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Abstract

Our understanding of the fundamental interactions -electroweak and strong forces is described by a

theory which is now known as the Standard Model of particle physics. In this thesis, I study the

electroweak sector of the Standard Model. Using the Feynman rules of quantum electrodynamics, I

derive cross-sections for e−e+ −→ µ−µ+ and for Compton Scattering i.e, γ+ e− −→ γ+ e−. First I

obtain the cross-section for the scattering with unpolarized leptons and then to get a more detailed

understanding of the process I re-study the scattering with polarized leptons. I give the details of

the calculations and present some of the results involving gamma matrices and spinor sums in the

appendix.
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Chapter 1

Introduction

We know that particle numbers are not conserved when we relativistically collide them. We can not

describe the physics behind this processes using single particle quantum mechanics. But quantum

field theory combines two of the major themes of modern physics special relativity and quantum

mechanics to describe this type of interactions. Quantum electrodynamics is an extension of quantum

mechanics for analysis of the system with many particles. It gives the mathematical and conceptual

framework for elementary particle physics. This theory supplies essential tools to nuclear physics,

atomic physics, and astrophysics. Also, quantum field theory has led to new bridges between physics

and mathematics. Since this thesis is about scattering cross-section in quantum electrodynamics, so

it is instructive to start with an introduction of quantum electrodynamics (QED). It is a field theory

of interaction between light and matter. It also gives full information on the interaction between

charged particles (leptons). This theory allows us to predict how subatomic charged particles are

created or destroyed. QED is also termed a gauge-invariant theory because its predictions are not

affected by variations in space or time. The practical value of electromagnetic interactions gives the

same result as QED theory predicts.

1.1 Background

Quantum Field Theory (QFT) is the theoretical framework for describing the phenomenon in particle

physics. QFT treats particles as excited states of the underlying physical field. In QFT we describe

the interactions using Feynman diagrams. QFT is not only mathematically rich but also well verified

with high accuracy in experiments.

1.2 Objectives

The main objectives for my master’s project are

1. Scattering cross-section for e−e+ −→ µ−µ+ interaction.

2. Scattering cross-section for Compton scattering.
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1.3 Approach

We used Feynman rules of Quantum Electrodynamics (QED) to calculate scattering amplitude

for e−e+ −→ µ−µ+ and Compton scattering. We squared and summed over all spins to get the

expression for the differential cross-section. We used trace technology and center of the mass frame

to simplify our differential cross-section. To get total cross-section, we integrated our differential

cross-section over dΩ (solid angle).
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Chapter 2

Lowest order interactions in

Quantum Electrodynamics

2.1 Introduction

Quantum Electrodynamics (QED) is the theory of interaction between leptons
(

described by Dirac

field ψ(x)
)

and photons
(

described by the electromagnetic field Aµ(x)
)

. Here these fields are oper-

ators in Heisenberg picture. The Lagrangian density in QED is defined as

LQED = LDirac + LMaxwell + LInt

LQED = ψ(i/∂ −m)ψ − 1

4
(Fµν)

2 − eψγµψAµ

Where the first two terms on the last line describe free photons and electrons, and the third term

treated as an interaction between Dirac and Electromagnetic field. This interacting Lagrangian gives

the interacting Hamiltonian which interpreted as perturbation term. So we used time-dependent

perturbation theory for interacting fields to calculate amplitude for the propagation of a particle.

This amplitude includes interacting Hamiltonian, which helps us to use wick’s theorem, to turn this

type of amplitude into a sum of products of Feynman propagators. Wick’s theorem helps us to set

the Feynman rules for corresponding theory (scalar, electromagnetic theory), but for our purpose

the Feynman diagram in QED is defined as

3



Vertex µ = −ieγµ

Photon propagator µ ν =
−igµν
q2 + iǫ←− q

External photon lines Aµ|p > =
←− p

µ = ǫµ(p)

< p|Aµ = µ

←− p
= ǫ∗µ(p)

Figure 2.1: Feynman Rules in Quantum Electrodynamics

The symbol εµ(p) stands for the polarization vector of the initial or final state photon. Photons con-

ventionally drawn as wavy lines. These Feynman rules simplify our problem of scattering amplitude

and allow us to write directly scattering amplitude for a given interaction.

2.2 Unpolarized Scattering cross-section for e−e+ → µ−µ+ in-

teraction

Unpolarized scattering cross-section is defined as the sum of spins of scattered particles and aver-

age of incident particle spins. Here, we do not know what are the spins of incident and scattered

particles have. The reaction e−e+ → µ−µ+ is an elementary process but gives fundamental to the

understanding of all reactions in e−e+ colliders. Using the Feynman rules we can at once draw the

diagram for lowest order in α.

k
տ

µ−

k′ր
µ+

q↑

pր
e−

p′

տ
e+

Figure 2.2: Feynman diagram for e−e+ → µ−µ+ interaction
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The interaction part of S-matrix gives the scattering amplitude as −iM . So, using Feynman rules

one can write the scattering amplitude for e−e+ → µ−µ+ interaction.

