Schema Refinement \& Normalization Theory

INFS 614

Overview of Normal Forms

* If a relation is placed in a normal form (BCNF, 3NF etc.), certain problems are avoided or minimized.
- redundancy and its associated update/insert/delete anomolies
: Normal forms include: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF, ...
- we focus on BCNF in this lecture
* Normal forms are achieved by decomposing a schema to isolate certain dependencies
- we focus only on functional dependencies (FDs)
- there are other types: e.g., multivalued dependencies (4NF), join dependencies (5NF)

Boyce-Codd* Normal Form (BCNF)

* Reln R with FDs F is in BCNF if, for each $X \rightarrow A$ in F^{+} either:
- 1) $A \subseteq X$ (i.e, A 's attributes are all in X, a trivial FD), or
- 2) X is a (super) key for R (i.e., $X \rightarrow R$ is in F^{+}).
\therefore In other words, R is in BCNF if the only non-trivial FDs involve a key for R.
* If R is in BCNF , there is no redundancy solely due to FD's
* A relation in BCNF corresponds well to an "entity set" or a "relationship set" in a (good) ER design.
* Remember him? (he invented the relational model in 1970)

Testing For BCNF

* The BCNF conditions must hold for ALL FD's!
- not just those in F, but those in $F+$
* The hard way:
* 1) generate F+ from F by Armstrong's Axioms
- a lot of work, potentially!!
* 2) check every FD in F+:
- is $X \rightarrow Y$ trivial?
- is X is superkey for R ?
* If, for every FD in $\mathrm{F}+$, the answer is "yes" to one of these questions, then R is in BCNF

Testing for BCNF (Easier Way)

* Strategy: For each non-trivial FD $X \rightarrow A$ in F
- is X a superkey for R ?
- use the attribute closure algorithm: i.e., does X^{+} contain all attributes in R?
* Armstrong's Axioms preserve "superkeyness"!
- (see next slide)

Thus, for every FD in F+ generated from $X \rightarrow A$, its left hand side is also superkey

- and thus R is in BCNF
- and we didn' t have to compute F^{+}!
* Armstrong's axioms also preserve "trivialness" - adding trivial FD's has no impact on BCNF.

Remember These?

* Armstrong' s Axioms (X, Y, Z are sets of attributes):
- Reflexivity: If $Y \subseteq X$ (i.e., $X \supseteq Y$), then $X \rightarrow Y$
- Augmentation: If $\mathrm{X} \rightarrow \mathrm{Y}$, then $\mathrm{XZ} \rightarrow \mathrm{YZ}$ for any Z
- Transitivity: If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{Y} \rightarrow \mathrm{Z}$, then $\mathrm{X} \rightarrow \mathrm{Z}$

Testing for BCNF: Example

* Given $A B C D$ and $F=\{B \rightarrow C, C \rightarrow D, C \rightarrow A\}$
- (Exercise 19.7 \#1)
* Is relation $A B C D$ in $B C N F$?
- none of these FDs are trivial (must check all)
- $B \rightarrow C: B^{+}=\{A B C D\} O K$
- $C \rightarrow D: C^{+}=\{A C D\}$ Whoops! (Not in BCNF)
* We will have to decompose $A B C D$ to achieve BCNF!
* Strong Hint: Know how to test for BCNF!

Decomposition of a Relation Schema

* When a relation schema is not in BCNF: decompose.
* Decompose R into $R_{1} \ldots R_{n}$, where
- each R_{i} is a projection of R (contains a subset of $R_{N} s$ attributes)
- $\bigcup_{i=1}$ Atts $\left(R_{i}\right)=$ Atts (R) (the union of the attributes ${ }_{i=1}$ of each $R_{i}=$ the attributes of R)
- each R_{i} is in BCNF
- intuitively, "rogue dependencies" are broken out into their own tables

