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Overview of Normal Forms
❖ If a relation is placed in a normal form (BCNF, 3NF 

etc.), certain problems are avoided or minimized.
– redundancy and its associated update/insert/delete anomolies

❖ Normal forms include:  1NF, 2NF, 3NF, BCNF, 4NF, 
5NF, ...
– we focus on BCNF in this lecture

❖ Normal forms are achieved by decomposing a schema to 
isolate certain dependencies
– we focus only on functional dependencies (FDs)
– there are other types: e.g., multivalued dependencies (4NF), 

join dependencies (5NF)
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Boyce-Codd* Normal Form  (BCNF)
❖ Reln R with FDs F is in BCNF if, for each X ® A  in F+

either:
– 1) A Í X   (i.e, A�s attributes are all in X, a trivial FD), or
– 2) X is a (super) key for R (i.e., X ® R is in F+).

❖ In other words, R is in BCNF if the only non-trivial 
FDs involve a key for R.

❖ If R is in BCNF, there is no redundancy solely due to 
FD�s

❖ A relation in BCNF corresponds well to an �entity 
set� or a �relationship set� in a (good) ER design.

* Remember him?  (he invented the relational model in 1970)
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Testing For BCNF
❖ The BCNF conditions must hold for ALL FD�s!

– not just those in F, but those in F+

❖ The hard way:
❖ 1) generate F+ from F by Armstrong�s Axioms

– a lot of work, potentially!!
❖ 2) check every FD in F+:

– is X ® Y trivial?
– is X is superkey for R?

❖ If, for every FD in F+, the answer is �yes� to 
one of these questions, then R is in BCNF
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Testing for BCNF (Easier Way)
❖ Strategy:  For each non-trivial FD X ® A in F

– is X a superkey for R?
– use the attribute closure algorithm:  i.e., does X+

contain all attributes in R?
❖ Armstrong’s Axioms preserve “superkeyness”!

– (see next slide)
❖ Thus, for every FD in F+ generated from X ® A, 

its left hand side is also superkey
– and thus R is in BCNF
– and we didn�t have to compute F+ !

❖ Armstrong�s axioms also preserve �trivialness”
– adding trivial FD’s has no impact on BCNF.



INFS614 6

Remember These?

❖ Armstrong�s Axioms (X, Y, Z are sets of 
attributes):
– Reflexivity:  If  Y ⊆ X (i.e., X ⊇ Y),  then   X ® Y 
– Augmentation:  If  X ® Y,  then   XZ ® YZ   for any Z
– Transitivity:  If  X ® Y  and  Y ® Z,  then   X ® Z
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Testing for BCNF: Example

❖ Given ABCD and F = {B ® C, C ® D, C ® A}
– (Exercise 19.7 #1)

❖ Is relation ABCD in BCNF?
– none of these FDs are trivial (must check all)
– B ® C:  B+ = {ABCD} OK
– C ® D:  C+ = {ACD}  Whoops! (Not in BCNF)

❖ We will have to decompose ABCD to 
achieve BCNF!

❖ Strong Hint:  Know how to test for BCNF!
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Decomposition of a Relation Schema

❖ When a relation schema is not in BCNF: 
decompose.

❖ Decompose R into R1 ... Rn, where
– each Ri is a projection of R (contains a subset of 

R�s attributes)
– Atts (Ri) = Atts (R) (the union of the attributes

of each Ri = the attributes of R)
– each Ri is in BCNF
– intuitively, �rogue dependencies� are broken out 

into their own tables
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Testing for BCNF: Hard Case
❖ What if the atts of F are not contained entirely 

within the relation R we are testing?
❖ This can happen in a decomposition of R:

– E.g. Consider R1 (A, B, C, D), with F = { A ®B, B ®C}
◆ Now decompose R1 into R2(A,B) and R3(A,C,D) 

◆ Although neither dependency in F contains only attributes from 
(A,C,D) R3 does not satisfy BCNF!

◆ Dependency A ® C in F+ shows R3 is not in BCNF.

❖ To test if a decomposed relation Rd is in BCNF:
– 1) compute the key for Rd,
– 2) for all (non-trival) FDs X ® Y in F+ whose attrs 

are entirely within Rd, is X a superkey for Rd?
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Decomposition example

S N L R H 
123-22-3666 Attishoo 48 8 40 
231-31-5368 Smiley 22 8 30 
131-24-3650 Smethurst 35 5 30 
434-26-3751 Guldu 35 5 32 
612-67-4134 Madayan 35 8 40 

 

 

R W 
8 10 
5 7 

 

 

S N L R W H 
123-22-3666 Attishoo 48 8 10 40 
231-31-5368 Smiley 22 8 10 30 
131-24-3650 Smethurst 35 5 7 30 
434-26-3751 Guldu 35 5 7 32 
612-67-4134 Madayan 35 8 10 40 

 

 

◃▹=

Original relation

Decomposition
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Problems with Decompositions
❖ There are at least four potential problems to consider:

1) The decomposed relation instances are not �join lossless�:
• The original R cannot be recaptured via joins (very bad!)

