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Scenario Generation Methods that Replicate Crossing Times in Spatially
Distributed Stochastic Systems∗
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Abstract. The purpose of this paper is to bring to light the importance of time series simulation methods
which accurately replicate the crossing times of stochastic processes. A crossing time is a contiguous
block of time for which a stochastic process is above or below some benchmark such as a forecast.
In addition to bringing attention to the issue, we present a family of models, which we call crossing
state models (both univariate and multivariate models are introduced), that outperform standard
time series modeling techniques in their ability to replicate these crossing times. This is verified using
a weighted quadratic empirical distribution function statistic. In addition, in multivariate processes
(which may be spatially distributed) we address the problem of replicating crossing times at both
the disaggregate and aggregate levels. Proper modeling of crossing times is especially significant
in applications in the realm of energy systems. For example, a robust control policy for an energy
system with high penetrations of renewables must account for the possibility that energy from wind
falls below forecasts for a long period of time. A policy that performs well on a set of renewable power
scenarios in which the crossing times are accurately modeled will likely be robust in practice as well.
Modeling crossing time behavior is pertinent in other problems involving stochastic optimization as
well, such as portfolio management and inventory management problems.
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1. Introduction. When developing policies for controlling a system under uncertainty,
it is essential they perform well across a realistic population of scenarios. In the realm of
energy systems, uncertainty in power generation from renewable power sources, such as wind,
creates a need for simulation methods which accurately replicate the characteristics of power
outputs from renewable sources. For example, the stochastic programming formulation of the
day-ahead unit commitment problem with high penetrations of wind energy will require a set
of wind power scenarios [39, 11].

Often available to the system operator is a forecast of wind power outputs (or a wind
speed forecast combined with a method for producing a corresponding power forecast) over
the planning horizon. In general, the power output series tend to follow their forecasted
outputs, plus or minus some error. For energy systems modeling, it is particularly important
to replicate not just the distribution of errors when the actual power output is below the

∗Received by the editors March 13, 2017; accepted for publication (in revised form) March 12, 2018; published
electronically May 1, 2018.

http://www.siam.org/journals/juq/6-2/M112055.html
Funding: The research of the authors was supported in part by NSF grant CCF-1521675.
†Department of Electrical Engineering, Princeton University, Princeton, NJ 08544-5263 (jdurante@princeton.edu).
‡Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08544

(rmpatel@princeton.edu, powell@princeton.edu).

596

D
ow

nl
oa

de
d 

05
/0

2/
18

 to
 1

28
.1

12
.6

9.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/juq/6-2/M112055.html
mailto:jdurante@princeton.edu
mailto:rmpatel@princeton.edu
mailto:powell@princeton.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

SIMULATION METHODS THAT REPLICATE CROSSING TIMES 597

forecast, but how long it stays below (and by how much) so we can properly plan backup
storage or generation.

Other time series models can produce scenarios that replicate certain characteristics of
observed forecast error series, such as the autocorrelation, partial autocorrelation, cross cor-
relations (if applicable), and the distribution of errors. However, we have observed that
most time series models often fail to capture one important, yet overlooked, characteristic of
stochastic processes involved in sequential decision making problems—the crossing times of
the process. A crossing time is a consecutive period of time for which the observed value of
a stochastic process is above or below a benchmark reference series such as a forecast. It is
related to a zero crossing interval as described in [6] except that it is relative to the reference
series. Alternatively, a crossing time can be viewed as a zero crossing interval of the series of
errors-from-benchmark.

There is a growing literature on scenario generation, with special interest in modeling
wind for the stochastic unit commitment problem [30, 15, 20]. Methods have been developed
for ensuring that sampled scenarios are representative (in particular, not too similar), but this
work has not attempted to model crossing time behavior.

In this problem, to schedule generation a day in advance we can utilize algorithms which
rely on the generation of wind power scenarios such as stochastic dual decomposition procedure
(SDDP) [32, 36, 33, 35] or scenario trees [17, 25, 23, 5]. Consider using a wind power model
that generates scenarios in which crossing times, and specifically the down-crossing times,
are too short compared to reality. This is the case if, for example, we assume intertemporal
independence of the forecast errors (a fairly standard assumption in the SDDP literature).
Without having to plan for the possibility of wind power dropping below its forecast for
extended periods of time, the policy chosen might be less costly in expectation, but the risk
of a load-shedding event will be higher. Thus, we see that modeling crossing time behavior
correctly is instrumental in the development of robust policies.

Applications involving a single stochastic process, such as a simple energy storage problem
in which there is one exogenous renewable power source, will only require univariate models
that reproduce crossing time and error distributions in one dimension. In spatially distributed
applications (and multivariate processes in general) it is desirable to produce scenarios in which
crossing time and error distributions are replicated at both the disaggregate and the aggregate
level. This is, by itself, a new challenge addressed in this paper that has not been addressed
in the statistics literature.

To see why crossing time behavior is important at both the aggregate and the disaggregate
level, consider modeling a power grid with high penetrations of renewables. The aggregate
power produced in the system must match the total load; however, the transmission of power
across long distances will incur resistive losses and introduce transmission constraints, such
as maximum power constraints on certain transmission lines, that limit the amount of power
that can be sent from one area of the grid to another. Thus, our simulation method must
produce scenarios with realistic surpluses and deficits of locally available renewable energy
compared to the forecasted outputs as well as in aggregate.

This paper presents a family of time series simulation methods, which we call crossing state
models, that focus on replicating forecast error distributions, as well as up- and down- crossing
distributions. In addition, the models for multivariate time series replicate these distributions
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598 JOSEPH DURANTE, RAJ PATEL, AND WARREN B. POWELL

not only at the disaggregate (individual) level but on the aggregate level as well. To be clear,
this is not a forecasting paper and is not an attempt to create improved forecasting models to
reduce forecast errors. Rather, we present simulation methods which, given any point forecast
of an exogenous stochastic process that is available to the controller of a system, whether it
is based on classical time series models or state-of-the-art methods, will, without the need
for additional explanatory variables, generate sample paths in which the crossing times are
consistent with training data.

Though the main application considered in this paper is wind power scenario generation,
the models presented here can be used in many applications in which crossing times are
important, such as the following:

• Modeling electricity prices, including the replication of price spikes, so that utilities can
prepare financially for periods of time when prices exceed the rates they are being paid
for the cost of electricity. A useful benchmark series here may be a time-dependent
mean price that exhibits daily seasonality.
• Modeling the demand for units of blood, where weather can create bursts of accidents

for which we have to have sufficient inventories.
• Internet retailers have to plan inventories to anticipate bursts of demand for a product

that suddenly becomes popular.
• Developing a portfolio management policy for buying and selling stocks and deriva-

tives. Risk averse policies must account for situations in which correlated stocks
underperform expectations.

Crossing state models share a common form in that they all employ two-level strategies.
The first level controls the evolution of what we call the crossing state in this paper which
is designed to control the crossing times of our sample paths. The second level is an error
generation model conditioned on the crossing state that is chosen such that it is appropriate
for the stochastic process we are modeling. One indicator that we have chosen a good error
generation model is that the error distribution of the simulations closely matches the empirical
distribution from the training data. The crossing state models can be supplemented with
additional explanatory variables (in the above examples, time of day or weather conditions
may be relevant explanatory variables), but it is not a necessity. The multivariate models can
be used to model spatially distributed stochastic processes, as is done in this paper, though
they can model general multivariate processes without a spatial dimension as well.

This paper makes the following contributions: (1) We develop a hidden semi-Markov
model for general univariate processes. (2) We extend this method to multivariate stochastic
processes with the goal of replicating crossing time distributions at both the disaggregate and
aggregate levels. (3) We show empirically that our methods closely replicate crossing time
behaviors for both univariate and multivariate settings and that our methods outperform
standard time series modeling techniques.

The rest of the paper is organized as follows. Section 2 reviews standard time series
methods for modeling forecast errors as well as recent efforts in modeling spatially distributed
wind power forecast errors. In section 3 we formally describe crossing times, crossing time
distributions, and the crossing state of the process. Section 4 presents a univariate nonpara-
metric hidden semi-Markov crossing state model. Sections 5 and 6 both present multivariate
crossing state models. The low dimensional model in section 5 is a regime switching vector
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SIMULATION METHODS THAT REPLICATE CROSSING TIMES 599

autoregressive model that performs well in low dimensions but will not scale to more than
four dimensions. The high dimensional model presented in section 6 is an approximation of
the low dimensional model that will scale to many dimensions, but it will perform slightly
worse in low dimensions. Finally, numerical results are presented in section 7 and the paper
is concluded in section 8.

2. Review of scenario generation methods and modeling techniques. For a stochastic
process with J dimensions (for example, the energy generated from J locations), let the
forecast for subprocess j at lead time t be fPt,j . The error, given the actual realization of Pt,j ,

is given by Xt,j = Pt,j − fPt,j . In addition, by summing the J forecasts together we obtain

an aggregate forecast at time t, fP,aggt =
∑J

j=1 f
P
t,j . Similarly, given a realization of vector

Pt, we obtain an aggregate error Xagg
t =

∑J
j=1 Pt,j − f

P,agg
t =

∑J
j=1Xt,j . Note that in the

univariate case we drop the subprocess j subscript as the error vector at time t becomes the
scalar Xt. In this section we review methods to generate scenarios of these forecast errors (or
actual outputs directly) and modeling techniques.

