
INFS614 1

Schema Refinement &
Normalization Theory

INFS 614

INFS614 2

Overview of Normal Forms
❖ If a relation is placed in a normal form (BCNF, 3NF

etc.), certain problems are avoided or minimized.
– redundancy and its associated update/insert/delete anomolies

❖ Normal forms include: 1NF, 2NF, 3NF, BCNF, 4NF,
5NF, ...
– we focus on BCNF in this lecture

❖ Normal forms are achieved by decomposing a schema to
isolate certain dependencies
– we focus only on functional dependencies (FDs)
– there are other types: e.g., multivalued dependencies (4NF),

join dependencies (5NF)

INFS614 3

Boyce-Codd* Normal Form (BCNF)
❖ Reln R with FDs F is in BCNF if, for each X ® A in F+

either:
– 1) A Í X (i.e, A�s attributes are all in X, a trivial FD), or
– 2) X is a (super) key for R (i.e., X ® R is in F+).

❖ In other words, R is in BCNF if the only non-trivial
FDs involve a key for R.

❖ If R is in BCNF, there is no redundancy solely due to
FD�s

❖ A relation in BCNF corresponds well to an �entity
set� or a �relationship set� in a (good) ER design.

* Remember him? (he invented the relational model in 1970)

INFS614 4

Testing For BCNF
❖ The BCNF conditions must hold for ALL FD�s!

– not just those in F, but those in F+

❖ The hard way:
❖ 1) generate F+ from F by Armstrong�s Axioms

– a lot of work, potentially!!
❖ 2) check every FD in F+:

– is X ® Y trivial?
– is X is superkey for R?

❖ If, for every FD in F+, the answer is �yes� to
one of these questions, then R is in BCNF

INFS614 5

Testing for BCNF (Easier Way)
❖ Strategy: For each non-trivial FD X ® A in F

– is X a superkey for R?
– use the attribute closure algorithm: i.e., does X+

contain all attributes in R?
❖ Armstrong’s Axioms preserve “superkeyness”!

– (see next slide)
❖ Thus, for every FD in F+ generated from X ® A,

its left hand side is also superkey
– and thus R is in BCNF
– and we didn�t have to compute F+ !

❖ Armstrong�s axioms also preserve �trivialness”
– adding trivial FD’s has no impact on BCNF.

INFS614 6

Remember These?

❖ Armstrong�s Axioms (X, Y, Z are sets of
attributes):
– Reflexivity: If Y ⊆ X (i.e., X ⊇ Y), then X ® Y
– Augmentation: If X ® Y, then XZ ® YZ for any Z
– Transitivity: If X ® Y and Y ® Z, then X ® Z

INFS614 7

Testing for BCNF: Example

❖ Given ABCD and F = {B ® C, C ® D, C ® A}
– (Exercise 19.7 #1)

❖ Is relation ABCD in BCNF?
– none of these FDs are trivial (must check all)
– B ® C: B+ = {ABCD} OK
– C ® D: C+ = {ACD} Whoops! (Not in BCNF)

❖ We will have to decompose ABCD to
achieve BCNF!

❖ Strong Hint: Know how to test for BCNF!

INFS614 8

Decomposition of a Relation Schema

❖ When a relation schema is not in BCNF:
decompose.

❖ Decompose R into R1 ... Rn, where
– each Ri is a projection of R (contains a subset of

R�s attributes)
– Atts (Ri) = Atts (R) (the union of the attributes

of each Ri = the attributes of R)
– each Ri is in BCNF
– intuitively, �rogue dependencies� are broken out

into their own tables

€

i=1

N

∪

INFS614 9

Testing for BCNF: Hard Case
❖ What if the atts of F are not contained entirely

within the relation R we are testing?
❖ This can happen in a decomposition of R:

– E.g. Consider R1 (A, B, C, D), with F = { A ®B, B ®C}
◆ Now decompose R1 into R2(A,B) and R3(A,C,D)

◆ Although neither dependency in F contains only attributes from
(A,C,D) R3 does not satisfy BCNF!

◆ Dependency A ® C in F+ shows R3 is not in BCNF.

❖ To test if a decomposed relation Rd is in BCNF:
– 1) compute the key for Rd,
– 2) for all (non-trival) FDs X ® Y in F+ whose attrs

are entirely within Rd, is X a superkey for Rd?

INFS614 10

Decomposition example

S N L R H
123-22-3666 Attishoo 48 8 40
231-31-5368 Smiley 22 8 30
131-24-3650 Smethurst 35 5 30
434-26-3751 Guldu 35 5 32
612-67-4134 Madayan 35 8 40

R W
8 10
5 7

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

◃▹=

Original relation

Decomposition

INFS614 11

Problems with Decompositions
❖ There are at least four potential problems to consider:

1) The decomposed relation instances are not �join lossless�:
• The original R cannot be recaptured via joins (very bad!)

