SCH3U: Final Exam Review

Note: These questions are just to help you prepare for the exam. This review should be the minimum that you do to prepare for the exam. The solutions to the review questions are at the back of the handout.

UNIT: Matter and Chemical Bonding

A) Elements and the Periodic Table

1. How many protons, neutrons, and electrons are in each atom or ion below?
a) ${ }^{79} \mathrm{Se}$
b) ${ }_{28}^{59} \mathrm{Ni}^{2+}$
c) ${ }^{128} \mathrm{Te}^{1-}$
d) ${ }_{1}^{3} \mathrm{H}^{1+}$
2. Draw Lewis structures for lithium chlorine, chloride, sulfur, magnesium, and aluminum.
3. Use the Lewis structures below to answer the questions that follow.

a) Which of these species have identical electron configurations?
b) Which are stable?
c) Which are in the same period?
d) Which are in the same group?
4. Ionisation Energies

A
i. lowest ionisation energy in Group 1 (IA)

B

ii. lowest ionisation energy of all the elements
a. iodine
iii. highest first ionisation energy in Period 2
b. neon
____iv. element with the highest second ionisation energy
c. hydrogen
d. cesium
v. halogen with the highest first ionisation energy
e. fluorine
f. iodine
g. helium
h. lithium
5. Terminology

A
i. outer energy level in an atom
ii. energy needed to remove the third electron iii. energy released when an atom gains an electron iv. stable electron configuration v. elements in Groups 1, 2, and 13 to 18

B
a. transition metals
b. third energy level
c. main group elements
d. radioisotopes
e. electron affinity
f. electronegativity
g. halogens
h. transuranium elements
i. valence shell
j. third ionisation energy
k. octet

B) Chemical Compounds and Bonding

6. a) Write the long and short form electron configuration for the following elements: $\mathrm{N}, \mathrm{P}, \mathrm{S}, \mathrm{Ne}$, and Ca .
b) Show using electron dot diagrams how Ca and O can bond. Give the ions that are formed.
c) Show using electron dot diagrams how Ca and P can bond. Give the ions that are formed.
7. Draw Lewis Diagrams for the following and determine if the bonds are polar, non-polar, or ionic.
a) $\mathrm{H}_{2} \mathrm{O}$
b) CBr_{4}
c) O_{2}
8. Chemical Formulas (For a more complete review of nomenclature, go to unit review in your class nomenclature notes. Remember, that a periodic table, and the basic polyatomic ions will be given to you for the exam.)

A

i. dinitrogen tetroxide

B

\qquad ii. carbon monoxide
iii. mercury(II) sulfate
iv. lead(IV) fluoride
v. tin(IV) phosphate
vi. gold(I) chlorate
a. $\mathrm{Sn}_{3} \mathrm{P}_{4}$
b. $\mathrm{Au}\left(\mathrm{ClO}_{3}\right)_{3}$
c. CO
d. MeSO_{4}
e. AuClO_{3}
f. $\mathrm{N}_{2} \mathrm{O}_{4}$

Don't forget to study your polyatomic ion derivatives

9. More Chemical Formulas

A
\qquad i. zinc hydrogen carbonate
ii. calcium phosphide
iii. ferrous hydroxide
___ iv. tin (II) nitrate
v. lead(II) thiocyanate
vi. mercuric silicate
10. Chemical Formulas of Anions

A
__i. hydride
ii. carbonate
iii. nitrite
iv. nitride
v. sulfate
vi. nitrate
\qquad vii. phosphite
viii. hydroxide
g. $\mathrm{C}_{2} \mathrm{O}_{2}$
h. HgSO_{4}
i. $\mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{4}$
j. NO_{2}
k. PbF_{4}

B
a. $\mathrm{Sn}\left(\mathrm{NO}_{3}\right)_{2}$
b. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
c. $\mathrm{Sn}(\mathrm{SCN})_{2}$
d. $\mathrm{Zn}\left(\mathrm{HCO}_{3}\right)_{2}$
e. $\mathrm{Fe}(\mathrm{OH})_{2}$
f. ZnCO_{3}
g. $\mathrm{Ca}_{3} \mathrm{P}_{2}$
h. $\mathrm{Fe}(\mathrm{OH})_{3}$
i. $\mathrm{Sn}\left(\mathrm{NO}_{2}\right)_{2}$
j. HgSiO_{3}
k. $\mathrm{Pb}(\mathrm{SCN})_{2}$

B
a. $\mathrm{PO}_{4}{ }^{3-}$
b. NO_{3}^{-}
c. OH^{-}
d. $\mathrm{CO}_{3}{ }^{2-}$
e. P^{3-}
f. $\mathrm{NO}_{2}{ }^{-}$
g. H^{-}
i. N^{3-}
j. $\mathrm{PO}_{3}{ }^{3-}$
k. $\mathrm{SO}_{3}{ }^{2-}$

1. C^{4-}
m. $\mathrm{SO}_{4}{ }^{2-}$

C) Classifying Chemical Reactions

11. Types of Reactions
A.
i. $\mathrm{N}{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
B.
a. neutralisation
b. synthesis
c. double displacement
d. single displacement
e. transmutation
f. combustion
g. decomposition
h. ionic
12. Balancing Equations

A
_i. __ $\mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{~Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{NaNO}_{3}$
B
a. 1
ii. $-\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}+\mathrm{NO}$
b. 2
iii. $2 \mathrm{C}_{2} \mathrm{H}_{6}+\ldots \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
\qquad iv. $\mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\ldots \mathrm{SO}_{2}$
d. 4
\qquad v. $\mathrm{Al}_{2} \mathrm{C}_{6}{ }^{+} _\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{C}_{2} \mathrm{H}_{2}$
e. 5
f. 6
g. 7
h. 8
13. Examine the following reactants, and predict the type of reaction that will occur. Use the following classifications: synthesis, decomposition, single displacement, double displacement, neutralisation, complete combustion, incomplete combustion, or no reaction.
a) $\mathrm{CuNO}_{3(\mathrm{aq})}+\mathrm{BaCl}_{2(\mathrm{aq})} \rightarrow$
b) $\mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})} \rightarrow$
c) $\mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{aq})}+\mathrm{KOH}_{(\mathrm{aq})} \rightarrow$
d) $\mathrm{Pb}(\mathrm{s})+\mathrm{CuCl}_{2(\mathrm{aq})} \rightarrow$
e) $\mathrm{HgO}_{(\mathrm{s})}+$ heat \rightarrow
f) $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+$ limited $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$
g) $\mathrm{Br}_{2(\mathrm{l})}+\mathrm{CaCl}_{2(\mathrm{aq})} \rightarrow$
h) $\mathrm{CuO}_{(\mathrm{s})}+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow$
i) $\mathrm{Pt}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow$
j) $\mathrm{NaNO}_{3(\mathrm{aq})}+\mathrm{Ag}_{(\mathrm{s})} \rightarrow$