2) The decomposed instances are not �dependency preserving�
• Checking some FDs may require joins

3) Some queries become more expensive.
• e.g.,  How much did Attishoo earn?  (earn = W*H, requires a join)

4) Some decompositions fragment important conceptual entities
• �overnormalization�; classic example:  an address

❖ Design considerations:   Compare these costs vs. 
tolerating some redundancy (and associated anomolies)

– BCNF avoids 1), and is conceptually easy.
– 3NF avoids both 1) and 2), but permits some redundancy
– sometimes we can use views cleverly (especially materialized) 

to compensate for 3) and 4)
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Example: Join
�Lossiness� Problem

Student_ID Name Dcode Cno Grade 
123-22-3666 Attishoo INFS 501 A 
231-31-5368 Guldu CS 102 B 
131-24-3650 Smethurst INFS 614 B 
434-26-3751 Guldu INFS 614 A 
434-26-3751 Guldu INFS 612 C 

 

 

Name Dcode Cno Grade 
Attishoo INFS 501 A 
Guldu CS 102 B 
Smethurst INFS 614 B 
Guldu INFS 614 A 
Guldu INFS 612 C 

 

 

Student_ID Name 
123-22-3666 Attishoo 
231-31-5368 Guldu 
131-24-3650 Smethurst 
434-26-3751 Guldu 

 

 

◃▹

≠

I made that
word up
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Lossless Join Decompositions

❖ Decomposition of R into R1 and R2 is join-
lossless w.r.t. a set of FDs F if, for every 
instance r of R that satisfies F, we have:

❖ It is always true that 

❖ The other direction does not always hold!
– unless the common (join) attributes of the 

decomposed tables form a key for at least one of 
those tables

rrr RR =)()(
21

ππ ◃▹

)()(
21
rrr RR ππ ◃▹⊆
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Further Example: Lossy

A B C 
1 2 3 
4 5 6 
7 2 8 
1 2 8 
7 2 3 

 

 

A B C 
1 2 3 
4 5 6 
7 2 8 

 

 

A B 
1 2 
4 5 
7 2 

 

 

B C
2 3
5 6
2 8

)()( rr BCAB ππ ◃▹

)(rBCπ

)(rABπ
r

Note:  B is not a key for AB or BC!
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Further Example:  Lossless

A B C 
1 2 3 
4 5 6 
7 2 3 

 

 

A B C 
1 2 3 
4 5 6 
7 2 3 

 

 

A B 
1 2 
4 5 
7 2 

 

 

B C 
2 3 
5 6 

 

 

)()( rr BCAB ππ ◃▹

)(rBCπ

)(rABπ
r

Now, B is a key for BC.
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Lossless Join Decomposition
❖ The decomposition of R into  R1 and R2 wrt F is 

join-lossless if:
– Atts of (R1 Ç R2) ® R1,   or
– Atts of (R1 Ç R2) ® R2

– I.e.: if the join attributes form a key for R1 or R2

❖ Important special case: if X ® Y holds on R, 
the decomposition of R into (R-Y) and (XY) is 
join-lossless
– X and Y do not share attributes.
– X is common to both tables, and is a key for XY
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A Simple �Tree� Algorithm 
for Decomposition into BCNF

❖ Consider relation R with FDs F.  If X ® A in F+ 

over R, violates BCNF, i.e.,
– the attributes of XA are all in R, and yet:
– X ® R is not in F+ (X is not a key for R)
– A is not in X (X ® A is not trivial)

❖ Then: decompose R into two new relations
– XA
– R - A

❖ Repeated application of this decomposition:
– results in a collection of relations that are in BCNF
– produces a lossless join decomposition
– is guaranteed to terminate.



INFS614 18

BCNF Decomposition Example
❖ Assume relation schema CSJDPQV

– key C,  JP ® C, SD ® P,   J ® S (call the last 2 FBAD)
❖ Remove SD ® P from FBAD, and decompose into SDP 

(�XA�), CSJDQV (�R-A�).
– Test if these are individually in BCNF.
– If not, recurse! (on either side; see below)

❖ Remove J ® S from FBAD, decompose into JS, CJDQV.
– We are done now.  WHY?  (The LHS of all fds in F, and F+, is a key)

❖ Note: it helps to draw this tree as you go!
CSJDPQV

SDP CSJDQV

JS CJDQV
Using SD ® P

Using J ® S
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BCNF Decomposition

❖ In general:  several dependencies may 
cause violation of BCNF.