2) The decomposed instances are not �dependency preserving�
• Checking some FDs may require joins

3) Some queries become more expensive.
• e.g., How much did Attishoo earn? (earn = W*H, requires a join)

4) Some decompositions fragment important conceptual entities
• �overnormalization�; classic example: an address

❖ Design considerations: Compare these costs vs.
tolerating some redundancy (and associated anomolies)

– BCNF avoids 1), and is conceptually easy.
– 3NF avoids both 1) and 2), but permits some redundancy
– sometimes we can use views cleverly (especially materialized)

to compensate for 3) and 4)

INFS614 12

Example: Join
�Lossiness� Problem

Student_ID Name Dcode Cno Grade
123-22-3666 Attishoo INFS 501 A
231-31-5368 Guldu CS 102 B
131-24-3650 Smethurst INFS 614 B
434-26-3751 Guldu INFS 614 A
434-26-3751 Guldu INFS 612 C

Name Dcode Cno Grade
Attishoo INFS 501 A
Guldu CS 102 B
Smethurst INFS 614 B
Guldu INFS 614 A
Guldu INFS 612 C

Student_ID Name
123-22-3666 Attishoo
231-31-5368 Guldu
131-24-3650 Smethurst
434-26-3751 Guldu

◃▹

≠

I made that
word up

INFS614 13

Lossless Join Decompositions

❖ Decomposition of R into R1 and R2 is join-
lossless w.r.t. a set of FDs F if, for every
instance r of R that satisfies F, we have:

❖ It is always true that

❖ The other direction does not always hold!
– unless the common (join) attributes of the

decomposed tables form a key for at least one of
those tables

rrr RR =)()(
21

ππ ◃▹

)()(
21
rrr RR ππ ◃▹⊆

INFS614 14

Further Example: Lossy

A B C
1 2 3
4 5 6
7 2 8
1 2 8
7 2 3

A B C
1 2 3
4 5 6
7 2 8

A B
1 2
4 5
7 2

B C
2 3
5 6
2 8

)()(rr BCAB ππ ◃▹

)(rBCπ

)(rABπ
r

Note: B is not a key for AB or BC!

INFS614 15

Further Example: Lossless

A B C
1 2 3
4 5 6
7 2 3

A B C
1 2 3
4 5 6
7 2 3

A B
1 2
4 5
7 2

B C
2 3
5 6

)()(rr BCAB ππ ◃▹

)(rBCπ

)(rABπ
r

Now, B is a key for BC.

INFS614 16

Lossless Join Decomposition
❖ The decomposition of R into R1 and R2 wrt F is

join-lossless if:
– Atts of (R1 Ç R2) ® R1, or
– Atts of (R1 Ç R2) ® R2

– I.e.: if the join attributes form a key for R1 or R2

❖ Important special case: if X ® Y holds on R,
the decomposition of R into (R-Y) and (XY) is
join-lossless
– X and Y do not share attributes.
– X is common to both tables, and is a key for XY

INFS614 17

A Simple �Tree� Algorithm
for Decomposition into BCNF

❖ Consider relation R with FDs F. If X ® A in F+

over R, violates BCNF, i.e.,
– the attributes of XA are all in R, and yet:
– X ® R is not in F+ (X is not a key for R)
– A is not in X (X ® A is not trivial)

❖ Then: decompose R into two new relations
– XA
– R - A

❖ Repeated application of this decomposition:
– results in a collection of relations that are in BCNF
– produces a lossless join decomposition
– is guaranteed to terminate.

INFS614 18

BCNF Decomposition Example
❖ Assume relation schema CSJDPQV

– key C, JP ® C, SD ® P, J ® S (call the last 2 FBAD)
❖ Remove SD ® P from FBAD, and decompose into SDP

(�XA�), CSJDQV (�R-A�).
– Test if these are individually in BCNF.
– If not, recurse! (on either side; see below)

❖ Remove J ® S from FBAD, decompose into JS, CJDQV.
– We are done now. WHY? (The LHS of all fds in F, and F+, is a key)

❖ Note: it helps to draw this tree as you go!
CSJDPQV

SDP CSJDQV

JS CJDQV
Using SD ® P

Using J ® S

INFS614 19

BCNF Decomposition

❖ In general: several dependencies may
cause violation of BCNF.

❖ The order in which we �deal with� them
could lead to different (valid) sets of
BCNF relations.