UNIT: Chemical Quantities

A) Counting Atoms and Molecules/Chemical Proportions in Compounds

14. Calculating Molar Mass

A
\qquad i. NaCl

B
\qquad ii. $\mathrm{Ca}(\mathrm{OH})_{2}$
a. $45.95 \mathrm{~g} / \mathrm{mol}$
\qquad iii. $\mathrm{Li}_{2} \mathrm{~S}$
b. $278.02 \mathrm{~g} / \mathrm{mol}$
\qquad c. $342.15 \mathrm{~g} / \mathrm{mol}$
\qquad iv. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
d. $58.44 \mathrm{~g} / \mathrm{mol}$
\qquad v. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
e. $74.10 \mathrm{~g} / \mathrm{mol}$
f. $57.09 \mathrm{~g} / \mathrm{mol}$
g. $148.33 \mathrm{~g} / \mathrm{mol}$
15. Calculating Number of Moles

A
\qquad i. 56.0 g of NCl_{3}

B
a. 0.0120 mol of N atoms
ii. 5.32×10^{22} atoms of N
b. 0.0241 mol of N atoms
iii. 7.25×10^{21} molecules of N_{2}
c. 1.35 mol of N atoms
\qquad iv. 124 g of $\mathrm{N}_{2} \mathrm{O}_{4}$
\qquad v. 6.30×10^{22} molecules of NO_{2}
d. 0.0884 mol of N atoms
e. 0.105 mol of N atoms
f. 0.465 mol of N atoms
g. 2.70 mol of N atoms
16. Calculate the number of oxygen atoms in 15.0 g of calcium nitrate, $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$.
17. Calculate the mass of $7.53 \square 10^{22}$ molecules of calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$.
18. Empirical Formulas

A
i. $40 \% \mathrm{C}, 6.7 \% \mathrm{H}, 53.3 \% \mathrm{O}$

B
a. $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$
ii. $92.3 \% \mathrm{C}, 7.7 \% \mathrm{H}$
b. $\mathrm{CH}_{2} \mathrm{O}$
iii. $12.5 \% \mathrm{H}, 37.5 \% \mathrm{C}, 50.0 \% \mathrm{O}$
c. $\mathrm{CH}_{4} \mathrm{O}$
iv. $75.0 \% \mathrm{C}, 25.0 \% \mathrm{H}$ v. $63.2 \% \mathrm{C}, 5.30 \% \mathrm{H}, 31.5 \%$, O
d. CH_{3}
e. CH

$$
\begin{aligned}
& \text { f.CH }{ }_{4} \\
& \text { g. } \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}
\end{aligned}
$$

19. Analysis of a lactic acid sample shows that its \% composition by mass is 40.00% carbon, 6.71% hydrogen, and 53.29% oxygen. The molar mass is know to be $90.0 \mathrm{~g} / \mathrm{mol}$. Determine the empirical formula and molecular formula of the lactic acid.
20. The percentage composition of a compound is 88.8% copper and 11.2% oxygen. Calculate the empirical formula of the compound.

B) Quantities in Chemical Reactions

21. Mole Ratio Calculations

The following reaction takes place with 3.00 g of copper and excess sulfuric acid.

$$
\mathrm{Cu}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow \mathrm{CuSO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{SO}_{2(\mathrm{~g})}
$$

Calculate the amount of each substance that is used or formed in the reaction.

A
\qquad i. moles of Cu ii. moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ B
a. 0.0944 mol
b. 0.425 g
iii. moles of CuSO_{4}
c. 0.0472 mol
___iv. mass of sulfur dioxide
d. 1.70 g
___v. mass of water
e. 0.0236 mol
f. 3.02 g
22. Mole Ratio Calculations

The following reaction takes place when heat is added to 26.5 g of calcium phosphate, 16.8 g of silicon oxide, and excess carbon.

$$
\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+\mathrm{SiO}_{2(\mathrm{~s})}+\mathrm{C}_{(\mathrm{s})} \rightarrow \mathrm{P}_{(\mathrm{s})}+\mathrm{CaSiO}_{3(\mathrm{~s})}+\mathrm{CO}_{(\mathrm{g})}
$$

Determine the limiting factor. Then calculate the amount of each substance that is used or formed in the reaction.

A
_ i. moles of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
ii. moles of SiO_{2}
a. 0.0854 mol
iii. moles of C
iv. moles of P
v. moles of CO
b. 0.170 mol
c. 0.280 mol
d. 0.427 mol
e. 0.256 mol
f. 0.467 mol
g. 0.123 mol
23. 25.0 g of calcium oxide reacts with water to produce calcium hydroxide. Calculate the mass of calcium hydroxide that is produced.
24. Iron reacts with antimony trisulphide in a single replacement reaction. Antimony and iron (II) sulphide are produced.

Calculate the mass of iron that is needed to react with 15.6 g of antimony trisulphide.
25. The theoretical yield of a reaction is 62.9 g , but the actual yield is 47.8 g . Calculate the percentage yield.
26. 0.987 mol of potassium chlorate decompose into potassium chloride and oxygen, according to the following equation:

$$
\mathrm{KClO}_{3(\mathrm{~s})} \rightarrow \mathrm{KCl}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}
$$

Calculate the moles of potassium chloride and the moles of oxygen that are formed.
27. Iron reacts with water to form hydrogen gas and iron(III) oxide.
a) Write a balanced chemical equation for the reaction.
b) 4.5 g of iron is used in the reaction. Calculate the mass of hydrogen gas that is produced.
c) Name the type of reaction.