2.1. Z-variate transforms. From training data we can form marginal error distributions
for each subprocess j, represented by FXj . These empirical marginal error distributions may be
nonnormal, heavy tailed, or even skewed or shifted in one direction depending on the properties
of the error process and/or quality of the provided forecast. Likewise, the empirical aggregate
error distribution is represented by FX,agg and may exhibit many of the same traits as the
marginal distributions.

One technique to produce scenarios with arbitrary marginal distributions is to first perform
a transformation of the time series to Z-variates such that the transformed variables have
standard normal marginal distributions N (0, 1)s. This is done utilizing empirical marginal
cumulative distribution functions (CDFs) and the standard normal quantile function. Then,
a model can be fit to the transformed time series of Z-variates. Following the simulation of a
Z-variate time series, the inverse transform is performed to recover the actual sample paths.
This Z-transform technique is described in [10]. Formally, letting Φ be the standard normal
CDF, Zt,j , the Z-transform of Xt,j , is given by

Zt,j = Φ−1
(
FXj (Xt,j)

)
.

Note that Zj ∼ N (0, 1). The inverse transform is then given by

Xt,j = FX,−1
j (Φ (Zt,j)) .

This transformation is not necessary when forming a scenario generation model, but it is
widely used in wind power scenario generation methods including many referenced later in this
section and some of the methods presented in this paper. To avoid repeating this throughout
the paper, if a model utilizes Z-transforms, it is assumed that the transforms took place prior to
modeling, and, following simulation, the appropriate inverse transform is performed to recover
the actual sample paths.

We can also perform the same procedure using conditional distributions. Consider an

explanatory variable Y and conditional marginal CDF’s F
X|Y
j . If, for example, Y is discrete
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600 JOSEPH DURANTE, RAJ PATEL, AND WARREN B. POWELL

we can perform a similar transform with the above formulas by simply replacing FXj with

F
X|Y=y
j for different values that Y may take on. We will denote a conditional Z-transformed

time series with ZYt,j . Scenario generation in [27] uses Z-transforms conditioned on the forecast
bin to which the point forecast for subprocess j at lead time t belongs. Thus, the explanatory
variable Y here would represent the forecast bin to which fPt,j belongs. The multivariate
crossing state models in sections 5 and 6 also utilize this conditional form of the Z-transform.

2.2. Classical time series models: (V)ARIMA and GARCH. For a univariate time series,
whether it is a Z-variate series or not, a common approach is to model the series as an
autoregressive integrated moving average process of order p,d,q (an ARIMA(p,d,q) process).
As an initial modeling step, differencing can be used to form a stationary time series out of a
nonstationary one. A first order differencing forms the series X ′t = Xt −Xt−1, while a second
order differencing forms the series X ′′t = X ′t −X ′t−1. This pattern is repeated up until order
d. Consider {Xt} the series we are working with, differenced or not. It can be modeled as the
ARMA(p,q) process,

Xt = c+

p∑
i=1

AiXt−i +Wt +

q∑
k=1

BkWt−k,

where c, the A′is, and the B′ks, are scalar coefficients and Wt is a zero mean white noise (such
as Wt ∼ N (0, σ2)).

Determining the order of the model (the p, d, and q) as well as the parameters associated
with the chosen model can be done with the Box and Jenkins method of model identification,
parameter estimation, and model checking [8]. To assist the Box and Jenkins method, or as
an alternative, minimizing the Akaike information criteria (AIC) can be used to determine
the order of the model. The AIC method selects the model M with the minimum AIC value
which is given by AIC = 2kf − 2ln(p(x|θ̂,M)), where x is the data, kf denotes the number of

free parameters in the model, and θ̂ is set of parameter values for model M which maximizes
the likelihood function [1]. As a general rule, if the AIC values of two models are close, it is
better to choose the lower order model as it is more parsimonious.

ARMA (autoregressive moving average) models are often used to generate wind power
scenarios as in [37], for example. Another common method is to model wind speed forecast
error time series with an ARMA model [38]. To transform wind speed scenarios to a wind
power series, a wind speed-to-power curve can be used as in [4], [31], and [3]. In general, when
wind speed scenarios are generated instead of wind power, some type of power curve is used
to transform the series to a wind power series. However, the methods in this paper directly
generate wind power sample paths.

Extending ARMA models to produce spatially distributed scenarios can be accomplished
by incorporating correlation matrices. For example, in [3], the sample vector of errors at each
time t is drawn from a multivariate normal distribution N (Zt,Σ). The time t mean for each
wind farm’s Z-transformed forecast error, Zt,j , is determined by an ARMA model for farm j
and the spatial correlation coefficients in the covariance matrix Σ are based on an exponential
function of distance between pairs of wind farms. Other methods will also cross-correlate
the random error components between multiple ARMA models with a covariance matrix but
will not attempt to relate correlation to distance between wind farms. Instead, they relyD
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SIMULATION METHODS THAT REPLICATE CROSSING TIMES 601

directly on a covariance matrix estimated directly from historical data. This is done in [28],
for example.

Another common way to extend ARMA modeling to multivariate settings is through vec-
tor autoregressive moving average (VARMA) models. A model of order p, q (a VARMA(p,q)
model) can be written in the same format as an ARMA(p,q) model, noting the following dif-
ferences: Xt, c, and the Wt’s are all length-J column vectors, the Ai’s and the Bk’s are J × J
matrices, and Wt ∼ N (0,Σ), where Σ is a J ×J covariance matrix. As there are more param-
eters to fit than in the univariate case, a more efficient method than maximizing likelihood
for finding the best fit set of parameters for a model M , θ̂ = {c, A1, . . . , Ap, B1, . . . , Bq,Σ},
is ordinary least squares regression. The order p and q of the model can then be determined
by minimizing the AIC where θ̂ is determined for each model M by ordinary least squares
regression rather than by maximizing likelihood.

If we do not incorporate any of the BkWt−k terms for j > 0 the VARMA(p,q = 0) model
simplifies to a vector autoregressive model of order p (a VAR(p) model), given by

Xt = c+

p∑
i=1

AiXt−i +Wt,

where c is a length-J vector of constants, each Ai is a J×J dimension coefficient matrix for the
lag-i vector Xt−i, and Wt ∼ N (0,Σ), where Σ is a J × J covariance matrix. These tend to be
much simpler to identify and work with than full VARMA(p,q) models. For multivariate series
in which the current value of each component has an approximately linear dependence on its
previous values and the previous values of other components, a VAR model is an appropriate
choice. VAR models have been used for modeling spatially correlated wind speeds in both
[12] and [24].

Note that in the ARMA model, the volatility σ is constant throughout the process as we
assume we have a stationary time series. However, nonstationarity is common, and volatility
may tend to change over time. To allow for this, a generalized autoregressive conditional
heteroscedastic (GARCH) process of order p′, q′ described in [7], an extension of the ARCH(q′)
model presented in [16], can be used to model the conditional volatility at time t as σ2

t =

c +
∑p′

n=1 φnW
2
t−n +

∑q′

m=1 ζmσ
2
t−m. This can then be merged with the ARMA model by

letting σt replace σ to produce a hybrid ARMA-GARCH model. An information criterion,
such as the AIC, can then be used to guide model order. After the order is determined,
parameters are again chosen to maximize likelihood.

In renewable power applications, allowing volatility to evolve over time based on recent
volatility history would seem to make sense. To see why, consider, for example, a time period
in which there are violent storms with intermittent calmer periods. The wind power generated
by this weather pattern may be difficult to predict in a forecast. Thus, during these times
forecast errors will likely be much more volatile than during calm periods. Having a general
model to handle these volatility changes without needing additional explanatory variables can
be useful, and indeed ARMA-GARCH models for generating wind speed scenarios have been
used as in [26].

2.3. Other models and approaches to scenario generation. If, instead, we want to allow
more parameters of our nonstationary model to evolve over time, we can use a state space
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method. A state space model is used for wind speed scenarios in [14]. Another approach is to
assume there exist distinct changes in regime over the course of the time series that cause the
parameters to change suddenly; this idea is described in [22]. Using this method, one could
use a discrete state Markov chain to model changes in regime, while fitting a unique ARIMA,
GARCH, or other type of model to the data occurring in each regime. This is done in [40],
for example, where wind power scenarios are generated using wind direction based regime
switching linear models. Regime switching models are also the basis for the univariate and
low dimensional multivariate crossing state models.

Other efforts in wind power scenario generation include using an artificial neural network
to generate a forecast error time series [41]. In [34] scenarios are generated from probabilistic
forecasts. This method is then extended in [29] to produce spatially dependent scenarios
through the use of unique spatial correlation matrices for each forecast lead time. Copula
techniques have been employed in wind power scenario generation techniques as well, such as
in [43], where a copula is used to relate the joint distribution of actual and forecast power
outputs to the marginals. A conditional forecast error can then be generated from this copula.
This method can be extended to multiple wind farms. The spatial stochastic dependence of
wind speed at different wind farm sites is captured using a copula in [21]. The copula is then
used for generating spatially distributed wind speed scenarios.