INFS614 20

Dependency Preservation

❖ Consider CSJDPQV, C is key, JP ® C and SD
® P.
– BCNF decomposition: CSJDQV and SDP
– Problem: Checking JP ® C requires a join!
– e.g., does an insertion to SDP violate JP ® C? How

can we tell?
❖ Dependency preservation problem:

– If R is decomposed into X, and Y, then all FDs that
were given to hold on R should still hold

– but we can�t (easily) enforce them if their
attributes are �scattered� across multiple relations!

INFS614 21

BCNF and Dependency Preservation

❖ In general, there may not be a
dependency preserving decomposition
into BCNF.

INFS614 22

The Projection of a set of FDs

❖ Given F, let R be decomposed into X and Y
❖ The projection of F onto X (denoted FX) is the

set of FDs U ® V in F+ such that the attributes
of U, V are entirely in X.

INFS614 23

Dependency Preserving Decompositions
❖ Decomposition of R into X and Y is dependency

preserving if F + = (FX union FY) +
– Example: R = ABC, F = {A ® B, B ® C, C ® A}, and R is

decomposed into AB and BC.
– Is this dependency preserving? Yes.
– (Note: Consider F +, not just F, in definition of Fx and Fy!)
– By transitivity, F+ also includes A ® C, B ® A, C ® B
– Thus FX = {A ® B and B ® A}
– Thus FY = {B ® C and C ® B}
– Thus (FX union FY) + includes C ® A (by transitivity)
– So the AB, BC decomposition will enforce/preserve C ® A!!

❖ Dependency preserving does not imply lossless join:
– ABC, A ® B, decomposed into AB and BC.

❖ And vice-versa! (Example?)

INFS614 24

Example

❖ Assume CSJDPQV is decomposed into
SDP, JS, CJDQV

this is not dependency preserving w.r.t. the FDs:
JP ® C, SD ® P and J ® S.

❖ However, it is a lossless join decomposition.
❖ Adding table JPC gives us a dependency

preserving decomposition.
– Note: JPC tuples stored only for checking FD!
– But it is redundant ...

❖ Is there a general way to ensure dep. pres?

INFS614 25

Third Normal Form (3NF)
❖ R with FDs F is in 3NF if, for all X ® A in F+

– A in X (i.e., FD is trivial), or
– X contains a key for R, or
– A is part of some (candidate, not super) key for R.

◆ a bit weaker than BCNF!
❖ It is always possible to decompose into 3NF and

preserve dependencies
– and be join-lossless
– but you may have some FD-induced redundancy

❖ 3NF is a compromise
– if you really want dependency preservation
– or (more likely) if BCNF is just too hard to achieve

INFS614 26

Third Normal Form (3NF)
❖ A relation in 3NF is free of:

– partial dependencies: e.g. given R(ABC), AB ® C (AB is
a key), A ® C

– transitive dependencies: e.g. given R(ABC), A ® B, B
® C

❖ 2NF is free of partial dependencies only

INFS614 27

1NF
❖ First normal form requires every column in a relation to

be atomic (i.e. not a repeating group)
❖ This is the default in the relational model.

❖ XML DTD�s can define non-1NF models.
<!DOCTYPE BOOKLIST [
<!ELEMENT LISTNAME (#PCDATA)>
<!ELEMENT LIST (BOOK)*>

<!ELEMENT BOOK (AUTHOR, TITLE)>
<!ELEMENT AUTHOR (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>

<!ELEMENT TITLE (#PCDATA)
]>

An entity set
(of books)

A nested
structure
(within a

book)

INFS614 28

Overnormalization
❖ Address entity:

– Bob Jones, 12 Main Street, Springfield IL, 12345

❖ Address (Firstname, Lastname, Number, Street, City, State, Zip)
– FLNSCTZ
– NSCT ® Z

❖ Do we really want to do this?
– so what if zip codes are a bit redundant
– insert, update, delete anomolies are managable!

FLNSCTZ

FLNSCTNSCTZ
NSCT ® Z

INFS614 29

Summary of Schema Refinement
❖ If a relation is in BCNF, it is free of redundancies that can

be detected using FDs. Thus, trying to ensure that all
relations are in BCNF is a good heuristic.

❖ If a relation is not in BCNF, we can try to decompose it
into a collection of BCNF relations.

– Must consider whether all FDs are preserved. If a lossless-join,
dependency preserving decomposition into BCNF is not possible (or
unsuitable, given typical queries), should consider decomposition
into 3NF.

– Decompositions should be carried out and/or re-examined while
keeping performance requirements in mind.

INFS614 30

Three Normalization Lessons
1) Intuitively, the left hand side of every FD wants to be

the key of some relation.

2) �Perfect� decompositions don�t always happen.
• But you should still know BCNF decomposition for the final :-)

3) You can overnormalize.