❖ The order in which we �deal with� them 
could lead to different (valid) sets of 
BCNF relations.
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Dependency Preservation

❖ Consider CSJDPQV,  C is key,  JP ® C  and  SD 
® P.
– BCNF decomposition:   CSJDQV and SDP
– Problem:  Checking  JP ® C  requires a join!
– e.g., does an insertion to SDP violate JP ® C?  How 

can we tell?
❖ Dependency preservation problem:

– If R is decomposed into X, and Y, then all FDs that 
were given to hold on R should still hold

– but we can�t (easily) enforce them if their 
attributes are �scattered� across multiple relations!
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BCNF and Dependency Preservation

❖ In general, there may not be a 
dependency preserving decomposition 
into BCNF.
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The Projection of a set of FDs

❖ Given F, let R be decomposed into X and Y
❖ The projection of F onto X (denoted FX) is the 

set of FDs U ® V in F+ such that the attributes 
of U, V are entirely in X.
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Dependency Preserving Decompositions
❖ Decomposition of R into X and Y is dependency

preserving if F + = (FX union   FY ) +
– Example:  R = ABC, F = {A ® B,  B ® C,  C ® A}, and R is 

decomposed into AB and BC.
– Is this dependency preserving?  Yes.
– (Note:  Consider F +, not just F, in definition of Fx and Fy!)
– By transitivity, F+ also includes A ® C,  B ® A,  C ® B
– Thus FX = {A ® B and B ® A}
– Thus FY = {B ® C and C ® B}
– Thus (FX union   FY ) + includes C ® A (by transitivity)
– So the AB, BC decomposition will enforce/preserve C ® A!!

❖ Dependency preserving does not imply lossless join:
– ABC,  A ® B,  decomposed into AB and BC.

❖ And vice-versa!  (Example?)
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Example

❖ Assume CSJDPQV is decomposed into 
SDP, JS, CJDQV

this is not dependency preserving w.r.t. the FDs: 
JP ® C,  SD ® P  and  J ® S.

❖ However, it is a lossless join decomposition.
❖ Adding table JPC gives us a dependency 

preserving decomposition.
– Note: JPC tuples stored only for checking FD!
– But it is redundant ...

❖ Is there a general way to ensure dep. pres?



INFS614 25

Third Normal Form  (3NF)
❖ R with FDs F is in 3NF if, for all X ® A  in F+

– A in X   (i.e., FD is trivial), or
– X contains a key for R, or
– A is part of some (candidate, not super) key for R.

◆ a bit weaker than BCNF!
❖ It is always possible to decompose into 3NF and 

preserve dependencies
– and be join-lossless
– but you may have some FD-induced redundancy

❖ 3NF is a compromise
– if you really want dependency preservation
– or (more likely) if BCNF is just too hard to achieve
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Third Normal Form  (3NF)
❖ A relation in 3NF is free of:

– partial dependencies:  e.g. given R(ABC), AB ® C (AB is 
a key), A ® C

– transitive dependencies:  e.g. given R(ABC), A ® B, B 
® C

❖ 2NF is free of partial dependencies only
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1NF
❖ First normal form requires every column in a relation to 

be atomic (i.e. not a repeating group)
❖ This is the default in the relational model.

❖ XML DTD�s can define non-1NF models.
<!DOCTYPE BOOKLIST [
<!ELEMENT LISTNAME (#PCDATA)>
<!ELEMENT LIST (BOOK)*>

<!ELEMENT BOOK (AUTHOR, TITLE)>
<!ELEMENT AUTHOR (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>

<!ELEMENT TITLE (#PCDATA)
]> 

An entity set 
(of books)

A nested
structure 
(within a 

book)
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Overnormalization
❖ Address entity:

– Bob Jones, 12 Main Street, Springfield IL, 12345

❖ Address (Firstname, Lastname, Number, Street, City, State, Zip)
– FLNSCTZ
– NSCT ® Z

❖ Do we really want to do this?
– so what if zip codes are a bit redundant
– insert, update, delete anomolies are managable!

FLNSCTZ

FLNSCTNSCTZ
NSCT ® Z
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Summary of Schema Refinement
❖ If a relation is in BCNF, it is free of redundancies that can 

be detected using FDs.  Thus, trying to ensure that all 
relations are in BCNF is a good heuristic.

❖ If a relation is not in BCNF, we can try to decompose it 
into a collection of BCNF relations.

– Must consider whether all FDs are preserved.  If a lossless-join, 
dependency preserving decomposition into BCNF is not possible (or 
unsuitable, given typical queries), should consider decomposition 
into 3NF.

– Decompositions should be carried out and/or re-examined while 
keeping performance requirements in mind.
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Three Normalization Lessons
1) Intuitively, the left hand side of every FD wants to be 

the key of some relation.