−iM = vs
′

(p′)(ieγµ)us(p)

(−igµν
q2

)

ur(k)(ieγν)vr
′

(k′) (2.1)

Differential scattering cross-section is directly proportional to the modulus square of scattering am-

plitude. So we need an Expression of |M |2 for calculating differential scattering cross-section.

|M |2 =
e4

q4

(

vs
′

(p′)(γν)us(p)ur(k)(γν)v
r′(k′)

)† (

vs
′

(p′)(γµ)us(p)ur(k)(γµ)v
r′(k′)

)

(2.2)

Since γµ and γ0 are anti-hermitian and hermitian matrices hence, we can write

(vγµu)† = u†(γµ)†(γ0)†v (2.3)

u†(γµ)†(γ0)†v = u†(γµ)†γ0v (2.4)

u†(γµ)†γ0v = u†γ0γµv (2.5)

u†γ0γµv = uγµv (2.6)

|M |2 =
e4

q4

(

ur(k)(γν)v
r′(k′)

)† (

vs
′

(p′)(γν)us(p)
)† (

vs
′

(p′)(γµ)us(p)
)(

ur(k)(γµ)v
r′(k′)

)

(2.7)

Using equation 2.6 we can write |M |2 as

|M |2 =
e4

q4

(

vr
′

(k′)γνu
r(k)us(p)γνvs

′

(p′)vs
′

(p′)γµus(p)ur(k)γµv
r′(k′)

)

(2.8)

Since µ− and µ+ are the scattered particles but usually muon detectors are blind to detect polar-

ization, So the measured differential cross-section is a sum over the muon spins r and r’.

∑

r

∑

r′

|M |2

e− and e+ are the incident unpolarized particles. So the differential cross-section is an average over

the electron and positron spins s and s’.

1

2

∑

s′

1

2

∑

s

∑

r

∑

r′

|M |2

Sum over the polarization states of fermion

∑

s

us(p)us(p) = /p+m

Sum over the polarization states of antifermion

∑

s′

vs
′

(p)vs
′

(p) = /p−m

5



By summing over incoming particle spins, we will get (here we are writing equation in terms of

components of a matrices)

∑

s

∑

s′

va
s′(p′)γµabu

s
b(p)uc

sγνcdv
s′

d (p′) = (/p′ −me)daγ
µ
ab(/p+me)bcγ

ν
cd (2.9)

Similarly for µ− and µ+ , we will get

∑

r

∑

r′

vr
′

(k′)γµur(k)ur(k)γνvr
′

(k′) = (/k +mµ)γµ( /k
′ −mµ)γν

Here mµ is the mass of the muon particle.

Using the spin summing technique in equation (2.8)
(

similar technique we have shown in equation

(2.9)
)

, gives the expression for
∑

spin |M |2 as

1

4

∑

spin

|M |2 =
e4

4q4
Tr
[

(/p′ −me)γ
µ(/p+me)γ

ν
]

Tr
[

(/k +mµ)γµ( /k
′ −mµ)γν

]

(2.10)

Now, we will use trace technology to simplify our problem (here trace of whole matrices leads us to

a scalar). First we will derive the solution of Tr
[

(/p′ −me)γ
µ(/p+me)γ

ν
]

and then similarly we can

write solution for Tr
[

(/k +mµ)γµ( /k
′ −mµ)γν

]

Tr [(γσp′σ −me)γ
µ(γρpρ +me)γ

ν ] = Tr [(γσp′σγ
µ −meγ

µ)(γρpργ
ν +meγ

ν)]

= Tr
[

γσp′σγ
µγρpργ

ν + γρp′σγ
µmeγ

ν −meγ
µγρpργ

ν −m2
eγ

µγν
]

= Tr (γσp′σγ
µγρpργ

ν) + Tr (γρp′σγ
µmeγ

ν)− Tr (meγ
µγρpργ

ν)

−Tr
(

m2
eγ

µγν
)

Since trace of odd gamma matrices become zero. hence, we left with two terms

Tr [(γσp′σ −me)γ
µ(γρpρ +me)γ

ν ] = Tr (γσp′σγ
µγρpργ

ν)− Tr
(

m2
eγ

µγν
)

The trace of
[

γσp′σγ
µγρpργ

ν
]

matrices will not change if we interchange the matrices in trace, hence

Tr [(γσp′σ −me)γ
µ(γρpρ +me)γ

ν ] = Tr (γσγµγργνp′σpρ)− Tr
(

m2
eγ

µγν
)

