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Abstract 

 

In our paper, a theoretical model is introduced to calculate the effective phase 

shifts, and then the effective total cross section, the effective scattering length and 

the binding energy for krypton gas at different temperatures and different 

densities. This model is based on the Galitskii-Migdal-Feynman (GMF) 

formalism which is essentially an independent-pair model in the presence of a 

many-body medium. The interaction potential in our work is the Hartree-Fock 

dispersion (HFD-B) potential.  
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Introduction 
 

Scattering theory is a framework for studying and understanding the interaction 

or scattering of solutions to partial differential equations. Both classical and 

quantum mechanical scattering phenomena are characterized by the scattering 

cross section, σ. The concept of cross section, is that of effective area for 

collision. The scattering potential representing the Kr-Kr interaction is taken in 

the present work as the HFD-B potential [1]. The properties of the interatomic 

krypton potential are:(i) The repulsive term, describes Pauli repulsion at short 

ranges due to overlapping electron orbitals; (ii) The attractive long-range term, 

describes attraction at long ranges; (iii) The interaction energy is a minimum at 

the equilibrium position. Using a scattering T-matrix; which is the basic quantity 

in the GMF formalism to calculate the ‘effective’ phase shifts that incorporate 

many-body effects [4]. Krypton is a member of group 18 (noble gases) elements. 

A colorless, odorless, tasteless noble gas, krypton occurs in trace amounts in the 

atmosphere and is often used with other rare gases in fluorescent lamps. Several 

theoretical and experimental methods have been developed to study the Krypton 

gas: Total cross sections for excitation by electron impact of metastable states in 

the noble gases helium, neon, argon, krypton, and xenon have been measured as a  
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function of impact energies[7]. Approximate differential cross sections for elastic 

collisions of rare gas ions with their parent atoms are proposed for He+-He, Ne+-

Ne, Ar+-Ar, Kr+-Kr, and Xe+-Xe collisions for collision energies from ∼ 0.1 eV 

to 10 keV [5].  In our work, the first step in the GMF formalism was to determine 

the many-body phase shifts, this by solving GMF integral equation using a 

matrix-inversion technique. 

 

Interaction Potential 
 

Krypton has a fully occupied d-shell in its electronic structure, which makes an 

accurate calculation of the interaction potential computationally expensive. The 

two-body potential representing the Kr-Kr interaction is taken in the present work 

as the HFD-B potential [1], given by    xVrV   , where 
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We begin with the T- matrix  which is given by a Bethe-Salpeter-like equation 

[9,3]: 
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P0 is the total energy of the pair and 2 is the energy carried by the center of mass. 

For a many-bosonic system, the operator  QQ  is the product of two occupation 

probabilities as follows [10]: 
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Upon partial-wave decomposition, Eq. (2) takes the form [11] 
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This equation represents the full-off-shell T-matrix pertaining to a relative partial 

wave ℓ, from which the on-energy-shell counterpart  PpT


 ,  is obtained directly 

by setting pp

 and 2ps  . Clearly, in the free-scattering limit,Q (Q ) → 1(0); 

so that Eq. (2) reduces to the Lippmann-Schwinger t-matrix.  The parameterized 

 ;;PpT  in terms of real effective many-body shifts   ,; PpE
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General expressions for the total cross section ( T ), is given by [6] 
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The above T-matrix takes into account only 'ladder' diagrams; the long-range 

'ring' diagrams are not included here, nor is the 'self-energy insertion'. Cumulative 

experience [8] indicates that this is justified in gaseous, relatively low-dense (in 

the sense that the interaction range < the interparticle spacing) and weakly-

interacting systems, such as ours. 
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Results and Discussion  
 

The effective Kr-Kr total cross sections were calculated using the HFD-B 

potential. It was found necessary to include partial waves up to 14  so as to 

obtain an accuracy to better than ~ 0.5%. Our results are summarized in Figs. 1- 3 

and Tables 1-2.  In Fig. 1 we plot the computed total cross section and the even 

wave-   components   ( 6 , 4 2, , 0 ), various with the relative momentum k. 

