
ical page will also be contiguous in the virtual address space.
Therefore, the signature will fail to match.

Another potential problem which may be observed when
scanning memory is that some pages in the virtual address space
are paged into the page file - or indeed consist of file mappings
without physical memory backing. Since our technique only
scans the physical address space, those pages which are not
present will not yield a match which might lead to the signa-
ture failing to match.

The above limitations are inherent to scanning in memory
as opposed to a static, unchanging file. The Yara rule engine
allows signature authors to build in some redundancy into the
signature. Typically this is used to accommodate some vari-
ability in samples (e.g. detecting slightly modified versions of
the known malware). For this reason failing to match a single
string across page boundaries is not necessarily a false negative,
providing enough alternate strings are present in the memory
sample. We can therefore devise some general guidelines as to
writing more effective signatures for memory:

1. Signature strings should be short compared with the 4kb
page size.

2. Authors should devise a set of signatures and match some
percentage of them (e.g. using a condition such as “5 of
them”).
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3. Authors should avoid more complex Yara constructs (such
as PE header checks or specific pointer following direc-
tives), since these are not easily translated to the memory
domain.

7. Conclusions

Signature scanning is a quick and easy technique for identify-
ing malware. With careful signature creation rules it is possible
to balance the false positive rate with detection resilient to vari-
ations in malware families. Yara is a powerful tool allowing
searching of signatures on large bodies of data quickly.

This paper examined the application of Yara signatures to
the domain of Memory Forensics. We discover that scanning
memory is a different problem than scanning a file on disk and
that some signatures written for files do not work well when
searching memory. Conversely, we demonstrated that signa-
tures specifically designed to work in memory can be stronger
than signatures initially developed on files. By considering the
entire address space layout, it is possible to introduce an ele-
ment of behavior analysis to the signature as it can be made to
match the process heap as well as just the binary. This helps to
distinguish between benign executables used in a benign way
and those same executables used in malicious ways.

We have developed a very fast way to determine what pro-
cess each physical page belongs to, and where in that process
it is mapped, using the Windows PFN database. Armed with



[1] test.raw 10:49:11> yarascan_physical yara_expression=open("test.yara").read()
Owner HexDump Context
0xe000ed89£200 python.exe 3712 70 00 79 00 74 00 68 00 p.y.t.h. Phys Address 0x2dd25000
6f 00 6e 00 2e 00 65 00 o.n...e. List Active
78 00 65 00 00 00 70 00 x.e...p. Use Private
79 00 74 00 68 00 6f 00 y.t.h.o. Pr 5
6e 00 20 00 20 00 2d 00 n..... -. Process 0xe000ed89£200 python.exe 3712
6d 00 20 00 53 00 69 00 m...S.i. VA 0x11c1000 vad_0x11c0000+0x1000
6d 00 70 00 6c 00 65 00 m.p.l.e
48 00 54 00 54 00 50 00 H.T.T.P.
0xe000ed89£200 python.exe 3712 3c 74 69 T4 6c 65 3e 44 <title>D Phys Address 0x20265000
69 72 65 63 74 6f 72 79 irectory List Active
20 6c 69 73 74 69 6e 67 .listing Use Private
20 66 6f 72 20 25 73 3¢ .for.%s< Pr 5
2f 74 69 74 6c 65 3e 0a /title>. Process 0xe000ed89£200 python.exe 3712
00 00 00 00 00 00 00 00 VA 0x2e4£000 vad_0x2d60000+0xef000
00 02 00 00 00 00 00 00
00 cO 47 ed 5f 00 00 00 ..G._...
0xe000ed89£f200 python.exe 3712 3¢ 74 69 T4 6c 65 3e 44 <title>D Phys Address 0x£492a000
69 72 65 63 74 6f 72 79 irectory List Active
20 6c 69 73 74 69 6e 67 .listing Use Private
20 66 6f 72 20 2f 3c 2f .for./</ Pr 5
74 69 74 6c 65 3e Oa 00 title>.. Process 0xe000ed89£200 python.exe 3712
00 00 c8 6d 17 03 00 00 ...m.... VA 0x2ce2000 vad_0x2c10000+0xd2000
00 00 c8 60 17 03 00 00 ...%....
00 00 88 62 17 03 00 00 ...b....
0xe000ed99d780 MicrosoftEdgeC 1816 3c 74 69 74 6c 65 3e 44 <title>D Phys Address 0x2462000
69 72 65 63 74 6f 72 79 irectory List Active
20 6c 69 73 74 69 6e 67 .listing Use Private
20 66 6f 72 20 2f 3c 2f .for./</ Pr 5
74 69 74 6c 65 3e Oa 3c title>.< Process 0xe000ed99d780 MicrosoftEdgeC 1816
62 6f 64 79 3e Oa 3c 68 body>.<h VA 0x608259b000 vad_0x6082580000+0x1b000
32 3e 44 69 72 65 63 74 2>Direct
6f 72 79 20 6c 69 73 74
0xe000ed293080 csrss.exe 420 70 00 79 00 74 00 68 00 Phys Address 0x7¢5c000
6f 00 6e 00 20 00 20 00 List Active
2d 00 6d 00 20 00 53 00 Use Mapped File
69 00 6d 00 70 00 6c 00 Pr 5
65 00 48 00 54 00 54 00 Process 0xe000ed293080 csrss.exe 420
50 00 53 00 65 00 72 00 VA 0x6ee9e2e000 vad_0X6ee9e20000+0xe000
76 00 65 00 72 00 20 00
38 00 30 00 30 00 30 00

Figure 14: An extract from the output of the yarascan plugin ran over the physical address space. The rule was modified to match on any of the strings. The real
python server matches all strings, but they are found in different VAD regions. Other processes match one or more of the strings but not all of them.

the powerful technique we are able to collect sufficient context
about potential signature hits to perform context aware signa-
ture matching on the physical address space. This not only im-
proves matching speed, but also improves matching accuracy
since we do not need to reconstruct the virtual address space of
every process in the scanning phase.
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