Testing for BCNF: Hard Case

* What if the atts of F are not contained entirely within the relation R we are testing?
* This can happen in a decomposition of R :
- E.g. Consider $R_{1}(A, B, C, D)$, with $F=\{A \rightarrow B, B \rightarrow C\}$
- Now decompose R_{1} into $R_{2}(A, B)$ and $R_{3}(A, C, D)$
- Although neither dependency in F contains only attributes from (A,C,D) R_{3} does not satisfy BCNF!
- Dependency $A \rightarrow C$ in F^{+}shows R_{3} is not in BCNF.
* To test if a decomposed relation R_{d} is in BCNF:
- 1) compute the key for R_{d},
- 2) for all (non-trival) FDs $X \rightarrow Y$ in $\mathrm{F}+$ whose attrs iNFS614 are entirely within R_{d}, is X a superkey for R_{d} ?

Decomposition example

S	N	L	R	W	H
$123-22-3666$	Attishoo	48	8	10	40
$231-31-5368$	Smiley	22	8	10	30
$131-24-3650$	Smethurst	35	5	7	30
$434-26-3751$	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Original relation

Decomposition

$=$| S | N | L | R | H |
| :--- | :--- | :--- | :--- | :--- |
| $123-22-3666$ | Attishoo | 48 | 8 | 40 |
| $231-31-5368$ | Smiley | 22 | 8 | 30 |
| $131-24-3650$ | Smethurst | 35 | 5 | 30 |
| $434-26-3751$ | Guldu | 35 | 5 | 32 |
| $612-67-4134$ | Madayan | 35 | 8 | 40 |

$\triangleright \triangleleft$| | |
| :--- | :--- |
| 8 | W |
| | 10 |
| 5 | 7 |

Problems with Decompositions

\therefore There are at least four potential problems to consider:

1) The decomposed relation instances are not "join lossless":

- The original R cannot be recaptured via joins (very bad!)

2) The decomposed instances are not "dependency preserving"

- Checking some FDs may require joins

3) Some queries become more expensive.

- e.g., How much did Attishoo earn? (earn $=W *$ H, requires a join)

4) Some decompositions fragment important conceptual entities - "overnormalization"; classic example: an address

* Design considerations: Compare these costs vs. tolerating some redundancy (and associated anomolies)
- BCNF avoids 1), and is conceptually easy.
- 3NF avoids both 1) and 2), but permits some redundancy
- sometimes we can use views cleverly (especially materialized) to compensate for 3) and 4)

Example: Join

Student_ID	Name	Dcode	Cno	Grade
$123-22-3666$	Attishoo	INFS	501	A
231-31-5368	Guldu	CS	102	B
$131-24-3650$	Smethurst	INFS	614	B
$434-26-3751$	Guldu	INFS	614	A
$434-26-3751$	Guldu	INFS	612	C

Name	Dcode	Cno	Grade			
Attishoo	INFS	501	A			
Guldu	CS	102	B			
Smethurst	INFS	614	B			
Guldu	INFS	614	A			
Guldu	INFS	612	C	$\quad \triangleright \triangleleft$	Student_ID	Name
:---	:---					
$123-22-3666$	Attishoo					
$231-31-5368$	Guldu					
$131-24-3650$	Smethurst					
$434-26-3751$	Guldu					

Lossless Join Decompositions

* Decomposition of R into R_{1} and R_{2} is joinlossless w.r.t. a set of FDs F if, for every instance rof R that satisfies F, we have:

$$
\pi_{R_{1}}(r) \triangleright \Delta \pi_{R_{2}}(r)=r
$$

\because It is always true that

$$
r \subseteq \pi_{R_{1}}(r) \triangleright \triangleleft \pi_{R_{2}}(r)
$$

* The other direction does not always hold!
- unless the common (join) attributes of the decomposed tables form a key for at least one of those tables

Further Example: Lossy

Note: B is not a key for $A B$ or $B C$!

Further Example: Lossless

Now, B is a key for $B C$.