It is important to note that none of the above models consider crossing time behavior.
We have observed that without directly modeling this, crossing times at both the individual
and aggregate levels will not match historical data. To our knowledge, this is the first time
crossing time behavior has been directly modeled in a scenario generation method.

3. Crossing time distributions and crossing states. Unlike forecast error distributions,
crossing time distributions are often difficult to replicate and will require specialized models.
The empirical distributions are formed from data using the procedure below in which we start
by defining crossing points.

For subprocess j, let the set of all indices such that errors crossed over from the negative
to the positive regime (up-crossing points) be CUj = {t|Xt−1,j ≤ 0 ∧Xt,j > 0}. Likewise, the

set of down-crossing points is defined as CDj = {t|Xt−1,j > 0∧Xt,j ≤ 0}. An up-crossing time

of duration d starting at time t′ ∈ CUj is then defined as

TUt′,j = d if

{
Xt′+i,j > 0 ∀i ∈ {0, 1, . . . , d− 1} ,
Xt′+d,j ≤ 0.

Similarly, a down-crossing time of duration d starting at time t′ ∈ CDj is defined as

TDt′,j = d if

{
Xt′+i,j ≤ 0 ∀i ∈ {0, 1, . . . , d− 1} ,
Xt′+d,j > 0.

Examples of points in time belonging to CUj and CDj , as well as an up- and a down-crossing time,
are shown in Figure 1. For both up-crossing and down-crossing times, for each subprocess j
there exists empirical disaggregate distributions FUj and FDj , respectively. A similar procedure

can be carried out for the aggregate series as well to form empirical distributions FU,agg and
FD,agg.
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Figure 1. Points in time belonging to CUj and CDj . A forecast error and both an up- and a down-crossing
time are also shown.

In order to describe the models presented in this paper, it is necessary to introduce the
concept of the crossing state of a process. Assume we have a vector of point forecasts (or, in
general, a vector of benchmark reference points) at lead time t, fPt for J stochastic subpro-
cesses. For each subprocess j ∈ {1, 2, . . . J}, let element j of the crossing state be the indicator
variable SCt,j = 1{Pt,j>fPt,j}

, or equivalently SCt,j = 1{Xt,j>0}, representing whether or not the

subprocess is above or below its forecast at time t. The variable SCt,j is called the subprocess
crossing state for subprocess j. The full time t crossing state can then be defined as the length
J column vector

SCt =
(
SCt,1, S

C
t,2, . . . , S

C
t,J

)T
=
(
1{Xt,1>0},1{Xt,2>0}, . . . ,1{Xt,J>0}

)T
.

We incorporate the crossing state into our models in order to control the crossing times
of our sample paths. Note that sample paths in which crossing state transitions are similar to
those seen in training data will also have similar crossing time distributions (at least at the
disaggregate level) because this is precisely what the crossing state models—the consecutive
periods of time for which each subprocess is above or below its forecast. If we simply rely
on the natural transitions in the crossing state produced by a standard time series model
when simulating a forecast error time series, we obtain poor replications of crossing time
distributions. However, if we can accurately model the dynamics of the crossing state, we can
guide, or possibly force, the time series into consistency with the crossing state (consistency
would be ensuring Xt,j > 0 when SCt,j = 1 or Xt,j ≤ 0 when SCt,j = 0) in hopes of correcting
the discrepancies between actual and simulated crossing time distributions. The methods for
ensuring consistency are described later.

Finally, note that this is not a strict definition of the crossing state, and there are some
variations in the following models. However, all the models utilize the crossing state for the
same two purposes—to control the crossing times of the simulations and to influence the error
generation process (to be described later as well).

4. A univariate hidden semi-Markov crossing state model. In this section we develop
a nonparametric univariate crossing state hidden semi-Markov model (HSMM). Note that
the low dimensional model presented later in section 5 can also be applied to univariate
settings. However, the HSMM can be more useful in sequential decision making problems
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under uncertainty as there are a relatively small number of information states which the
exogenous process can be in at any time t. This would, for example, keep the run time of
finding an optimal control policy for the system by solving the full backward Markov decision
process low relative to a model which can take on many states. Furthermore, this model lends
itself to any policy which relies on fitting value functions to system states.

4.1. Crossing state transition model: A semi-Markov model. Recall that for both the
up-crossing and down-crossing times, there exist distributions FU and FD, respectively. Up-
crossing time distributions are quantized by partitioning into Q bins, splitting at the quantile
points such that qUi is the ith quantile for i ∈ {1, 2, . . . , Q} (where qUQ represents the maximum
value in the distribution). Note that this implies the bins will likely not be equally sized. If
we also let qU0 = 0, an up-crossing time TUt′ starting at t′ would then belong to bin bUi if
qUi−1 ≥ TUt′ < qUi , with the exception being that the maximum value in the distribution
belongs to bin bUQ. If, for example, Q is chosen to be 3, the lower third of up-crossing times

belonging to bin bU1 could be interpreted as “short runs above the forecast,” while the middle
third belonging to bin bU2 would be interpreted as “medium length runs above the forecast.”
The same procedure is carried out for down-crossing times.

We then define our crossing state variable SCt as the pair of variables describing whether
the path is above the forecast and what crossing time duration bin the system is currently in.
We can express this as the pair SCt ≡ (It, Bt), where

It =

{
U if Xt > 0,

D if Xt ≤ 0,

and, after identifying argmaxt′∈CIt (t
′− t) such that t′− t ≤ 0 (finding the most recent crossing

point), Bt = i if Tt′ ∈ bIti . The set of all possible crossing states is given by SC , which is
the Cartesian product of the possible It’s and Bt’s. When training is finished, there exists a
distribution of crossing times F Ts for each crossing state s ∈ SC . This will be important for
simulation.

Note if t + 1 /∈ (CU ∪ CD), P (SCt+1 = SCt |SCt ) = 1 as the crossing state remains constant
until errors switch signs. If, however, t+1 ∈ (CU∪CD), the crossing state transition matrix has
a nontrivial P (SCt+1 = s′|SCt ) for s′ ∈ SC . This is computed from data as follows. Considering
only points in time such that t + 1 ∈ (CU ∪ CD), let n(SCt+1 = s′|SCt = s) be the count of
the transitions from state s to state s′ occurring for each pair of crossing states (s′, s) and let
n(SCt = s) be the number of times SCt = s for each crossing state s. The transition probability
from crossing state s to s′ is then given by

(1) P (SCt+1 = s′|SCt = s) =
n(SCt+1 = s′|SCt = s)

n(SCt = s)
.

During simulation, we insist that the crossing state remains constant for a crossing time drawn
from F Ts before being allowed to transition according to P (SCt+1 = s′|SCt = s). This transition
model is a semi-Markov model.

Note that half of the entries in each row of the transition probability matrix must be
equal to zero as down-crossing states (It = D) cannot transition to another down-crossing
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state, and likewise for up-crossing states (It = U). The remaining half of the row forms a
multinomial distribution. Individual transition probabilities are estimated using (1), which
gives the maximum likelihood estimator P (SCt+1 = s′|SCt = s) with corresponding standard
deviation √

P (SCt+1 = s′|SCt = s)(1− P (SCt+1 = s′|SCt = s))

n(SCt = s)
.

This is useful in guiding the choice of Q as larger values of Q will partition the crossing
time data into finer bins and result in fewer observations of transitions to form transition
probability estimates. Since duration bins are divided at points corresponding to evenly
spaced quantiles of the crossing time distributions, the number of observations per bin will
be approximately equal. Thus, if one has a training data set with N total crossings, one can
expect n(SCt = s) = N

2Q for each s ∈ SC , where the factor of 2 stems from the fact that there
are both up- and down-crossings.

4.2. Error generation model: A discrete state Markov chain. The crossing state-
conditioned error distributions FXs are not identical across all possible crossing states s ∈ SC .
In fact, they are likely to be quite different, such as in the case where the error distribution
is asymmetric. Furthermore, the error variance likely to increase with run length as well as
longer deviations from the forecast tend to produce larger error magnitudes. This behavior is
seen in Figure 2, which shows error densities for each type of run length bin with Q = 3. Thus,
to better capture the behavior of the error process, the error generation model is conditioned
on the crossing state.

In addition to errors being crossing state-dependent, they are dependent on error history
as well; a first order discrete state Markov chain is used to model this behavior. As errors
may be continuous or take on many discrete values, we must first quantize the distribution to
form a manageable number of error states. Similar to how the crossing time distributions are
partitioned, each error distribution FXs for s ∈ SC is split into R bins: bs1, b

s
2, . . . , b

s
R, splitting

Figure 2. Left: Error distributions conditioned on Bt, the crossing time bin, with Q = 3. Both positive
and negative errors for equal values of Bt are combined to form the distributions. The variance of the errors
tends to increase with run length. Right: Example of conditional distributions for Xt+1 given a fixed crossing
state, SCt = (D, 3), but varying which error bin, Xg

t , that Xt belongs to. The magnitude of the next error is
largely dependent on the magnitude of the current error.
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at the quantile points such that qsi is the ith quantile for i ∈ {1, 2, . . . , R} (where qsR represents
the maximum value in the distribution).