By using gamma matrices identity as

Tr[γµγνγργσ] = 4 [gµνgρσ − gµρgνσ + gµσgνρ]

Tr (γσγµγργνp′σpρ) = 4Tr [gσµgρνp′σpρ − gσρgµνp′σpρ + gσνgµρp′σpρ]

Tr (γσγµγργνp′σpρ) = 4Tr [p′µpν − gµνp′ρpρ + p′νpµ]

By using gamma matrices identity

Tr [γµ, γν ] = 2gµν

Tr (γµγν) = 4gµν

6



Final expression after simplifying equation 2.10

Tr [(γσp′σ −me)γ
µ(γρpρ +me)γ

ν ] = Tr (γσp′σγ
µγρpργ

ν)− Tr
(

m2
eγ

µγν
)

= 4Tr
[

p′µpν − gµνp′ρpρ + p′νpµ − 4m2
eg

µν
]

Similarly, we can get the expression for Tr
[

(γσkσ +mµ)γµ(γ
ρk′ρ −mµ)γν

]

.

Tr
[

(γσkσ +mµ)γµ(γ
ρk′ρ −mµ)γν

]

= 4Tr
[

k′µkν − gµνk′ρkρ + k′νkµ − 4m2
µg

µν
]

Now, we can write (1/4)
∑

spin |M |2 in terms of above simplified formula

1

4

∑

spin

|M |2 =
4e4

q4

[

p′µpν − gµνp′ρpρ + p′νpµ − 4m2
eg

µν
][

k′µkν − gµνk′ρkρ + k′νkµ − 4m2
µg

µν
]

Here, we are taking me = 0 because incoming particles require high energy (Kinetic Energy) to

produce larger mass particles. Then, we will get

1

4

∑

spin

|M |2 =
e4

q4

[

(

p′µpν + p′νpµ − gµν [p′ · p]
)(

k′µkν + k′νkµ − gµν [k′ · k +m2
µ]
)

]

(2.11)

By solving above equation, We will get

1

4

∑

spin

|M |2 =
8e4

q4

[

(p′ · k)(p · k′) + (p′ · k′)(p · k) + (p · p′)m2
µ

]

(2.12)

Since, we know that
∑

spin |M |2 is proportional to a differential cross-section which is a physical

quantity. So, we must need to write above expression regarding energy and angle. The vectors p,

p′, k, k′ and q concerning the basic kinematic variables-energies and angles. We need to take a

particular frame of reference for which our equation become accessible. Now, we are making the

simplest choice to evaluating cross-section in center-of-mass frame.

p′ = (E,Eẑ) p = (E,−Eẑ)

k = (E,Ek)

k′ = (E,−Ek)

θ

Figure 2.3: e−e+ → µ−µ+ interaction in center-of-mass frame
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To compute the modulus square matrix element, we need to write equation (2.12) in terms of

energy and angle.

q2 = (p+ p′)2 = 4E2

p · p′ = 2E2

p · k = p′ · k′ = E2 − E|k| cos θ
p · k′ = p′ · k = E2 + E|k| cos θ

Now, putting the values of p · k , p · k′ etc in the (1/4)
∑

spin |M |2 expression. It gives the following

result

1

4

∑

spin

|M |2 =
e4

2E2

[

(E − |k| cos θ)2 + (E + |k| cos θ)2 + 2m2
µ

]

(2.13)

The
∑

spin |M |2 expression is written in the center-of-mass energy form. Here E = (Ecm/2)

2.3 Total scattering cross-section

When a beam of particles strikes a target consisting of particles of a different type, some of the

particles pass directly through the target while other deflected. Those deflected particles are said to

interact when they collide with the target particles. The cross section is a measure of the effectiveness

of the incident and target particles interaction. Larger the cross section, the more likely it is that

the incident particles deflected.

In the center of mass frame, our differential cross-section is given by

(

dσ

dΩ

)

cm

=
|P ||M |2

2EA2EB|vA − vB |(2π)24Ecm

(2.14)

Above formula comes when we take the interaction part of S-matrix. For our given interaction

relative velocity and energy of the incoming particle in center of mass frame defined as

|vA − vB| = 2 (2.15)

EA = EB =
Ecm

2
(2.16)

(

dσ

dΩ

)

cm

=
1

2E2
cm

|k|
16π2Ecm

1

4

∑

spins

|M |2 (2.17)

Integrating differential scattering cross-section over solid angle (dΩ) for total cross-section

8



σT =
α2

4E2
cm

√

1−
m2

µ

E2

∫

2π

0

∫

π

0

(

1 +
m2

µ

E2

)

sin θdθdφ

+
α2

4E2
cm

√

1−
m2

µ

E2

(

1−
m2

µ

E2

)

∫

2π

0

∫

2π

0

(cos(2θ) + 1

2

)

sin θdθdφ

By solving integration, our total scattering cross-section formula is

σT =
4π

3
α2

√

1−
m2

µ

E2

[

1 +
1

2

m2
µ

E2

]

(2.18)

In the above expression when the energy of the incoming particle is less than the rest mass energy

of the muon then the total cross-section will become zero. This information gives us that the energy

of the incoming particle should always be greater than or equal to the rest mass energy of muons

to produce them. The energy for which our total cross-section becomes finite called as threshold

energy.