UNIT: Solutions and Solubility
A) Solutions and Their Concentrations
28. Terms and Definitions

A
i. a substance that has other substances dissolved in it ii. a substance that is present in a smaller amount in a solution
iii. a solution in which water is the solvent
iv. liquids that readily dissolve in each other v. liquids that do not readily dissolve in each other

B
a. immiscible
b. aqueous
c. solute
d. miscible
e. solvent
f. solubility
g. alloy
29. Units of Concentration

A
\qquad i. mass solubility
ii. molar concentration
iii. parts per billion
\qquad iv. mass/volume percentage
___rv. volume/volume percentage
\qquad
30. Calculating Concentration

A
\qquad i. 30 g of NaCl in 500 mL of solution ii. 46 g of NaOH in 100 mL of water iii. 5.25 g of AgNO_{3} in 50 g of water iv. 3 mL of hydrogen peroxide in 10 mL of water v. 125 g of copper(II) sulfate in 500 g of water

B
a. $\mathrm{mol} / \mathrm{L}$
b. $\mathrm{g} / 100 \mathrm{~mL}$
c. ppm
d. ppb
e. $\%(v / v)$
f. \% (m/v)
g. $1 \mathrm{mg} / \mathrm{mL}$

B
a. $46 \%(\mathrm{~m} / \mathrm{v})$
b. $25 \%(\mathrm{~m} / \mathrm{m})$
c. $1.03 \mathrm{~mol} / \mathrm{L}$
d. $5.25 \%(\mathrm{~m} / \mathrm{m})$
e. $30 \%(\mathrm{v} / \mathrm{v})$
f. $10.5 \%(\mathrm{~m} / \mathrm{m})$
31. Explain the statement "Like dissolves like."
32. 0.25 mol of potassium nitrate is added to enough water to make a 175 mL solution. What is the molar concentration of potassium nitrate?
33. What is the mass/volume percentage of 3.0 g in 50.0 mL of solution?
34. Calculate the mass (in grams) of sodium sulfide that is needed to make 350 mL of a $0.50 \mathrm{~mol} / \mathrm{L}$ solution.
35. Calculate the concentration of 0.75 mL of hydrogen peroxide in 10 mL of solution. Express the concentration as a volume/volume percentage.
36. Calculate the concentration of 0.575 g of magnesium acetate in 265 g of water. Express the concentration as a mass/mass percentage.
37. 35 mL of a $0.250 \mathrm{~mol} / \mathrm{L}$ solution of hydrochloric acid is mixed with an excess of silver nitrate. A white precipitate of silver chloride forms. What is the mass of the silver chloride precipitate?
38. 10.0 mL of a $0.10 \mathrm{~mol} / \mathrm{L}$ solution of copper(II) sulfate is reacted with 25.0 mL of a $0.20 \mathrm{~mol} / \mathrm{L}$ solution of sodium sulfide. This reaction creates a brown precipitate, copper(II) sulfide. What is the mass of the copper(II) sulfide precipitate?
39. What volume of $0.20 \mathrm{~mol} / \mathrm{L}$ acetic acid solution is needed to make 100 mL of $0.015 \mathrm{~mol} / \mathrm{L}$ acetic acid solution?

B) Aqueous Solutions

40. Using the Solubility Table

A
\qquad i. magnesium sulfate

B
a. soluble
ii. lithium hydroxide
b. insoluble
iii. calcium carbonate
iv. silver nitrate
___ v. iron(II) sulfite
41. Precipitation Reactions

A
___ i. silver nitrate and sodium chloride
B
ii. silver nitrate and sodium acetate
a. precipitation
iii. magnesium bromide and zinc sulfate
__iv. ammonium hydroxide and strontium sulfide
___v. mercury nitrate and lithium iodide
42. A solution of sodium sulfide is mixed with a solution of copper(II) chloride. Write the total ionic equation and the net ionic equation for the reaction. Identify the spectator ions in the reaction.
43. 65 mL of a $2.5 \mathrm{~mol} / \mathrm{L}$ solution of silver nitrate is added to an excess of calcium chloride. Identify the precipitate, and calculate the mass of this precipitate that is formed.
44. An excess of sodium carbonate solution is added to 75.0 mL of calcium chloride solution. 7.50 g of precipitate is formed. Calculate the concentration of the calcium chloride solution.
45. Suppose that you are given a sample that contains $\mathrm{Ag}^{+}, \mathrm{Ba}^{2+}$, and Fe^{3+} ions. Outline a procedure to separate these ions from each other. What will you add to precipitate out the different ions? Write the net ionic equation for each reaction.

C) Acids and Bases

46. Classifying Acids and Bases

A B
___i. is a proton acceptor
a. Arrhenius acid
\qquad ii. remains when a proton is removed from an acid
b. Arrhenius base
___iii. dissociates to form $\mathrm{H}^{+}{ }_{(\mathrm{aq})}$ in solution
c. Brønsted-Lowry acid
iv. is a proton donor
d. Brønsted-Lowry base
v. results when a base receives a proton e. conjugate acid
\ldots _ vi. results when water receives a proton
f. conjugate base
g. hydronium ion
47. pH Calculations

A
B
i. 2.3×10^{-8}
a. 8.90
ii. 1.0×10^{-5}
b. 11.35
iii. 4.5×10^{-12}
c. 7.64
iv. 7.9×10^{-2}
d. 1.10
\qquad v. 1.2×10^{-9}
e. 4.53
f. 5.00
48. Identify the conjugate acid-base pairs in the following reaction:

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

49. Name each acid.
a) $\mathrm{HBr}_{(\mathrm{aq}}$)
b) $\mathrm{H}_{3} \mathrm{PO}_{2}(\mathrm{aq})$
c) $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$
d) $\mathrm{HIO}_{3}(\mathrm{aq})$
e) $\mathrm{HBrO}_{4}(\mathrm{aq})$
50. Write the chemical formula of each acid.
a) carbonic acid b) hyponitrous acid c) sulfurous acid d) hydrocyanic acid e) perchloric acid
51. What are two major flaws with the Arrhenius definition of an acid and a base? Explain how the Brønsted-Lowry theory of acids and bases improves on these flaws.
52. 34.2 mL of $0.200 \mathrm{~mol} / \mathrm{L}$ sulfuric acid neutralizes 23.8 mL of lithium hydroxide. Determine the concentration of the base.
53. 20.0 mL of $0.15 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide is reacted with 30.0 mL of $0.20 \mathrm{~mol} / \mathrm{L}$ sulfuric acid.
a) How many grams of salt are produced?
b) What is the concentration of hydronium ions in the resulting solution?
c) What is the pH of the resulting solution?
54. When 15 mL of $0.20 \mathrm{~mol} / \mathrm{L}$ potassium hydroxide is reacted with 25 mL of $0.20 \mathrm{~mol} / \mathrm{L}$ hydrochloric acid.
a) How many grams of salt are produced?
b) What is the concentration of hydronium ions in the resulting solution?
c) What is the pH of the resulting solution?