Letting qs0 be the minimum value in the distribution, Xt ∈ bsi if qsi−1 ≤ Xt < qsi (with the
exception that the maximum value in the distribution belongs to bin bsR) and the crossing
state at time t is s. Then, given Xt ∈ bsi , we have a conditional distribution for the error at
time t + 1 giving P (Xt+1|s,Xt ∈ bsi ). Therefore, the complete information state at time t is

defined as St ≡ (SCt , X
g
t ) ≡ (It, Bt, X

g
t ), where Xg

t = i if Xt ∈ b(It,Bt)i .
The dependence of Xt+1 on Xg

t , the state of the current error, is illustrated in Figure 2 in
which conditional distributions for Xt+1 are plotted for a fixed crossing state, but varying error
states Xg

t . In the example Q = 3 and R = 5. Note that the number of possible information
states this stochastic process may be in at any time is (Q×2)×R, where an information state
contains all necessary information about the process at time t to determine its distribution at
time t+1. Let the set of all the possible information states be given by S and the distribution
of the error at time t+ 1 given we are in information state i ∈ S at time t be FXi .

Overall, this model fits under the category of hidden semi-Markov models as the crossing
state is partially unobservable. The HSMM was first introduced in [18], and since then has
been used for a wide variety of applications including some time series modeling applications
(see [42] for more examples). However, the concept of using an HSMM to model crossing
times for generating sample paths is new.

There are a few practicalities to consider when using the model to generate a sample path.
To produce a sample path of errors from forecast of length L, assuming that Q and R have
been chosen, use Algorithm 1, which is written in pseudocode in which vectors are indexed
starting at 1.

Choosing the parameters Q and R is not a trivial task as one risks overfitting by choosing
values that are too large for the available training data. If an extensive set of training data

Algorithm 1. Univariate crossing state HSMM: Simulation procedure.
From training data, for s′, s ∈ SC form and store transition matrix with entries giving P (s′|s) and empirical distri-
butions FTs , FXs . Also for i ∈ S, form FXi .
Initialize E = [ ]
Initialize t← 1
Sample an initial crossing state s ∈ SC .
while t < L do

Sample a run length (crossing time) r from FTs .
V = zeros(r)
for t′ = 0, 1, 2, . . . , r − 1 do

if t′ = 0 then
Vt′+1 is sampled from FXs .

else
Determine Xg

t′ from the error Vt′ and s, and the i ∈ S corresponding to (s,Xg
t′ ).

Vt′+1 is sampled from FXi .
end if

end for
E ← concat(E, V )
Change crossing states by sampling according to the probabilities found transition matrix row P (s′|s) for s′ ∈ SC .
Let s← s′ for the state s′ that was sampled.
t← t+ r

end while
return E1:L
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is available, larger values of Q and R may be chosen as this will allow the model to capture
more complex dynamics in the transition of the crossing state as well as the error generation
process. However, as Q and R increase, the data is partitioned into an increasing number
of bins. If there are only a few observed crossing times belonging to each bin, we are likely
overfitting to data by choosing Q too large (a discussion of the precision of crossing state
transition probability estimates is included in subsection 4.1). Similarly, if there are relatively
few observed errors belonging to each error bin, R should be decreased. As any choice of Q and
R will allow the model to capture the crossing time distributions (as it does so by construction),
one should err on the side of caution when choosing Q and R to avoid overfitting.

5. Low dimensional multivariate crossing state model. A motivating application for a
low dimensional crossing state model is the control of a microgrid in which we have access
to three wind farms located far enough apart that they cannot be accurately modeled as one
source but close enough to exhibit correlation. In addition to fossil fuel generation plants
and other sources of power, there are energy storage devices available. The goal is to find a
robust control policy—one that is unlikely to fail even in scenarios in which renewable power
falls below its forecast for extended periods of time. To develop or test candidate policies, a
multidimensional model for wind power outputs in which crossing times are preserved at the
individual level and the aggregate level would be useful.

Depending on the application and available training data, the maximum number of di-
mensions J for which this model is usable varies. A recommendation is to use this model for
J ≤ 3 and the high dimensional model when J ≥ 5. If J = 4, one may want to experiment
with both models to determine which is more appropriate.

5.1. Forecast bin-conditioned Z-transforms. We first discuss the forecast bin-conditioned
Z-transform in greater detail as it is utilized in both multivariate models. There are situations
(such as modeling wind) where the stochastic process must fall within specified bounds. In
this case, it is useful to condition on the forecast itself. This is because when forecasts are
near the minimum, errors tend to have a heavy positive skew; the opposite is true for forecasts
near the maximum.

Figure 3, in which empirical conditional distributions are shown for one wind farm’s fore-
cast errors conditioned on five different forecast bins, displays how the distribution of forecast
errors is heavily dependent on the forecast level. Thus, before forming our error genera-
tion model, we perform this type of conditional Z-transform. As mentioned in section 2,
[27] also employs a similar transform. More formally, for subprocess j, we first divide the
interval [Pminj , Pmaxj ] into m subintervals to form forecast bins: bj,1 = [Pminj , pj,1), bj,2 =

[pj,1, pj,2), . . . , bm = [pj,m−1, P
max
j ], where Pminj < pj,1 < pj,2 < · · · < Pmaxj . Then, the ran-

dom variable Y = y if fPt,j ∈ bj,y. For the multivariate models, ZYt,j results from this forecast
bin-conditioned transform.

5.2. Crossing state transition model: A semi-Markov model. The crossing state transi-
tion semi-Markov model used here is similar to the one presented in subsection 4.1, but with
some variations. First, we make a slight change to the basic crossing state format from section
3 by adding the indicator variable for whether or not the aggregated output is above or below
its forecast. So our crossing states now have the form
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608 JOSEPH DURANTE, RAJ PATEL, AND WARREN B. POWELL

Figure 3. Empirical conditional CDFs of wind power forecast errors from one wind farm where conditioning
is done on the forecast bin to which the forecast at lead time t belongs. The positive skew of the errors for forecasts
near the minimum value (0 MW) and the negative skew for forecasts near the maximum value (maximum power
output of the wind farm) can be clearly seen here.

SCt =
(
SCt,1, . . . , S

C
t,J , S

C,agg
t

)T
=
(
1{Xt,1>0}, . . . ,1{Xt,J>0},1{Xagg

t >0}
)T

.

The set of possible crossing states, SC , has cardinality 2J+1 − 2 as the crossing states
(0, . . . , 0, 1)T and (1, . . . , 1, 0)T cannot exist. From the training data we can then form em-
pirical run length distributions, F Ts , for each crossing state s ∈ SC , where a run length, T s,
is a consecutive period of time for which the crossing state remains unchanged. Note these
are not exactly the same as crossing times, but observe that if we can model the transitions
between crossing states accurately, as well as the lengths of time we remain in each crossing
state (run lengths or sojourn times), we will be able to replicate crossing times at both the
aggregate and disaggregate levels.

We use a semi-Markov model for the evolution of the crossing state in which the crossing
state is held constant for a period of time sampled from F Ts . After this period, the crossing
state must transition. Much like in the one-dimensional crossing state transition model, we
can estimate the transition probability between each pair of crossing states by first isolat-
ing consecutive pairs of points between which crossing states changed in the training data.
Then, using (1), we compute the transition probability between each pair of crossing states
P (SCt+1 = s′|SCt = s) for (s′, s) ∈ SC × SC . The process of holding the crossing state con-
stant for a sampled run length and then changing crossing states by sampling according to
the probabilities found in transition matrix row P (SCt+1|SCt ) is repeated until the end of the
simulation.

5.3. Error generation model: A regime switching VAR model. Overall, this crossing
state model is a regime switching VAR model that uses a semi-Markov model for regime
transitions. The regime transition model is in subsection 5.2, and there are 2J+1− 2 different
VAR models used for error generation, one for each crossing state. These VAR models are
fit to forecast bin-conditioned Z-transformed errors rather than the errors themselves. The
rationale behind using separate VAR models for the error generation in each regime is that
the stochastic dependencies of the subprocesses can be fundamentally different during periods
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SIMULATION METHODS THAT REPLICATE CROSSING TIMES 609

when many or all of the farms are above their forecast than during periods when many or all
of the farms are below their forecast.

5.3.1. Fitting a VAR model for each crossing state. Recall that an order p VAR model
has parameters θ̂ = {c, A1, . . . , Ap,Σ}. Thus, to form a unique VAR model for each crossing
state s ∈ SC , we must first determine the proper order of the model for the crossing state
s, ps, and then find the corresponding best fit parameter set θ̂s = {cs, As1, . . . , Asp,Σs}. This
procedure is described next, in which we fit a VAR(ps) model to the training data occurring
in the crossing state s by finding ps and subsequently θ̂s for a single crossing state s.