2.4 Result

In the high energy limit whereE >> mµ, these formula reduce to

(

dσ

dΩ

)

cm

−−−−−→
E>>mµ

α2

4E2
cm

(1 + cos2 θ) (2.19)

σT −−−−−→
E>>mµ

4πα2

3E2
cm

(2.20)

Here, we can see the angular dependence on the differential cross-section in the high energy limit.

But the total scattering cross-section has energy dependence and strength of the electromagnetic

interaction dependence. But as we can see from the above formula, differential cross-section has

maximum value for (θ = 0, π). In the high-energy limit, Ecm is the only dimensionful quantity

in this process, so dimensional analysis dictates that σT ∝ E−2
cm. Since, we knew intuitively from

the beginning that σT ∝ α2, we only had to work to get the factor of (4π/3) in total scattering

cross-section. Here, scattering cross-section is zero for Ecm < 2mµ. But, the threshold energy for

which scattering cross-section is finite will be the rest mass energy of the incoming particle.

2.5 Polarized electron and positron annihilation

In our previous discussion, we have used unpolarized incident and scattered particles to find the

average scattering cross-section. Now, we will take definite polarization of incident and scattered

particles using helicity operator to calculate scattering cross-section. But, we can check average

scattering cross-section by taking an average of all the possible scattering cross-section correspond-

ing polarization of incident and scattered particles. Here, our Feynman diagram will be same for

9



e+e− → µ+µ− and lowest order in α. This calculation of polarized cross-section will help us to

understand how the angular dependence appears in unpolarized cross-section. Here, we used he-

licity projection operator to project out the desired left and right-handed spinor for incoming and

outgoing particles. Throughout this section, we work in high energy limit. Without putting helicity

operator in scattering amplitude gives the same result as got for the unpolarized case.

2.6 Helicity

The helicity gives the projection of the directions of spin and the particle’s momentum. If the 3-

momentum p and spin both point in the same direction, the helicity has its maximum value (positive

value), while if they point in opposite directions, the helicity has its maximum negative value. If p

and spin are at right angles, the helicity is zero. Here, we are taking γ5 matric as

γ5 =

(

−1 0

0 1

)

Now, we will take only one set of polarizations at a time. To do this, our projections operators onto

right-and left-handed spinors, respectively

I+ γ5

2
=

(

0 0

0 1

)

I− γ5
2

=

(

1 0

0 0

)

Now, we can make replacement in amplitude for right-handed spinor as

v(p′)γµu(p)→ v(p′)γµ
(

I+ γ5

2

)

u(p)

Scattering amplitude for e−Re
+
L → µ−

Rµ
+
L after replacement

iM =
ie2

q2

(

v(p′)γµ
(

I+ γ5

2

)

u(p)

)(

u(k)γν

(

I+ γ5

2

)

v(k′)

)

(2.21)

Here, we have taken right handed electron and the simplification of initial current density in Feynman

diagram is given by

v(p′)γµ
(

I+ γ5

2

)

u(p) = v†(p′)γ0†γµ
(

I+ γ5

2

)

u(p)

Since, we know that γµ, γ0 and γ5 are hermitian matrix

v†(p′)

[(

I+ γ5

2

)

γµγ0
]†

u(p)

We know that right handed electron corresponds to a left-handed positron. Hence, the amplitude

vanishes unless the electron and positron have their opposite helicity or equivalently unless their

10



spinor have the same helicity.

Now, the sum over the electron and positron spins in the modulus square amplitude.

∑

spin

∣

∣v(p′)γµ
(

I+ γ5

2

)

u(p)
∣

∣

2
=
∑

spin

[

v(p′)γµ
(

I+ γ5

2

)

u(p)u(p)γν
(

I+ γ5

2

)

v(p′)

]

Since we know that the spins sums of ferimons and antifermions

∑

s

us(p)us(p) = /p+m

∑

s′

vs
′

(p)vs
′

(p) = /p−m

In high energy limit, we can take (m=0)

∑

s

us(p)us(p) = /p

∑

s′

vs
′

(p)vs
′

(p) = /p

By using above spins sum of ferimons and antifermions, we can write modulus square half amplitude

as

∑

spin

|v(p′)γµ
(

I+ γ5

2

)

u(p)|2 = /p′γµ
(

I+ γ5

2

)