Lossless Join Decomposition

* The decomposition of R into R_{1} and R_{2} wrt F is join-lossless if:
- Atts of $\left(R_{1} \cap R_{2}\right) \rightarrow R_{1}$, or
- Atts of $\left(R_{1} \cap R_{2}\right) \rightarrow R_{2}$
- I.e.: if the join attributes form a key for R_{1} or R_{2}
: Important special case: if $X \rightarrow Y$ holds on R, the decomposition of R into ($R-Y$) and ($X Y$) is join-lossless
- X and Y do not share attributes.
- X is common to both tables, and is a key for XY

A Simple "Tree" Algorithm for Decomposition into BCNF

* Consider relation R with $\mathrm{FD} s \mathrm{~F}$. If $\mathrm{X} \rightarrow \mathrm{A}$ in F^{+} over R, violates $B C N F$, i.e.,
- the attributes of $X A$ are all in R, and yet:
- $X \rightarrow R$ is not in $\mathrm{F}^{+}(X$ is not a key for R)
- A is not in $X(X \rightarrow A$ is not trivial)
$\%$ Then: decompose R into two new relations
- XA
- R-A
* Repeated application of this decomposition:
- results in a collection of relations that are in BCNF
- produces a lossless join decomposition
- is guaranteed to terminate.

BCNF Decomposition Example

* Assume relation schema CSJDPQV
- key C, JP \rightarrow C, SD $\rightarrow P, J \rightarrow S$ (call the last $2 \mathrm{~F}_{\mathrm{BAD}}$)
\therefore Remove SD $\rightarrow P$ from $F_{B A D}$, and decompose into SDP ("XA"), CSJDQV ("R-A").
- Test if these are individually in BCNF.
- If not, recurse! (on either side; see below)
: Remove J \rightarrow S from $\mathrm{F}_{\mathrm{BAD}}$, decompose into JS, CJDQV.
- We are done now. WHY? (The LHS of all fds in F , and F^{+}, is a key)
* Note: it helps to draw this tree as you go!

BCNF Decomposition

* In general: several dependencies may cause violation of BCNF.
* The order in which we "deal with" them could lead to different (valid) sets of BCNF relations.

Dependency Preservation

* Consider CSJDPQV, C is key, JP $\rightarrow C$ and SD $\rightarrow P$.
- BCNF decomposition: CSJDQV and SDP
- Problem: Checking JP $\rightarrow C$ requires a join!
- e.g., does an insertion to SDP violate JP $\rightarrow C$? How can we tell?
* Dependency preservation problem:
- If R is decomposed into X, and Y, then all FDs that were given to hold on R should still hold
- but we can' \dagger (easily) enforce them if their attributes are "scattered" across multiple relations!

BCNF and Dependency Preservation

* In general, there may not be a dependency preserving decomposition into BCNF.

The Projection of a set of FDs

* Given F, let R be decomposed into X and Y
* The projection of F onto X (denoted F_{X}) is the set of $\mathrm{FDs} \mathrm{U} \rightarrow \mathrm{V}$ in F^{+}such that the attributes of U, V are entirely in X.

Dependency Preserving Decompositions

\because Decomposition of R into X and Y is dependency preserving if $\mathrm{F}^{+}=\left(\mathrm{F}_{\mathrm{X}} \text { union } \mathrm{F}_{\mathrm{Y}}\right)^{+}$

- Example: $R=A B C, F=\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$, and R is decomposed into $A B$ and $B C$.
- Is this dependency preserving? Yes.
- (Note: Consider F^{+}, not just F, in definition of F_{x} and F_{y} !)
- By transitivity, $F+$ also includes $A \rightarrow C, B \rightarrow A, C \rightarrow B$
- Thus $F_{X}=\{A \rightarrow B$ and $B \rightarrow A\}$
- Thus $F_{Y}=\{B \rightarrow C$ and $C \rightarrow B\}$
- Thus (F_{X} union F_{Y}) ${ }^{+}$includes $C \rightarrow A$ (by transitivity)
- So the $A B, B C$ decomposition will enforce/preserve $C \rightarrow A!!$
* Dependency preserving does not imply lossless join:
- $A B C, A \rightarrow B$, decomposed into $A B$ and $B C$.
* And vice-versa! (Example?)