INFS614 31

Big Picture Takeaways
• What can FDs & normalization do for you?

• Reduce redundancy, reducing storage costs

• Improve data consistency (by having only one copy)

• Improve concurrency (less needs to be locked)

• Provide insight into any database design (e.g., causal links)

• How could normalization hurt you?
• Requiring (potentially lossy) joins to put your data back together

• Require you to understand all FDs before you can design, use
your database (big issue in analytic databases).

• This takes time (doesn’t lend itself to rapid prototyping).

• If you don’t know BCNF on the final J

• Normalization is a tool (like ER design). Designing great
databases is up to you!

INFS614 32

Backup

INFS614 33

What Does 3NF Achieve?

❖ If 3NF is violated by X®A, one of the following holds:
– X is a proper subset of some key K

◆ We store (X, A) pairs redundantly.
E.g.: SBDC, SBD is the only key, S ®C. Pairs (S,C) redundant.

– X is not a proper subset of any key.
◆ There is a chain of FDs K ® X ® A, which means that we cannot

associate an X value with a K value unless we also associate an A value
with an X value.
E.g.: Hourly_Emps SNLRWH, S is the only key, R ®W.

❖ But: even if reln is in 3NF, these problems could arise.
– e.g., Reserves SBDC, S ®C, C ®S is in 3NF, but for each

reservation of sailor S, same (S, C) pair is stored.
❖ Thus, 3NF is indeed a compromise with respect to BCNF.

INFS614 34

Testing for 3NF

❖ Optimization: Need to check only FDs in F, need
not check all FDs in F+.

❖ Use attribute closure to check, for each
dependency X ® A, if X is a superkey.

❖ If X is not a superkey, we have to verify if A is
part of some candidate key of R
– this test is rather expensive, since it involves finding

candidate keys

INFS614 35

Decomposition into 3NF
❖ Obviously, the algorithm for lossless join decomp

into BCNF can be used to obtain a lossless join
decomp into 3NF (typically, can stop earlier).

❖ To ensure dependency preservation, one idea:
– If X ® Y is not preserved, add relation XY.
– Problem is that XY may violate 3NF!

❖ Refinement: Instead of the given set of FDs F,
use a minimal cover for F.

INFS614 36

Minimal Cover for a Set of FDs

❖ Minimal cover G for a set of FDs F:
– Closure of F = closure of G.
– Right hand side of each FD in G is a single attribute.
– If we modify G by deleting an FD or by deleting

attributes from an FD in G, the closure changes.
❖ Intuitively, every FD in G is needed and �as small

as possible�� in order to get the same closure as
F.

❖ e.g., A ® B, ABCD ® E, EF ® GH, ACDF ® EG
has the following minimal cover:
– A ® B, ACD ® E, EF ® G and EF ® H

INFS614 37

Dependency-Preserving Decomposition into 3NF

❖ Given R with a set F of FDs that is a minimal cover.
Let R1,…,Rn be a lossless-join decomposition of R in
3NF. Let Fi be the projection of F onto Ri. Do:
– Identify the set N of dependencies in F that is not

preserved, i.e. not included in the closure of the union of
F1,…Fn;

– For each FD X ® A in N, create a relation schema XA and
add it to the decomposition of R.

❖ The resulting decomposition is a lossless-join and
dependency-preserving decomposition of R into
3NF relations.

INFS614 38

Problem

❖ Given a relation schema R(ABCDE) with
FD�s
F = {A ® B, C® D, B ® AE}

Find all the candidate keys for R.

INFS614 39

Problem (contd.)
Proceed as follows:

(a) Identify the attributes that are in the relation schema
and not in the set of functional dependencies: None.

(b) Identify the attributes that appear only on the left
hand-side in F (these attributes will belong to any
single key of the relation schema): C.

(c) Identify the attributes that appear only on the right
hand-side in F (these attributes are not part of any
key): DE.

(d) Combine the set of attributes obtained in (a) and (b)
with the attributes that are not obtained in (c).
Compute their closure to check whether they are a
key.

INFS614 40

Problem (contd.)
• From (a) and (b), we get C;

• The attributes not obtained in (c) are: A,B,C.

• We compute the closure of C: C+ = CD. Thus: C is not a key.

• We compute the closure of CA: CA+ = CABDE. Thus: CA is a
key.

• We compute the closure of CB: CB+ = CBDAE. Thus: CB is a
key.

• Note: We know from (c) that CD and CE are not keys;

• Then, we consider combinations of three attributes that don�t
contain CA or CB (since they are keys), and include C. The only
possible combination is CDE, but D and E are not part of any
key.

• Therefore, CA and CB are the only keys in R.