/pγ
ν

(

I+ γ5

2

)

Now, using trace technology

Tr

[

/p′γµ
(

I+ γ5

2

)

/pγ
ν

(

I+ γ5

2

)]

= Tr

[

γσp′σγ
µγρpργ

ν

4
+
γσp′σγ

µγρpργ
ν

4
+
γσp′σγ

µγρpργ
νγ5

4

+
γσp′σγ

µγ5γρpργ
νγ5

4

]

=
1

4
Tr
[

γσγµγργνp′σpρ + γσγµγργνp′σpρ + γσγµγργνγ5p′σpρ

]

=
1

4
Tr
[

2γσγµγργνp′σpρ + 2γσγµγργνp′σpργ
5
]

(2.22)

=
1

2
Tr
(

γσγµγργνp′σpρ

)

+
1

2
Tr
(

γσγµγργνp′σpργ
5
)

(2.23)

Now, using the gamma matrices identities

Tr[γµγνγργσ] = 4 [gµνgρσ − gµρgνσ + gµσgνρ]

Tr[γµγνγργσγ5] = −4iǫµνρσ

11



Above identities makes the trace in Minkowski matrices, since p′σ , pρ are vectors so we can take

these out from trace.

Tr

[

/p′γµ
(

I+ γ5

2

)

/pγ
ν

(

I+ γ5

2

)]

=
1

2

[

Tr (γσγµγργν) + Tr
(

γσγµγργνγ5
)]

p′σpρ (2.24)

= 2
[

gσµgρν − gσρgµν + gσνgµρ − iǫµνρσ
]

p′σpρ (2.25)

Final expression for modulus squared half amplitude

∑

spin

|v(p′)γµ
(

I+ γ5

2

)

u(p)|2 = 2 [p′µpν − gµν(p′ · p) + p′νpµ − iǫσµρνp′σpρ] (2.26)

Similarly, for muon modulus squared half amplitude given by

∑

spin

|u(k)γµ
(

I+ γ5

2

)

v(k′)|2 = 2
[

kµk
′
ν − gµν(k · k′) + kνk′µ − iǫσµρνkσk′ρ

]

(2.27)

Further, we can write |M |2 for e−Re
+
L → µ−

Rµ
+
L interaction

∑

spin

|M |2 =
4e4

q4
[

p′µpν − gµν(p′ · p) + p′νpµ − iǫαµβνp′αpβ
]

×
[

kµk
′
ν − gµν(k · k′) + kνk

′
µ − iǫσµρνkσk′ρ

]

(2.28)

=
4e4

q4
[

2(p · k)(p′ · k′) + 2(p · k′)(p′ · k)− ǫαµβνǫσµρνp′αpβkρk′σ
]

(2.29)

=
16e4

q4
(p · k′)(p′ · k) (2.30)

Further, we can write differential cross-section for e−Re
+
L → µ−

Rµ
+
L interaction in center mass frame as

(

dσ

dΩ

)

cm

=
1

2E2
cm

|k|
16π2Ecm

1

4

∑

spins

|M |2 (2.31)

In center of mass frame momentum product is given by

q2 = (p+ p′)2 = 4E2

p · p′ = 2E2

|k| =
√

E2 −m2
µ , E =

Ecm

2

p · k = p′ · k′ = E2 − E|k| cos θ
p · k′ = p′ · k = E2 + E|k| cos θ

(

dσ

dΩ

)

cm

=
1

2E2
cm

|k|
16π2Ecm

1

4

16e4

q4
(p · k′)(p′ · k)

(

dσ

dΩ

)

cm

=
1

2E2
cm

|k|
π2Ecm

1

4

e4

q4
(

E2 + E|k| cos θ
)2

12



In the high energy limit (E >> mµ) our final expression for differential cross-section is

dσ

dΩ

(

e−Re
+
L → µ−

Rµ
+
L

)

=
α2

4E2
cm

(1 + cos θ)
2

(2.32)

We can also get the other non vanishing helicity amplitude intuitively without repeating the whole

process. For example this reaction e−Re
+
L → µ−

Lµ
+
R , the replacement in the modulus square amplitude

of µ−
Lµ

+
R will be γ5 to −γ5 on the left-hand side. Thus ǫρµσν replaced by −ǫρµσν on the right-hand

side.