Example

* Assume CSJDPQV is decomposed into SDP, JS, CJDQV
this is not dependency preserving w.r.t. the FDs: $\mathrm{JP} \rightarrow \mathrm{C}, \mathrm{SD} \rightarrow \mathrm{P}$ and $\mathrm{J} \rightarrow \mathrm{S}$.
* However, it is a lossless join decomposition.
* Adding table JPC gives us a dependency preserving decomposition.
- Note: JPC tuples stored only for checking FD!
- But it is redundant ...
* Is there a general way to ensure dep. pres?

Third Normal Form (3NF)

$\therefore R$ with FDs F is in $3 N F$ if, for all $X \rightarrow A$ in F^{+}

- A in X (i.e., FD is trivial), or
- X contains a key for R, or
- A is part of some (candidate, not super) key for R.
- a bit weaker than BCNF!
* It is always possible to decompose into 3NF and preserve dependencies
- and be join-lossless
- but you may have some FD-induced redundancy
$\therefore 3 N F$ is a compromise
- if you really want dependency preservation
- or (more likely) if BCNF is just too hard to achieve

Third Normal Form (3NF)

* A relation in 3NF is free of:
- partial dependencies: e.g. given $R(A B C), A B \rightarrow C(A B$ is a key), $A \rightarrow C$
- transitive dependencies: e.g. given $R(A B C), A \rightarrow B, B$ $\rightarrow C$
: 2NF is free of partial dependencies only

1NF

: First normal form requires every column in a relation to be atomic (i.e. not a repeating group)
: This is the default in the relational model.
: XML DTD's can define non-1NF models. !!DOCTYPE BOOKLIST [«!ELEMENT LISTNAME (\#PCDATA)> «!ELEMENT LIST (BOOK)*> «!ELEMENT BOOK (AUTHOR, TITLE)> «!ELEMENT AUTHOR (\#PCDATA)> «ELEMENT TITLE (\#PCDATA)> «!ELEMENT TITLE (\#PCDATA)]

Overnormalization

* Address entity:
- Bob Jones, 12 Main Street, Springfield IL, 12345
* Address (Firstname, Lastname, Number, Street, City, State, Zip)
- FLNSCTZ
- NSCT \rightarrow Z

: Do we really want to do this?
- so what if zip codes are a bit redundant
- insert, update, delete anomolies are managable!

Summary of Schema Refinement

: If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic.

* If a relation is not in BCNF, we can try to decompose it into a collection of $B C N F$ relations.
- Must consider whether all FDs are preserved. If a lossless-join, dependency preserving decomposition into BCNF is not possible (or unsuitable, given typical queries), should consider decomposition into 3NF.
- Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.

Three Normalization Lessons

1) Intuitively, the left hand side of every FD wants to be the key of some relation.
2) "Perfect" decompositions don' \dagger always happen.

- But you should still know BCNF decomposition for the final :-)

3) You can overnormalize.

Big Picture Takeaways

- What can FDs \& normalization do for you?
- Reduce redundancy, reducing storage costs
- Improve data consistency (by having only one copy)
- Improve concurrency (less needs to be locked)
- Provide insight into any database design (e.g., causal links)
- How could normalization hurt you?
- Requiring (potentially lossy) joins to put your data back together
- Require you to understand all FDs before you can design, use your database (big issue in analytic databases).
- This takes time (doesn't lend itself to rapid prototyping).
- If you don't know BCNF on the final ©
- Normalization is a tool (like ER design). Designing great infs614 ${ }^{\text {databases is up to you! }}$

Backup

What Does 3NF Achieve?