Given the time series, {Xt}Tt=0, we first find the crossing state, SCt , at each time pe-
riod. A forecast bin-conditioned series of Z-variates is also formed from the data, ZYt,j =

Φ−1(F
X|Y
j (Xt,j)), where Y = y if fPt,j ∈ bj,y for t ∈ {0, 1, . . . , T}. We then isolate all the

data ZYt such that SCt = s and concatenate it together in order of increasing t to construct
a new time series, {ZY,st′ }

T ′
t′=0, where T ′ is the length of the new series, which has gaps in

the original series for which SCt 6= s removed. Then, using the newly constructed series
of Z-variates {ZY,st′ }

T ′
t′=0, we use ordinary least squares regression to find the parameter set

θ̂s = {cs, As1, . . . , Asp,Σs} for different values of ps and choose the (ps, θ̂s) pair such that the
AIC is minimized. The same procedure is then carried out for all other possible crossing states
s′ ∈ SC , s′ 6= s as well.

5.3.2. Generating errors with crossing state-dependent VAR models. If the process is
in crossing state s = SCt at time t, the VAR(ps) model corresponding to s is used to generate
the Z-variate errors at time t,

ZYt = cs +

ps∑
i=1

AsiZ
Y
t−i +Wt,

where Wt ∼ N (0,Σs). Algorithm 2 (in which vectors are indexed starting at 1) describes the
simulation procedure for producing a sample path of length L, given all the model parameters
are already determined from the training data. However, one aspect of simulation that should
be highlighted is the rejection and resampling of error vectors that are inconsistent with the
crossing state. Inconsistency occurs when Xt,j ≤ 0 and St,j = 1 or vice versa. Additionally,
even if the individual errors are consistent with their corresponding crossing state components,
we can still obtain an inconsistency if the summation of the errors is inconsistent with SC,aggt .
The following is an example of this scenario in J = 2 dimensions, accompanied by Figure 4.

Assume at time t+1 in our simulation our current crossing state is SCt+1 = (0, 1, 1)T , where
the last element represents the aggregate level indicator variable. Imagine the simulation
produces the time t + 1 error vector (following the inverse Z-transform) Xt+1 = (−3, 1)T .
Though each individual subprocess is consistent with SCt+1, this results in an inconsistency
as we obtain an aggregate error of Xagg

t+1 = −2 which corresponds to a crossing state of
SCt+1 = (0, 1, 0)T .

If we do encounter an inconsistency, the sample point is rejected and resampled until
consistency is achieved (in Figure 4, consistency is achieved when Xt+1 = (−5, 8)T ) or a
stopping condition (maximum number of resamples) is reached. If the stopping condition is
reached, we retain the most recent sample and proceed.
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Algorithm 2. Low dimensional crossing state model: Simulation procedure.
Initialize ZY = [ ]
Initialize t← pmax, where pmax is the largest order of all the VAR models.
Retain initial t Z-transformed errors and initialize s = SCt .
while t < L do

Sample a run length r from empirical distribution FTs .
for t′ = 1, 2, . . . , r do

ZY
t+t′ = cs +

ps∑
i=1

AsiZ
Y
t+t′−i +Wt+t′ where Wt+t′ ∼ N (0,Σs)

Set Resamples = 0
while (The crossing state resulting from the inverse Z-transforms of the vector ZY

t+t′ 6= s) and (Resamples <

MaxResamples) do
Resample Wt+t′ ∼ N (0,Σs) in the VAR(ps) model.
Resamples← Resamples+ 1

end while
end for
Change crossing states by sampling according to the transition matrix row giving P (s′|s) for each crossing state
s′ ∈ SC . Let s← s′ for the s′ that was sampled.
t← t+ r

end while
return ZY1:L,1:J

Figure 4. Graphical representation of rejection and resampling of inconsistent error vectors in J = 2
dimensions.

The stopping condition is crucial to the efficiency of the algorithm, as the simulation may
encounter cases where the probability of sampling a point consistent with the crossing state is
very low, resulting in an excessive number of rejections. This is a common problem suffered
by standard rejection-based sampling methods in multiple dimensions. Depending on the
dimensionality and characteristics of the stochastic process, the rejection rate will vary. For
reference, in the spatially distributed wind power application with J = 3 dimensions the rate
at which we reach this stopping condition is approximately 7 percent. With an additional
wind farm (J = 4 dimensions) this rises to approximately 9 percent. In this application,
this relatively low rate is acceptable. However, if one finds that the rejection rate is too
high and is affecting the quality of the simulations (by reaching the stopping condition too
frequently), one can consider integrating methods that sample from constrained densities to
improve efficiency (see [9, 19]) into the algorithm.

Finally, before considering how to extend the crossing state model to higher dimensions,
we discuss a weakness shared by both the univariate and low dimensional models as they are
presented and suggest a method for circumventing the problem. By simulating the crossing
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state transitions and crossing times separately from the errors, error magnitude is not directly
related to the elapsed time since the last crossing or the remaining time before the next
crossing. This may result in unusually large jumps between the positive and negative regimes
when the crossing state transitions. One way to curb this effect is to fit both an initial and a
terminal error density for each crossing state. Upon entering a new state, one would sample
an error (or error vector) from the initial distribution. Then, prior to exiting the state, the
final error is sampled from the terminal density. These error distributions would likely exhibit
means closer to zero as well as smaller variances, resulting in smoother transitions between
regimes. This alteration to the model is relatively easy to include for both the univariate and
low dimensional models, but not for the high dimensional model presented in the subsequent
section. Thus, we have not included it in the general framework of the models to maintain
consistency.

6. High dimensional multivariate crossing state model. In higher dimensional settings,
such as a large power grid with many spatially distributed wind farms, the previous crossing
state model does not scale for several reasons. With J subprocesses there are, at minimum, 2J

possible crossing states. A semi-Markov crossing state transition model would certainly not
be scalable as, for one, we cannot maintain a look-up table representation of the transition
function. In addition, we are unable to fit a unique error generation model to each crossing
state using the same methods. A high dimensional model is thus developed to circumvent
these issues.

6.1. Crossing state transition model: A logistic model. Here we use the definition of the
crossing state found in section 3. Instead of a look-up representation of the transition function
for the full crossing state, we model the evolution of each subprocess crossing state with a
logistic model that incorporates the previous p crossing states in the transition function. This
scalable approximation of the transition probability for each element of the crossing state is
used to control the crossing times of the individual subprocesses. The model is described
below.

For each element j we estimate

P (SCt+1,j = 1|SCt , . . . , SCt−p+1) =
1

1 + exp
[
cj + β0,jSCt + · · ·+ βp−1,jSCt−p+1

]
and

P (SCt+1,j = 0|SCt , . . . , SCt−p+1) = 1− P (SCt+1,j = 1|SCt , . . . , SCt−p+1),

where the scalar parameter cj and the length J parameter row vectors β0,j , . . . , βp−1,j are
chosen to minimize the probability of incorrect selection from the training data. Element j′

of βp′,j is the coefficient corresponding to the j′th element of the lag-p′ crossing state in the
logistic transition model for the jth crossing state component. During simulation, a crossing
state transition for component j is made by first finding P (SCt+1,j = 1|SCt , SCt−1, . . . , S

C
t−p+1)

using the previous p crossing states. Then, a uniform random variable U ∼ Unif [0, 1] is
sampled. If U < P (SCt+1,j = 1|SCt , SCt−1, . . . , S

C
t−p+1), then SCt+1,j = 1; otherwise, SCt+1,j = 0.
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612 JOSEPH DURANTE, RAJ PATEL, AND WARREN B. POWELL

6.2. Error generation model: Individual lag-p linear models. Just as we allow each
element of the crossing state to evolve separately, rather than modeling the dynamics of the
entire Z-variate vector with a single model such as a VAR model, each subprocess j will have
its own SCt,j-dependent transition model. This allows the sample point ZYt,j to be generated

independently of ZYt,j′ for j′ 6= j at time t. This turns out to be a reasonable simplification
here because in many cases, if we examine the standard VAR(p) model more closely, we notice
the off-diagonal terms of the covariance matrix Σ for the multivariate normal random vector
Wt are much smaller in magnitude than the main diagonal entries and often relatively close
to 0. If we do assume the covariance matrix Σ is diagonal, the VAR(p) model,

ZYt = c+

p∑
i=1

AiZ
Y
t−i +Wt,

where Wt ∼ N (0,Σ), is separable, and we can rewrite it as J decoupled equations, one for
each component j of ZYt ,

ZYt,j = cj +

p∑
i=1

Ai,jZ
Y
t−i +Wt,j ,

where cj is the jth element of the constant vector c, Ai,j is the jth row of the lag-i coefficient
matrix Ai, and Wt,j ∼ N (0, σ2

j ), where σ2
j = Σj,j .

We can then incorporate crossing state-dependence by forming two models of this form
for each component j, one for when subprocess j is above its forecast (SCt,j = 1), and one

for when it is below its forecast (SCt,j = 0). We perform the training procedure described in
subsection 5.3.1 with the following modifications. For each subprocess j we first construct
two multivariate time series from the training data—one from times at which the subprocess
crossing state SCt,j = 1, and another when SCt,j = 0. For these two series, we fit linear models
of the form

ZYt,j = csj +

ps∑
i=1

Asi,jZ
Y
t−i +Wt,j ,

where Wt,j ∼ N (0, σ2,s
j ) for s ∈ {0, 1}. The order of subprocess j’s linear model for subprocess

crossing state s, ps, can be chosen by minimizing the AIC. The remaining parameters for each
model—csj , the Asi,j coefficient row vectors, and σs—are those corresponding to ps which were
determined using ordinary least squares regression.