UNIT: Gases and Atmospheric Chemistry

A) Behaviour of Gases

55. Temperature and Pressure Units Conversion

A
B
\qquad i. 760 torr
a. 757 mm Hg
ii. $-19^{\circ} \mathrm{C}$
b. 292 K
\qquad iii. 1.27 atm
c. 965 mm Hg
\qquad iv. 352 K
d. 101.3 kPa
\qquad v. 100.9 kPa
e. 254 K
f. $79^{\circ} \mathrm{C}$
g. 434 mm Hg
h. $625^{\circ} \mathrm{C}$
56. Gas Laws

A
\qquad i. When the volume of a gas is doubled, the pressure is halved.
\qquad ii. When the pressure of a gas is tripled, the temperature is tripled.
iii. When the volume of a gas is decreased by a factor of 5, the temperature is decreased by a factor of 5 .
\qquad iv. When the pressure of a gas is halved, the temperature is halved. v . When the volume of a gas is increased by a factor of 5 , the temperature is decreased by a factor of 5 .

B) Combined Gas Laws

57. What does STP stand for? State the temperature in two units and the pressure in four units.
58. The fuel supply for a course-correcting rocket engine on a communications satellite is contained in a steel sphere. The volume of the sphere is 10.0 L . The sphere is able to deliver 1400 L of gas at room temperature $\left(25^{\circ} \mathrm{C}\right)$ and 101.3 kPa . Calculate the pressure that the sphere can withstand if the normal operating temperature of the sphere is $-10^{\circ} \mathrm{C}$.
59. A car tire contains air at a pressure of 1520 mm Hg and $25^{\circ} \mathrm{C}$. When the car is driven, the tire heats up and the pressure increases to 1900 mm Hg . Assuming that the tire does not expand, calculate the new temperature inside the tire.
60. A sample of gas has a volume of 30 mL at 1.5 atm . The gas is allowed to expand until its volume is 100 mL . Calculate the new pressure, assuming that the temperature remains constant.

C) Ideal Gas Laws

61. Constants and Standards

A
\qquad i. standard pressure
\qquad ii. standard temperature
iii. the Avogadro constant iv. molar volume v. the ideal gas constant

B
a. 6.02×10^{-23}
b. $8.314 \frac{\mathrm{kPa} \cdot \mathrm{L}}{\mathrm{mol} \cdot \mathrm{K}}$
c. 1 atm
d. $22.4 \mathrm{~L} / \mathrm{mol}$
e. $0^{\circ} \mathrm{C}$
f. 760 mm Hg
g. 6.02×10^{23}
h. $2.24 \mathrm{~L} / \mathrm{mol}$
62. Gas Laws

A
\qquad i. Equal volumes of all ideal gases, at the

B

 same temperature and pressure, contain the same number of molecules.a. law of multiple proportions
b. Avogadro's law
c. law of combining gas volumes
___ ii. When gases react, the volumes of the
d. law of conservation of mass
reactants and the products, measured at equal
e. ideal gas law
temperatures and pressures, are always in whole
f. Boyle's law
g. Gay-Lussac's law
\qquad number ratios.
iii. $P V=n R T$
___ iv. Decreasing the pressure in a rigid closed container will result in a cooler temperature.
v . There is the same quantity of matter before and after a chemical reaction.
63. What is molar volume? State the molar volume (including the units) of any gas at STP.
64. Calculate the volume that is occupied by 5.05 mol of hydrogen chloride, HCl , gas at STP.
65. What is the pressure of 6.7 mol of carbon dioxide gas, in 35.0 L at $30^{\circ} \mathrm{C}$?
66. Calculate the volume of water vapour that is produced from the combustion of 15.0 g of ethylene at $25^{\circ} \mathrm{C}$ and 100 kPa .

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

67. How many fluorine gas molecules are in 9.2 L of fluorine gas at STP?
68. A 5.00 g sample of gas has a pressure of 1.20 atm and a volume of 750 mL , at a temperature of $35^{\circ} \mathrm{C}$. Calculate the molar mass of the gas.
69. 148 L of hydrogen gas reacts with nitrogen gas to produce ammonia gas at $65^{\circ} \mathrm{C}$ and 350 kPa . Calculate the volume of ammonia gas that is produced at 700 mm Hg and $34^{\circ} \mathrm{C}$.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

70. Iron pyrite, FeS_{2}, when roasted in air, reacts to produce sulfur dioxide and iron(III) oxide as follows:

$$
4 \mathrm{FeS}_{2(\mathrm{~s})}+11 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+8 \mathrm{SO}_{2(\mathrm{~g})}
$$

25.2 g of iron pyrite reacts with 5.50 L of oxygen gas at $20^{\circ} \mathrm{C}$ and 100 kPa . Calculate the mass of iron(III) oxide that is formed.

Answer Key -- exam review sch3u

1. a) $p=34, n=45, e=34$
b) $\mathrm{p}=28, \mathrm{n}=31, \mathrm{e}=26$
c) $\mathrm{p}=52, \mathrm{n}=76, \mathrm{e}=53$
d) $p=1, n=2, e=0$
2.

$\mathrm{Li} \cdot: \ddot{\mathrm{Cl}} \cdot \ddot{\mathrm{S}} \cdot \overrightarrow{\mathrm{Mg}} \cdot \overrightarrow{\mathrm{Al}} \cdot$
3. a) I, IV
b) I, III, IV
c) I, II, IV and III, V
d) II, V
4. i. d; ii. d; iii. b; iv. h; v. e
5. i. i; ii. j; iii. e; iv. k; v. c
6. a) $\mathrm{N}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3},[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3} ; \mathrm{P}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{3},[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{3} ; \mathrm{S}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{4},[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{4} ; \mathrm{Ne}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$,
$[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} ; \mathrm{Ca}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2},[\mathrm{Ar}] 4 \mathrm{~s}^{2}$
b)

c)

b) $\quad \mathrm{Br}$, the $\mathrm{C}-\mathrm{Br}$ bond is polar due to the $\triangle \mathrm{EN}$ difference.
c) $\mathrm{O}=\mathrm{O}$, the $\mathrm{O}-\mathrm{O}$ bond is non-polar due to the $\Delta \mathrm{EN}$ difference being zero. It's a purely covalent bond.
8. i. f; ii. c; iii. h; iv. k; v. i; vi. e
9. i. d; ii. g; iii. e; iv. a; v. k; vi. j
10. i. g; ii. d; iii. f; iv. i; v. m; vi. b; vii. j; viii. c
11. i. b; ii. g; iii. f; iv. d; v. a or c
12. i. b; ii. c; iii. g; iv. a; v. f
13. a) double displacement
b) neutralization, double displacement
c) double displacement
d) single displacement
e) decomposition
f) incomplete combustion
g) no reaction
h) single displacement
i) synthesis
j) no reaction
14. i. d; ii. e; iii. a; iv. g; v. c
15. i. f; ii. d; iii. b; iv. c; v. e
16. Molar mass $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}=(1 \square 40.08)+(2 \square 14.01)+(6 \square 16.00)=164.10 \mathrm{~g} / \mathrm{mol}$