We can easily see that,
dσ

dΩ

(

e−Re
+
L → µ−

Lµ
+
R

)

=
α2

4E2
cm

(1− cos θ)2 (2.33)

Similarly, for other helicity amplitude

dσ

dΩ

(

e−Le
+
R → µ−

Rµ
+
L

)

=
α2

4E2
cm

(1− cos θ)
2

(2.34)

dσ

dΩ

(

e−Le
+
R → µ−

Lµ
+
R

)

=
α2

4E2
cm

(1 + cos θ)2 (2.35)

The other twelve helicity cross-sections are zero because we know that right handed electron cor-

responds to a left-handed positron and the amplitude vanishes unless the electron and positron

have their opposite helicity. Hence, this gives four non zero helicity amplitude. Adding all sixteen

contributions, and dividing by four will give us average unpolarized cross-section.

2.7 Crossing symmetry

Crossing symmetry defined as, the s-matrix element for any process involving a particle with mo-

mentum p in the initial state is equal to the s-matrix element for an identical process but particle

replaced by anti-particle with momentum k (k = −p) in the final state. It is one of the most

important elements of calculations which makes use of the analytical properties of the scattering

amplitudes. It relates various amplitudes, for example, helicity amplitudes, in one channel to those

in other channels, in which all incoming and outgoing particles have been interchanged.
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Chapter 3

Compton scattering

In Compton scattering, a photon collides with an electron, loses some of its energy and deflected

from its original direction of travel. In this scattering assuming that electron to be initially free.

It is an inelastic scattering of a photon with an electrically charged particle. We will calculate the

unpolarized cross-section for this section, to lowest order in α.

3.1 Feynman diagram

There are two diagrams that contribute to Compton scattering at tree-level

p+ k

k
ր p

p′

k′
ր

+

k
ր

p

p′

k′
ր

Figure 3.1: Feynman diagram for Compton scattering

In the Feynman diagram, p and k are the 4-momentum of the electron and photon before the

collision, and p′, k′ their 4-momentum after the collision. Since the fermion portion of the diagrams

is identical. Using εν(k) and ε
∗
µ(k

′

) to denote the polarization vector of the initial and final photon,

we have the expression of Scattering amplitude for a given interaction.

14



−iM = u(p′)(−ieγµ)ε∗µ(k′)
i(/p+ /k +m)

(p+ k)2 −m2
(−ieγν)εν(k)u(p)

+u(p′)(−ieγν)εν(k)
i(/p− /k′ +m)

(p− k)2 −m2
(−ieγµ)εµ∗(k′)u(p) (3.1)

= −ie2εν(k)ε∗µ(k′)u(p′)
[

γµ(/p+ /k +m)γν

(p+ k)2 −m2
+
γν(/p− /k′ +m)γµ

(p− k′)2 −m2

]

u(p) (3.2)

As we found |M |2 expression for e−e+ → µ−µ+ interaction in chapter 2. Similarly, we will do for

compton scattering but before this we need a simplified solution for −iM . Since, p2 = m2 and

k2 = 0, the denominators of the propagators are

(p+ k)2 −m2 = 2p · k (3.3)

(p− k′)2 −m2 = −2p · k′ (3.4)

To simplify the numerators in −iM using Dirac gamma matrix algebra.

(/p+m)γνu(p) = (2pν − γν/p+ γνm)u(p) = 2pνu(p) (3.5)

Using above simplification of numerator in −iM , we obtained

−iM = −ie2εν(k)ε∗µ(k′)u(p′)
[

γµ/kγν + 2γµpν

2p · k +
−γν /k′γµ + 2γνpµ

−2p · k′
]

u(p) (3.6)

Here, we are considering the scattering of an unpolarized photon by an unpolarized electron, without

regard to their polarizations after the scattering. So, we will find the polarization sum to get the

average cross-section.

Photon Polarization Sums

The amplitude expression retains freely specified spin and polarization states for the electrons and

photons. Experimental Compton scattering involves unpolarized photons colliding with electrons,

and so we must average over these states. We are considering an arbitrary QED process comprising

an external photon with momentum k to get the expression for photon polarization sum. Since the

scattering amplitude always contains ε∗µ(k), so we can extract this factor and defined M (k) to be

the rest of the scattering amplitude M .

∑

ǫ

|ε∗µ(k)M (k)|2 =
∑

ǫ

ε∗µενM
µ(k)M ν∗(k) (3.7)
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For simplicity, we took k vector in the 3-direction: kµ = (k, 0, 0, k). Then the corresponding two

transverse polarization vector are

εµ1 = (0, 1, 0, 0) (3.8)

εµ2 = (0, 0, 1, 0) (3.9)

Now, we will sum our scattering amplitude M (k) over two transverse polarization vector. Then we

have
∑

ǫ

|ε∗µ(k)M (k)|2 = |M 1(k)|2 + |M 2(k)|2 (3.10)

Classically, we know that the current density jµ is conserved ∂µj
µ = 0. If the property still holds in

the quantum theory, we can dot kµ with M µ(k) to obtain

kµM
µ(k) = 0 (3.11)

The amplitude M vanishes when the polarization vector εµ(k) is replaced by kµ. This relation is

known as the Ward identity.