* If 3NF is violated by $X \rightarrow A$, one of the following holds:
- X is a proper subset of some key K
- We store (X, A) pairs redundantly.
E.g.: SBDC, SBD is the only key, $S \rightarrow C$. Pairs (S,C) redundant.
- X is not a proper subset of any key.
- There is a chain of FDs $K \rightarrow X \rightarrow A$, which means that we canno \dagger associate an X value with a K value unless we also associate an A value with an X value.
E.g.: Hourly_Emps SNLRWH, S is the only key, $\mathrm{R} \rightarrow \mathrm{W}$.
* But: even if reln is in 3NF, these problems could arise.
- e.g., Reserves SBDC, $S \rightarrow C, C \rightarrow S$ is in 3NF, but for each reservation of sailor S, same (S, C) pair is stored.
: Thus, $3 N F$ is indeed a compromise with respect to $B C N F$.

Testing for 3NF

* Optimization: Need to check only FDs in F, need not check all FDs in F^{+}.
* Use attribute closure to check, for each dependency $X \rightarrow A$, if X is a superkey.
* If X is not a superkey, we have to verify if A is part of some candidate key of R
- this test is rather expensive, since it involves finding candidate keys

Decomposition into 3NF

* Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier).
* To ensure dependency preservation, one idea:
- If $X \rightarrow Y$ is not preserved, add relation $X Y$.
- Problem is that XY may violate 3NF!
* Refinement: Instead of the given set of FDs F, use a minimal cover for F.

Minimal Cover for a Set of FDs

: Minimal cover G for a set of FDs F:

- Closure of $F=$ closure of G.
- Right hand side of each FD in G is a single attribute.
- If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.
* Intuitively, every FD in G is needed and" as small as possible' in order to get the same closure as F.
$\%$ e.g., $A \rightarrow B, A B C D \rightarrow E, E F \rightarrow G H, A C D F \rightarrow E G$ has the following minimal cover:
$-A \rightarrow B, A C D \rightarrow E, E F \rightarrow G$ and $E F \rightarrow H$

Dependency-Preserving Decomposition into 3NF

$*$ Given R with a set F of $F D$ s that is a minimal cover. Let R1,...,Rn be a lossless-join decomposition of R in 3NF. Let Fi be the projection of F onto Ri. Do:

- Identify the set N of dependencies in F that is not preserved, i.e. not included in the closure of the union of F1,...Fn;
- For each FD $X \rightarrow A$ in N, create a relation schema XA and add it to the decomposition of R.
* The resulting decomposition is a lossless-join and dependency-preserving decomposition of R into 3NF relations.

Problem

* Given a relation schema $\mathrm{R}(\mathrm{ABCDE})$ with FD's

$$
F=\{A \rightarrow B, C \rightarrow D, B \rightarrow A E\}
$$

Find all the candidate keys for R.

Problem (contd.)

Proceed as follows:
(a) Identify the attributes that are in the relation schema and not in the set of functional dependencies: None.
(b) Identify the attributes that appear only on the left hand-side in F (these attributes will belong to any single key of the relation schema): C.
(c) Identify the attributes that appear only on the right hand-side in F (these attributes are not part of any key): DE.
(d) Combine the set of attributes obtained in (a) and (b) with the attributes that are not obtained in (c).
Compute their closure to check whether they are a key.

Problem (contd.)

- From (a) and (b), we get C;
- The attributes not obtained in (c) are: A,B,C.
- We compute the closure of $\mathrm{C}: \mathrm{C}+=\mathrm{CD}$. Thus: $\underline{\mathrm{C} \text { is not a key. }}$
- We compute the closure of $\mathrm{CA}: \mathrm{CA}+=\mathrm{CABDE}$. Thus: $\underline{C A}$ is a key.
- We compute the closure of $\mathrm{CB}: \mathrm{CB}+=\mathrm{CBDAE}$. Thus: $\underline{C B}$ is a key.
- Note: We know from (c) that CD and CE are not keys;
- Then, we consider combinations of three attributes that don' t contain CA or CB (since they are keys), and include C. The only possible combination is CDE, but D and E are not part of any key.
- Therefore, CA and CB are the only keys in R.