The change from the low dimensional multivariate method to the high dimensional mul-
tivariate method is necessary as we cannot form 2J+1 − 2 separate VAR models for each
crossing state as in section 5 for larger values of J from a limited amount of training data.
Additionally, even if infinite training data was available, since it is unlikely a high dimensional
crossing state will remain unchanged for several consecutive time periods, the concatenated
error series would contain large time gaps between each point. Thus, the VAR models fit to
these series would not be a good representation of how the error vector evolves from one time
period to the next.
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SIMULATION METHODS THAT REPLICATE CROSSING TIMES 613

A rejection method is used here to ensure sampled errors are consistent with the crossing
state and is very similar to the one explained in subsection 5.3.2. At each time t, for each
component j, Wt,j is sampled until either (1) Xt,j > 0 and SCt,j = 1 or Xt,j ≤ 0 and SCt,j = 0
or (2) a maximum number of resampling iterations has been reached. If we reach the second
case, one may chose to leave the generated error as is or reject one additional time and sample
an error from the observed distribution of forecast bin-conditioned Z-transformed errors that
occur in the current crossing state of subprocess j, SCt,j . Though the latter strategy occasionally
samples from a secondary distribution (the observed error distribution) instead of the intended
distribution, the method presented in this paper employs this strategy as it produces more
accurate crossing time distributions.

6.3. Postsimulation sample path smoothing. If the high dimensional method as de-
scribed until this point is utilized for simulation, the resulting sample paths will have error
distributions closely matching observed distributions at both the aggregate and disaggregate
levels. Additionally, the simulated crossing time distributions will be consistent with observed
crossing time distributions at the disaggregate level. However, at the aggregate level, simu-
lated crossing times will tend to be shorter than observed crossing times. We now search for
a method to correct this.

The inability to replicate aggregate crossing time distributions stems from the fact that,
unlike the low dimensional model, the high dimensional model does not have an indicator
variable to control the crossing times of the aggregate sum. One might consider including
this in the logistic model to simulate the evolution of the aggregate crossing state as well.
We could then follow the procedure of generating and rejecting samples until agreement with
the crossing state at both the aggregate and disaggregate levels is reached. However, in high
dimensions we would often encounter cases where the probability of acceptance is extremely
low and, unlike in the low dimensional model, resampling is unlikely to produce a point
consistent with the crossing state at both the individual and aggregate levels. Thus, it is not
useful to simulate the aggregate crossing state as we cannot enforce agreement with it.

It is, however, simple to guarantee that each individual component is consistent with its
individual subprocess crossing state. Once the crossing state is simulated using the logistic
model (subsection 6.1), we sample errors as explained in subsection 6.2, rejecting if necessary.
However, the rejection probability is often significantly lower in a single dimension. Resam-
pling can thus successfully correct inconsistencies with the crossing state at the disaggregate
level.

To achieve better performance at the aggregate level, a smoothing step is employed to
reduce some of the variability in the sample paths at the aggregate level without a major
change to the model that would disrupt its success in replicating the majority of the desired
distributions. The smoothing step is simply an adjustment to the simulated aggregate paths
such that their crossing times are more consistent with the observed data. The adjustment
may come at a small expense (if any) to the quality of the simulated error distributions,
but capturing the aggregate crossing time behavior is of high priority for the application we
consider.

If we view the sample paths more carefully, we see that at the aggregate level some of the
longer runs above or below the forecast are interrupted by very short periods of time for which
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614 JOSEPH DURANTE, RAJ PATEL, AND WARREN B. POWELL

the error switches signs. Furthermore, this pattern is not observed often in the historical data.
Thus, a small integer a is chosen for which we attempt to eliminate any crossing times at the
aggregate level less than a through resampling. The aggregate sample paths are, in effect,
smoothed slightly.

A short example of this process is explained here to clarify the procedure. The full
smoothing step is also described in Algorithm 3. Suppose the high dimensional method is
used to produce simulations that result in the following aggregate crossing states for times
t = 0, 1, . . . , 99: SC,aggt = 0 for t ∈ [0, 57], SC,aggt = 1 for t ∈ [58, 59], and SC,aggt = 0
for t ∈ [60, 99]. Also suppose a = 3. In this case, the error vectors X58 and X59 would be
resampled using the appropriate linear model for each component of the vector until SC,agg58 = 0

and subsequently SC,agg59 = 0 as well (or a maximum number of resampling iterations is
reached). Instead of 2 medium-length crossing times of length 58 and 40 and a short one of
length 2 in between, we are left with a smoothed sample path and one longer crossing time of
100 time steps.

Picking an appropriate a requires some tuning as different stochastic processes (or wind
data from different seasons) will likely exhibit different behaviors. a should be chosen to
produce the best fit between simulated aggregate crossing time distributions and observed
distributions. The result of the smoothing step is that, without affecting the ability of the
model to fit the other desired distributions, we are able to significantly improve the simulated
aggregate crossing time distributions.

7. Numerical results. The day ahead unit commitment problem in PJM Interconnections,
in which steam generation must be scheduled a day in advance, is one important application
of the crossing state-based scenario generation methods. Thus, the forecast series of interest
in this section are the 12–36 hour ahead wind power forecasts. PJM uses an external fore-
casting vendor using a proprietary method, but all we need is a history of forecasts and the
corresponding actual power production from the different wind farms. Both the forecast and
output series are available in 10-minute intervals and a month’s worth of data is collected
from wind farms across the United States’ Great Plains region from January 2013.

In this section, we first use the data to fit univariate models for the individual farms. We
then address the problem of replicating output at both the disaggregate and aggregate levels
with multivariate models.

In each setting (univariate, low dimensional multivariate, high dimensional multivariate),
the models simulate 20 forecast error scenarios over the course of one month. For each wind
farm involved, the forecast output is then added to each scenario to produce wind power output
scenarios. These must be nonnegative and are clipped if they fall below 0 MW. They are also
capped at the maximum power capacity of each wind farm. The resulting simulated crossing
time and error distributions are formed from the combination of all scenarios produced by a
single model combined.

We will be evaluating models on their ability to produce scenarios that replicate forecast
error and crossing time distributions. A main tool we use as an indicator of performance is a
weighted two-sample quadratic empirical distribution function statistic as a distance measure
between two probability distributions. For empirical CDF’s FX of a size N sample and F Y

of a size M sample, the general weighted Q2 statistic is given by
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Algorithm 3. High dimensional crossing state model: Simulation procedure.
Initialize ZY = [ ]
Retain initial forecast conditioned Z-transformed errors, ZYt,j , up to the greatest order pmax in all the linear models.

Find initial crossing states SCt for t ∈ {1, 2, . . . , pmax}.
for t = pmax, pmax + 1, . . . , L− 1 do

for j = 1, 2, . . . , J do
P (SCt+1,j = 1|SCt , SCt−1, . . . , S

C
t−p+1) = 1

1+exp[cj+β0,jS
C
t +β1,jS

C
t−1+···+βp−1,jS

C
t−p+1]

Sample U ∼ Unif [0, 1]
If U < P (SCt+1,j = 1|SCt , SCt−1, . . . , S

C
t−p+1) then St+1,j = 1, otherwise St+1,j = 0.

end for
ZYt+1 ←GenerateZVector(SCt+1)

end for

Postsimulation smoothing step:
t← pmax

while t < L do

SC,aggt = 1 if
J∑
j=1

F
X|Y,−1
j (Φ(ZYt,j)) > 0, SC,aggt = 0 otherwise.

r ← 0
while SC,aggt == SC,aggt+r do

r ← r + 1

SC,aggt+r = 1 if
J∑
j=1

F
X|Y,−1
j (Φ(ZYt+r,j)) > 0, SC,aggt+r = 0 otherwise.

end while
if r < a then

for r′ = 0, 1, . . . , r − 1 do
Repeat ZY

t+r′ ← GenerateZVector(SC
t+r′ ) using the crossing states generated in the first pass of the

simulation (before the smoothing step) to generate new errors until SC,agg
t+r′ == SC,aggt+r or a maximum

number of resampling iterations has been reached.
end for

end if
t← t+ r

end while
return ZY1:L,1:J

function GenerateZVector(SCt+1)
for j = 1, 2, . . . , J do

s← SCt+1,j

ZYt+1,j = csj +
ps∑
i=1

Asi,jZ
Y
t+1−i +Wt+1,j where Wt+1,j ∼ N (0, σ2,s

j )

Set Resamples = 0

while (F
X|Y,−1
j (Φ(ZYt+1,j)) > 0 inconsistent with s) and (Resamples < MaxResamples) do

Resample Wt+1,j ∼ N (0, σ2,s
j ) in the linear model.

Resamples← Resamples+ 1
end while
if Resamples == MaxResamples then

Sample ZYt+1,j from FZ,sj , the empirical distribution of forecast bin-conditioned Z-transformed errors oc-

curring in subprocess j’s current subprocess crossing state s.
end if

end for
return ZYt+1

end function

D
ow

nl
oa

de
d 

05
/0

2/
18

 to
 1

28
.1

12
.6

9.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

616 JOSEPH DURANTE, RAJ PATEL, AND WARREN B. POWELL

Q2 =
NM

N +M

∫ ∞
−∞

[
FX(x)− F Y (x)

]2
w(x)dFXY (x),

where FXY is the joint empirical CDF of the two samples combined. Note that two well-known
statistics can be formulated in this manner. If w(x) = 1 this is the two-sample Cramer–von
Mises statistic, and if w(x) = [FXY (x)(1 − FXY (x))]−1 this is the two-sample Anderson–
Darling statistic [2, 13].