Now, we can see for kµ = (k, 0, 0, k) the ward identity takes the form

kM 0(k)− kM 3(k) = 0

M
0 = M

3

∑

ǫ

ε∗µενM
µ(k)M ν∗(k) = |M 1|2 + |M 2|2

∑

ǫ

ε∗µενM
µ(k)M ν∗(k) = −gµνM µ(k)M ν∗(k)

So, photon polarization sum is given by

∑

ǫ

ε∗µεν −→ −gµν

3.2 The Klein-Nishima Formula

We want to average the modulus square amplitude over the initial electron and photon polarizations,

and sum over the final electron and photon polarizations.

1

4

∑

spin

|M |2 =
e4

4
gµρgνσ · Tr

[

(/p′ +m) ·
(

γµ/k + 2γµpν

2p · k +
γν /k′γµ − 2γνpµ

2p · k′

)

× (/p+m)

(

γσ/kγρ + 2γρpσ

2p · k +
γρ /k′γσ − 2γσpρ

2p · k′
)

]

To simplify above expression we used the trace technology and Mandelstam variables:

s = (p+ k)2 = 2p · k +m2 = 2p′ · k′ +m2; (3.12)

t = (p′ − p)2 = −2p · p′ + 2m2 = −2k · k′; (3.13)

u = (k′ − p)2 = −2k′ · p+m2 = −2k · p′ +m2 (3.14)
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The momentum conservation at vertex implies s + u + t = 2m2. Now, we can put Mandelstam

variable to our scattering amplitude in lab frame.

1

4

∑

spin

|M |2 = 2e4
[

(s−m2)t3 + (3s2 − 2m2s+ 3m4)t2 + 4s(s−m2)2t+ 2(s−m2)4

(s−m2)2(t+ s−m2)2

]

Now, rewriting s, u and t in terms of p · k, p · k′ and k · k′, we finally obtain

1

4

∑

spin

|M |2 = 2e4

[

p · k′
p · k +

p · k
p · k′ + 2m2

(

1

p · k −
1

p · k′
)

+m4

(

1

p · k −
1

p · k′
)2
]

To get the expression for a differential cross-section, we must decide a frame of reference where our

calculation becomes simpler. The easiest choice is lab frame because we can find the dynamics of

particles after collision separately. But in the lab frame, the electron is initially at rest. But after

the collision, The energy of the electron is typically ten orders of magnitude larger than that of the

photon.

k = (ω, ωẑ) p = (m, 0)

→

րk′ = (ω
′

, ω
′

sin θ, 0, ω
′

cos θ)

p′ = (E′, p′)

θ

Figure 3.2: Compton scattering in Lab frame

Since, we know that Compton’s formula for the shift in photon wavelength.

ω′ =
ω

1 +
ω

m
(1 − cosθ)

Now, the phase space integral in Lab frame is

∫

dΠ =

∫

d3k′

(2π)3
1

2ω′

d3p′

(2π)3
1

2E′
(2π)4δ(4)(k′ + p′ − k − p) (3.15)

∫

dΠ =
1

8π

∫

(d cos θ)
(ω′)2

ωm
(3.16)

The differential cross-section is given by

dσ =
1
4

∑

spin |M |2

4EAEB|vA − vB |
Πf

(

d3pf
(2π)3

1

2Ef

)

.(2π)4δ(4)(pA + pB − Σpf ) (3.17)
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Now, we will plug everything into our differential cross-section formula which we have written above.

Since, in lab frame |vA − vB| = 1, then we find

dσ

dcosθ
=

1

2ω

1

2m
.
1

8π

(ω′)2

ωm
.





1

4

∑

spin

|M |2




Now, our general cross-section formula is

dσ

dcosθ
=
πα2

m2

(

ω′

ω

)2 [
ω′

ω
+
ω

ω′
− sin2θ

]

Above expression correspond Klein-Nishina formula for differential cross-section

In the limit (this low energy limit) ω −→ 0 and ω′/ω −→ 1, then the cross-section becomes

dσ

dcosθ
=
πα2

m2

(

1 + cos2θ
)

This is the familiar Thomson cross section for scattering of classical electromagnetic radiation by a

free electron where the energy of the photon is less than the rest mass energy of electron.