Number of moles $=\frac{\text { Mass }}{\text { Molar mass }}=\frac{15.0 \mathrm{~g}}{164.10 \mathrm{~g} / \mathrm{mol}}=0.0914 \mathrm{~mol}$
Number of molecules $=$ Number of moles x N_{A}
Number of molecules $=$ Number of moles $\times N_{A}=$
$0.0914 \mathrm{~mol} \times \frac{6.02 \times 10^{23} \text { molecules }}{1 \mathrm{~mol}}=5.50 \times 10^{22}$ molecules
Number of oxygen atoms $=\frac{6 \text { atoms of } \mathrm{O}}{1 \text { molecule }} \times$ Number of molecules of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
$=6 \times 5.50 \times 10^{22}=3.30 \times 10^{23}$ atoms of oxygen
There are $3.30 \square 10^{23}$ atoms of oxygen in the sample.
17.

Number of moles of $\mathrm{Ca}(\mathrm{OH})_{2}=\frac{\text { Number of molecules }}{\mathrm{N}_{\mathrm{A}}}=\frac{7.53 \times 10^{22} \text { molecules }}{6.02 \times 10^{23} \mathrm{molecules} / \mathrm{mol}}=0.125 \mathrm{~mol}$
Mass of $\mathrm{Ca}(\mathrm{OH})_{2}=$ Number of moles x Molar mass $=0.125 \mathrm{~mol} \square 74.10 \mathrm{~g} / \mathrm{mol}=9.26 \mathrm{~g}$
18. i. b; ii. e; iii. c; iv. f; v. a
19. Assume 100 g of total sample. You should get approximately 3.33 moles of $\mathrm{C}, 6.71$ moles of H , and 3.33 moles of O . The empirical formula or simplest formula is $\mathrm{CH}_{2} \mathrm{O}$ while the molecular formula is $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$.
20. Using a 100 g sample,

Moles $\mathrm{Cu}=\frac{88.8 \mathrm{~g}}{63.55 \mathrm{~g} / \mathrm{mol}}=1.40 \mathrm{~mol}$

Moles $\mathrm{O}=\frac{11.2 \mathrm{~g}}{16.00 \mathrm{~g} / \mathrm{mol}}=0.700 \mathrm{~mol}$

Simple ratio for $\mathrm{Cu}=\frac{1.40}{0.700}=2$

Simple ratio for $\mathrm{O}=\frac{0.700}{0.700}=1$
Therefore, the empirical formula is $\mathrm{Cu}_{2} \mathrm{O}$.
21. i. c; ii. a; iii. c; iv. f; v. d
22. i. a; ii. c; iii. d; iv. b; v. d
23. $\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})}$

Moles $\mathrm{CaO}=\frac{25.0 \mathrm{~g}}{56.08 \mathrm{~g} / \mathrm{mol}}=0.446 \mathrm{~mol} \mathrm{CaO}$
$\frac{\chi \mathrm{mol} \mathrm{Ca}(\mathrm{OH})_{2}}{0.446 \mathrm{~mol} \mathrm{CaO}}=\frac{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{1 \mathrm{~mol} \mathrm{CaO}}$
$\square=0.446 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$
Mass $\mathrm{Ca}(\mathrm{OH})_{2}=0.446 \mathrm{~mol} \mathrm{x} 74.10 \mathrm{~g} / \mathrm{mol}=33.0 \mathrm{~g}$
24. $3 \mathrm{Fe}_{(\mathrm{s})}+\mathrm{Sb}_{2} \mathrm{~S}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{Sb}_{(\mathrm{s})}+3 \mathrm{FeS}_{(\mathrm{s})}$

Moles $\mathrm{Sb}_{2} \mathrm{~S}_{3}=\frac{15.6 \mathrm{~g}}{339.73 \mathrm{~g} / \mathrm{mol}}=0.0460 \mathrm{~mol} \mathrm{Sb}_{2} \mathrm{~S}_{3}$
$\frac{\chi \mathrm{mol} \mathrm{Fe}}{0.0460 \mathrm{~mol} \mathrm{Sb}_{2} \mathrm{~S}_{3}}=\frac{3 \mathrm{~mol} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Sb}_{2} \mathrm{~S}_{3}}$
$\mathrm{x}=0.138 \mathrm{~mol} \mathrm{Fe}$
Mass $\mathrm{Fe}=0.138 \mathrm{~mol} \times 55.85 \mathrm{~g} / \mathrm{mol}=7.71 \mathrm{~g}$
Therefore, 7.71 g of Fe is needed.
25.

Percentage yield $=\frac{47.8 \mathrm{~g}}{62.9 \mathrm{~g}} \times 100=76.0 \%$
26.
$\frac{0.987 \mathrm{~mol} \mathrm{KClO}_{3}}{x \mathrm{~mol} \mathrm{KCl}}=\frac{2 \mathrm{~mol} \mathrm{KClO}_{3}}{2 \mathrm{~mol} \mathrm{KCl}}$
$\square=0.987 \mathrm{~mol} \mathrm{KCl}$
$\frac{0.987 \mathrm{~mol} \mathrm{KClO}_{3}}{y \mathrm{molO}_{2}}=\frac{2 \mathrm{~mol} \mathrm{KClO}_{3}}{3 \mathrm{molO}_{2}}$
$y=1.481 \mathrm{~mol} \mathrm{O}_{2}$
Therefore, 0.987 mol of potassium chloride and 1.481 mol of oxygen are formed.
27. a) $2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 3 \mathrm{H}_{2(\mathrm{~g})}+1 \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$
b)
moles $\mathrm{Fe}=4.5 \mathrm{~g}=0.081 \mathrm{~mol}$