As seen in the figure, the cross section have a peak at a particular energy. The 

peaks were refered to as resonances,. The resonances are essentially bound states, 

but with shorter lifetimes. In other words, they are quasi-bound states. These arise 

because the repulsive angular-momentum barrier ~
 

2r

1
 'screens' the short–

range repulsive part of the interatomic potential, thereby allowing the interacting 

particles to 'see' in effect more attraction. At k~0.78 Å-1 S-wave ( 0 ) is the 

most significant partial wave contributing to the total cross section. With 

increasing k, 0 tends to decrease; whereas the contribution of higher ℓ-waves to 

the scattering decreases. D-wave ( 2 ) scattering for k ~ 0.831 Å-1 dominates; 

so does G-wave ( 4 ) scattering for k ~0.82 Å-1. The I wave ( 6 )for k ~ 

0.815 Å-1 scattering dominate. The minimum is evidence for the Ramsauer-

Townsend effect [12],  which is a physical phenomenon occurring in the collision 

between two particles when the total cross section is a minimum and, therefore, 

the mobility is a maximum [2] It appears in electronic systems and in 4He-4He 

[15] . In the high-energy region, there are undulations in T. These originate from 

the indistinguishability of Kr atoms, which are scattered by the repulsive part of 

the potential.  [14].  

 
Figure 1: The total cross section T [Å2], the ℓ-wave effective cross sections 

[Å2], ,2,4,6 0  for Kr-Kr scattering varies with the relative momentum k [Å-1] 

at n=1×1025atoms/m3. 
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The energies of all resonances R can be determined from 


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being the relative momentum at resonance kR; they are given in Table 1. On other 

hand, our results for Emin are presented in Table 1. 

Table 1: The relative momentum kR ; ][R K ;  kmin and ][min K  of the weakly-

bound (Kr)2-dimer for various ℓ. 

 

 

ℓ kR   [Å
-1] ]K[R  

kmin   [Å
-1] 

Emin[K] 

0 0.78 0.365 0.90 0.486 

2 0.831 0.414 1.20 0.864 

4 0.82 0.403 0.91 0.497 

 

we saw  in Fig.2 that the total cross section hardly dependent on T, but in Fig.3 

obviously, the total cross's dependence on n.  

 

 

 
 

Figure 2: The effective total cross section T [Å2] for Kr-Kr scattering various 

with the relative momentum k [Å-1] for different temperatures T [K]. 
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Figure 3: T [Å2] for Kr-Kr scattering various with k[Å-1] for different n . 

 

To analyze this behavior, the effective scattering length ao is introduced. This is 

defined such that   2

0
8 o

k
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
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The scattering length has the dimension of length, it is a parameter that represents 

the strength of the scattering, not its range. The sign the scattering length also, 

carries physical information: as 0,k no scattering occurs; 0ao   and 0o . 

At k < 2.6 Å-1, corresponding to relatively large interatomic spacing r: the Kr-Kr 

interaction becomes attractive, ao < 0. At k  2.6 Å-1, corresponding to relatively 

small r, the Kr-Kr interaction becomes repulsive, ao 0. Table 3 exhibits the 

relation between n and a0 at different T.    It is noted that a0 and )0(T depend on 

n but hardly on T:  at low n, a0 < 0 (attractive case); whereas at high n, a0  0 

(weakly-bound, fragile case).   

 

 Table 2: The scattering length a0 [Å] and the total cross section )0(T  [Å2] for 

Kr-Kr at different temperatures T [K] for two different number densities n. 

 

T [K] 

n=1×1020atoms/m3 n=1×1027atoms/m3 

a0 [Å] )0(T [Å2] 
a0 [Å] )0(T [Å2] 

    120 -2.160 117.19 209.10 109.832×103 
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Table 2: (Continued): The scattering length a0 [Å] and the total cross section

)0(T  [Å2] for Kr-Kr at different temperatures T [K] for two different number 

densities n. 

124 -2.161 117.30 195.71 96.216×103 

140 -2.162 117.41 183.28 84.382×103 

160 -2.163 117.52 171.78 74.250×103 

 

Conclusion 
  

In this paper the Galitskii-Migdal Feynman (GMF) formalism, which is 

essentially an independent-pair model in the presence of a many-body medium, 

was used for investigating Kr gas at temperature range (120-180K) and at 

different number density. The total cross section and the even wave-   

components  ( 6 , 4 2, , 0 ) were computed, we saw that the S-wave is the 

most significant partial wave contributing to the total cross section. The cross 

section was observed to have a peak at a particular energy (bound states), these 

peaks are refered to as resonances. The minimum is evidence for the Ramsauer-

Townsend effect when the total cross section is a minimum. In the high-energy 

region, there are undulations in T. These originate from the indistinguishability 

of Kr atoms, which are scattered by the repulsive part of the potential. We was 

computed the energies of all resonances, minimum energy and the scattering 

length. We plot total cross section versus the relative momentum k at different 

values of T and different values of  n, we noted  that the total cross section hardly 

dependent on T, but  the total cross's dependence on n. Repulsive case at k  2.6 

Å-1, such that, ao 0 , (attractive case) at k < 2.6 Å-1where ao < 0.  
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