3.3 High Energy Behavior

In the centre of mass frame the 4-momenta of the particles may be written

k = (ω, 0, 0, ω)

p = (E, 0, 0,−ω)
k′ = (ω, ω sin θ, 0, ω cos θ)

p′ = (E,−ω sin θ, 0,−ω cos θ)

To analyze the high energy behavior of the Compton scattering cross-section, it is easiest to work

in the center-of-mass frame.

k = (ω, ωẑ)
→

p = (E,−ωẑ)

ր

p′

θ

Figure 3.3: Compton scattering in center-of-mass frame
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We can see that for θ = π, the term (p · k/p · k′) becomes very large, while the other terms are

all smaller. Thus for E >> m and θ = π, we have

1

4

∑

spin

|M |2 = 2e4 · p · k
p · k′ = 2e4 ·

(

E + ω

E + ωcosθ

)

The differential cross-section in center of mass frame is given by

dσ

dcosθ
=

1

2
· 1

2E
· 1

2ω

(

ω

8π(E + ω)

)[

2e4(E + ω)

(E + ω cos θ)

]

dσ

dcosθ
=

2πα2

2m2 + s(1 + cos θ)

Where s = 2ω(E + ω) +m2

In the high energy limit s >> m2, so we can drop the electron mass term if we supply an equivalent

cuttoff near θ = π. In this way, we can approximate the total Compton scattering cross-section. We

find that the total cross-section behaves at high energy as

σtotal =
2πα2

s
log
( s

m2

)

In the high energy limit (s >> m2) the differential cross-section has singularity at (θ = π) which

means we have singularity for backward photon.

3.4 Result

We have two tree level Feynman diagram for Compton scattering which gives one amplitude for each

diagram. We have shown that in the lab frame if the photon has more energy than the rest mass

energy of the electron, Then the calculation for differential cross-section produces Klein-Nishina

formula. But if photon has less energy than the rest mass energy of electron this condition produces

Thomson cross section for scattering of classical electromagnetic radiation by a free electron. In

further analysis, we have shown the singularity in differential cross-section for backward photon

(θ = π). In the high energy limit, our total scattering cross-section is a logarithmic function of total

energy.
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Chapter 4

Appendix

4.1 Spin sum of fermions and antifermions

The general solution of the Dirac equation can be written as a linear combination of plane waves.

Ψ(x) = u(p)e−ip.x

Above representation of Dirac equation correspond to positive frequency waves and it has two linearly

independent solutions.

us(p) =

( √
p.σξs
√
p.σξs

)

Spinor conjugate of above spinor is given by

us(p) =
(

ξs†
√
p.σ ξs†

√
p.σ
)

Solution of Dirac equation for negative frequency waves are

vs(p) =

( √
p.σηs

−√p.σηs

)

Now, We can easily evaluate the sum over the polarization states of a fermion.

∑

s=1,2

us(p)us(p) =

(√
p.σξs
√
p.σξs

)

(

ξs†
√
p.σ ξs†

√
p.σ
)

Since we know
∑

s

ξsξs† = 1 =

(

1 0

0 1

)

∑

s=1,2

us(p)us(p) =

(√
p.σ
√
p.σ

√
p.σ
√
p.σ

√
p.σ
√
p.σ

√
p.σ
√
p.σ

)
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We can simplify (p.σ)(p.σ) as

(p.σ)(p.σ) = p2σσ = p2 = m2

∑

s=1,2

us(p)us(p) =

(

m p.σ

p.σ m

)

Thus, we got our desired formula,

∑

s

us(p)us(p) = γµpµ +mI = /p+m

Similarly, for antifermions we will get

∑

s

vs(p)vs(p) = γµpµ −mI = /p−m

But for above formula, we used this identity

∑

s

ηsηs† = 1 =

(

1 0

0 1

)

4.2 Trace of odd Gamma matrices

Let’s take an example Tr (γµγνγρ)

To prove above statement, we will use gamma matrices identity as [γµ, γν ] = 2gµν Now,

Tr (γµγνγρ) ; γµγν = 2gµν − γνγµ (4.1)

Then, we can write

Tr (γµγνγρ) = Tr [(2gµν .I− γνγµ) γρ] (4.2)

Tr [2gµν .Iγρ − γνγµγρ] (4.3)

Since, T r(A+B) = Tr(A) + Tr(B) (4.4)

Tr (γµγνγρ) = Tr (2gµν .Iγρ)− Tr (γνγµγρ) (4.5)

Using cyclic property of trace, we can write

Tr (γνγµγρ) = Tr (γµγνγρ) (4.6)

2Tr (γµγνγρ) = Tr (2gµν.Iγρ) (4.7)

= 4gµνTr (γρ) (4.8)

Tr(γρ) = Tr(γ5γ5γρ) , (γ5)2 = 1 (4.9)

= −Tr(γ5γργ5) , [γρ, γ5] = 0 (4.10)

= −Tr(γ5γ5γρ) (4.11)

= −Tr(γρ) (4.12)

= 0 (4.13)
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So Tr(γρ) = 0 implies

Tr (γνγµγρ) = 0

Hence, as we can see trace of odd gamma matrices becomes zero.
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