$$
55.85 \mathrm{~g} / \mathrm{mol}
$$

$\underline{\mathrm{X} \mathrm{mol} \mathrm{of} \mathrm{H}_{2}}=\underline{3 \mathrm{~mol} \mathrm{H}_{2}}$
0.081 mol of $\mathrm{Fe} \quad 2$ mole of Fe
$\mathrm{X}=0.1215 \mathrm{~mol}$
Mass of $\mathrm{H}_{2}=2.02 \mathrm{~g} / \mathrm{mol} \mathrm{x} 0.1215=0.245 \mathrm{~g}$
c) single displacement reaction
28. i. e; ii. c; iii. b; iv. d; v. a
29. i. b; ii. a; iii. d; iv. f; v. e; vi. d
30. i. c; ii. a; iii. f; iv. e; v. b
31. "Like dissolves like" refers to the fact that polar and ionic substances dissolve better in polar solvents than in non-polar solvents. Non-polar solutes dissolve better in non-polar solvents.
b) Water is a polar solvent because of the electronegativity difference between hydrogen and oxygen. The electrons in the OH bonds are unequally shared. As well, the water molecule is not symmetrical. The oxygen has a slightly negative charge, and the hydrogen's have a slightly positive charge. The presence of these two "poles" results in an overall polar molecule.
c) Water is referred to as the universal solvent because it is able to dissolve a large number and variety of solutes.
32. Molar concentration $=0.25 \mathrm{~mol} / 0.175 \mathrm{~L}=1.4 \mathrm{~mol} / \mathrm{L}$
$\frac{x}{100 \mathrm{~mL}}=\frac{3.0 \mathrm{~g}}{50.0 \mathrm{~mL}}$
33. $x=\frac{6.0 \mathrm{~g}}{100 \mathrm{ml}}=6.0 \%$

Therefore, the mass/volume percentage is 6.0%.
34. Moles $\mathrm{Na}_{2} \mathrm{~S}=$ Concentration \square Volume $=0.50 \mathrm{~mol} / \mathrm{L} \square 0.350 \mathrm{~L}=0.175 \mathrm{~mol}$

Mass $=$ Moles \square Molar mass $=0.175 \mathrm{~mol} \square 78.05 \mathrm{~g} / \mathrm{mol}=14 \mathrm{~g}$
The mass of sodium sulfide that is needed is 14 g .
35.

$$
\underset{\substack{x=7.5 \%(\mathrm{v} / \mathrm{v})}}{ } \frac{x}{100 \mathrm{~mL}}
$$

The concentration is $7.5 \%(\mathrm{~m} / \mathrm{v})$.
36.
$\frac{x}{100 \mathrm{~g}}=\frac{0.575 \mathrm{~g}}{265 \mathrm{~g}}$
$x=0.217 \%(\mathrm{~m} / \mathrm{m})$
The concentration is $0.217(\mathrm{~m} / \mathrm{m})$.
37. $\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{AgNO}_{3(\mathrm{aq})} \square \mathrm{AgCl}_{(\mathrm{s})}+\mathrm{HNO}_{3(\mathrm{aq})}$

Moles $\mathrm{HCl}=0.035 \mathrm{~L} \square 0.250 \mathrm{~mol} / \mathrm{L}=0.00875 \mathrm{~mol}$
$\frac{x \mathrm{~mol} \mathrm{AgCl}}{0.00875 \mathrm{~mol} \mathrm{HCl}}=\frac{1 \mathrm{~mol} \mathrm{AgCl}}{1 \mathrm{~mol} \mathrm{HCl}}$
$x=0.00875 \mathrm{~mol}$
Mass $\mathrm{AgCl}=0.00875 \mathrm{~mol} \square 143.32 \mathrm{~g} / \mathrm{mol}=1.25 \mathrm{~g}$
The mass of the silver chloride precipitate is 1.25 g .
38. $\mathrm{CuSO}_{4(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{~S}_{(\mathrm{aq})} \square \mathrm{CuS}_{(\mathrm{s})}+\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}$

Moles $\mathrm{CuSO}_{4}=0.010 \mathrm{~L} \square 0.10 \mathrm{~mol} / \mathrm{L}=.0010 \mathrm{~mol}$
Moles $\mathrm{Na}_{2} \mathrm{~S}=0.025 \mathrm{~L} \square 0.20 \mathrm{~mol} / \mathrm{L}=.0050 \mathrm{~mol}$

$x=0.0010 \mathrm{~mol}$
$\frac{\text { moles } \mathrm{CuS}}{0.0050 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S}}=\frac{1 \mathrm{~mol} \mathrm{CuS}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S}}$
$x=0.0050 \mathrm{~mol}$
Therefore, 0.0010 mol of CuS is produced.
Mass $=0.0010 \mathrm{~mol} \square 95.62 \mathrm{~g} / \mathrm{mol}=0.0956 \mathrm{~g}$
Therefore, the mass of the copper(II) sulfide precipitate is 0.096 g .
39. Moles of acetic acid needed $=0.100 \mathrm{~L} \square 0.015 \mathrm{~mol} / \mathrm{L}=0.0015 \mathrm{~mol}$

Volume of acetic acid $=\frac{0.0015 \mathrm{~mol}}{0.20 \mathrm{~mol} / \mathrm{L}}=0.0075 \mathrm{~L}$
Therefore, 7.5 mL of the acetic acid solution is needed.
Another way to solve this problem involves using the formula $C_{1} V_{1}=C_{2} V_{2}$.
$0.20 \mathrm{~mol} / \mathrm{L} \square V_{1}=0.015 \mathrm{~mol} / \mathrm{L} \square 0.100 \mathrm{~L}$
$V_{1}=7.5 \mathrm{~mL}$
40. i. a; ii. a; iii. b; iv. a; v. b
41. i. a; ii. b; iii. b; iv. b; v. a
42. $2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{S}^{2-}{ }_{(\mathrm{aq})}+\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}^{-}{ }_{(\mathrm{aq})} \square 2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}^{-}{ }_{(\mathrm{aq})}+\mathrm{CuS}_{(\mathrm{s})}$
$\mathrm{S}^{2-}{ }_{(\mathrm{aq})}+\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})} \square \mathrm{CuS}_{(\mathrm{s})}$
The spectator ions are $\mathrm{Na}^{+}(\mathrm{aq})$ and $\mathrm{Cl}^{-}(\mathrm{aq})$.
43. $2 \mathrm{AgNO}_{3(\mathrm{aq})}+\mathrm{CaCl}_{2(\mathrm{aq})} \square 2 \mathrm{AgCl}_{(\mathrm{s})}+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}$