We choose the weighting function w(x) = |x|. In the energy systems context, the char-
acteristics of forecast error series most likely to induce blackouts are long (down-) crossing
times combined with large (negative) forecast errors. In other applications these will result in
shortages or unnecessary surpluses of inventory or resources if not accounted for. Thus, if a
model produces simulated distributions that are slightly inaccurate at small errors and short
crossing times, yet accurate in the tails of the distributions, we would favor it over a model
that does the opposite. Therefore, w(x) = |x| is an appropriate weight for our purposes as it
places more emphasis on a model’s ability to replicate the tails of forecast error and crossing
time distributions.

For the remainder of the paper, when the Q2 statistic is used, F Y will be the observed
empirical distribution from training data and FX will be the corresponding simulated distri-
bution generated by a model. Smaller Q2 statistics indicate the model is doing a better job
replicating a distribution. However, this statistic does not tell the complete story, and we will
be analyzing the shapes of the distributions as well.

Finally, note that we present additional numerical results in the appendix, where we repeat
all tests in this section on different groupings of PJM wind farms during a different month of
the year (July 2013 rather than January 2013).

7.1. Univariate setting. Here we select a single wind farm in the data set for modeling
and testing. Models involving an ARIMA model are chosen and fit by cross validating the
results of the Box and Jenkins method and AIC minimization. ARIMA-GARCH models are
selected via AIC minimization. Six models are tested:

1. an ARIMA(3,0,0) model, referred to as an AR(3) model,
2. an AR(3)-GARCH(1,1) model,
3. an AR(2) model for forecast bin-conditioned Z-transformed time series ZYt ,
4. an ARIMA-GARCH model for the ZYt series,
5. the J = 1 dimensional version of the low dimensional multivariate model presented in

section 5, referred to as the CS-AR (crossing state AR) model,
6. the crossing state HSMM from section 4 with parameters Q = 3 and R = 5.

To keep the plots uncluttered, the results for models 3 and 4 are only given in Table 1,
in which we compare Q2 distances between observed and simulated distributions. However,
these Q2 distances result from a different test case in which the same procedure was carried
out for a different Great Plains wind farm in April 2013. Both the plots and Q2 distances
in different test cases support the fact that standard time series models consistently either
overestimate or underestimate crossing times and do not model them as well as the crossing
state models designed for that purpose.

Figure 5 shows the resulting error distributions for each model versus observed, while Fig-
ure 6 displays crossing time distributions. From these, we see that the AR(3)-GARCH(1,1)

D
ow

nl
oa

de
d 

05
/0

2/
18

 to
 1

28
.1

12
.6

9.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

SIMULATION METHODS THAT REPLICATE CROSSING TIMES 617

Table 1
Q2 distances between observed and simulated distributions for the models tested on a single wind farm

power output. In general, the crossing state models are best at replicating the distributions.

XXXXXXXXXDist’n
Model

AR AR-GARCH ARIMA-ZYt ARIMA-GARCH-ZYt CS-AR HSMM

FX 16.39 341.2 1.533 252.9 0.745 0.059
FU 16.21 27.09 9.381 23.14 0.087 0.016
FD 10.72 18.67 7.276 12.63 0.197 0.028
FA,U 4485.3 24251 3209.2 20575 3409.2 278.66
FA,D 10104 11535 6034.4 14943 1943.4 2134.4

Figure 5. Simulated univariate error distributions versus the observed distributions. The lines for the
crossing state models may be difficult to see as they often overlap the observed distribution.

Figure 6. Simulated univariate up- (left) and down- (right) crossing time CDFs versus the observed dis-
tributions. The lines for the crossing state models may be difficult to see as they often overlap the observed
distribution.

model does not replicate any distribution well and is not a strong model choice for our pur-
poses. The AR(3) model does match the error distribution decently well, but note without the
crossing state variable to guide transitions between error regimes, crossing times are generally
shorter than in the observed data. Both crossing state models reproduce all three distributions
well. This is seen in Table 1 as well.

In Table 1 we consider an additional measure of model effectiveness—the distributions of
areas, above and below, between the actual output path and the forecast series. Reproducing
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618 JOSEPH DURANTE, RAJ PATEL, AND WARREN B. POWELL

these distributions—FA,U for the areas above and FA,D for the areas below—well would
indicate not only are we replicating how long the paths deviate from expected power output
but also by how much during those periods, giving the total error in energy produced during
these periods.

The models best matching both observed area distributions incorporate the crossing state
into the model. However, none of these models has a technique devoted to directly controlling
the distribution of areas above and below the forecast similar to the crossing state transition
model for crossing time distributions. Thus, the quality of simulated area distributions is
more variable than that of simulated crossing time distributions, and in other test cases area
distributions do not match as well. This is a problem for future research to address.

7.2. Low dimensional multivariate setting. The training data and testing methods are
similar to those performed in subsection 7.1, except that model wind power forecast errors from
three randomly chosen wind farms from the Great Plains and view aggregate distributions as
well as individual distributions. Additionally, a different set of models is tested, listed below:

1. a standard VAR model fit to a forecast bin-conditioned Z-variate time series,
2. the low dimensional crossing state (LD CS) model presented in section 5,
3. the high dimensional crossing state model (HD CS) with smoothing presented in sec-

tion 6 with smoothing parameter a = 3.
Note only one standard time series model is tested for comparison. As many multivariate

time series models are extensions of a univariate model to multiple dimensions, since we have
observed in subsection 7.1 that standard univariate models do not preserve crossing times
during simulation, we should not expect that the multivariate versions will do so at the
disaggregate level. Effectiveness at the aggregate level is generally poor as well; however, this
is not readily inferred through comparison with the univariate versions.

Here, the VAR model is the extension of a univariate AR model to more than one di-
mension (and conversely, a VAR model with J = 1 dimension is identical to an AR model).
Of the standard univariate time series models, the AR model for the forecast bin-conditioned
Z-transformed errors performed best according to Table 1, and thus its corresponding multi-
variate version is used for a benchmark in multivariate settings.

The VAR model is slightly better at replicating error distributions (see Table 2 and Figure
7). However, at a slight performance drop in replicating error distributions, the crossing state
models realize significant improvements over the standard time series model in their ability
to replicate crossing time distributions (see Table 2 and Figures 8 and 9). Furthermore,
note the Q2 distances for the distributions of areas above and below the forecast for the
crossing state models (see Table 2) are small relative to the VAR model, especially at the
aggregate level. This implies that the crossing state models are more accurate in modeling
the total surpluses and deficits of available wind energy in the system compared to the expected
amount.

Though the performance of the two crossing state models is very similar, the low dimen-
sional model is still presented in this paper for the following reasons. First, it is a stepping
stone to the high dimensional model as the high dimensional model is formed via approxima-
tions of components of the low dimensional model. It also generates sample paths much faster
than the high dimensional model, requiring one-third of the CPU time. Finally, it is simpler
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Table 2
Comparing Q2 distances between observed and simulated distributions for the models tested on three wind

farms at the individual and aggregate level. Due to variations in farm size and distribution type, only relative
performance of models within each (distribution, farm) cell should be considered.

Wind farm Model FXj FUj FDj FA,U
j FA,D

j

VAR 15.0 11.5 23.9 10400 30200
1 HD CS 23.1 1.14 2.07 12800 5200

LD CS 17.0 0.78 1.32 3400 3600

VAR 24.5 13.2 13.0 11200 18700
2 HD CS 45.0 0.33 8.86 4100 8700

LD CS 30.7 0.21 1.89 1200 3200

VAR 38.3 9.53 12.9 18300 42500
3 HD CS 36.6 3.13 8.84 50000 10700

LD CS 14.1 1.30 5.19 29400 6700

VAR 71.6 7.01 10.9 16900 36900
Agg HD CS 98.8 0.66 2.93 26700 13900

LD CS 88.9 1.91 0.79 23000 8700

Figure 7. Simulated error distributions versus the observed distributions at the aggregate level (top left)
and the individual farms in the low dimensional setting.

to use as it does not require the manual tuning of any parameters (as the high dimensional
model does).

7.3. High dimensional multivariate setting. We generate 20 wind power scenarios from
each of the following models, which have been appropriately fitted to the forecast error time
series over the course of a month from 10 randomly chosen wind farms in the Great Plains
region:

1. a standard VAR(p) model for the forecast bin-conditioned Z-variates,
2. the high dimensional crossing state model with no smoothing step (HD-NS),
3. the high dimensional crossing state model with the smoothing step (HD-S) and smooth-

ing parameter a = 4.
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Figure 8. Up-crossing simulated distributions versus the observed distributions at the aggregate level (top
left) and the individual farms in the low dimensional setting.

Figure 9. Down-crossing simulated distributions versus the observed distributions at the aggregate level
(top left) and the individual farms in the low dimensional setting.

