Schema Refinement & Normalization Theory

INFS 614

Overview of Normal Forms

- If a relation is placed in a *normal form* (BCNF, 3NF etc.), certain problems are avoided or minimized.
 - redundancy and its associated update/insert/delete anomolies
- Normal forms include: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF, ...
 - we focus on BCNF in this lecture
- Normal forms are achieved by decomposing a schema to isolate certain dependencies
 - we focus only on functional dependencies (FDs)
 - there are other types: e.g., multivalued dependencies (4NF), join dependencies (5NF)

Boyce-Codd* Normal Form (BCNF)

- * Reln R with FDs F is in BCNF if, for each $X \rightarrow A$ in F^+ either:
 - 1) $A \subseteq X$ (i.e, A's attributes are all in X, a *trivial* FD), or
 - 2) X is a (super) key for R (i.e., $X \rightarrow R$ is in F^+).
- In other words, R is in BCNF if the only non-trivial FDs involve a key for R.
- If R is in BCNF, there is no redundancy solely due to FD's
- A relation in BCNF corresponds well to an "entity set" or a "relationship set" in a (good) ER design.

* Remember him? (he invented the relational model in 1970)

Testing For BCNF

* The BCNF conditions must hold for ALL FD's!

- not just those in F, but those in F+
- * The hard way:
- * 1) generate F+ from F by Armstrong's Axioms
 - a lot of work, potentially!!
- * 2) check every FD in F+:
 - is $X \rightarrow Y$ trivial?
 - is X is superkey for R?
- If, for every FD in F+, the answer is "yes" to one of these questions, then R is in BCNF

Testing for BCNF (Easier Way)

- * Strategy: For each non-trivial FD X \rightarrow A in F
 - is X a superkey for R?
 - use the attribute closure algorithm: i.e., does X⁺ contain all attributes in R?
- Armstrong's Axioms preserve "superkeyness"!
 - (see next slide)
- \ast Thus, for every FD in F+ generated from X \rightarrow A, its left hand side is also superkey
 - and thus R is in BCNF
 - and we didn't have to compute F⁺!
- Armstrong's axioms also preserve "trivialness"
 - adding trivial FD's has no impact on BCNF.

Remember These?

- * Armstrong's Axioms (X, Y, Z are sets of attributes):
 - <u>*Reflexivity*</u>: If $Y \subseteq X$ (i.e., $X \supseteq Y$), then $X \rightarrow Y$
 - <u>Augmentation</u>: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - <u>Transitivity</u>: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

Testing for BCNF: Example

- * Given ABCD and F = {B \rightarrow C, C \rightarrow D, C \rightarrow A}
 - (Exercise 19.7 #1)
- Solution ABCD in BCNF?
 - none of these FDs are trivial (must check all)
 - $B \rightarrow C$: $B^+ = \{ABCD\} \ OK$
 - $C \rightarrow D$: $C^+ = \{ACD\}$ *Whoops! (Not in BCNF)*
- We will have to decompose ABCD to achieve BCNF!
- Strong Hint: Know how to test for BCNF!

Decomposition of a Relation Schema

- When a relation schema is not in BCNF: decompose.
- \diamond Decompose R into $R_1 \dots R_n$, where
 - each R_i is a projection of R (contains a subset of R'_N 's attributes)
 - $\bigcup_{i=1}^{i=1}$ Atts (R_i) = Atts (R) (the union of the attributes of each R_i = the attributes of R)
 - each R_i is in BCNF
 - intuitively, "rogue dependencies" are broken out into their own tables

Testing for BCNF: Hard Case

- * What if the atts of F are not contained entirely within the relation R we are testing?
- * This can happen in a decomposition of R:
 - E.g. Consider R_1 (A, B, C, D), with $F = \{A \rightarrow B, B \rightarrow C\}$
 - Now decompose R_1 into $R_2(A,B)$ and $R_3(A,C,D)$
 - Although neither dependency in *F* contains only attributes from (*A*,*C*,*D*) *R*₃ does not satisfy BCNF!
 - Dependency $A \rightarrow C$ in F^+ shows R_3 is not in BCNF.
- * To test if a *decomposed relation* R_d is in BCNF:
 - 1) compute the key for R_d ,
- 2) for all (non-trival) FDs X \rightarrow Y in F+ whose attrs $_{INFS614}$ are entirely within R_d, is X a superkey for R_d?