2) �Perfect� decompositions don�t always happen.
• But you should still know BCNF decomposition for the final :-)

3) You can overnormalize.
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Big Picture Takeaways
• What can FDs & normalization do for you?

• Reduce redundancy, reducing storage costs

• Improve data consistency (by having only one copy)

• Improve concurrency (less needs to be locked)

• Provide insight into any database design (e.g., causal links)

• How could normalization hurt you?
• Requiring (potentially lossy) joins to put your data back together

• Require you to understand all FDs before you can design, use 
your database (big issue in analytic databases).

• This takes time (doesn’t lend itself to rapid prototyping).

• If you don’t know BCNF on the final J

• Normalization is a tool (like ER design).  Designing great 
databases is up to you!
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Backup
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What Does 3NF Achieve?

❖ If 3NF is violated by X®A, one of the following holds:
– X is a proper subset of some key K

◆ We store (X, A) pairs redundantly. 
E.g.: SBDC, SBD is the only key, S ®C. Pairs (S,C) redundant.

– X is not a proper subset of any key.
◆ There is a chain of FDs  K ® X ® A, which means that we cannot 

associate an X value with a K value unless we also associate an A value 
with an X value.
E.g.: Hourly_Emps SNLRWH, S is the only key, R ®W.

❖ But: even if reln is in 3NF, these problems could arise.
– e.g., Reserves  SBDC,  S ®C,   C ®S   is in 3NF, but for each 

reservation of sailor S,  same (S, C) pair is stored.
❖ Thus, 3NF is indeed a compromise with respect to BCNF.
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Testing for 3NF

❖ Optimization: Need to check only FDs in F, need 
not check all FDs in F+.

❖ Use attribute closure to check, for each 
dependency X ® A, if X is a superkey.

❖ If X is not a superkey, we have to verify if A is 
part of some candidate key of R
– this test is rather expensive, since it involves finding 

candidate keys
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Decomposition into 3NF
❖ Obviously, the algorithm for lossless join decomp 

into BCNF can be used to obtain a lossless join 
decomp into 3NF (typically, can stop earlier).

❖ To ensure dependency preservation, one idea:
– If  X ® Y  is not preserved,  add relation XY.
– Problem is that XY may violate 3NF!  

❖ Refinement:  Instead of the given set of FDs F, 
use a minimal cover for F.
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Minimal Cover for a Set of FDs

❖ Minimal cover G for a set of FDs F:
– Closure of F  =  closure of G.
– Right hand side of each FD in G is a single attribute.
– If we modify G by deleting an FD or by deleting 

attributes from an FD in G, the closure changes.
❖ Intuitively, every FD in G is needed and  �as small 

as possible�� in order to get the same closure as 
F.

❖ e.g.,  A ® B,  ABCD ® E,  EF ® GH,  ACDF ® EG 
has the following minimal cover:
– A ® B,  ACD ® E,  EF ® G  and  EF ® H
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Dependency-Preserving Decomposition into 3NF

❖ Given R with a set F of FDs that is a minimal cover. 
Let R1,…,Rn be a lossless-join decomposition of R in 
3NF. Let Fi be the projection of F onto Ri. Do:
– Identify the set N of dependencies in F that is not 

preserved, i.e. not included in the closure of the union of 
F1,…Fn;

– For each FD X ® A in N, create a relation schema XA and 
add it to the decomposition of R.

❖ The resulting decomposition is a lossless-join and 
dependency-preserving decomposition of R into 
3NF relations.



INFS614 38

Problem 

❖ Given a relation schema R(ABCDE) with 
FD�s
F = {A ® B, C® D, B ® AE}

Find all the candidate keys for R.
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Problem  (contd.)
Proceed as follows:

(a) Identify the attributes that are in the relation schema 
and not in the set of functional dependencies: None.

(b) Identify the attributes that appear only on the left 
hand-side in F (these attributes will belong to any 
single key of the relation schema): C.

(c) Identify the attributes that appear only on the right 
hand-side in F (these attributes are not part of any 
key): DE.

(d) Combine the set of attributes obtained in (a) and (b) 
with the attributes that are not obtained in (c). 
Compute their closure to check whether they are a 
key.
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Problem  (contd.)
• From (a) and (b), we get C;

• The attributes not obtained in (c) are: A,B,C.

• We compute the closure of C: C+ = CD. Thus: C is not a key.

• We compute the closure of CA: CA+ = CABDE. Thus: CA is a 
key.

• We compute the closure of CB: CB+ = CBDAE. Thus: CB is a 
key.

• Note: We know from (c) that CD and CE are not keys;

• Then, we consider combinations of three attributes that don�t 
contain CA or CB (since they are keys), and include C. The only 
possible combination is CDE, but D and E are not part of any 
key.

• Therefore, CA and CB are the only keys in R.