The precipitate is silver chloride.
Moles $\mathrm{AgNO}_{3}=0.065 \mathrm{~L} \square 2.5 \mathrm{~mol} / \mathrm{L}=0.16 \mathrm{~mol}$

$$
\frac{x \mathrm{~mol} \mathrm{AgCl}^{0.16 \mathrm{~mol} \mathrm{AgNO}_{3}}=\frac{1 \mathrm{~mol} \mathrm{AgCl}}{1 \mathrm{~mol} \mathrm{AgNO}_{3}}, \frac{1}{}}{\text { and }}
$$

There are 0.16 mol of AgCl .
Mass $\mathrm{AgCl}=0.16 \mathrm{~mol} \square 143.32 \mathrm{~g} / \mathrm{mol}=23 \mathrm{~g}$
Therefore, 23 g of AgCl is formed.
44. Determine the number of moles of precipitate formed.
$\mathrm{CaCl}_{2(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})} \square \mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{NaCl}_{(\mathrm{aq})}$

Moles $\mathrm{CaCO}_{3}=\frac{7.50 \mathrm{~g}}{100.09 \mathrm{~g} / \mathrm{mol}}=0.0749 \mathrm{~mol}$
$\frac{x \mathrm{~mol} \mathrm{CaCl}_{2}}{0.0749 \mathrm{~mol} \mathrm{CaCO}_{3}}=\frac{1 \mathrm{~mol} \mathrm{CaCl}_{2}}{1 \mathrm{~mol} \mathrm{CaCO}_{3}}$
$x=0.0749 \mathrm{~mol} \mathrm{CaCl}_{2}$
Concentration $\mathrm{CaCl}_{2}=\frac{\text { Moles }}{\text { Volume }}=\frac{0.0749 \mathrm{~mol}}{0.0750 \mathrm{~L}}=0.999 \mathrm{~mol} / \mathrm{L}$
The concentration of CaCl_{2} was $0.999 \mathrm{~mol} / \mathrm{L}$.
45. 1. Add sodium chloride for silver ions.
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \square \mathrm{AgCl}_{(\mathrm{s})}$
2. Add sodium sulfate for barium ions.
$\mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \square \mathrm{BaSO}_{4}(\mathrm{~s})$
3. Add sodium hydroxide for iron(III) ions.
$\mathrm{Fe}^{3+}(\mathrm{aq}){ }^{+3 \mathrm{OH}^{-}} \mathrm{aq}_{\mathrm{aq}} \square \mathrm{Fe}(\mathrm{OH})_{3(\mathrm{~s})}$
46. i. d; ii. f; iii. a; iv. c; v. e
47. i. c; ii. f; iii. b; iv. d; v. a
48. $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$ are one conjugate acid-base pair. $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ and $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ are the second conjugate acid-base pair.
49. a) hydrobromic acid b) hypophosphorous acid c) sulfurous acid d) iodic acid e) perbromic acid
50. a) $\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}$ b) $\mathrm{HNO}_{(\mathrm{aq})}$ c) $\mathrm{H}_{2} \mathrm{SO}_{3(\mathrm{aq})}$ d) $\mathrm{HCN}_{(\mathrm{aq})}$ e) $\mathrm{HClO}_{4(\mathrm{aq})}$
51. Three major flaws are given below:

- According to the Arrhenius definition, an H^{+}dissociates and is responsible for the acidic properties of a solution. In the Brønsted-Lowry theory, protons do not exist alone in aqueous solution but as hydrated ions called hydronium ions, $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$. This is thought to be closer to the reality of the reactions.
- The Arrhenius definition cannot explain the basic properties of ammonia. Nor can it explain the fact that some other substances, such as salts that contain carbonate ions, also have basic properties. These are important bases, even though they do not have hydroxide. The Brønsted-Lowry definition of a base as a proton acceptor explains the basic properties of these compounds.
- The Arrhenius definition is limited to acid and base reactions in a single solvent, water. The Brönsted-Lowry definition still requires an acid to have a dissociable proton. However, any negative ion that has the ability to accept a proton (not just OH^{-}) can be a Brønsted-Lowry base.

52. $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{LiOH}_{(\mathrm{aq})} \square \mathrm{Li}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

Moles $\mathrm{H}_{2} \mathrm{SO}_{4}=0.200 \mathrm{~mol} / \mathrm{L} \square 0.0342 \mathrm{~L}=0.00684 \mathrm{~mol}$
$\frac{x \mathrm{~mol} \mathrm{LiOH}}{0.00684 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}=\frac{2 \mathrm{~mol} \mathrm{LiOH}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}$
$x=0.0137 \mathrm{~mol}$
Concentration $\mathrm{LiOH}=\frac{0.0137 \mathrm{~mol}}{0.0238 \mathrm{~L}}=0.576 \mathrm{~mol} / \mathrm{L}$
The concentration of the base was $0.576 \mathrm{~mol} / \mathrm{L}$.
53. a) $2 \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \square \mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

Moles $\mathrm{NaOH}=0.020 \mathrm{~L} \square 0.15 \mathrm{~mol} / \mathrm{L}=0.0030 \mathrm{~mol}$
$\frac{x \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{0.0030 \mathrm{~mol} \mathrm{NaOH}}=\frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{2 \mathrm{~mol} \mathrm{NaOH}}$
$x=0.0015 \mathrm{~mol}$
Moles $\mathrm{H}_{2} \mathrm{SO}_{4}=0.0300 \mathrm{~L} \square 0.20 \mathrm{~mol} / \mathrm{L}=0.0060 \mathrm{~mol}$
$\frac{x \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{0.006 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}=\frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}$
$x=0.006 \mathrm{~mol}$
0.0015 mol of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ are produced.

Mass $\mathrm{Na}_{2} \mathrm{SO}_{4}=0.0015 \mathrm{~mol} \square 142.05 \mathrm{~g} / \mathrm{mol}=0.21 \mathrm{~g}$
Therefore, 0.21 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is produced.
b) $\frac{x \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4} \text { used }}{0.0030 \mathrm{~mol} \mathrm{NaOH}}=\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4} \text { used }}{2 \mathrm{~mol} \mathrm{NaOH}}$
$x=$ Moles $\mathrm{H}_{2} \mathrm{SO}_{4}$ used $=0.0015 \mathrm{~mol}$
Moles $\mathrm{H}_{2} \mathrm{SO}_{4}$ used in excess $=0.006 \mathrm{~mol}-0.0015 \mathrm{~mol}=0.0045 \mathrm{~mol}$
$\frac{x \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+}}{0.0045 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}=\frac{2 \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}$
$x=0.0090 \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{0.0090 \mathrm{~mol}}{(0.020+0.030) \mathrm{L}}=0.18 \mathrm{~mol} / \mathrm{L}$
c) $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log 0.18=0.74$