Decomposition example

S	N	L	R	W	Η
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Original relation

Decomposition

S	Ν	L	R	H
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

Problems with Decompositions

- * There are at least four potential problems to consider:
 - 1) The decomposed relation instances are not "join lossless":
 - The original R cannot be recaptured via joins (very bad!)
 - 2) The decomposed instances are not "dependency preserving"
 - Checking some FDs may require joins
 - 3) Some queries become more expensive.
 - e.g., How much did Attishoo earn? (earn = W*H, requires a join)
 - 4) Some decompositions fragment important conceptual entities
 - "overnormalization"; classic example: an address
- Design considerations: Compare these costs vs. tolerating some redundancy (and associated anomolies)
 - BCNF avoids 1), and is conceptually easy.
 - 3NF avoids both 1) and 2), but permits some redundancy
 - sometimes we can use views cleverly (especially materialized) to compensate for 3) and 4)

I made that
word up"Lossiness" ProblemStudent_IDNameDcodeCnoGrade123-22-3666AttishooINFS501A

123-22-3666	Attishoo	INFS	501	А	
231-31-5368	Guldu	CS	102	В	
131-24-3650	Smethurst	INFS	614	В	
434-26-3751	Guldu	INFS	614	A	
434-26-3751	Guldu	INFS	612	С	

	Name	Dcode	Cno	Grade	
	Attishoo	INFS	501	А	
\leq	Guldu	CS	102	В	
	Smethurst	INFS	614	В	
	Guldu	INFS	614	A	
	Guldu	INFS	612	С	

Student_ID	Name
123-22-3666	Attishoo
231-31-5368	Guldu
131-24-3650	Smethurst
434-26-3751	Guldu

¥

INFS614

Lossless Join Decompositions

- ★ Decomposition of R into R₁ and R₂ is joinlossless w.r.t. a set of FDs F if, for every instance r of R that satisfies F, we have: $\pi_{R_1}(r) \triangleright \triangleleft \pi_{R_2}(r) = r$
- \ast It is always true that $r \subseteq \pi_{R_1}(r) \rhd \triangleleft \pi_{R_2}(r)$
- * The other direction does not always hold!
 - unless the common (join) attributes of the decomposed tables form a key for at least one of those tables

Note: B is not a key for AB or BC!

Now, B is a key for BC.

Lossless Join Decomposition

- The decomposition of R into R₁ and R₂ wrt F is join-lossless if:
 - Atts of $(R_1 \cap R_2) \rightarrow R_1$, or
 - Atts of $(R_1 \cap R_2) \rightarrow R_2$
 - I.e.: if the join attributes form a key for R_1 or R_2
- * Important special case: if $X \rightarrow Y$ holds on R, the decomposition of R into (R-Y) and (XY) is join-lossless
 - X and Y do not share attributes.
 - X is common to both tables, and is a key for XY

A Simple "Tree" Algorithm for Decomposition into BCNF

- * Consider relation R with FDs F. If $X \rightarrow A$ in F⁺ over R, violates BCNF, i.e.,
 - the attributes of XA are all in R, and yet:
 - $X \rightarrow R$ is not in F^+ (X is not a key for R)
 - A is not in X (X \rightarrow A is not trivial)
- Then: decompose R into two new relations
 - XA
 - R A
- * Repeated application of this decomposition:
 - results in a collection of relations that are in BCNF
 - produces a lossless join decomposition
 - is guaranteed to terminate.

BCNF Decomposition Example

- Assume relation schema CSJDPQV
 - key C, JP \rightarrow C, SD \rightarrow P, J \rightarrow S (call the last 2 F_{BAD})
- - Test if these are individually in BCNF.
 - If not, recurse! (on either side; see below)
- ♦ Remove J → S from F_{BAD} , decompose into JS, CJDQV.
 - We are done now. WHY? (The LHS of all fds in F, and F⁺, is a key)
- Note: it helps to draw this tree as you go!

INFS614

BCNF Decomposition

- In general: several dependencies may cause violation of BCNF.
- The order in which we "deal with" them could lead to different (valid) sets of BCNF relations.

Dependency Preservation

- * Consider CSJDPQV, C is key, JP \rightarrow C and SD \rightarrow P.
 - BCNF decomposition: CSJDQV and SDP
 - Problem: Checking $JP \rightarrow C$ requires a join!
 - e.g., does an insertion to SDP violate JP \rightarrow C? How can we tell?
- Dependency preservation problem:
 - If R is decomposed into X, and Y, then all FDs that were given to hold on R should still hold
 - but we can't (easily) enforce them if their attributes are "scattered" across multiple relations!

BCNF and Dependency Preservation

 In general, there may <u>not</u> be a dependency preserving decomposition into BCNF.