From Table 3 we see the error distribution is best replicated by the standard VAR model;
however, the crossing state models perform better at replicating the remaining distributions
most often. This is also seen in Figures 10, 11, and 12. The figures also display the effect
of the smoothing step on aggregate crossing time distributions as the HD-S method corrects
discrepancies between observed and simulated crossing time distributions compared to the
HD-NS method. As a result, the distributions of areas above and below the forecast at the
aggregate level are replicated better by the HD-S method as well.

8. Conclusion. This paper introduces crossing times as an important characteristic of
stochastic processes involved in certain stochastic optimization problems. The two-level
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Table 3
Comparing Q2 distances between observed and simulated distributions for the models tested on 10 wind

farms at the individual and aggregate levels. Due to variations in farm size and distribution type, only relative
performance of models within each (distribution, farm) cell should be considered.

Dist’n Model Agg 1 2 3 4 5 6 7 8 9 10

VAR 625 162 20.9 10.3 23.4 3.00 3.98 10.7 3.62 53.5 32.3
FXj HD-NS 720 237 47.6 149 25.8 91.2 51.0 15.3 19.0 137 79.9

HD-S 713 236 47.4 147 25.7 87.7 51.4 15.3 18.6 137 79.3

VAR 15.0 2.51 9.14 8.16 13.5 5.66 11.5 1.69 14.2 10.4 11.4
FUj HD-NS 11.7 2.62 2.37 1.22 2.66 6.16 2.07 1.98 1.85 3.04 2.20

HD-S .905 2.51 2.44 1.26 2.75 5.36 2.22 2.09 1.87 3.11 2.27

VAR 18.8 6.22 2.50 1.87 10.1 10.3 2.78 .695 7.63 6.04 8.75
FDj HD-NS 22.8 1.91 2.48 4.25 1.37 2.06 1.00 3.98 4.08 2.68 1.01

HD-S 6.17 1.79 2.43 4.21 1.32 1.92 1.03 4.05 4.00 2.78 1.00

VAR 196 7.10 5.65 17.3 59.8 6.68 8.95 .429 5.67 53.3 22.4

FA,U
j HD-NS 135 16.3 2.21 4.58 1.90 32.9 2.55 1.28 1.47 38.6 11.8

(×103) HD-S 39.8 16.3 2.24 4.62 1.96 29.7 2.75 1.29 1.44 36.3 11.8

VAR 173 8.45 1.59 2.25 12.0 28.6 2.58 .177 8.59 33.7 13.2

FA,D
j HD-NS 210 4.53 1.30 30.2 .969 8.46 1.23 1.28 1.44 19.2 2.56

(×103) HD-S 33.2 4.40 1.35 29.1 .967 8.57 1.21 1.32 1.47 19.3 2.49

Figure 10. Simulated error distributions versus the observed distributions at the aggregate level (top left)
and three randomly chosen individual farms in the high dimensional setting.

crossing state method of modeling and simulating is presented as a general approach to pro-
ducing sample paths which outperform other time series methods in replicating crossing times.
The first level crossing state transition model is a mechanism to control crossing times, while
the second level error generation model conditioned on the crossing state should be chosen such
that it is appropriate for the stochastic process of interest and reproduces error distributions
accurately.

There are three different crossing state models we introduce in this paper. The hidden
semi-Markov model in section 4 is tailored for producing sample paths of wind power forecast
errors at individual wind farms. Using this method, areas between forecast and actual power,
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Figure 11. Up-crossing simulated distributions versus the observed distributions at the aggregate level (top
left) and three randomly chosen individual farms in the high dimensional setting.

Figure 12. Down-crossing simulated distributions versus the observed distributions at the aggregate level
(top left) and three randomly chosen individual farms in the high dimensional setting.

and thus the surpluses or deficits of energy produced versus expected, are also replicated
well. Therefore, the intertemporal behaviors of wind power outputs which may lead to power
outages if unaccounted for, such as their tendency to underperform expectations for extended
periods of time, are reflected in the sample paths. Two multivariate methods are then intro-
duced which replicate crossing time, forecast error, and, to a lesser extent, area distributions
at both the aggregate and disaggregate levels. These are characteristics of power outputs from
spatially distributed renewable power sources that are especially important in power system
control. A low dimensional multivariate crossing state model is developed in section 5, while
a high dimensional multivariate model is presented in section 6.

Finally, we note that it may be important to model the crossing time behavior of other
linear functionals of a multidimensional stochastic process besides the aggregate sum. For
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example, the crossing times of power outputs from groupings of wind farms in similar geo-
graphical locations may be just as important as the total aggregate wind power in a power
grid with security and capacity constraints. Altering the models such that they also capture
the crossing time behavior and error distribution of additional linear functionals, such as these
sums at intermediate levels of aggregation, would thus be useful for certain applications. This
seems like a natural extension of the low dimensional model from section 5, but doing so in
high dimensions appears to be a more difficult challenge.

Appendix A. Additional numerical results. We repeat in Tables 4, 5, and 6 the numerical
results from section 7 on different groupings of PJM wind farms during a different month
of the year (July 2013 instead of January 2013). We observe similar results in terms of the
relative ability of each model to replicate the desired distributions.

Table 4
Univariate setting. Q2 distances between observed and simulated distributions for the models tested on a

single wind farm power output. This table repeats the tests from Table 1 on a second wind farm using July data
instead of January data.

XXXXXXXXXDist’n
Model

AR AR-GARCH ARIMA-ZYt ARIMA-GARCH-ZYt CS-AR HSMM

FX 483.7 273.9 97.95 134.5 483.8 1.774
FU 8.335 7.377 5.303 16.02 1.914 0.012
FD 0.558 7.700 3.301 20.97 2.446 0.191
FA,U 9409 5681 12470 24026 4896 1905
FA,D 21377 3315 3221 19369 19329 2782

Table 5
Low dimensional multivariate setting. Comparing Q2 distances between observed and simulated distribu-

tions for the models tested on three wind farms at the individual and aggregate levels. Due to variations in
farm size and distribution type, only relative performance of models within each (distribution, farm) cell should
be considered. This table repeats the tests from Table 2 on a second grouping of wind farms using July data
instead of January data.

Wind farm Model FXj FUj FDj FA,U
j FA,D

j

VAR 1.79 8.17 5.63 3360 4400
1 HD CS 7.09 0.69 3.90 720 1800

LD CS 17.4 1.17 4.86 920 3100

VAR 5.65 11.4 9.19 11800 6700
2 HD CS 36.0 0.70 4.88 2950 24500

LD CS 112 2.52 1.90 2510 26500

VAR 46.1 22.2 9.57 55300 23900
3 HD CS 48.5 0.89 11.0 6200 32800

LD CS 192 6.73 1.45 3330 6800

VAR 61.3 8.90 15.4 40100 53600
Agg HD CS 114 1.07 1.43 6900 8600

LD CS 195 3.29 1.08 20500 4800
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Table 6
High dimensional multivariate setting. Comparing Q2 distances between observed and simulated distribu-

tions for the models tested on 10 wind farms at the individual and aggregate levels. Due to variations in farm
size and distribution type, only relative performance of models within each (distribution, farm) cell should be
considered. This table repeats the tests from Table 3 on a second grouping of wind farms using July data instead
of January data.

Dist’n Model Agg 1 2 3 4 5 6 7 8 9 10

VAR 131 3.79 12.2 4.04 3.12 28.5 3.34 0.25 4.26 37.1 3.02
FXj HD-NS 106 14.1 26.8 11.3 6.51 12.7 6.64 1.35 11.6 34.5 14.2

HD-S 107 14.0 27.2 11.2 6.50 12.6 6.67 1.33 11.5 33.8 14.8

VAR 7.57 11.7 2.87 5.52 1.61 11.7 22.3 5.56 8.53 6.67 13.3
FUj HD-NS 10.8 1.04 2.13 0.60 2.16 1.33 2.93 4.21 1.02 3.18 0.90

HD-S 1.06 1.05 2.21 0.61 2.14 1.37 2.99 4.06 0.93 3.01 0.89

VAR 13.7 28.2 7.70 14.6 1.97 17.5 15.6 4.51 15.0 12.4 13.9
FDj HD-NS 11.7 0.95 10.6 6.54 6.34 8.48 5.44 5.67 3.81 14.3 1.69

HD-S 2.09 0.94 10.5 6.10 6.06 8.60 5.35 5.43 3.26 13.6 1.68

VAR 28.8 9.25 0.69 1.09 0.13 12.8 9.67 0.23 2.74 12.4 9.09

FA,U
j HD-NS 36.3 7.34 4.35 1.68 0.56 2.90 0.30 0.63 1.49 69.7 1.34

(×103) HD-S 6.22 7.28 4.38 1.57 0.54 2.66 0.29 0.63 1.56 64.9 1.38

VAR 38.9 28.7 5.69 11.7 0.51 33.6 7.02 0.30 7.26 37.0 7.36

FA,D
j HD-NS 34.8 4.22 12.1 0.99 0.51 10.3 1.84 0.50 1.11 28.9 1.97

(×103) HD-S 16.9 4.16 12.2 0.93 0.49 10.4 1.82 0.51 1.15 28.3 1.97
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