The pH of the resulting solution is 0.74 .
54. a) The KOH is the limiting reagent, and the HCl is in excess. The amount of KCl produced will be $4.02 \times 10^{-5} \mathrm{~g}$ of the salt.
b) The concentration of the hydronium ion will be $0.05 \mathrm{~mol} / \mathrm{L}$ since HCl is in excess.
c) The resulting pH will be 1.3 .
55.
56.
57. STP stands for standard temperature and pressure. The temperature values that are associated with STP are $0 \square \mathrm{C}$ and 273 K . The pressure values that are associated with STP are $760 \mathrm{~mm} \mathrm{Hg}, 760$ torr, 101.3 kPa , and 1 atm .
58.
$\frac{P_{1} \times V_{1}}{T_{1}}=\frac{P_{2} \times V_{2}}{T_{2}}$
$\frac{101.3 \mathrm{kPa} \times 1400 \mathrm{~L}}{298 \mathrm{~K}}=\frac{P_{2} \times 10.0 \mathrm{~L}}{263 \mathrm{~K}}$
$P_{2}=1.25 \times 10^{4} \mathrm{kPa}$
59.
$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$
$\frac{1520 \mathrm{~mm} \mathrm{Hg}}{298 \mathrm{~K}}=\frac{1900 \mathrm{~mm} \mathrm{Hg}}{\mathrm{T}_{2}}=373 \mathrm{~K}$
60.
$P_{1} \times V_{1}=P_{2} \times V_{2}$
$1.5 \mathrm{~atm} \times 30 \mathrm{~mL}=P_{2} \times 100 \mathrm{~mL}$
$P_{2}=0.45 \mathrm{~atm}$
61. i. c, f; ii. e; iii. g; iv. d; v. b
62. i. b; ii. c; iii. e; iv. g; v. d
63. Molar volume is the volume that is occupied by 1 mol of any gas at STP. The molar volume of any gas is $22.4 \mathrm{~L} / \mathrm{mol}$.
64.
$V_{\mathrm{m}}=\frac{V}{n}$
$V=V_{\mathrm{m}} \square n=22.4 \mathrm{~L} / \mathrm{mol} \square 5.05 \mathrm{~mol}=113 \mathrm{~L}$
65.
$P=\frac{n R T}{V}=\frac{6.7 \mathrm{~mol} \times 8.314 \frac{\mathrm{kPa} \cdot \mathrm{L}}{\mathrm{mol} \cdot \mathrm{K}} \times 303 \mathrm{~K}}{3.5 \mathrm{~L}}=4.8 \times 10^{2} \mathrm{kPa}$
66. The ethylene is the limiting reagent, and 0.53 moles will produce 1.071 moles of water. Under the give conditions, this will be 26.5 L .
67.
$\frac{22.4 \mathrm{~L}}{1.00 \mathrm{~mol}}=\frac{9.2 \mathrm{~L}}{x \mathrm{~mol}}$
$x=0.41 \mathrm{~mol}$
Number of molecules $=n_{\text {compound }} \square 6.02 \square 10^{23}=0.41 \mathrm{~mol} \square 6.02 \times 10^{23}$ molecules $/ \mathrm{mol}=2.5 \square 10^{23}$ molecules
68. Use $P V=n R T$ to find n. Use $n=m / M$ to find M.
$n=\frac{P V}{R T}=\frac{122 \mathrm{kPa} \times 0.750 \mathrm{~mol}}{8.314 \frac{\mathrm{kPa} \cdot \mathrm{L}}{\mathrm{mol} \cdot \mathrm{K}} \times 308 \mathrm{~K}}=0.0357 \mathrm{~mol}$
$M=\frac{m}{n}=\frac{5.00 \mathrm{~g}}{0.0357 \mathrm{~mol}}=140 \mathrm{~g} / \mathrm{mol}$
69. Use $P V=n R T$ to find n. Use a mole ratio to convert the number of moles of hydrogen gas to the number of moles of ammonia gas. Use $P V=n R T$ to find V.
$n=\frac{P V}{R T}=\frac{350 \mathrm{kPa} \times 148 \mathrm{~L}}{8.314 \frac{\mathrm{kPa} \cdot \mathrm{L}}{\mathrm{mol} \cdot \mathrm{K}} \times 338 \mathrm{~K}}=18.4 \mathrm{~mol}$
Mole ratio: $\frac{3 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}}=\frac{18.4}{x}$
$x=12.3 \mathrm{~mol}$
$V=\frac{n R T}{P}=\frac{12.3 \mathrm{~mol} \times 8.314 \frac{\mathrm{kPa} \cdot \mathrm{L}}{\mathrm{mol} \cdot \mathrm{K}} \times 307 \mathrm{~K}}{93.3 \mathrm{kPa}}=336 \mathrm{~L}$
70. First find the number of moles of both reactants. Use $n=m / M$ to find the number of moles of FeS. Use $P V=n R T$ to find the number of moles of O_{2}. Use the mole ratio to determine the limiting reactant. Then use the mole ratio to find the number of moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$. Use $n=m / M$ to find the mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
Moles $\mathrm{FeS}_{2}: n=\frac{m}{M}=\frac{25.2 \mathrm{~g}}{119.99 \mathrm{~g} / \mathrm{mol}}=0.210 \mathrm{~mol}$
Moles $\mathrm{O}_{2}: n \frac{P V}{R T}=\frac{100 \mathrm{kPa} \times 5.50 \mathrm{~L}}{293 \mathrm{~K} \times 8.314 \frac{\mathrm{kPa} \cdot \mathrm{L}}{\mathrm{mol} \cdot \mathrm{K}}}=0.226 \mathrm{~mol}$
Mole ratio: $\frac{4 \mathrm{~mol} \mathrm{FeS}_{2}}{11 \mathrm{~mol} \mathrm{O}_{2}}=\frac{0.210 \mathrm{~mol}}{x}$
$x=0.578 \mathrm{~mol}$ of O_{2}
Only 0.226 mol of O_{2} are available, however. Since there is not enough O_{2} available, oxygen gas is the limiting reactant.

Mole ratio: $\frac{11 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}=\frac{0.226 \mathrm{~mol}}{x}$
$x=0.0411 \mathrm{~mol}$
$m=n \times M=0.0411 \mathrm{~mol} \times 159.70 \mathrm{~g} / \mathrm{mol}=6.56 \mathrm{~g}$
71. i. b; ii. a; iii. b; iv. c; v. c
72. i. e; ii. d; iii. b; iv. f; v. g