The Projection of a set of FDs

- ✤ Given F, let R be decomposed into X and Y
- ☆ The projection of F onto X (denoted F_X) is the set of FDs U → V in F⁺ such that the attributes of U, V are entirely in X.

Dependency Preserving Decompositions

- Decomposition of R into X and Y is <u>dependency</u>
 <u>preserving</u> if F⁺=(F_X union F_Y)⁺
 - Example: R = ABC, F = {A \rightarrow B, B \rightarrow C, C \rightarrow A}, and R is decomposed into AB and BC.
 - Is this dependency preserving? Yes.
 - (Note: Consider F^+ , not just F, in definition of F_x and F_y !)
 - By transitivity, F+ also includes $A \rightarrow C$, $B \rightarrow A$, $C \rightarrow B$
 - Thus $F_X = \{A \rightarrow B \text{ and } B \rightarrow A\}$
 - Thus $F_Y = \{B \rightarrow C \text{ and } C \rightarrow B\}$
 - Thus $(F_X \text{ union } F_Y)^+$ includes $C \rightarrow A$ (by transitivity)
 - So the AB, BC decomposition will enforce/preserve C \rightarrow A!!
- * Dependency preserving does not imply lossless join:
 - ABC, $A \rightarrow B$, decomposed into AB and BC.
- * And vice-versa! (Example?)

Example

 Assume CSJDPQV is decomposed into SDP, JS, CJDQV

this is not dependency preserving w.r.t. the FDs: $JP \rightarrow C$, $SD \rightarrow P$ and $J \rightarrow S$.

- * However, it is a lossless join decomposition.
- * Adding table JPC gives us a dependency preserving decomposition.
 - Note: JPC tuples stored only for checking FD!
 - But it is redundant ...
- Is there a general way to ensure dep. pres?

Third Normal Form (3NF)

* R with FDs F is in 3NF if, for all $X \rightarrow A$ in F^+

- A in X (i.e., FD is trivial), or
- X contains a key for R, or
- A is part of some (candidate, not super) key for R.
 - a bit weaker than BCNF!
- It is always possible to decompose into 3NF and preserve dependencies
 - and be join-lossless
 - but you may have some FD-induced redundancy
- * 3NF is a compromise
 - if you really want dependency preservation
 - or (more likely) if BCNF is just too hard to achieve

Third Normal Form (3NF)

- * A relation in 3NF is free of:
 - partial dependencies: e.g. given R(ABC), AB \rightarrow C (AB is a key), $A \rightarrow C$
 - transitive dependencies: e.g. given R(ABC), $A \rightarrow B$, $B \rightarrow C$
- * 2NF is free of partial dependencies only

1NF

- First normal form requires every column in a relation to be atomic (i.e. not a repeating group)
- * This is the default in the relational model.
- * XML DTD's can define non-1NF models.
 <!DOCTYPE BOOKLIST [</p>
 <!ELEMENT LISTNAME (#PCDATA)>
 <!ELEMENT LIST (BOOK)*>
 <!ELEMENT BOOK (AUTHOR, TITLE)>
 <!ELEMENT AUTHOR (#PCDATA)>
 <!ELEMENT TITLE (#PCDATA)>
 <!ELEMENT TITLE (#PCDATA)</p>
]>

An entity set

(of books)

Overnormalization

- Address entity:
 - Bob Jones, 12 Main Street, Springfield IL, 12345
- * Address (Firstname, Lastname, Number, Street, City, State, Zip)
 - FLNSCTZ
 - NSCT \rightarrow Z

$$\begin{array}{c} FLNSCTZ \\ NSCTZ \\ NSCTZ \\ FLNSCT \\ \end{array}$$

- * Do we *really* want to do this?
 - so what if zip codes are a bit redundant
 - insert, update, delete anomolies are managable!

Summary of Schema Refinement

- If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic.
- If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
 - Must consider whether all FDs are preserved. If a lossless-join, dependency preserving decomposition into BCNF is not possible (or unsuitable, given typical queries), should consider decomposition into 3NF.
 - Decompositions should be carried out and/or re-examined while keeping *performance requirements* in mind.

Three Normalization Lessons

- 1) Intuitively, the left hand side of every FD wants to be the key of *some* relation.
- 2) "Perfect" decompositions don't always happen.
 - But you should still know BCNF decomposition for the final :-)
- 3) You can overnormalize.

Big Picture Takeaways

- What can FDs & normalization do for you?
 - Reduce redundancy, reducing storage costs
 - Improve data consistency (by having only one copy)
 - Improve concurrency (less needs to be locked)
 - Provide insight into any database design (e.g., causal links)
- How could normalization hurt you?
 - Requiring (potentially lossy) joins to put your data back together
 - Require you to understand all FDs before you can design, use your database (big issue in analytic databases).
 - This takes time (doesn't lend itself to rapid prototyping).
 - If you don't know BCNF on the final 🙂
- Normalization is a tool (like ER design). Designing great databases is up to you!

INFS614

What Does 3NF Achieve?

* If 3NF is violated by $X \rightarrow A$, one of the following holds:

- X is a proper subset of some key K
 - We store (X, A) pairs redundantly. E.g.: SBDC, SBD is the only key, $S \rightarrow C$. Pairs (S,C) redundant.
- X is not a proper subset of any key.
 - There is a chain of FDs $K \to X \to A$, which means that we cannot associate an X value with a K value unless we also associate an A value with an X value.

E.g.: Hourly_Emps SNLRWH, S is the only key, $R \rightarrow W$.

- * But: even if reln is in 3NF, these problems could arise.
 - e.g., Reserves SBDC, $S \rightarrow C$, $C \rightarrow S$ is in 3NF, but for each reservation of sailor S, same (S, C) pair is stored.

* Thus, 3NF is indeed a compromise with respect to BCNF.

Testing for 3NF

- Optimization: Need to check only FDs in F, need not check all FDs in F⁺.
- * Use attribute closure to check, for each dependency $X \rightarrow A$, if X is a superkey.
- If X is not a superkey, we have to verify if A is part of some candidate key of R
 - this test is rather expensive, since it involves finding candidate keys

Decomposition into 3NF

- Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier).
- To ensure dependency preservation, one idea:
 - If $X \rightarrow Y$ is not preserved, add relation XY.
 - Problem is that XY may violate 3NF!
- * Refinement: Instead of the given set of FDs F, use a *minimal cover for F*.

Minimal Cover for a Set of FDs

* *Minimal cover* G for a set of FDs F:

- Closure of F = closure of G.
- Right hand side of each FD in G is a single attribute.
- If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.
- Intuitively, every FD in G is needed and "as small as possible" in order to get the same closure as F.
- * e.g., $A \rightarrow B$, $ABCD \rightarrow E$, $EF \rightarrow GH$, $ACDF \rightarrow EG$ has the following minimal cover:

- $A \rightarrow B$, $ACD \rightarrow E$, $EF \rightarrow G$ and $EF \rightarrow H$ INFS614

Dependency-Preserving Decomposition into 3NF

- Given R with a set F of FDs that is a minimal cover.
 Let R1,...,Rn be a lossless-join decomposition of R in 3NF. Let Fi be the projection of F onto Ri. Do:
 - Identify the set N of dependencies in F that is not preserved, i.e. not included in the closure of the union of F1,...Fn;
 - For each FD $X \rightarrow A$ in N, create a relation schema XA and add it to the decomposition of R.
- The resulting decomposition is a lossless-join and dependency-preserving decomposition of R into 3NF relations.

Problem

 Given a relation schema R(ABCDE) with FD's

 $\mathsf{F} = \{\mathsf{A} \rightarrow \mathsf{B}, \, \mathsf{C} \rightarrow \mathsf{D}, \, \mathsf{B} \rightarrow \mathsf{A}\mathsf{E}\}$

Find all the candidate keys for R.

Problem (contd.)

Proceed as follows:

(a) Identify the attributes that are in the relation schema and not in the set of functional dependencies: None.

- (b) Identify the attributes that appear only on the left hand-side in F (*these attributes will belong to any single key of the relation schema*): C.
- (c) Identify the attributes that appear only on the right hand-side in F (*these attributes are not part of any key*): DE.
- (d) Combine the set of attributes obtained in (a) and (b) with the attributes that are <u>not</u> obtained in (c).
 Compute their closure to check whether they are a key.

Problem (contd.)

- From (a) and (b), we get C;
- The attributes not obtained in (c) are: A,B,C.
- We compute the closure of C: C+ = CD. Thus: <u>C is not a key</u>.
- We compute the closure of CA: CA+ = CABDE. Thus: <u>CA is a</u> <u>key.</u>
- We compute the closure of CB: CB+ = CBDAE. Thus: <u>CB is a</u> <u>key</u>.
- Note: We know from (c) that CD and CE are not keys;
- Then, we consider combinations of three attributes that don't contain CA or CB (since they are keys), and include C. The only possible combination is CDE, but D and E are not part of any key.
- Therefore, CA and CB are the only keys in R.